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ABSTRACT

Imitation learning (IL) has shown great potential in various applications, such as
robot control. However, traditional IL methods are usually designed to learn only
one specific type of behavior since demonstrations typically correspond to a single
expert. In this work, we introduce the first generic framework for Quality Diver-
sity Imitation Learning (QD-IL), which enables the agent to learn a broad range
of skills from limited demonstrations. Our framework integrates the principles
of quality diversity with adversarial imitation learning (AIL) methods, and can
potentially improve any inverse reinforcement learning (IRL) method. Empirically,
our framework significantly improves the QD performance of GAIL and VAIL
on the challenging continuous control tasks derived from Mujoco environments.
Moreover, our method even achieves 2x expert performance in the Humanoid
environment.

1 INTRODUCTION

Imitation learning (IL) enables intelligent systems to quickly learn complex tasks by learning from
demonstrations, which is particularly useful when manually designing a reward function is difficult.
IL has been applied to many real-world scenarios such as autonomous driving (Bojarski, 2016),
robotic manipulation (Zhu et al., 2018), surgical skill learning (Gao et al., 2014), and drone control
(Ross et al., 2013). The concept of IL relies on the idea that experts can showcase desired behaviors,
when they are unable to directly code them into a pre-defined program. This makes IL applicable to
any system requiring autonomous behavior that mirrors expertise (Zare et al., 2024).

However, traditional IL methods tend to replicate only the specific strategies demonstrated by the
expert. If the expert demonstrations cover a narrow range of scenarios, the model may struggle when
faced with new or unseen situations. Additionally, IL faces challenges in stochastic environments
where outcomes are uncertain or highly variable. Since the expert’s actions may not capture all
possible states or contingencies, IL often struggles to learn an optimal strategy for every scenario
(Zare et al., 2024). These limitations are further exacerbated when the demonstration data is limited,
as the IL algorithm will only learn specific expert behavior patterns. Hence, traditional IL methods
are significantly constrained due to the lack of ability to learn diverse behavior patterns to adapt to
stochastic and dynamic environments.

On the other hand, the Quality Diversity (QD) algorithm is designed to find diverse (defined by
measure m) solutions to optimization problems while maximizing each solution’s fitness value (fitness
refers to the problem’s objective) (Pugh et al., 2016). For instance, QD algorithms can generate
diverse human faces resembling “Elon Musk” with various features, such as different eye colors
(Fontaine & Nikolaidis, 2021). In robot control, the QD algorithm excels at training policies with
diverse behaviors. This enhances the agent’s robustness in handling stochastic situations (Tjanaka
et al., 2022). For example, if an agent’s leg is damaged, it can adapt by switching to a policy that
uses the other undamaged leg to hop forward. Different ways of moving forward represent diverse
behavior patterns (Fontaine & Nikolaidis, 2021). Traditional QD algorithms often use evolutionary
strategies (ES). They have been successful in exploring solution space but suffer from lower fitness
due to the large solution spaces, especially when the solution is parameterized by neural networks
(Hansen, 2006; Salimans et al., 2017). Recent works combining ES with gradient approximations
in differentiable QD (DQD) have significantly improved the ability to discover high-performing
and diverse solutions (Fontaine & Nikolaidis, 2021). Naturally, one valuable question is raised:
can we design a novel IL framework that can combine the respective strengths of traditional IL
and QD algorithms, enabling the agent to learn a broad set of high-performing skills from limited
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Figure 1: (a) The dashed lines divide the policy space into regions constrained by different measures.
While PPGA stores high-performing policies for each behavioral region it explores, it overemphasises
particular regions of the behavior space (see yellow bars). Introducing the measure bonus helps
to improve this exploration process, encouraging exploration in other behavioral regions. (b) The
left figure shows traditional IL, where the agent learns a single policy mimicking the expert. In
contrast, QD-IL learns from multiple diverse expert policies, such that many behaviors are considered
high-performing, resulting in a set of policies, represented by the curve. The orange bar means the
expert policy and f means fitness (cumulative reward).

demonstrations? We call such IL framework as Quality Diversity Imitation Learning (QD-IL). Based
on our extensive investigations, we found that there is no existing QD-IL work. To mitigate this gap,
we first identify the two key challenges of QD-IL as follows:

        m=[0.21,0.63]
      one-leg hop

        
m=[0.47,0.27]
 two-legs hop

              
m=[0.86,0.92]
walk forward

Figure 2: An illustration of the quality-diversity
policy archive shows behavior measure m, repre-
senting the leg ground contact time, where varying
m results in diverse behaviors.

1) Unbalanced exploration and exploitation:
From an optimization perspective, we observed
that the objective of QD can be framed as solv-
ing multiple optimization problems with vary-
ing constraints based on measure m. Ideally, the
policy should explore all regions equally rather
than getting stuck in local optima, as depicted
in Figure 1(a). However, policy space contains
numerous local optima (Dauphin et al., 2014),
leading to a lack of behavior-space exploration.
2) Localized reward: Traditional Inverse Re-
inforcement Learning (IRL) methods are inher-
ently formulated based on a single expert policy,
as illustrated in the left figure of Figure 1(b).
Such a reward design results in a localized re-
ward function, in the sense that it only counts a single behavior as being high-performing. Additionally,
the localized reward will further exacerbate the local optima issue mentioned in 1) since we are
interested in optimizing a wide range of behaviors, rather than only fitting the expert behavior.

To address these challenges, we introduce two key modifications to generic adversarial IL meth-
ods. To improve exploration of new behaviors, we introduce the measure bonus – a reward bonus
designed to encourage exploration of new behavior patterns, preventing stagnation at local optima
and promoting balanced exploration. To prevent overly localized reward functions, we make two
further modifications, namely a) we assume demonstrations are sampled from diverse behaviors
from different experts rather than a single expert, as illustrated in the right figure of Figure 1(b);
and b) using such diverse demonstrations, we formulate measure conditioning, which enhances
the discriminator by incorporating the behavior measure m into its input. The measure m acts as a
high-level state abstraction, enabling the generalization of the knowledge from limited demonstrations
to unseen states. The measure bonus also promotes the exploration of more diverse state and action
pairs. Combined with measure conditioning, this helps reduce the overfitting of the discriminator and
addresses the localized reward issue. By combining the measure bonus with measure conditioning,
we ensure continuous discovery of new behaviors while generalizing the behavior-level knowledge to
unseen situations so that the agent can learn diverse and high-performing policies, as illustrated in
Figure 2. To validate our framework, we conducted experiments with limited expert demonstrations
across various environments. Notably, our framework is the first generic QD-IL approach, potentially
capable of enhancing any IRL method for QD tasks and also opens the possibility of Quality-Diversity
Imitation From Observation (QD-IFO) (Liu et al., 2018). It even surpasses expert performance in
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terms of both QD-score and coverage in the Walker2d and challenging Humanoid environments. We
summarize our contributions as follows:

• We design a measure-based reward bonus to directly encourage behavior-level exploration, which
can be integrated into any IRL methods, maximizing the behavior space diversity.

• We propose a novel measure-conditional adversarial IL to generalize expert knowledge to diverse
behaviors, which can be applied to most generic IRL algorithms.

• We identify the key challenges of QD-IL. To the best of our knowledge, this paper is the first
work to bridge QD algorithms and a broad range of imitation learning methods, addressing the
key limitation of traditional IL methods. Our framework provides a generic framework for future
QD-IL research and potentially enhances any IL application that requires learning diverse policies.

2 BACKGROUND

2.1 QUALITY DIVERSITY OPTIMIZATION

Distinct from traditional optimization which aims to find a single solution to maximize the objective,
Quality Diversity (QD) optimization aims to find a set of high-quality and diverse solutions in an
n-dimensional continuous space Rn. Given an objective function f : Rn → R and k-dimensional
measure function m : Rn → Rk, the goal is to find solutions θ ∈ Rn for each local region in the
behavior space B = m(Rn). Two canonical algorithms of QD are MAP-Elites Mouret & Clune
(2015a) and Novelty Search with Local Competition Lehman & Stanley (2011), which differ in terms
of how they structure the behavior space into an archive of solutions and how local competition
and replacement of solutions is performed (see also Cully & Demiris (2018) for an overview of QD
algorithm classifications). We focus on grid-based archives as in the MAP-Elites algorithm, which
discretize B into M cells, where each cell i = 1, . . . ,M represents a small hypercube [ai,bi] within a
multi-dimensional grid of the behavioral measure space. A new solution replaces an existing solution
in the same cell if it outperforms it and falls within the same hypercube. Formally, the objective
is to find a set of solutions {θi}M

i=1 which maximises f (θi) for each i = 1, . . . ,M. Each solution θi
corresponds to a cell in A via its measure m(θi), forming an archive of high-quality and diverse
solutions (Chatzilygeroudis et al., 2021; Pugh et al., 2016).

Some traditional Quality Diversity optimization methods integrate Evolution Strategies (ES) with
MAP-Elites (Mouret & Clune, 2015b), such as Covariance Matrix Adaptation MAP-Elites (CMA-
ME) (Fontaine et al., 2020). CMA-ME uses CMA-ES (Hansen & Ostermeier, 2001) as ES algorithm
generating new solutions that are inserted into the archive, and uses MAP-Elites to retains the
highest-performing solution in each cell. CMA-ES adapts its sampling distribution based on archive
improvements from offspring solutions. However, traditional ES faces low sample efficiency, espe-
cially for high-dimensional parameters such as neural networks.

Differentiable Quality Diversity (DQD) improves exploration and fitness by leveraging the gradients
of both objective and measure functions. Covariance Matrix Adaptation MAP-Elites via Gradient
Arborescence (CMA-MEGA) (Fontaine & Nikolaidis, 2021) optimizes both objective function f
and measure functions m using gradients with respect to policy parameters: ∇ f = ∂ f

∂θ
and ∇m =(

∂m1
∂θ

, . . . , ∂mk
∂θ

)
. The objective of CMA-MEGA is g(θ) = |c0| f (θ) +∑

k
j=1 c jm j(θ), where the

coefficients c j are sampled from a search distribution. CMA-MEGA maintains a search policy πθµ
in

policy parameter space, corresponding to a specific cell in the archive. CMA-MEGA generates local
gradients by combining gradient vectors with coefficient samples from CMA-ES, creating branched
policies πθ1 , . . . ,πθλ

. These branched policies are ranked based on their archive improvement, which
measures how much they improve the QD-score (one QD metric, which will be discussed in the
experiment section) of the archive. The ranking guides CMA-ES to update the search distribution,
and yields a weighted linear recombination of gradients to step the search policy in the direction
of greatest archive improvement. The latest DQD algorithm, Covariance Matrix Adaptation MAP-
Annealing via Gradient Arborescence (CMA-MAEGA) (Fontaine & Nikolaidis, 2023), introduces
soft archives, which maintain a dynamic threshold te for each cell. This threshold is updated by
te← (1−α)te +α f (πθi) when new policies exceed the cell’s threshold, where α balances the time
spent on exploring one region before exploring another region. This adaptive mechanism allows more
flexible optimization by balancing exploration and exploitation.
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2.2 QUALITY DIVERSITY REINFORCEMENT LEARNING

The Quality Diversity Reinforcement Learning (QD-RL) problem can be viewed as maximizing
f (θ) = Eπθ

[
∑

T−1
k=0 γkr(sk,ak)

]
with respect to diverse θ in a policy archive defined by measure m

(Cideron et al., 2020). In QD-RL, both the objective and measure are non-differentiable, requiring
approximations by DQD approaches. Previous work employs TD3 to approximate gradients and ES
for exploration (Nilsson & Cully, 2021; Pierrot et al., 2021), but is constrained to off-policy methods.
The state-of-the-art QD-RL algorithm, Proximal Policy Gradient Arborescence (PPGA), employs
a vectorized PPO architecture to approximate the gradients of the objective and measure functions
(Batra et al., 2023). While the policy gradient can approximate the cumulative reward, the episode-
based measure is harder to differentiate. PPGA addresses this by introducing the Markovian Measure
Proxy (MMP), a surrogate measure function that correlates strongly with the original measure and
allows gradient approximation via policy gradient by treating it as a reward function. PPGA uses
k+1 parallel environments with distinct reward functions – one for the original reward and k for the
surrogate measures. It approximates the gradients of both the objective and the k measure functions
by comparing the policy parameters before and after multiple PPO updates. These gradients are
then passed to the modified CMA-MAEGA to update the policy archive. We recommend readers to
explore prior works in depth (Batra et al., 2023) or refer to Appendix F for further details on PPGA
and related QD-RL methodologies.

2.3 IMITATION LEARNING

In Imitation learning (IL) (Zare et al., 2024), an agent learns high-performing policies from demon-
stration data. A traditional approach to solve this challenge is Behavior Cloning (BC), which uses
supervised learning to learn the policy from demonstrations, a technique which unfortunately suffers
from severe error accumulation (Ross et al., 2011). More recent techniques include inverse reinforce-
ment learning (IRL), where one seeks to learn a reward function from the demonstrations and then
use RL to train a policy based on that reward function (Abbeel & Ng, 2004).

Early IRL methods estimate rewards using the principle of maximum entropy (Ziebart et al., 2008;
Wulfmeier et al., 2015; Finn et al., 2016). Recent adversarial IL methods treat IRL as a distribution-
matching problem. For instance, Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon,
2016) trains a discriminator to differentiate between the state-action distribution of the demonstrations
and the state-action distribution induced by the agent’s policy, and output a reward to guide policy
improvement. Improving on GAIL, Variational Adversarial Imitation Learning (VAIL) (Peng et al.,
2018b) applies a variational information bottleneck (VIB) (Alemi et al., 2016) to the discriminator,
improving the stability of adversarial learning. Another technique for adversarial IL is Adversarial
Inverse Reinforcement Learning (AIRL) (Fu et al., 2017), which learns a robust reward function by
training the discriminator via logistic regression to distinguish expert data from policy data.

Recently, one can also observe a variety of techniques for non-adversarial imitation learning. For
instance, Primal Wasserstein Imitation Learning (PWIL) (Dadashi et al., 2021) formulates the reward
function based on an upper bound of the Wasserstein distance between the expert and agent’s
state-action distributions, avoiding the instability of adversarial IL methods. Generative Intrinsic
Reward-driven Imitation Learning (GIRIL) (Yu et al., 2020) computes rewards offline by pretraining
a reward model using a conditional VAE (Sohn et al., 2015), which combines a backward action
encoding model with a forward dynamics model. The reward is then derived from the prediction error
between the actual next state and its reconstruction. GIRIL has demonstrated superior performance
even with limited demonstrations.

Our paper primarily focuses on IRL with limited demonstrations, and we compare our proposed
approach to adversarial and non-adversarial techniques as baselines. More details about these
baselines are provided in Appendix C. In addition to the IRL setting, we also investigate how our
results translate to the related setting of Imitation From Observation (IFO), where only the experts’
state sequences, rather than full state-action sequences, are available (Liu et al., 2018).

While we are the first to explore quality diversity imitation learning, related work uses diverse
demonstrations to design policies that have the behavioral measure as one of the inputs (Justesen
et al., 2020) rather than designing an archive of diverse policies. Subsequent to our work, WQDIL Yu
et al. (2024) introduces a technique closely related to ours in terms of recognising behavior-space
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Figure 3: MConbo-IRL: Based on episodes sampled from the current search policy, we use the
measure conditioned reward model to compute the IRL reward and compare the current archive and
the measure of episodes to compute the measure bonus. Then VPPO uses these reward values to
approximate gradients for the objective and measures. Then these gradients are used to produce new
solutions, update archive, update search distribution, and search policy based on the CMA-MAEGA
paradigm.

exploration and measure-conditioning. Three key differences are that WQDIL uses a single-step
archive for computing exploration bonus, applies a Wasserstein auto-encoder (WAE) with latent
adversarial training, and uses the measure conditioning for learning latent variables with a WAE.

3 PROBLEM DEFINITION

Definition 1 (Quality-Diversity Imitation Learning). Given expert demonstrations D = {(si,ai)}n
i=1

and their measures, where si and ai are states and actions, QD-IL aims to learn an archive of diverse
policies {πθi}M

i=1 that collectively maximizes f (θ) (e.g., cumulative reward) without access to the
true reward. The archive is defined by a k-dimensional measure function m(θ), representing behavior
patterns. After dividing the archive into M cells, the objective of QD-IL is to find M solutions, each
occupying one cell, to maximize:

max
{θi}

M

∑
i=1

f (θi). (1)

4 PROPOSED METHOD

In this section, we will introduce our QD-IL framework, which aims to learn a QD-enhanced reward
function using the QD-RL algorithm PPGA to learn the policy archive. Specifically, we propose the
measure bonus to address the challenge of unbalanced exploration and exploitation and measure
conditioning to address the challenge of localized reward. Figure 3 shows the main components of
our framework, PPGA with Measure conditioned and bonus-driven Inverse Reinforcement Learning
(PPGA with MConbo-IRL). We provide the pseudo-code of our framework in Appendix A.

4.1 MEASURE BONUS

The objective of QD-RL optimization in PPGA is: g(θ) = |c0| f (θ)+∑
k
j=1 c jm j(θ), where dynamic

coefficients ci balance maximizing cumulative reward f (θ) and achieving diverse measures m(θ).
However, we observed that the fitness term f heavily influences PPGA’s search policy update direction,
as archive improvement is primarily driven by f . PPGA frequently becomes stuck in local regions,
generating overlapping solutions with only marginal improvements in the archive due to limited
exploration. Therefore, it will explore less in other areas, as illustrated in Figure 1(a). Additionally,
a key challenge in QD-IL is the conflict between imitation learning and diversity. Limited and
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monotone expert demonstrations lead to highly localized and sometimes misleading reward functions,
further exacerbating the problem by restricting search policy updates. Hence, we aim to encourage
the search policy to find new behavior patterns (i.e., the empty area in the policy archive).

Lemma 1. Suppose the reward function of one MDP is given by r(si
t ,a

i
t) = I(mi ∈Ae), where si

t and
ai

t represent the state and action at time step t of episode i, Ae means the empty area of archive A
and I(mi ∈Ae) is indicator function indicating whether the measure of i− th episode falls into Ae.
Then if one iteration of PPO successfully increases the objective value, the following inequalities
hold:

(1) : P(πθnew |m ∈Ae)≥ P(πθold |m ∈Ae) and (2) : P(m ∈Ae|πθnew)≥ P(m ∈Ae|πθold),

where P(m ∈A |πθ ) means the probability of the event that the measure of one episode belongs to
the unoccupied area Ae, given this episode is generated by policy πθ , and P(πθ |m ∈Ae) means the
probability that the policy, which generates the episodes that occupied Ae, is exactly πθ .

Lemma 1 demonstrates that using the indicator function I(mi ∈Ae) as the reward function in the
standard PPO objective steadily increases the probability that the policy generates episodes with new
behavior patterns. We found this approach synergizes effectively with CMA-MEGA, encouraging the
search policy to explore diverse behaviors. For the proof of Lemma 1 and a more detailed explanation
of the synergy with CMA-MEGA, please refer to Appendix G.

However, we observed that using an indicator function results in binary rewards, which might be
sparse and unstable. Moreover, we aim to control the weight of the measure bonus. Hence, we adopt
a linear function of indicator for our Measure Bonus:

rdiversity(si
t ,a

i
t ,mi) = p+qI(mi ∈Ae), (2)

where si
t and ai

t represents the state and action at time step t of episode i, Ae means the empty area of
current archive and mi is the measure of episode i. The hyperparameter q controls the weight of the
measure bonus and the term p encourages the agent for staying in the episode, thereby facilitating the
search for diverse behaviors. The trade-off between p and q represents how to emphasise staying in
the episode versus getting the measure bonus as frequently as possible. Measure Bonus is a type of
episode reward (Sutton, 2018), which is calculated at the end of each episode. The Measure Bonus
adaptively balances exploration and exploitation. Once a region in the archive has been sufficiently
explored, the bonus of this region decreases, allowing the focus to shift more towards exploitation.

4.2 MCONBO-IRL

Measure bonus improves policy diversity but doesn’t guarantee the performance of diverse policies.
To address this, we introduce measure conditioning, which can potentially be integrated into most
IRL methods. We demonstrate this using two popular IRL methods, GAIL and VAIL.

4.2.1 MCONBO-GAIL

The GAIL discriminator receives a state-action pair (s,a) and outputs how closely the agent’s behavior
resembles that of the expert, serving as a reward function. However, GAIL tends to overfit specific
behaviors with limited demonstrations. In large state spaces, the discriminator struggles to generalize
to unseen states (Kostrikov et al., 2018). This results in localized and sparse rewards, hindering
quality diversity. Therefore, the core question in QD-IL is how to generalize knowledge from limited
demonstrations to the entire policy archive while avoiding localized rewards.

To address this, we use the Markovian Measure Proxy (Batra et al., 2023). It decomposes trajectory-
based measures into individual steps: mi(θ) =

1
T ∑

T
t=0 δi(st). This makes the measure state-dependent

and Markovian. We make the key observation that the single-step measure δi(st) abstracts higher-
level task features such as ground contact in locomotion, while filtering out lower-level state details
(e.g., joint angles and velocities). This provides a more general representation, enabling better
generalization across the policy archive. By simply incorporating δi(st) as an additional input to the
GAIL discriminator, we propose Measure-Conditional-GAIL with the following modified objective:

max
π

min
Dψ

E(s,a)∼D [− logDψ(s,a,δ (s))]+E(s,a)∼π [− log(1−Dψ(s,a,δ (s)))]. (3)
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This approach encourages the discriminator to generalize by focusing on higher-level state descriptors
δ (s), capturing essential task-relevant features. It enables the agent to learn high-performing policies
from limited demonstrations, improving generalization to unseen states. The discriminator serves
as the basis for the reward, therefore with measure-conditioning the agent will get a high reward
for actions that mimic the experts, and particularly so when the expert is close in state-measure,
which is an abstraction of the state. Due to it being an abstraction of the state, there is less risk of
overfitting on the specific demonstration trajectories since many trajectories may map to the same
state. Consequently, many behaviors can be counted as high-performing. Considering the above, the
measure-conditioning will help us to achieve high quality and diversity.

We then formulate the total reward function computed by MConbo-GAIL as follows:

r(si
t ,a

i
t ,mi) =− log

(
1−Dψ(si

t ,a
i
t ,δ (s

i
t))

)
+ rdiversity(si

t ,a
i
t ,mi). (4)

4.2.2 MCONBO-VAIL

To extend our framework to other IRL algorithms, we begin with another generic IL method -
Variational Adversarial Imitation Learning (VAIL). To facilitate behavior exploration and knowledge
generalization, we slightly modify the VAIL’s objective for training discriminator as follows:

min
Dψ ,E ′

max
β≥0

E(s,a)∼D

[
Ez∼E ′(z|s,a,δ (s))

[
log(−Dψ(z))

]]
+E(s,a)∼π

[
Ez∼E ′(z|s,a,δ (s))

[
− log(1−Dψ(z))

]]
+βEs∼π̃

[
dKL(E ′(z|s,a,δ (s))||p(z))− Ic

]
,

(5)
where δ (s) is the measure proxy function of state s, π̃ means the mixture of expert policy and agent
policy, and E

′
means latent variable encoder. By simply adding δ (s) as a new input to the VDB

encoder of VAIL, we integrate measure information into the latent variable z. This helps improve the
generalization ability to diverse behaviors. The reward function for MConbo-VAIL is given by:

r(si
t ,a

i
t ,mi) =− log

(
1−Dψ(µµµE ′(s

i
t ,a

i
t ,δ (s

i
t)))

)
+ rdiversity(si

t ,a
i
t ,mi), (6)

where µµµE ′(s
i
t ,a

i
t ,δ (s

i
t)) represents the mean of encoded latent variable distribution.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

We evaluate our framework on three popular Mujoco (Todorov et al., 2012) environments: Halfchee-
tah, Humanoid, and Walker2d. The goal in each task is to maximize forward progress and robot
stability while minimizing energy consumption. Our experiments are based on the PPGA implemen-
tation using the Brax simulator (Freeman et al., 2021), enhanced with QDax wrappers for measure
calculation (Lim et al., 2022). We leverage pyribs (Tjanaka et al., 2023) and CleanRL’s PPO (Huang
et al., 2020) for implementing the PPGA algorithm. The observation space sizes for these environ-
ments are 17, 18, and 227, with corresponding action space sizes of 6, 6, and 17. The measure
function is a vector where each dimension indicates the proportion of time a leg touches the ground.
All Experiments are conducted on a system with four A40 48G GPUs, an AMD EPYC 7543P 32-core
CPU, and a Linux OS, and each experiment takes roughly two days.

5.2 DEMONSTRATIONS

We use a policy archive obtained by PPGA to generate expert demonstrations. To follow a real-world
scenario with limited demonstrations, we first sample the top 500 high-performance elites from the
archive as a candidate pool. Then from this pool, we select a few demonstrations such that they are
as diverse as possible. This process results in 4 diverse demonstrations (episodes) per environment.
Appendix B provides the statistical properties, and Figure 4 visualizes the selected demonstrations.

5.3 OVERALL PERFORMANCE

To validate the effectiveness of our approach as a generic QD-IL framework, we use the recent
state-of-the-art PPGA technique with true reward function as the QD-RL baseline. The PPGA
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Figure 4: Visualization of the behavior space. Green indicates the full expert behavior space, blue
indicates the selected top-500 elites, and red indicates the demonstrators. The x axis is the proportion
of time Leg 1 touches the ground and the y axis is the proportion of time Leg 2 touches the ground.

algorithm is then used as the base-learner for our QD-IL imitation learners, by replacing the true
reward function with the reward function designed from imitation learning. In addition to using our
own MConbo algorithm, we also include the following widely-used and state-of-the-art IL methods
as baselines: 1) Traditional IRL: Max-Entropy, 2) Online reward methods: GAIL, VAIL, and AIRL,
and 3) Data-driven methods: GIRIL and PWIL. Each baseline learns a reward function, which is
then used to train standard PPGA under identical settings for all baselines. Hyperparameter details
are provided in Appendix D. All the experiments are averaged with three random seeds, with the
exception of PPGA, where we simply report the results for the one seed which was used to generate
the demonstrations.

We evaluate using four common QD-RL metrics: 1) QD-Score, the sum of scores of all nonempty
cells in the archive. QD-score is the most important metric in QD-IL as it aligns with the objective of
QD-IL as in equation (1); 2) Coverage, the percentage of nonempty cells, indicating the algorithm’s
ability to discover diverse behaviors; 3) Best Reward, the highest score found by the algorithm; and
4) Average Reward, the mean score of all nonempty cells, reflecting the ability to discover both
diverse and high-performing policies. We use the true reward functions to calculate these metrics.
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Figure 5: Four QD-metrics for MConbo-GAIL compared to GAIL, PPGA with true reward and other
baselines. The line represents the mean while the shaded area represents the standard deviation across
three random seeds.

Figure 5 compares the training curves across four metrics for MConbo-GAIL, generic GAIL, the ex-
pert (PPGA with true reward function), and other baselines. MConbo-GAIL significantly outperforms
the expert in the most challenging Humanoid environment (Batra et al., 2023) and slightly exceeds the
expert in the Walker2d environment in terms of QD-Score. In Halfcheetah, MConbo-GAIL improves
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the QD performance of generic GAIL and significantly outperforms most baselines across all four
metrics. Notably, MConbo-GAIL achieves nearly 100% coverage across all environments, especially
notable in Humanoid where the PPGA expert explored less than 50% of the cells. This success is
attributed to the synergy between the measure bonus and CMA-MEGA (please refer to Appendix G
for detailed explanation), which consistently directs the search policy towards unexplored areas in
the behavior space.

Ha
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True Reward GAIL MConbo-GAIL

Figure 6: Visualization of well-trained policy archive by True Reward, GAIL and MConbo-GAIL on
Humanoid and Halfcheetah, where the color of each cell represents the cumulative reward of best
performing policy in this cell.

However, due to the inaccessibility of the true reward function and the limited number of demonstra-
tions, it is challenging to match expert performance in terms of Best Reward and Average Reward.
Specifically, these metrics are evaluated using the true reward function, but IL-based reward functions
are inherently biased. Despite the biased reward function, MConbo-GAIL achieves near-expert
performance in Average Reward for Walker2d and Humanoid. Meanwhile, MConbo-GAIL signif-
icantly outperforming GAIL and other baselines in Humanoid and Walker2d for Average Reward.
Additionally, it’s important to note that GAIL’s Average Reward in the Humanoid environment is
extremely poor, in stark contrast to MConbo-GAIL’s high performance. This can be attributed to the
design of Measure-Conditional GAIL, which enables the agent to transfer higher-level knowledge
from expert demonstrations to the broader behavior space.

Figure 6 visualizes the policy archives for PPGA expert, GAIL, and MConbo-GAIL in Humanoid
and Halfcheetah. The archive produced by MConbo-GAIL shows smoother performance (with
lower variance across cells) and covers a larger area, highlighting the importance of measure-space
exploration and MConbo-GAIL’s effectiveness in generalizing high-level knowledge from limited
demonstrations to unseen behavior patterns.

Additionally, to demonstrate the potential of our method to enhance any IRL approach in the QD-IL
context, we apply MConbo to the generic VAIL framework. We separately compare MConbo-VAIL
with standard VAIL and other baselines, as shown in Figure 8 of Appendix A. Similar conclusions
can be drawn: MConbo-VAIL significantly improves VAIL in the QD context and even outperforms
the expert in the Walker2d and Humanoid environments.

Table 1: Four QD-metrics of different algorithms across three environments, where cov, Best, Avg
refers to Coverage, Best Reward and Average Reward respectively.

Halfcheetah Walker2d Humanoid

QD-Score Cov(%) Best Avg QD-Score Cov(%) Best Avg QD-Score Cov(%) Best Avg

True Reward 6.75×106 94.08 8,942 2,871 3.64×106 77.04 5,588 1,891 5.71×106 49.96 9,691 4,570

MConbo-GAIL 3.24×106 98.32 3,291 1,313 4.12×106 91.69 5,491 1,796 8.47×106 93.47 7,228 3,618
GAIL 2.02×106 67.83 5,115 1,167 2.48×106 69.29 4,031 1,429 1.86×106 82.36 6,278 924
MConbo-VAIL 4.41×106 92.63 5,018 1,940 3.68×106 90.60 4,051 1,626 8.91×106 91.52 6,505 3,899
VAIL 4.00×106 92.77 5,167 1,724 2.40×106 71.40 3,570 1,343 5.10×106 65.61 7,056 3,095
GIRIL 2.17×106 95.96 3,466 909 0.52×106 25.08 1,139 821 4.33×106 67.40 6,992 2,590
PWIL 3.75×106 99.68 3,814 1,506 2.27×106 64.45 2,835 1,410 1.13×106 91.73 841 492
AIRL 3.11×106 83.57 5,183 1,410 2.53×106 70.53 4,280 1,437 2.31×106 71.47 7,661 1,308
Max-Ent 1.12×106 85.48 2,594 525 1.80×106 68.83 3,756 1,046 1.82×106 83.27 4,658 882

Table 1 summarizes the quantitative results of our methods (MConbo-GAIL and MConbo-VAIL)
and baselines in the three tasks. MConbo improves boths GAIL and VAIL, thus we believe that our
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framework can potentially improve any inverse reinforcement learning algorithm in QD context. We
also conducted some experiments for our framework to improve the QD performance of Imitation
From Observation (IFO), which is a popular IL branch. Table 2 shows a brief summary of the results.
We opened the possibility for quality-diversity imitation-from-observation (QD-IFO). Please refer to
Appendix I for detailed analysis.

Table 2: Comparison of four QD-metrics of MConbo-GAIL without expert action (MConbo-GAIL-
Obs) and MConbo-GAIL, across three environments. There are only marginal performance losses
when expert action is unavailable.

Halfcheetah Walker2d Humanoid

QD-Score Cov(%) Best Avg QD-Score Cov(%) Best Avg QD-Score Cov(%) Best Avg

True Reward 6.75×106 94.08 8,942 2,871 3.64×106 77.04 5,588 1,891 5.71×106 49.96 9,691 4,570

MConbo-GAIL-Obs 3.14×106 100.00 2,831 1,255 3.84×106 91.02 4,940 1,689 9.28×106 94.02 7,759 3,936
MConbo-GAIL 3.24×106 98.32 3,291 1,313 4.12×106 91.69 5,491 1,796 8.47×106 93.47 7,228 3,618

5.4 ABLATION STUDY

In this section, we examine the effect of the measure bonus by comparing the performance of
MConbo-GAIL with Measure-Conditional-GAIL (without the measure bonus) on Walker2d. The
results in Figure 7 show a significant performance drop across all metrics without the measure bonus.
This highlights the synergy between the measure bonus and CMA-MEGA. Without the exploration
bonus, the algorithm struggles with highly localized rewards and the inherent local optima of policy
gradient approach. As a result, the search policy fails to explore new behavior patterns, leading to
lower coverage. Furthermore, since the reward function learned by IL is biased and especially with
limited demonstrations, PPGA’s search policy may miss opportunities to explore rewarding behavior
patterns. This results in lower average and best rewards. The measure bonus directly encourages the
exploration of new behaviors, addressing this issue. To view a full ablation study, including the effect
of both the measure bonus and measure conditioning, please refer to Appendix E.
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Figure 7: MCond-GAIL means we don’t include rdiversity into the reward function. The line represents
the mean while the shaded area represents the standard deviation across three random seeds.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed MConbo-IRL which can potentially improve any IRL method in QD task.
Additionally, our framework opened the possibility of QD-IFO, providing the first generic QD-IL
framework for future research. Our framework follows the paradigm of IRL to learn a QD-enhanced
reward function, and use a QD-RL algorithm to optimize policy archive. By encouraging behavior-
level exploration and facilitating knowledge generalization from limited expert demonstrations, our
framework addresses the key challenges of QD-IL. Extensive experiments show that our framework
achieves near-expert or beyond-expert performance, and significantly outperforms baselines.

To establish our framework as a generic QD-IL solution, we focused on improving the two widely
used IRL algorithms in this paper to make our framework as simple and effective as possible. However,
we believe that our framework has the potential to be compatible with more IRL algorithm backbones.
Additionally, exploring the development of new architectures for QD-IL and exciting applications
such as behavior adaptation, for instance with context-conditioned policies (Seyed Ghasemipour
et al., 2019), remain important avenues for future research. We also discuss the potential limitations
of our work in Appendix K.
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7 REPRODUCIBILITY

We have provided detailed pseudo-code in Appendix A, and a few lists of relevant hyperparameters in
Appendix D. In Section 5, we have provided a detailed experiment setup, and a process for generating
demonstrations. In supplementary material, we have provided the vedio illustrations of trained diverse
behaviors and policy archives.
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A ALGORITHM PSEUDO CODE AND MORE EXPERIMENT RESULTS

Algorithm 1 presents the pseudocode for using MConbo-GAIL as our reward module and PPGA as
the QD-RL algorithm. The parts highlighted in red indicate the key distinctions from PPGA. We
utilize a reward model to compute the fitness value (reward) for the QD-RL problem, with Algorithm
3 explaining how our reward model functions.

Algorithm 1 PPGA with MConbo-IRL

1: Input: Initial policy θ0, VPPO instance to approximate ∇ f , ∇m and move the search policy,
number of QD iterations NQ, number of VPPO iterations to estimate the objective-measure
functions and gradients N1, number of VPPO iterations to move the search policy N2, branching
population size λ , and an initial step size for xNES σg. Initial reward model R, Expert data D .

2: Initialize the search policy θµ = θ0. Initialize NES parameters µ,Σ = σgI
3: for iter← 1 to N do
4: f ,∇ f ,m,∇m← VPPO.compute_jacobian(θµ ,R,m(·),N1) ▷ approx grad using R
5: ∇ f ← normalize(∇ f ), ∇m← normalize(∇m)
6: _← update_archive(θµ , f ,m)
7: for i← 1 to λ do // branching solutions
8: c∼N (µ,Σ) // sample gradient coefficients
9: ∇i← c0∇ f +∑

k
j=1 c j∇m j

10: θ ′i ← θµ +∇i
11: f ′,∗,m′,∗← rollout(θ ′i ,R)
12: ∆i← update_archive(θ ′i , f ′,m′) ▷ get archive improvement of each solution.
13: end for
14: Rank gradient coefficients ∇i by archive improvement ∆i
15: Adapt xNES parameters µ = µ ′,Σ = Σ′ based on improvement ranking ∆i
16: f ′(θµ)← cµ,0 f +∑

k
j=1 cµ, jm j, where cµ = µ ′

17: θ ′µ ← VPPO.train(θµ , f ′,m′,N2,R) ▷ walk search policy using reward model R
18: R.update(D ,θ ′µ) ▷ update reward model
19: if there is no change in the archive then
20: Restart xNES with µ = 0,Σ = σgI
21: Set θµ to a randomly selected existing cell θi from the archive
22: end if
23: end for

Algorithm 2 Update Archive

Input: Solution θ to insert, episodic reward f , measures m =< m1, ...,mk >, archive A , archive
learning rate α

θinc, finc←A [m] if A [m] is nonempty else None,0
∆i = 0
if f > finc then

insert θ into cell A [m]
finc← (1−α) finc +α f
∆i = f − finc

end if
return ∆i
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Algorithm 3 Reward Model R (using GAIL as the backbone)

1: Initialize: Discriminator Dφ

2:
3: Method: Reward Calculation for VPPO.compute_jacobian()
4: def get_episode_reward(self, episode, current archive A ):
5: s1,a1,δ (s1),s2,a2,δ (s2) . . . ,sk,ak,δ (sk)← episode
6: r1,r2,r3 . . . ,rk← Dψ([s,a,δ (s)]) ▷ GAIL batch reward
7: m← episode.get_measure()
8: rdiversity← p+qI(m ∈A ) ▷ calculate measure bonus
9: For i = 1→ k

10: ri← ri + rdiversity ▷ calculate total reward
11: return r1,r2,r3 . . . ,rk
12:
13: Method: Update reward model
14: def update(self, D ,πθ ):
15: Sample a batch of trajectories (sπ ,aπ ,δ (sπ) from πθ

16: Update discriminator Dψ by minimizing:

LD(ψ) = E(s,a)∼D [− logDψ(s,a,δ (s))]+E(s,a)∼πθ
[− log(1−Dψ(s,a,δ (s)))]

17: Repeat until the model converges or the number of epochs is reached
18: return Updated Dψ
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Figure 8: Four QD-metrics for MConbo-VAIL compared to VAIL, PPGA with true reward and other
baselines. The line represents the mean while the shaded area represents the standard deviation across
three random seeds.

B DEMONSTRATION DETAILS

Figure 9 shows the Mujoco environments used in our experiments. Table 3 shows the detailed
information of the demonstrations in our experiment.
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(a) Halfcheetah (b) Walker2d (c) Humanoid

Figure 9: Mujoco Environments.
Table 3: Demonstrations are generated from top-500 high-performance elites.

Tasks Demo number Attributes min max mean std

Halfcheetah 4 Length 1000 1000 1000.0 0.0
Demonstration Return 3766.0 8405.4 5721.3 1927.6

Walker2d 4 Length 356.0 1000.0 625.8 254.4
Demonstration Return 1147.9 3721.8 2372.3 1123.7

Humanoid 4 Length 1000.0 1000.0 1000.0 0.0
Demonstration Return 7806.2 9722.6 8829.5 698.1

C BASELINE IMITATION LEARNING METHODS

This section summarizes the details for the related IRL methods used as baselines in this paper:

• GAIL (Ho & Ermon, 2016). In GAIL, the objective of the discriminator Dψ is to differentiate
between the state-action distribution of expert demonstration D and the state-action distribution
induced by the agent’s policy π:

max
π

min
Dψ

E(s,a)∼D [− logDψ(s,a)]+E(s,a)∼π [− log(1−Dψ(s,a))]. (7)

The discriminator is trained to maximize the likelihood assigned to states and actions from the
target policy while minimizing the likelihood assigned to states and actions from the agent’s policy.
The discriminator also serves as the agent’s reward function, encouraging the policy to visit states
that, to the discriminator, appear indistinguishable from the demonstrations. The reward for π is
then specified by the discriminator rt =− log

(
1−Dψ(s,a)

)
.

• VAIL (Peng et al., 2018a) improves GAIL by compressing the information via a variational
information bottleneck (VDB). VDB constrains information flow in the discriminator by means
of an information bottleneck. By enforcing a constraint on the mutual information between the
observations and the discriminator’s internal representation, VAIL significantly outperforms GAIL
by optimizing the following objective:

min
Dψ ,E ′

max
β≥0

E(s,a)∼D

[
Ez∼E ′(z|s,a)

[
log(−Dψ(z))

]]
+E(s,a)∼π

[
Ez∼E ′(z|s,a)

[
− log(1−Dψ(z))

]]
+βEs∼π̃

[
dKL(E ′(z|s,a)||p(z))− Ic

]
,

(8)

where π̃ = 1
2 πE + 1

2 π represents a mixture of the expert policy and the agent’s policy, E ′ is
the encoder for VDB, β is the scaling weight, p(z) is the prior distribution of latent variable
z, and Ic is the information constraint. The reward for π is then specified by the discriminator
rt =− log

(
1−Dψ(µµµE ′(st ,at))

)
.

• AIRL (Fu et al., 2017) is an inverse reinforcement learning algorithm based on adversarial learning.
AIRL leverages binary logistic regression to train the discriminator to classify expert data and
the agent’s policy data. The reward r is updated in terms of r(s,a,s′)← logDψ(s,a,s′)− log(1−
Dψ(s,a,s′)).

• GIRIL (Yu et al., 2020). Previous inverse reinforcement learning (IRL) methods usually fail to
achieve expert-level performance when learning with limited demonstrations in high-dimensional
environments. To address this challenge, Yu et al. (2020) proposed generative intrinsic reward-
driven imitation learning (GIRIL) to empower the agent with the demonstrator’s intrinsic intention
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and better exploration ability. This was achieved by training a novel reward model to generate
intrinsic reward signals via a generative model. Specifically, GIRIL leverages a conditional VAE
(Sohn et al., 2015) to combine a backward action encoding model and a forward dynamics model
into a single generative model. The module is composed of several neural networks, including
recognition network qφ (z|st ,st+1), a generative network pϕ(st+1|z,st), and prior network pϕ(z|st).
GIRIL refers to the recognition network (i.e. the probabilistic encoder) as a backward action
encoding model, and the generative network (i.e. the probabilistic decoder) as a forward dynamics
model. Maximizing the following objective to optimize the module:

J(pϕ ,qφ ) = Eqφ (z|st ,st+1)[log pϕ(st+1|z,st)]−KL(qφ (z|st ,st+1)∥pϕ(z|st))

−αdKL(qφ (ât |st ,st+1)|πE(at |st)],
(9)

where z is the latent variable, πE(at |st) is the expert policy distribution, ât = Softmax(z) is the
transformed latent variable, α is a positive scaling weight. The reward model will be pre-trained
on the demonstration data and used for inferring intrinsic rewards for the policy data. The intrinsic
reward is calculated as the reconstruction error between ŝt+1 and st+1:

rt = ∥ŝt+1− st+1∥2
2, (10)

where ∥ · ∥2 denotes the L2 norm, ŝt+1 = decoder(at ,st).
• PWIL (Dadashi et al., 2021) introduces a reward function based on an upper bound of the Wasser-

stein distance between the state-action distributions of the agent (π) and the expert demonstrations
(i.e. the data from D). The Wasserstein distance is defined as:

inf
π∈Π

W p
p (ρ̂π , ρ̂e) = inf

π∈Π
inf

ω∈Ω

T

∑
i=1

N

∑
j=1

d((sπ
i ,a

π
i ),(s

e
j,a

e
j))

p
ω[i, j], (11)

where π is the policy, and ω[i, j] represents the coupling between state-action pairs.
PWIL then defines an upper bound of the Wasserstein distance using a greedy coupling, which
provides a suboptimal but efficient way to compute the coupling:

inf
π∈Π

W1(ρ̂π , ρ̂e) = inf
π∈Π

T

∑
i=1

N

∑
j=1

d((sπ
i ,a

π
i ),(s

e
j,a

e
j))ω

∗
π [i, j]

≤ inf
π∈Π

T

∑
i=1

N

∑
j=1

d((sπ
i ,a

π
i ),(s

e
j,a

e
j))ω

g
π [i, j],

(12)

where ω
g
π represents the greedy coupling.

The greedy coupling ω
g
π is defined recursively for each timestep i as:

ω
g
π [i, :] = arg min

ω[i,:]∈Ωi

N

∑
j=1

d((sπ
i ,a

π
i ),(s

e
j,a

e
j))ω[i, j], (13)

where Ωi is a feasible set of couplings constrained by:

Ωi =
{

ω[i, :] ∈ RN
+

∣∣∣ N

∑
j′=1

ω[i, j′] =
1
T
,∀k ∈ [1 : N],

i−1

∑
i′=1

ωg[i′,k]+ω[i,k]≤ 1
N

}
. (14)

Finally, a reward is derived from the cost cg
π = ∑

N
j=1 d((sπ

i ,a
π
i ),(s

e
j,a

e
j))ω

g
π [i, j] by applying a

monotonically decreasing function f :

ri,π = f (cg
i,π), (15)

where the reward ri,π is history-dependent. PWIL avoids the inner minimization problem typically
found in adversarial imitation learning approaches, focusing instead on maximizing the derived
reward directly.

D HYPERPARAMETER SETTING

D.1 HYPERPARAMETERS FOR PPGA

Table 4 summarizes a list of hyperparameters for PPGA policy updates.
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Table 4: List of relevant hyperparameters for PPGA shared across all environments.

Hyperparameter Value

Actor Network [128, 128, Action Dim]
Critic Network [256, 256, 1]

N1 10
N2 10

PPO Num Minibatches 8
PPO Num Epochs 4

Observation Normalization True
Reward Normalization True

Rollout Length 128
Grid Size 50

Env Batch Size 3,000
Num iterations 2,000

D.2 HYPERPARAMETERS FOR IL

Table 5 summarizes a list of hyperparameters for AIRL, GAIL, measure-conditioned GAIL, and
MConbo-GAIL.

Table 5: List of relevant hyperparameters for AIRL, GAILs shared across all environments.

Hyperparameter Value

Discriminator [100, 100, 1]
Learning Rate 3e-4

Discriminator Num Epochs 1

Table 6 summarizes a list of hyperparameters for VAIL, measure-conditioned VAIL, and MConbo-
VAIL.

Table 6: List of relevant hyperparameters for VAILs shared across all environments.

Hyperparameter Value

Discriminator [100, 100, (1, 50, 50)]
Learning Rate 3e-4

Information Constraint Ic 0.5
Discriminator Num Epoch 1

Table 7 summarizes a list of hyperparameters for GIRIL.

Table 7: List of relevant hyperparameters for GIRIL shared across all environments.

Hyperparameter Value

Encoder [100, 100, Action Dim]
Decoder [100, 100, Observation Dim]

Learning Rate 3e-4
Batch Size 32

Num Pretrain Epochs 10,000

Table 8 summarizes a list of hyperparameters for MConbo-IRL framework. While our measure bonus
function rdiversity(si

t ,a
i
t ,mi) = p+qI(mi ∈ Ae) introduces hyperparameters p and q, these were not

extensively tuned in our experiments. We used p = q = 0.5 across all environments, which provided
satisfactory performance. However, the optimal values may vary depending on the specific task and
environment characteristics.
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Table 8: List of relevant hyperparameters for MConbo shared across all environments.

Hyperparameter Value

p 0.5
q 0.5
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Figure 10: Effect of different p and q values: we observe that p = 0.5 and q = 1 is the best choice of
our experiment, suggesting that our result can be further optimized.

D.3 HYPERPARAMETER STUDY FOR p AND q

We hereby study the effect of different choice of hyperparameter p and q, as illustrated in Figure 10.

E FULL ABLATION STUDY

To verify the effect of measure conditioning and measure bonus in GAIL, we compare the performance
of MCond-GAIL (GAIL with measure conditioning) and MConbo-GAIL (GAIL with measure
conditioning and bonus) in all three environments, as illustrated in Figure 7.
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Figure 11: The effect of measure conditioning and measure bonus in GAIL. The line represents the
mean while the shaded area represents the standard deviation across three random seeds.

Comparing MCond-GAIL and GAIL, we observe that MCond-GAIL strongly improves on GAIL on
all QD metrics in the Halfcheetah environment, while obtaining comparable scores in other environ-
ments. Additionally, comparing MConbo-GAIL to MCond-GAIL, we see further improvements, with
MConbo-GAIL outperforming MCond-GAIL on coverage and QD-score in all three environments.
The table shows that the benefit of MCond-GAIL over GAIL is consistent in the experiments although
with varying effect size (2+ pooled std, 1 pooled std, and one very small effect).

F DETAILS ABOUT PPGA AND RELATED BACKGROUND

To help readers to better understand the background of QD-RL, we begin with Covariance Matrix
Adaptation MAP-Elites via a Gradient Arborescence (CMA-MEGA) (Fontaine & Nikolaidis, 2021).

For a general QD-optimization problem, the objective of CMA-MEGA is:

g(θ) = |c0| f (θ)+
k

∑
j=1

c jm j(θ), (16)
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Table 9: The effect of measure conditioning and measure bonus in GAIL in terms of the mean and
standard deviation of the metric scores in the final 10 iterations of the runs.

Tasks Model QD-Score Coverage BestReward AverageReward

Halfcheetah True Reward 6,752,624 94.08 8,942 2,871
Halfcheetah GAIL 2,022,500±839,063 67.83±16.05 5,115±218 1,167±341
Halfcheetah MConbo-GAIL 3,235,423±750,505 98.32±1.21 3,291±430 1,313±291
Halfcheetah MCond-GAIL 3,530,990±415,587 85.91±13.95 5,832±531 1,704±406
Humanoid True Reward 5,708,191 49.96 9,691 4,570
Humanoid GAIL 1,864,664±450,333 82.36±9.16 6,278±2,245 924±250
Humanoid MConbo-GAIL 8,470,826±1,235,069 93.47±1.37 7,228±582 3,618±475
Humanoid MCond-GAIL 2,194,446±316,492 69.07±5.54 7,795±397 1,266±105
Walker2d True Reward 3,641,854 77.04 5,588 1,891
Walker2d GAIL 2,483,228±288,096 69.29±4.48 4,031±187 1,429±73
Walker2d MConbo-GAIL 4,115,586±119,161 91.69±0.58 5,491±40 1,796±56
Walker2d MCond-GAIL 2,501,431±192,553 69.23±4.04 4,302±348 1,444±32

In this context, m j(θ) represents the j-th measure of the solution θ , and k is the dimension of the
measure space. The objective function of CMA-MEGA is dynamic because the coefficient for each
measure, c j, is updated adaptively to encourage diversity in m. For instance, if the algorithm has
already found many solutions with high m1 values, it may favor new solutions with low m1 values
by making c1 negative, thus minimizing m1. However, the coefficient for the fitness function f will
always be positive, as the algorithm always seeks to maximize fitness. This objective function ensures
that CMA-MEGA simultaneously maximizes fitness f and encourages diversity across the measures
m. We update θ by differentiating objective (16) and use gradient-descend-based optimization
approaches, since DQD assumes f and m are differentiable.

Furthermore, the coefficients c j are sampled from a distribution, which is maintained using Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2016). Specifically, CMA-ES updates the
coefficient distribution by iteratively adapting the mean µ and covariance matrix Σ of the multivariate
Gaussian distribution N(µ,Σ), from which the coefficients c j are sampled. At each iteration, CMA-
MEGA ranks the solutions based on their archive improvement (i.e. How much they improve the
existing solutions of occupied cell). The top-performing solutions are used to update µ , while Σ is
adjusted to capture the direction and magnitude of successful steps in the solution space, thereby
refining the search distribution over time.

In CMA-MAEGA (Fontaine & Nikolaidis, 2023), the concept of soft archives is introduced to
improve upon CMA-MEGA. Instead of maintaining the best policy in each cell, the archive employs
a dynamic threshold, denoted as te. This threshold is updated using the following rule whenever a
new policy πθi surpasses the current threshold of its corresponding cell e:

te← (1−α)te +α f (πθi)

Here, α is a hyperparameter called the archive learning rate, with 0 ≤ α ≤ 1. The value of α

controls how much time is spent optimizing within a specific region of the archive before moving to
explore a new region. Lower values of α result in slower threshold updates, emphasizing exploration
in a particular region, while higher values promote quicker transitions to different areas. The concept
of soft archives offers several theoretical and practical advantages, as highlighted in previous studies.

PPGA (Batra et al., 2023) is directly built upon CMA-MAEGA. We summarize the key synergies
between PPGA and CMA-MAEGA as follows:(1) In reinforcement learning (RL), the objective
functions f and m in Equation 16 are not directly differentiable. To address this, PPGA employs
Markovian Measure Proxies (MMP), where a single-step proxy δ (st) is treated as the reward
function of an MDP. PPGA utilizes k+1 parallel PPO instances to approximate the gradients of f
and each measure m, where k is the number of measures. Specifically, the gradient for each i-MDP
is computed as the difference between the parameters θi,new after multi-step PPO optimization and
the previous parameters θi,old. (2) Once the gradients are approximated, the problem is transformed
into a standard DQD problem. PPGA then applies a modified version of CMA-MAEGA to perform
quality diversity optimization. The key modifications include:
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1. Replacing CMA-ES with xNES for Stability: To improve stability in noisy reinforcement
learning environments, CMA-ES was replaced with Exponential Natural Evolution Strategy
(xNES). While CMA-ES struggled with noisy, high-dimensional tasks due to its cumulative
step-size adaptation mechanism, xNES provided more stable updates to the search distri-
bution, especially in low-dimensional objective-measure spaces, and maintained search
diversity.

2. Walking the Search Policy with VPPO: PPGA "walks" the search policy over multiple
steps by optimizing a new multi-objective reward function with VPPO (Vectorized Proximal
Policy Optimization). This is done by leveraging the mean gradient coefficient vector from
xNES, ensuring stable and controlled movement toward greater archive improvement.

G SYNERGY OF MEASURE BONUS WITH CMA-MEGA

In our QD-IL framework, we made a key observation that by introducing essential guiding signals
into the fitness function f , we can effectively encourage exploration at the behavior level.

Firstly, note that in a traditional QD-RL setting, the elite of one cell is a policy θ . However, the
performance of this elite is computed by the random episodes produced by the policy θ . Thus, the
same policy may produce different episodes which occupy different cells. Hence, the motivation of
our method is to improve the probability that the new policy produce episodes occupying the empty
area of archive, which is the conclusion of Lemma 1. We first give the proof of Lemma 1:

Proof. Proof of (1): The objective of policy optimization is:

h(θ ,Ae) = Eτi∼πθ

[
T

∑
t=0

γ
tr(si

t ,a
i
t)

]
= Eτi∼πθ

[
I(mi ∈Ae) ·

T

∑
t=0

γ
t

]
=

1− γT+1

1− γ
Eτi∼πθ

[I(mi ∈Ae)]

(17)
where T is the episode length (rollout length).

Optimizing h(θold,Ae) through multiple rounds of PPO will result in θnew such that h(θnew,Ae)>
h(θold,Ae), since PPO is assumed to steadily improve the policy, thus increasing the objective.

Therefore, we have:
Eτi∼πθnew

[I(mi ∈Ae)]≥ Eτi∼πθold
[I(mi ∈Ae)] (18)

Since Eτi∼πθ
[I(mi ∈Ae)] = P(m ∈Ae|πθ ) where mi is the measure of episode τi, it follows that:

P(m ∈Ae|πθnew)≥ P(m ∈Ae|πθold)

Proof of (2): Based on Bayes’ rule, we have:

P(πθ |m ∈Ae) =
P(m ∈Ae|πθ )P(πθ )

P(m ∈Ae)
∝ P(m ∈Ae|πθ )

Since P(πθ ) and P(m ∈Ae) can be treated as constants when θ changes (assuming θ has uniform
prior), we have:

P(πθnew |m ∈Ae)≥ P(πθold |m ∈Ae)

Thus, the lemma is proved.

It is worthy noting that, 1) while Lemma 1 offers valuable intuition for our approach, our method’s
practical effectiveness is not solely dependent on the theoretical guarantee of monotonic improvement
in PPO. 2) the solution will only be added to the archive during the “update_archive" step in Algorithm
1. However, the scope of Lemma 1 is limited to “VPPO.compute_jacobian" and "VPPO.train". This
implies that the episodes generated during the training phase and the gradient-approximating stage
will not be inserted into the archive.

If we apply a measure bonus to the original GAIL reward, the objective of CMA-MEGA transforms
into:

g(θ) = |c0|[ f (θ)+h(θ ,A )]+
k

∑
j=1

c jm j(θ), (19)
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where h(θ ,A ) represents the cumulative bonus reward based on the current policy archive A . The
gradient of θ becomes:

∇θ g(θ) = |c0|∇ f (θ)+ |c0|∇θ h(θ ,A )+
k

∑
j=1

c j∇θ m j(θ).

Notably, the fitness function f (θ) is calculated using the GAIL reward in the QD-IL setting. Lemma
1 shows that the measure bonus leads to a new policy that has a higher probability of producing
episodes with measures in the empty regions of the archive. As a result, a higher c0 value will guide
the search policy towards unoccupied areas in the archive, leading to significant archive improvements
(since occupying a new cell naturally results in larger archive improvements compared to replacing
an existing elite in a cell).

Furthermore, based on the properties of CMA-ES, the value of c0 tends to increase temporarily, and
the term |c0|∇θ h(θ ,A ) will dominate, facilitating the search policy’s exploration of new behavior
patterns. On the other hand, if one area of the archive becomes sufficiently explored, the measure
bonus will decrease to a standard level, restoring the relative importance of the fitness term in the
objective.

H SCALABILITY STUDY

We also explore the scalability of the MConbo framework. The key challenge of QD-IL is learning
diverse policies from homogeneous expert demonstrations, so we test MConbo-GAIL’s ability to
scale with fewer demonstrations, representing more uniform expert behavior. Using the Walker2d
environment, we reduce the number of demonstrations to 2 and 1 and compare the performance of
MConbo-GAIL and GAIL.

Figure 12 shows the learning curves of MConbo-GAIL, GAIL, and PPGA (true reward), while Figure
13 compares their performance of QD-score and coverage. Notably, the coverage of MConbo-GAIL
remains close to 100% despite the decrease in expert demonstration numbers, highlighting the
robustness of Measure Bonus to consistently find diverse policies. This robustness is attributed to
the synergy between Measure Bonus and CMA-MEGA (Appendix G). On the other hand, fewer
demonstrations reduce the quality of expert data, leading to lower QD scores. This is especially true
for MConbo-GAIL, which will inherently explore some behavior space regions which is distant from
the expert behavior. Hence, learning high-performing policy will be difficult, when the algorithm can’t
find relevant behavior patterns in expert demonstrations. However, MConbo-GAIL still outperforms
GAIL. It can learn diverse and relatively high-performing policies even with just one demonstration,
demonstrating its scalability with limited expert data.
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Figure 12: Scalability Study: we test the effect that limited number of expert demonstrations have on
the performance of our MConbo-GAIL model, compared with traditional GAIL. We set the number
of demonstrations to 1, 2 and 4. The line represents the mean while the shaded area represents the
standard deviation across three random seeds.

Moreover, we compare the training curve between our original setting (4 demos) with 10 demonstra-
tions using the same demonstration sampling method, as illustrated in Figure 14. The result shows
more diverse demonstrations will bring higher performance. However, to show the capability of our
approach to deal with limited demonstrations, we use only 4 demonstrations in our setting.
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Figure 13: We compare the performance fluctuation due to decrease of number of demonstrations of
MConbo-GAIL and traditional GAIL. The line represents the mean while the shaded area represents
the standard deviation across three random seeds.
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Figure 14: Comparison of performance between 4 demos and 10 demos. The performance of 10
demos is significantly better than 4 demos, suggesting that the more diverse the demonstration, the
better the performance of our algorithm.

I IMPROVE IMITATION FROM OBSERVATION

Imitation from Observation (IFO) is a type of imitation learning where agents learn behaviors by
observing state trajectories, without needing access to the actions that generated them. Unlike
traditional methods that require both states and actions, IFO mimics behavior solely from state
sequences, making it ideal for situations like video demonstrations. This approach aligns more
naturally with how humans and animals learn, as we often imitate behaviors by observation without
knowing the exact actions involved (e.g., muscle movements) (Zare et al., 2024). IFO is particularly
useful in scenarios where action data is unavailable, using techniques like inverse reinforcement
learning to infer the underlying policy.

We further observe the potential of our MConbo framework to handle IFO problem, as illustrated in
Figure 15. In the setting of IFO, we modify the objective of MConbo-GAIL as:

max
π

min
Dψ

Es∼D [− logDψ(s,δ (s))]+Es∼π [− log(1−Dψ(s,δ (s)))]. (20)

When expert actions are not accessible, we found that MConbo-GAIL can still effectively learn
diverse policies without performance degradation. We attribute this to measure conditioning, which
allows the algorithm to more easily infer actions from high-level state abstractions. We believe
our QD-IL framework opens the door to the possibility of QD-IFO, and we look forward to future
research providing more detailed studies in this area.
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Figure 15: Comparison of MConbo-GAIL without expert action (MConbo-GAIL-Obs), with MConbo-
GAIL and PPGA expert with true reward. The line represents the mean while the shaded area
represents the standard deviation across three random seeds.
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Figure 16: Apply measure bonus to PPGA with true reward: measure bonus significantly improves the
PPGA with true reward. Additionally, with measure bonus, the PPGA with true reward outperforms
MConbo-GAIL.

J MEASURE BONUS FOR QD-RL

The measure bonus is designed to promote the diversity of our QD-IL algorithm. However, we note
that the measure bonus can similarly applied to QD-RL since its mechanism works regardless of
the reward function it is added to. We also note that MConbo-GAIL often outperforms the expert,
which gives further evidence that the true reward is not the optimal choice for QD-RL. Considering
these points, we hypothesize that applying the measure bonus to PPGA with true reward can improve
PPGA. We test and confirm this hypothesis on Humanoid, in which PPGA with measure bonus
outperforms PPGA and MConbo-GAIL (see Figure 16).

K LIMITATIONS

Since the reward functions learned by GAIL and VAIL are dynamically updated, using traditional
MAP-Elites to maintain the archive may not be ideal. MAP-Elites only preserves the best-performing
policy at a given time, and the policy is evaluated based on the current learned reward function.
Addressing these issues may further enhance the performance of our QD-IL framework.
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