
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BERNOULLI-LORA: A THEORETICAL FRAMEWORK
FOR RANDOMIZED LOW-RANK ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) has emerged as a crucial approach for adapt-
ing large foundational models to specific tasks, particularly as model sizes continue
to grow exponentially. Among PEFT methods, Low-Rank Adaptation (LoRA) (Hu
et al., 2022) stands out for its effectiveness and simplicity, expressing adaptations as
a product of two low-rank matrices. While extensive empirical studies demonstrate
LoRA’s practical utility, theoretical understanding of such methods remains limited.
Recent work on RAC-LoRA (Malinovsky et al., 2024) took initial steps toward
rigorous analysis. In this work, we introduce Bernoulli-LoRA, a novel theoretical
framework that unifies and extends existing LoRA approaches. Our method intro-
duces a probabilistic Bernoulli mechanism for selecting which matrix to update.
This approach encompasses and generalizes various existing update strategies while
maintaining theoretical tractability. Under standard assumptions from non-convex
optimization literature, we analyze several variants of our framework: Bernoulli-
LoRA-GD, Bernoulli-LoRA-SGD, Bernoulli-LoRA-PAGE, and Bernoulli-LoRA-MVR,
Bernoulli-LoRA-QGD, Bernoulli-LoRA-MARINA, Bernoulli-LoRA-EF21, establishing
convergence guarantees for each variant. Additionally, we extend our analysis
to convex non-smooth functions, providing convergence rates for both constant
and adaptive (Polyak-type) stepsizes. Through extensive experiments on various
tasks, we validate our theoretical findings and demonstrate the practical efficacy of
our approach. This work is a step toward developing theoretically grounded yet
practically effective PEFT methods.

1 INTRODUCTION

Fine-tuning adapts pre-trained models to new datasets, a central task in modern deep learning,
particularly NLP (Peters et al., 2018; Devlin et al., 2019). However, full fine-tuning is computationally
expensive for large models. Parameter-Efficient Fine-Tuning (PEFT) (He et al., 2021) addresses
this by updating only a fraction of parameters (Richtárik & Takáč, 2016; Demidovich et al., 2023a),
matching full fine-tuning performance with significantly lower costs (Radford et al., 2019; Brown
et al., 2020; Han et al., 2024).

Leveraging the low intrinsic dimensionality of pre-trained models (Li et al., 2018; Aghajanyan et al.,
2020), Low-Rank Adaptation (LoRA) (Hu et al., 2022) optimizes updates in a reduced subspace. It
replaces large matrix updates with the product of two trainable low-rank matrices:

𝑊 = 𝑊 0 + 𝛼
𝑟𝐵𝐴,

where 𝑊 0 ∈ R𝑚×𝑛 is fixed, and 𝐵 ∈ R𝑚×𝑟, 𝐴 ∈ R𝑟×𝑛 are trainable (𝑟 ≪ min{𝑚,𝑛}). While
typically initialized with Gaussian 𝐴 and zero 𝐵, other strategies exist (Zhu et al., 2024; Hayou et al.,
2024; Meng et al., 2024; Wang et al., 2025). Beyond improving efficiency (Cherniuk et al., 2023;
Mao et al., 2025), LoRA mitigates catastrophic forgetting and enhances output diversity (Biderman
et al., 2024).

To approach full fine-tuning performance, Xia et al. (2024) introduced Chain of LoRA (COLA). This
framework iteratively builds higher-rank updates from a sequence of low-rank modules at no extra
computational cost. By merging updates into fixed parameters, it yields:

𝑊 = 𝑊 0 + 𝛼
𝑟

𝑇−1∑︀
𝑡=0

𝐵𝑡𝐴𝑡.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Unlike standard LoRA, COLA uses sequential decompositions to efficiently approximate high-rank
adaptations.

Recent theoretical works analyze LoRA from complementary angles. Jang et al. (2024) prove that
sufficiently high-rank LoRA eliminates spurious local minima in the NTK regime. Kim et al. (2025)
show that training typically converges to a low-rank global minimum or diverges toward high-rank
solutions. In continuous-time settings, Xu et al. (2025) highlight the pivotal role of initialization in
matrix factorization gradient flows, while Dayi & Chen (2025) position low-rank fine-tuning between
lazy training and feature learning.

2 MOTIVATION

Theoretical advances above highlight what happens in specific regimes, but they leave open whether
practical, discrete-time LoRA updates converge under realistic training noise and communication
constraints. This gap motivates our framework: we seek general convergence guarantees for random-
ized low-rank adaptation with stochastic gradients, variance reduction, and federated communication
savings. At the same time, despite their practical success, Low-Rank Adaptation (LoRA) and its
variants like Chain of LoRA (COLA) still lack a unified and practically relevant convergence theory.
LoRA’s re-parameterization makes smooth loss functions non-smooth, creating significant theoretical
hurdles (Sun et al., 2024). Second, existing COLA analysis ignores its core low-rank updates by fo-
cusing on full-rank optimization, thus failing to explain its efficiency (Xia et al., 2024). Consequently,
most LoRA-based methods are heuristics without convergence guarantees, making them sensitive to
hyperparameters (Khodak et al., 2021; Kuang et al., 2024). Malinovsky et al. (2024) even showed
COLA can diverge and introduced RAC-LoRA, the first framework to establish convergence rates
for LoRA-style updates. However, the RAC-LoRA framework is limited. It lacks optimal variance-
reduced techniques for non-convex problems and fails to address advanced Federated Learning (FL)
scenarios incorporating communication compression and error feedback (Alistarh et al., 2018; Wen
et al., 2017; Horváth et al., 2022; Panferov et al., 2024). The need for distributed optimization like
FL is driven by the challenge of training massive models (Brown et al., 2020; Kolesnikov et al., 2020;
Goyal et al., 2017; You et al., 2019; Le Scao et al., 2023). Our work aims to bridge this gap by
extending a theoretically sound LoRA framework to these vital, practical optimization settings. In
the next section, we formalize the optimization problems we study.

3 PROBLEM STATEMENT

Supervised learning is an optimization problem that minimizes a loss function. We focus on this
challenge in fine-tuning, using a general, model-agnostic formulation:

min
Δ𝑊∈R𝑚×𝑛

𝑓(𝑊 0 +∆𝑊). (1)

Here, 𝑊 0 represents the pre-trained parameters, ∆𝑊 is the trainable adaptation, and 𝑓 is the
empirical loss. Since 𝑚× 𝑛 is very large, ∆𝑊 requires a simple, trainable structure.

Throughout the paper, we treat 𝑊 0 as a fixed pre-trained model and view 𝑓 as the fine-tuning loss
that already encodes the effect of the pre-training and fine-tuning data distributions (including any
mismatch between them). All of our convergence guarantees are therefore conditional on this given
𝑊 0 and the associated fine-tuning objective 𝑓 . We do not model the representation-learning dynamics
of the pre-training phase, nor do we analyze generalization; our focus is purely on the optimization
behavior of low-rank LoRA-style updates when minimizing the fine-tuning loss.

For our stochastic methods, we consider these objective structures:

• Finite-Sum Setting: The objective is an average over 𝑁 data samples, used in methods like
Bernoulli-LoRA-PAGE:

𝑓(𝑊 0 +∆𝑊) =
1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑖(𝑊
0 +∆𝑊). (2)

• Expectation Setting: The objective is an expectation over a data distribution 𝒟, for methods
like Bernoulli-LoRA-MVR:

𝑓(𝑊 0 +∆𝑊) = E𝜉∼𝒟
[︀
𝑓𝜉(𝑊

0 +∆𝑊)
]︀
. (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We also address the distributed optimization setting for our proposed Federated Learning (FL)
algorithms (e.g., Fed-Bernoulli-LoRA-QGD). Here, the goal is to minimize a global objective averaged
over 𝑀 clients:

𝑓(𝑊 0 +∆𝑊) =
1

𝑀

𝑀∑︁
𝑙=1

𝑓𝑙(𝑊
0 +∆𝑊), (4)

where 𝑓𝑙 is the local loss for client 𝑙. The goal is to find ∆𝑊 that minimizes this global objective.

In practical applications, LoRA is often applied to many matrices across multiple layers (e.g., query,
key, value, and feed-forward projections). Our analysis covers this case as well: one can view
all LoRA-modified matrices as being stacked or arranged in block-diagonal form inside a single
𝑊 0 and ∆𝑊 . Because we work with the Frobenius norm and inner product, our assumptions and
convergence results extend verbatim to this concatenated/block-diagonal representation, following
the same abstraction used in Hu et al. (2022); Sun et al. (2024); Malinovsky et al. (2024); Xia et al.
(2024); Zhu et al. (2024).

4 CONTRIBUTIONS

LoRA-based methods are sensitive to hyperparameters (Khodak et al., 2021; Kuang et al., 2024) and re-
quire a stronger theoretical foundation. While Malinovsky et al. (2024) provided an initial framework
with RAC-LoRA, we aim to further advance the theory and versatility of low-rank adaptation.

Low-rank PEFT updates two matrices, 𝐴 and 𝐵, either individually or alternating deterministi-
cally (Malinovsky et al., 2024; Xia et al., 2024; Zhu et al., 2024). Our main contribution, Bernoulli-
LoRA, is a generic framework with a probabilistic update: at each step, a Bernoulli trial selects either
𝐴 or 𝐵 for optimization while the other is fixed. This randomized selection unifies and generalizes
existing update strategies. Similar to COLA (Xia et al., 2024), our framework applies a sequence of
these probabilistic low-rank updates.

Our analysis uses standard non-convex optimization assumptions, like 𝐿-smoothness. We instantiate
Bernoulli-LoRA with several algorithms, from foundational gradient methods to advanced stochastic,
variance-reduced, and federated learning variants. We establish rigorous convergence guarantees for
each method. Our key contributions include:

◆ Foundational Algorithmic Variants: We establish the framework’s properties with two funda-
mental schemes to understand the interplay between randomized selection and standard descent.

– Bernoulli-LoRA-GD (Algorithm 2) uses full gradients, providing a foundational analysis of
convergence in an idealized setting.

– Bernoulli-LoRA-SGD (Algorithm 4) uses practical stochastic gradients, offering insights into the
interplay of stochasticity and randomized adaptation for large-scale tasks.

◆ Advanced Variance Reduction for Non-Convex Optimization: To counter variance from
stochastic gradients, we develop VR-enhanced variants, providing the first theoretical analysis of
LoRA-type methods with advanced VR schemes in 𝐿-smooth non-convex settings.

– Bernoulli-LoRA-PAGE (Algorithm 6) adapts the optimal and simple PAGE (Li et al., 2021) for
the finite-sum setting (2).

– Bernoulli-LoRA-MVR (Algorithm 5) uses Momentum Variance Reduction inspired by
STORM (Cutkosky & Orabona, 2019) for the expectation setting, proving its effectiveness in
our framework.

◆ Communication-Efficient Federated Learning Extensions: We extend Bernoulli-LoRA to FL,
addressing communication overhead. We provide the first comprehensive analysis of LoRA-type
methods integrated with established communication-saving techniques like quantization, gradient
difference compression, and error feedback.

– Fed-Bernoulli-LoRA-QGD (Algorithm 7) incorporates QSGD-style quantization (Alistarh et al.,
2017; Wen et al., 2017; Horváth et al., 2022; Panferov et al., 2024) to compress gradients and
reduce communication bandwidth.

– Fed-Bernoulli-LoRA-MARINA (Algorithm 8) adapts the MARINA strategy (Gorbunov et al., 2021)
to efficiently compress gradient differences.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

– Fed-Bernoulli-LoRA-EF21 (Algorithm 9) integrates the EF21 error feedback mecha-
nism (Richtárik et al., 2021) to stabilize training with contractive compressors.

◆ Analysis for Non-Smooth Convex Functions: We broaden our framework’s applicability by
providing the first theoretical analysis of LoRA-type methods for non-smooth convex optimization.
We present a version of Bernoulli-LoRA-GD (Algorithm 3) and establish its convergence rates with
different stepsize policies.

5 BERNOULLI-LORA FRAMEWORK

In this section, we introduce the Bernoulli-LoRA framework, a novel and generic approach for low-
rank adaptation. The core idea is to perform a sequence of low-rank updates, where at each step, a
probabilistic choice determines which of the two factor matrices (𝐴 or 𝐵) is trained. This randomized
mechanism, formalized in Algorithm 1, not only provides a flexible and unifying theoretical construct
for existing LoRA-style methods but also allows for a rigorous convergence analysis.

At each iteration, one of the two low-rank matrices is sampled from a fixed distribution and remains
frozen, while the other is trained to minimize the objective. This strategy prevents optimization
from being confined to a fixed subspace, reducing the risk of converging to a suboptimal point. We
formalize these two configurations as Left and Right sketch updates.

Definition 1 (Left and Right Sketch Updates). We define two complementary update rules based on
which factor matrix is sampled from a fixed distribution and which is adjustable. The Left Sketch
and Right Sketch updates are given, respectively, by:

∆𝑊 =
𝛼

𝑟
𝐵𝑆𝐴, with 𝐵𝑆 ∼ 𝒟𝐵 fixed and 𝐴 ∈ R𝑟×𝑛 adjustable, (5)

∆𝑊 =
𝛼

𝑟
𝐵̂𝐴𝑆 , with 𝐴𝑆 ∼ 𝒟𝐴 fixed and 𝐵̂ ∈ R𝑚×𝑟 adjustable, (6)

where 𝒟𝐵 and 𝒟𝐴 are fixed distributions over R𝑚×𝑟 and R𝑟×𝑛 matrices.

Algorithm 1 Bernoulli-LoRA Framework

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0, chain
length 𝑇 , sketch distributions 𝒟𝐵

𝑆 and 𝒟𝐴
𝑆 , Bernoulli probability 𝑝.

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 (Left sketch)

6: Using a chosen optimizer, approximately solve 𝐴𝑡 ≈ argmin𝐴 𝑓(𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴).

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡.
8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 (Right sketch)

10: Using a chosen optimizer, approximately solve 𝐵̂𝑡 ≈ argmin𝐵 𝑓(𝑊 𝑡 + 𝛼
𝑟𝐵𝐴𝑡

𝑆).
11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼

𝑟 𝐵̂
𝑡𝐴𝑡

𝑆 .
12: end if
13: end for

5.1 REFORMULATION AS A PROJECTED GRADIENT STEP

Building upon the work of Malinovsky et al. (2024) on their RAC-LoRA framework, the update steps
in Algorithm 1 can be reformulated as projected gradient steps. The subproblems in lines 6 and 10
are typically solved approximately, for instance, by taking a single step of a suitable optimizer like
Gradient Descent (GD) or its variants. More discussion can be found in Appendix E.

While RAC-LoRA employs a deterministic choice for which matrix to update, our Bernoulli-LoRA
framework generalizes this concept by introducing a probabilistic selection at each step. This allows
us to express the update for any of our proposed methods in a single, unified form:

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Setting Method &
Base Gradient Estimator 𝐺𝑡 NC conver-

gence rate
PŁ convergence
rate

(1)
Bernoulli-LoRA-GD (Alg. 2)
𝐺𝑡 = ∇𝑓(𝑊 𝑡)

Thm. 1:
Δ0

𝛾𝜆min𝑇

Thm. 9:
(1− 𝛾𝜇𝜆min)

𝑇 Δ0

(1)
Bernoulli-LoRA-SGD (Alg. 4)
𝐺𝑡 = 𝑔(𝑊 𝑡)

Thm. 2:
Δ0

𝛾𝜆min𝑇

+ 𝛾𝐿𝐶1𝜆max
𝜆min

Thm. 12:
(1− 𝛾𝜇𝜆min)

𝑇 Δ0

+ 𝛾𝐿𝐶1𝜆max
𝜇𝜆min

(1)+(3)
Bernoulli-LoRA-MVR (Alg. 5)
𝐺𝑡 = ∇𝑓𝜉𝑡(𝑊

𝑡) + (1− 𝑏)(𝐺𝑡−1 −∇𝑓𝜉𝑡(𝑊
𝑡−1))

Thm. 3:
Φ1

𝛾𝜆min𝑇

+ 𝑏𝜎2𝜆max
(2−𝑏)𝜆min

(1)

Thm. 14:
(1− 𝛾𝜇𝜆min)

𝑇Φ1

+ 𝑏𝜎2𝜆max
(2−𝑏)𝜇𝜆min

(1)

(1)+(2)

Bernoulli-LoRA-PAGE (Alg. 6)

𝐺𝑡 =

{︃
∇𝑓(𝑊 𝑡), w.p. 𝑞
𝐺𝑡−1 +∇𝑓𝑖𝑡(𝑊

𝑡)−∇𝑓𝑖𝑡(𝑊
𝑡−1), w.p. 1− 𝑞

Thm. 4:
Φ2

𝛾𝜆min𝑇
(2)

Thm. 16:
(1− 𝛾𝜇𝜆min)

𝑇Φ2
(2)

(1)+(4)
Fed-Bernoulli-LoRA-QGD (Alg. 7)
𝐺𝑡 = 1

𝑀

∑︀𝑀
𝑙=1 𝒬

𝑡
𝑙(∇𝑓𝑙(𝑊

𝑡))

Thm. 5:
Δ0

𝛾𝜆min𝑇

+ 𝛾𝐿𝜔Δ*𝜆max
𝑀𝜆min

Thm. 18:
(1− 𝛾𝜇𝜆min)

𝑇 Δ0

+ 𝛾𝐿2𝜔𝜆max
𝑀𝜇𝜆min

(1)+(4)

Fed-Bernoulli-LoRA-MARINA (Alg. 8)

𝐺𝑡
𝑙 =

{︃
∇𝑓𝑙(𝑊

𝑡), w.p. 𝑞

𝐺𝑡−1
𝑙 +𝒬𝑡

𝑙(∇𝑓𝑙(𝑊
𝑡)−∇𝑓𝑙(𝑊

𝑡−1)), w.p. 1− 𝑞

𝐺𝑡 = 1
𝑀

∑︀𝑀
𝑙=1 𝐺

𝑡
𝑙

Thm. 6:
Φ2

𝛾𝜆min𝑇
(2)

Thm. 20:
(1− 𝛾𝜇𝜆min)

𝑇Φ2
(2)

(1)+(4)
Fed-Bernoulli-LoRA-EF21 (Alg. 9)
𝐺𝑡

𝑙 = 𝐺𝑡−1
𝑙 + 𝒞𝑡

𝑙 (∇𝑓𝑙(𝑊
𝑡)−𝐺𝑡−1

𝑙)

𝐺𝑡 = 1
𝑀

∑︀𝑀
𝑙=1 𝐺

𝑡
𝑙

Thm. 7:
Φ3

𝛾𝜆min𝑇
(3)

Thm. 22:
(1− 𝛾𝜇𝜆min)

𝑇Φ3
(3)

(1) Φ1 := Δ0 + 𝛾
𝑏(2−𝑏)

𝒢0;
(2) Φ2 := Δ0 + 𝛾

𝑞 𝒢
0;

(3) Φ3 := Δ0 + 𝛾

1−
√

1−𝛽
𝒢0.

Table 1: Unified summary of the proposed methods, their base gradient estimators, and convergence rates for
smooth non-convex (“NC”) and PŁ settings. All methods follow the general update rule 𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡,
where the projected estimator 𝐺̂𝑡 is defined in (8). The table specifies the definition of the base gradient
estimator 𝐺𝑡 for each method. Absolute constant factors are omitted. Notation: Δ0 := 𝑓(𝑊 0) − 𝑓*;
𝒢0 :=

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2

F
; 𝒢0 := 1

𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2

F
; 𝑇 is the chain length; 𝜔 is the compression

parameter; Δ* := 𝑓* − 1
𝑀

∑︀𝑀
𝑙=1 𝑓

*
𝑙 ; 𝐶1 is a constant from Asm. 4; 𝑞 is the probability of a full gradient

computation; 𝛽 is the contractive compression parameter; 𝑏 is the momentum parameter; 𝜆min = 𝜆𝑝
min :=

𝑝𝜆𝐻𝐵
min + (1− 𝑝)𝜆𝐻𝐴

min, and 𝜆max = 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1− 𝑝)𝜆𝐻𝐴
max.

where 𝐺̂𝑡 is the projected gradient estimator. It is formed by taking a base gradient estimator 𝐺𝑡

(e.g., a full gradient, a stochastic gradient, or a variance-reduced one) and projecting it based on the
outcome of a Bernoulli trial:

𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

. (8)

The specific choice of the base estimator 𝐺𝑡 defines the particular algorithm within the Bernoulli-
LoRA family. We summarize our proposed methods and their convergence guarantees in Table 1 and
describe them next.

6 CONVERGENCE RESULTS

The optimization dynamics of our framework depend on the spectral properties of the expected
projection matrix (Section 5.1). To derive non-asymptotic guarantees, we rely on standard modeling
abstractions used in the analysis of first-order methods (e.g., Lipschitz smoothness, PŁ condition).
Our results are conditional on these assumptions, consistent with classical analyses of GD, SGD, and
FL (Bottou et al., 2018; Bubeck, 2015; Nesterov, 2018; Khaled & Richtárik, 2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Assumption 1. (Positive Expected Projection) Consider the projection matrices associated with the
Left and Right Sketch updates:

𝐻𝐵 := 𝐵𝑆(𝐵
⊤
𝑆 𝐵𝑆)

†𝐵⊤
𝑆 and 𝐻𝐴 := 𝐴⊤

𝑆 (𝐴𝑆𝐴
⊤
𝑆)

†𝐴𝑆 ,
where † denotes the Moore-Penrose pseudoinverse. We assume that for the sampling distributions
𝒟𝐵

𝑆 and 𝒟𝐴
𝑆 , the smallest eigenvalues of the expected projection matrices are strictly positive:

𝜆𝐻𝐵

min = 𝜆min(E[𝐻𝐵]) > 0 and 𝜆𝐻𝐴

min = 𝜆min(E[𝐻𝐴]) > 0.

Remark 1 (On the practicality of Assumption 1). At first sight Assumption 1 may look restrictive:
every single projector has eigenvalues in {0,1}, so 𝜆min(𝐻𝐵) = 𝜆min(𝐻𝐴) = 0 whenever 𝑟 < 𝑚 or
𝑟 < 𝑛. Crucially, we never require individual projectors to be positive definite, only their expectation
over the sketch distribution. Intuitively, each step updates along a low-dimensional subspace, but the
random subspaces collectively “cover” all directions over time. In fact, the assumption is mild: as
shown in Section D, it is satisfied with E [𝐻𝐵] =

𝑟
𝑚𝐼𝑚, E [𝐻𝐴] =

𝑟
𝑛𝐼𝑛 for standard choices such

as Gaussian, i.i.d. uniform, Kaiming-uniform, and SVD-based orthonormal sketches widely used in
practice (Xia et al., 2024; Mao et al., 2025; Zhu et al., 2024; Hayou et al., 2024; Li et al., 2025;
Kopiczko et al., 2023).
Assumption 2. (Lower Bounded Function) The objective function 𝑓 has a finite infimum 𝑓* ∈ R.

Following classical literature (Nemirovski et al., 2009; Beck, 2017; Duchi, 2018; Lan, 2020; Drusvy-
atskiy, 2020; Nesterov, 2018), we seek an 𝜀-suboptimal solution for convex (or PŁ) objectives,
satisfying

E
[︁
𝑓(𝑊̂)− 𝑓(𝑊 *)

]︁
≤ 𝜀, (9)

where 𝑊 * minimizes 𝑓 . For smooth non-convex problems, we aim for an 𝜀-stationary point 𝑊̂ such
that

E
[︂⃦⃦⃦

∇𝑓(𝑊̂)
⃦⃦⃦2
F

]︂
≤ 𝜀2. (10)

We quantify algorithmic efficiency via iteration complexity. To establish convergence rates, we use
the standard assumption of gradient Lipschitz continuity (Bubeck, 2015; Nesterov, 2018; Beck, 2017;
Demidovich et al., 2023b; Khaled & Richtárik, 2023; Bottou et al., 2018; Sun, 2020).
Assumption 3. (Lipschitz Smooth Gradient) A function 𝑓 is differentiable, and there exists a constant
𝐿 > 0 such that

‖∇𝑓(𝑊)−∇𝑓(𝑉)‖F ≤ 𝐿 ‖𝑊 − 𝑉 ‖F ,

for all 𝑊,𝑉 ∈ R𝑚×𝑛.

To unify our analysis, we define a probability-weighted eigenvalue 𝜆𝑝
min(max) := 𝑝𝜆𝐻𝐵

min(max) + (1−
𝑝)𝜆𝐻𝐴

min(max). Let ̃︁𝑊𝑇 be an iterate drawn randomly from the sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}, with
the specific sampling distribution depending on the method.

We begin by presenting the convergence result for the foundational Bernoulli-LoRA-GD method.
Theorem 1 (Smooth Non-Convex Setting). Let Assumptions 1, 2, and 3 hold, and let the stepsize
satisfy 0 < 𝛾 ≤ 1

𝐿 . Then the iterates of Bernoulli-LoRA-GD (Algorithm 2), with matrices 𝐴𝑡 and 𝐵̂𝑡

computed according to Lemma 10, satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

,

where ∆0 := 𝑓(𝑊 0)− 𝑓*.

While insightful, full-gradient methods are often impractical for large-scale problems. We therefore
extend our analysis to the stochastic setting, where the gradient is replaced by an unbiased estimator
𝑔(𝑊). For this, we use the general expected smoothness assumption.
Assumption 4 (Expected Smoothness (Khaled & Richtárik, 2023)). The stochastic gradient estimator
𝑔(𝑊) satisfies

E
[︁
‖𝑔(𝑊)‖2F

]︁
≤ 2𝐴1 (𝑓(𝑊)− 𝑓*) +𝐵1 · ‖∇𝑓(𝑊)‖2F + 𝐶1,

for some constants 𝐴1, 𝐵1, 𝐶1 ≥ 0 and all 𝑊 ∈ R𝑚×𝑛.

The following theorem establishes the convergence for Bernoulli-LoRA-SGD. Its proof is in Ap-
pendix H.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 2. Let Assumptions 2, 3, and 4 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

{︃
1√︀

𝐿𝐴1𝜆
𝑝
max𝑇

,
1

𝐿𝐵1

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1
}︃
.

Then the iterates generated by Bernoulli-LoRA-SGD (Algorithm 4) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 6Δ0

𝛾𝜆𝑝
min𝑇

+ 𝛾𝐿𝐶1 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓*.

To analyze our variance-reduced methods, we consider a specific bounded variance assumption.

Assumption 5 (Bounded Variance (Nemirovski et al., 2009)). There exists a constant 𝜎 > 0 such
that, for all 𝑊 ∈ R𝑚×𝑛,

E [∇𝑓𝜉(𝑊)] = ∇𝑓(𝑊), E
[︁
‖∇𝑓𝜉(𝑊)−∇𝑓(𝑊)‖2F

]︁
≤ 𝜎2.

The next result establishes convergence for Bernoulli-LoRA-MVR.

Theorem 3. Let Assumptions 1, 2, 3, and 5 hold, and let the stepsize satisfy 0 < 𝛾 ≤
1

𝐿

(︂
1+

√︁
2𝜆

𝑝
max(1−𝑏)2

𝑏

)︂ . Then the iterates of Bernoulli-LoRA-MVR (Algorithm 5) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

+
(︁

𝒢0

𝑏𝑇 + 2𝑏𝜎2

2−𝑏

)︁
· 𝜆𝑝

max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓* and 𝒢0 :=
⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

For the finite-sum setting, we analyze Bernoulli-LoRA-PAGE, with its convergence detailed in the
following theorem and proven in Appendix H.4.

Theorem 4. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy 0 < 𝛾 ≤ 1

𝐿
(︁
1+
√︁

1−𝑞
𝑞 𝜆𝑝

max

)︁ .

Then the iterates of Bernoulli-LoRA-PAGE (Algorithm 6) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

+ 𝒢0

𝑞𝑇 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓* and 𝒢0 :=
⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

We now shift to our Federated Learning variants. The following theorem provides convergence
guarantees for Fed-Bernoulli-LoRA-QGD, with the proof available in Appendix I.1.

Theorem 5. Let Assumptions 1, 2, 3, and 11 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

{︂
1

𝐿
√

𝜔
𝑀 𝜆𝑝

max𝑇
, 1
𝐿

(︁
𝜆𝑝
max

𝜆𝑝
min

)︁−1
}︂

. Then the iterates of Fed-Bernoulli-LoRA-QGD (Algo-

rithm 7) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 6Δ0

𝛾𝜆𝑝
min𝑇

+ 2𝛾𝐿𝜔Δ*

𝑀 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓*.

Next, we present the convergence result for Fed-Bernoulli-LoRA-MARINA. The proof can be found in
Appendix I.2.

Theorem 6. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy 0 < 𝛾 ≤
1

𝐿
(︁
1+
√︁

𝜆𝑝
max

1−𝑞
𝑞 · 𝜔

𝑀

)︁ . Then the iterates of Fed-Bernoulli-LoRA-MARINA (Algorithm 8) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

+ 𝒢0

𝑞𝑇 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓* and 𝒢0 :=
⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

The convergence of Fed-Bernoulli-LoRA-EF21 is established below, with a detailed proof in Ap-
pendix I.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Theorem 7. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy 0 < 𝛾 ≤ 1

𝐿

(︂
1+

√
𝜆
𝑝
max(1−𝛽)

1−
√

1−𝛽

)︂ .

Then the iterates of Fed-Bernoulli-LoRA-EF21 (Algorithm 9) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

+ 2𝒢0

𝛽𝑇 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓* and 𝒢0 := 1
𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2
F

.

To obtain stronger, linear convergence rates, we introduce the Polyak–Łojasiewicz condition, a
common generalization of strong convexity.

Assumption 6 (Polyak–Łojasiewicz condition (Polyak, 1963; Lojasiewicz, 1963)). There exists
𝜇 > 0 such that

1
2 ‖∇𝑓(𝑊)‖2F ≥ 𝜇 (𝑓(𝑊)− 𝑓*) .

The next theorem states the convergence of Bernoulli-LoRA-SGD under this condition. It is proven in
Appendix H.2.

Theorem 8. Let Assumptions 2, 3, 4, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

{︂
𝜇𝜆𝑝

min

2𝐿𝐴1𝜆
𝑝
max

, 2
𝜇𝜆𝑝

min
, 1
𝐿𝐵1

(︁
𝜆𝑝
max

𝜆𝑝
min

)︁−1
}︂

. Then the iterates of Bernoulli-LoRA-SGD

(Algorithm 4) satisfy

E
[︀
𝑓(𝑊𝑇)− 𝑓*]︀ ≤ (︁1− 𝛾𝜇𝜆𝑝

min

2

)︁𝑇
∆0 + 𝛾𝐿𝐶1

𝜇 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓*.

All other PŁ-condition results are relegated to the Appendix.

7 EXPERIMENTS

To validate our theoretical findings, we conducted numerical experiments across multiple machine
learning tasks.

7.1 LINEAR REGRESSION WITH NON-CONVEX REGULARIZATION.

We begin with a controlled linear regression problem with non-convex regularization, split into
pre-training and fine-tuning phases. We use ̃︁(·) for pre-training quantities and (̂·) for fine-tuning.

During the pre-training phase, we solve min𝑥∈R𝑛

{︂̃︀𝑓(𝑥) := 1
2̃︀𝑚
⃦⃦⃦ ̃︀𝐷𝑥−̃︀𝑏⃦⃦⃦2

2
+ ̃︀𝜆∑︀𝑑

𝑗=1

𝑥2
𝑗

1+𝑥2
𝑗

}︂
,

where ̃︀𝐷 ∈ R̃︀𝑚×𝑛, ̃︀𝑏 ∈ R̃︀𝑚, ̃︀𝑚 = 9 × 104, and 𝑛 = 4096. We set ̃︀𝜆 =
⃦⃦⃦ ̃︀𝐷⃦⃦⃦

2
≈ 18.2, giving̃︀𝐿 ≈ 54.7. We optimize until ‖∇𝑓(̃︀𝑥*)‖2 ≤ 10−8 to obtain ̃︀𝑥*. For the fine-tuning phase, we

use ̃︀𝑥* as the initialization and then solve min𝑥∈R𝑛

{︂
𝑓(𝑥) := 1

2𝑚̂

⃦⃦⃦
𝐷̂𝑥− 𝑏̂

⃦⃦⃦2
2
+ 𝜆̂

∑︀𝑑
𝑗=1

𝑥2
𝑗

1+𝑥2
𝑗

}︂
,

where 𝐷̂ ∈ R𝑚̂×𝑛, 𝑏̂ ∈ R𝑚̂, and 𝑚̂ = 104. We keep 𝑛 = 4096 and set 𝜆̂ =
⃦⃦⃦
𝐷̂
⃦⃦⃦
2
≈ 4101.7,

yielding 𝐿̂ ≈ 12305.3. This second phase uses a dataset with notably different characteristics to
mirror realistic domain shifts.

Stochastic setting. We consider the stochastic setting, comparing RAC-LoRA-SGD, Bernoulli-LoRA-
SGD, and Bernoulli-LoRA-PAGE. In all experiments, we use a batch size of 100, which corresponds
to 1% of the data.

Figure 1 shows that Bernoulli-LoRA-PAGE successfully reduces variance and converges to the target
tolerance, whereas all SGD variants stall at a certain accuracy. This underscores the practical
advantage of Bernoulli-LoRA-PAGE over the baseline RAC-LoRA-SGD in the stochastic setting from
an optimization standpoint.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Data passes

103

100

10−3

10−6

10−9

10−12

10−15

‖∇
f

(x
t)
‖2 Bernoulli-LoRA-PAGE(p=0.5)

Bernoulli-LoRA-SGD(p=0.5)

RAC-LoRA-SGD(A)

RAC-LoRA-SGD(B)

Figure 1: Comparison of RAC-LoRA-SGD, Bernoulli-LoRA-SGD and Bernoulli-LoRA-PAGE on linear
regression fine-tuning. Curves with 𝑝 = 0.01,0.2, . . . indicate Bernoulli-LoRA sampling parameters.
RAC-LoRA-SGD(A) trains 𝐵 after resampling 𝐴, while RAC-LoRA-SGD(B) does the reverse. All
methods use 𝛾 = 𝑐/𝐿̂ with 𝑐 tuned individually.

7.2 MLP ON MNIST

In this section, we evaluate Bernoulli-LoRA against established baselines in parameter-efficient
fine-tuning, following the setup of Malinovsky et al. (2024).

Methodology. We first pre-train a three-layer MLP on MNIST digits 0–4 (LeCun et al., 1998), then
adapt it with various LoRA-type methods to classify digits 5–9. Only unseen classes are used for
evaluation. All adaptations use rank 𝑟 = 1 and train for 50 epochs with AdamW (Loshchilov, 2017)
(𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8), a fixed learning rate of 2 × 10−4, and batch size 128. Each
method is run 20 times using different seeds, and Table 2 reports the median accuracy (with standard
deviation). For Bernoulli-LoRA, we show the best median accuracy among all tested settings.

Method 𝒟𝐴 𝒟𝐵 Acc. (test) Train Params
FPFT - - 99.5 54,700
LoRA Gaussian Zero 85.69± 1.60 1K
LoRA Zero Gaussian 89.82± 0.90 1K
COLA Gaussian Zero 93.32± 0.50 1K
COLA Zero Gaussian 96.55± 0.20 1K
AsymmLoRA Gaussian Zero 64.04± 6.90 133
AsymmLoRA Zero Gaussian 74.52± 7.20 912
RAC-LoRA Gaussian Zero 93.02± 0.50 133
RAC-LoRA Zero Gaussian 96.49± 0.20 912
Bernoulli-LoRA 2 Zero1 Gaussian 96.46± 0.17 ≈ 904
1 Although Bernoulli-LoRA prescribes probabilistic selection from the
first iteration, a deterministic assignment of fixed and trainable matrices
at initialization yielded better performance.
2 Achieved with 𝑝 = 0.99, giving an expected trainable parameter count
𝑝 · 912 + (1 − 𝑝) · 133 ≈ 904. Here, 912 and 133 are the parameter
counts for matrices 𝐴 and 𝐵, respectively.

Table 2: Performance on MNIST classification using an MLP with rank 𝑟 and scaling 𝛼 = 1. For
AsymmLoRA and RAC-LoRA, only the zero-initialized matrix is trained.

Discussion. From Table 2, standard LoRA attains roughly 86% of full-parameter fine-tuning (FPFT)
accuracy, indicating room for improvements via chaining. COLA improves upon vanilla LoRA, though
both lack formal convergence guarantees. AsymmLoRA approximates LoRA in practice (Sun et al.,
2024) but similarly lacks convergence analysis, whereas RAC-LoRA and Bernoulli-LoRA both boost
accuracy and have theoretical backing. Notably, Bernoulli-LoRA matches RAC-LoRA in generalization
and also guarantees convergence. An additional benefit is that RAC-LoRA and Bernoulli-LoRA each
train only one matrix per LoRA block, whereas COLA needs two. In RAC-LoRA, either 𝐴 or 𝐵
is trained deterministically; in Bernoulli-LoRA, the choice is probabilistic, yielding an expected
𝑝𝑚𝑟+ (1− 𝑝)𝑟𝑛 trainable parameters. This advantage is especially valuable in resource-constrained
settings such as Federated Learning.

Detailed configurations, hardware specs, and dataset descriptions are provided in Appendix J.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. Advances in Neural Information Processing
Systems, 30, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. Advances in Neural Information
Processing Systems, 31, 2018.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. LoRa learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015.

Daria Cherniuk, Aleksandr Mikhalev, and Ivan Oseledets. Run lora run: Faster and lighter lora
implementations. arXiv preprint arXiv:2312.03415, 2023.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD.
Advances in Neural Information Processing Systems, 32, 2019.

Arif Kerem Dayi and Sitan Chen. Low-rank fine-tuning lies between lazy training and feature learning.
In Nika Haghtalab and Ankur Moitra (eds.), Proceedings of Thirty Eighth Conference on Learning
Theory, volume 291 of Proceedings of Machine Learning Research, pp. 1415–1471. PMLR, 30
Jun–04 Jul 2025. URL https://proceedings.mlr.press/v291/dayi25a.html.

Yury Demidovich, Grigory Malinovsky, Egor Shulgin, and Peter Richtárik. MAST: Model-agnostic
sparsified training. arXiv preprint arXiv:2311.16086, 2023a.

Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtárik. A guide through the zoo
of biased SGD. Advances in Neural Information Processing Systems, 36:23158–23171, 2023b.

Yury Demidovich, Grigory Malinovsky, and Peter Richtárik. Streamlining in the riemannian realm: Ef-
ficient riemannian optimization with loopless variance reduction. arXiv preprint arXiv:2403.06677,
2024a.

Yury Demidovich, Petr Ostroukhov, Grigory Malinovsky, Samuel Horváth, Martin Takáč, Peter
Richtárik, and Eduard Gorbunov. Methods with local steps and random reshuffling for generally
smooth non-convex federated optimization. arXiv preprint arXiv:2412.02781, 2024b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-[]1423. URL
https://doi.org/10.18653/v1/n19-[]1423.

Dmitriy Drusvyatskiy. Convex analysis and nonsmooth optimization. University Lecture, 2020.

10

https://proceedings.mlr.press/v291/dayi25a.html
https://doi.org/10.18653/v1/n19-1423

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John C Duchi. Introductory lectures on stochastic optimization. The mathematics of data, 25:99–186,
2018.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in Neural Information
Processing Systems, 31, 2018.

Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. EF21 with
bells & whistles: Practical algorithmic extensions of modern error feedback. arXiv preprint
arXiv:2110.03294, 2021.

Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
convex distributed learning with compression. In International Conference on Machine Learning,
pp. 3788–3798. PMLR, 2021.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. SGD: General analysis and improved rates. In International conference on machine
learning, pp. 5200–5209. PMLR, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
ImageNet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on LoRA finetuning
dynamics. Advances in Neural Information Processing Systems, 37:117015–117040, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Samuel Horváth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. In Mathematical and Scientific
Machine Learning, pp. 129–141. PMLR, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. On variance
reduction in stochastic gradient descent and its asynchronous variants. Advances in Neural
Information Processing Systems, 28, 2015.

Uijeong Jang, Jason D. Lee, and Ernest K. Ryu. LoRA training in the NTK regime has no spurious
local minima. arXiv preprint arXiv:2402.11867, 2024.

Peter Kairouz, H. B. McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary B. Charles, Graham Cormode, Rachel Cummings, Rafael
G. L. D’Oliveira, Salim Y. El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià
Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaı̈d Harchaoui, Chaoyang He, Lie He,
Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Kho-
dak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Oluwasanmi Koyejo, Tancrède
Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, R. Pagh, Mariana
Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Xiaodong Song, Weikang Song, Sebas-
tian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu
Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open
problems in federated learning. Found. Trends Mach. Learn., 14:1–210, 2019.

Avetik Karagulyan, Egor Shulgin, Abdurakhmon Sadiev, and Peter Richtárik. SPAM: Stochastic
proximal point method with momentum variance reduction for non-convex cross-device federated
learning. arXiv preprint arXiv:2405.20127, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=AU4qHN2VkS. Survey Certification.

Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M Gower, and Peter Richtárik. Unified
analysis of stochastic gradient methods for composite convex and smooth optimization. Journal of
Optimization Theory and Applications, 199(2):499–540, 2023.

Sarit Khirirat, Abdurakhmon Sadiev, Artem Riabinin, Eduard Gorbunov, and Peter Richtárik.
Error feedback under (𝐿 0, 𝐿 1)-smoothness: Normalization and momentum. arXiv preprint
arXiv:2410.16871, 2024.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and Ameet
Talwalkar. Federated hyperparameter tuning: Challenges, baselines, and connections to weight-
sharing. Advances in Neural Information Processing Systems, 34:19184–19197, 2021.

Junsu Kim, Jaeyeon Kim, and Ernest K. Ryu. LoRA training provably converges to a low-rank global
minimum or it fails loudly (but it probably won’t fail). arXiv preprint arXiv:2502.09376, 2025.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and
Neil Houlsby. Big transfer (bit): General visual representation learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pp.
491–507. Springer, 2020.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. arXiv preprint arXiv:2310.11454, 2023.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
Yaliang Li, Bolin Ding, and Jingren Zhou. FederatedScope-LLM: A comprehensive package for
fine-tuning large language models in federated learning. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 5260–5271, 2024.

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1.
Springer, 2020.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chuan Li. Demystifying gpt-3 language model: A technical overview, 2020. URL https://
lambdalabs.com/blog/demystifying-[]gpt-[]3.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Shiwei Li, Xiandi Luo, Xing Tang, Haozhao Wang, Hao Chen, Weihong Luo, Yuhua Li, Xiuqiang
He, and Ruixuan Li. Beyond zero initialization: Investigating the impact of non-zero initialization
on lora fine-tuning dynamics. arXiv preprint arXiv:2505.23194, 2025.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In International conference on
machine learning, pp. 6286–6295. PMLR, 2021.

Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les équations
aux dérivées partielles, 117(87-89):2, 1963.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

12

https://openreview.net/forum?id=AU4qHN2VkS
https://openreview.net/forum?id=AU4qHN2VkS
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Grigory Malinovsky, Kai Yi, and Peter Richtárik. Variance reduced ProxSkip: Algorithm, theory
and application to federated learning. Advances in Neural Information Processing Systems, 35:
15176–15189, 2022.

Grigory Malinovsky, Umberto Michieli, Hasan Abed Al Kader Hammoud, Taha Ceritli, Hayder
Elesedy, Mete Ozay, and Peter Richtárik. Randomized asymmetric chain of LoRA: The first
meaningful theoretical framework for low-rank adaptation. arXiv preprint arXiv:2410.08305,
2024.

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi, Zhonghao Hu, and Yunjun Gao. A
survey on lora of large language models. Frontiers of Computer Science, 19(7):197605, 2025.
doi: 10.1007/s11704-[]024-[]40663-[]9. URL https://journal.hep.com.cn/fcs/EN/
abstract/article_47717.shtml.

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics, 2016.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038–121072, 2024.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Andrei Panferov, Yury Demidovich, Ahmad Rammal, and Peter Richtárik. Correlated quantization
for faster nonconvex distributed optimization. arXiv preprint arXiv:2401.05518, 2024.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Marilyn A. Walker, Heng Ji,
and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 2227–2237.
Association for Computational Linguistics, 2018. doi: 10.18653/V1/N18-[]1202. URL https:
//doi.org/10.18653/v1/n18-[]1202.

Nhan H Pham, Lam M Nguyen, Dzung T Phan, and Quoc Tran-Dinh. ProxSARAH: An efficient
algorithmic framework for stochastic composite nonconvex optimization. Journal of Machine
Learning Research, 21(110):1–48, 2020.

Boris Polyak. Gradient methods for the minimisation of functionals. Ussr Computational Mathematics
and Mathematical Physics, 3:864–878, 1963.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156:433–484, 2016.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better,
and practically faster error feedback. Advances in Neural Information Processing Systems, 34:
4384–4396, 2021.

Peter Richtárik, Igor Sokolov, Elnur Gasanov, Ilyas Fatkhullin, Zhize Li, and Eduard Gorbunov. 3PC:
Three point compressors for communication-efficient distributed training and a better theory for
lazy aggregation. In International Conference on Machine Learning, pp. 18596–18648. PMLR,
2022.

13

https://journal.hep.com.cn/fcs/EN/abstract/article_47717.shtml
https://journal.hep.com.cn/fcs/EN/abstract/article_47717.shtml
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Peter Richtárik, Abdurakhmon Sadiev, and Yury Demidovich. A unified theory of stochastic proximal
point methods without smoothness. arXiv preprint arXiv:2405.15941, 2024.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Abdurakhmon Sadiev, Grigory Malinovsky, Eduard Gorbunov, Igor Sokolov, Ahmed Khaled,
Konstantin Pavlovich Burlachenko, and Peter Richtárik. Don’t compress gradients in random
reshuffling: Compress gradient differences. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
CzPtBzgfae.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Fanhua Shang, Kaiwen Zhou, Hongying Liu, James Cheng, Ivor W Tsang, Lijun Zhang, Dacheng Tao,
and Licheng Jiao. Vr-sgd: A simple stochastic variance reduction method for machine learning.
IEEE Transactions on Knowledge and Data Engineering, 32(1):188–202, 2018.

Igor Sokolov and Peter Richtárik. MARINA-P: Superior performance in non-smooth federated
optimization with adaptive stepsizes. arXiv preprint arXiv:2412.17082, 2024.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory.
Advances in Neural Information Processing Systems, 31, 2018.

Ruo-Yu Sun. Optimization for deep learning: An overview. Journal of the Operations Research
Society of China, 8(2):249–294, 2020.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving LoRA in privacy-preserving federated
learning. arXiv preprint arXiv:2403.12313, 2024.

Alexander Tyurin and Peter Richtárik. DASHA: Distributed nonconvex optimization with com-
munication compression and optimal oracle complexity. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
VA1YpcNr7ul.

Evgeniya Vorontsova, Roland Hildebrand, Alexander Gasnikov, and Fedor Stonyakin. Convex
optimization. arXiv preprint arXiv:2106.01946, 2021.

Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. MiLoRA: Harnessing minor
singular components for parameter-efficient LLM finetuning. pp. 4823–4836, 2025.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. TernGrad:
Ternary gradients to reduce communication in distributed deep learning. Advances in Neural
Information Processing Systems, 30, 2017.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of LoRA: efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:2401.04151, 2024.

Ziqing Xu, Hancheng Min, Salma Tarmoun, Enrique Mallada, Lachlan Ewen MacDonald, Jinqi Luo,
and Rene Vidal. Understanding the learning dynamics of LoRA: A gradient flow perspective on
low-rank adaptation in matrix factorization. In Proceedings of the 28th International Conference
on Artificial Intelligence and Statistics. PMLR, 2025.

Kai Yi, Timur Kharisov, Igor Sokolov, and Peter Richtárik. Cohort squeeze: Beyond a single commu-
nication round per cohort in cross-device federated learning. arXiv preprint arXiv:2406.01115,
2024.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training BERT in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Saez De Ocariz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. arXiv preprint arXiv:2402.16842, 2024.

14

https://openreview.net/forum?id=CzPtBzgfae
https://openreview.net/forum?id=CzPtBzgfae
https://openreview.net/forum?id=VA1YpcNr7ul
https://openreview.net/forum?id=VA1YpcNr7ul

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

CONTENTS

1 Introduction 1

2 Motivation 2

3 Problem Statement 2

4 Contributions 3

5 Bernoulli-LoRA Framework 4

5.1 Reformulation as a Projected Gradient Step . 4

6 Convergence Results 5

7 Experiments 8

7.1 Linear Regression with Non-convex Regularization. 8

7.2 MLP on MNIST . 9

A Appendix 15

B Basic Facts and Useful Inequalities 17

C Notation 18

D Discussion on Positive Expected Projection (Assumption 1) 19

D.1 Rotational and signed-permutation symmetries 19

D.2 Gaussian initialization . 21

D.3 i.i.d. uniform initialization on [−𝑎,𝑎] . 22

D.4 Kaiming-uniform initialization . 24

D.5 Random Orthonormal Sketches via SVD . 25

E Reformulation as a Projected Gradient Step 29

F Core Algorithmic Variants 30

G Extensions for Federated Learning 30

H Proofs for Core Algorithmic Variants 32

H.1 Analysis of Bernoulli-LoRA-GD . 32

H.1.1 Convergence for Smooth Non-Convex Functions 33

H.1.2 Convergence under Polyak-Łojasiewicz Condition 36

H.1.3 Convergence for Non-Smooth Convex Functions 36

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

H.2 Analysis of Bernoulli-LoRA-SGD . 42

H.2.1 Convergence for Smooth Non-Convex Functions 42

H.2.2 Convergence under Polyak-Łojasiewicz Condition 44

H.3 Analysis of Bernoulli-LoRA-MVR . 46

H.3.1 Convergence for Smooth Non-Convex Functions 48

H.3.2 Convergence under Polyak-Łojasiewicz Condition 49

H.4 Analysis of Bernoulli-LoRA-PAGE . 50

H.4.1 Convergence for Smooth Non-Convex Functions 51

H.4.2 Convergence under Polyak-Łojasiewicz Condition 52

I Proofs for Federated Learning Extensions 53

I.1 Analysis of Fed-Bernoulli-LoRA-QGD . 53

I.1.1 Convergence for Smooth Non-Convex Functions 55

I.1.2 Convergence under Polyak-Łojasiewicz Condition 55

I.2 Analysis of Fed-Bernoulli-LoRA-MARINA . 56

I.2.1 Convergence for Smooth Non-Convex Functions 57

I.2.2 Convergence under Polyak-Łojasiewicz Condition 58

I.3 Analysis of Fed-Bernoulli-LoRA-EF21 . 59

I.3.1 Convergence for Smooth Non-Convex Functions 60

I.3.2 Convergence under Polyak-Łojasiewicz Condition 61

J Experiments: Missing Details 62

J.1 Linear Regression with Non-convex Regularization 62

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B BASIC FACTS AND USEFUL INEQUALITIES

Tower property. For any random variables 𝑋 and 𝑌 , we have
E [E [𝑋 | 𝑌]] = E [𝑋] . (11)

Cauchy-Bunyakovsky-Schwarz inequality. For any random variables 𝑋 and 𝑌 , we have
|E [𝑋𝑌]| ≤

√︀
E [𝑋2]E [𝑌 2]. (12)

Variance decomposition. For any random vector 𝑋 ∈ R𝑑 and any non-random 𝑐 ∈ R𝑑, we have

E
[︁
‖𝑋 − 𝑐‖22

]︁
= E

[︁
‖𝑋 − E [𝑋]‖22

]︁
+ ‖E [𝑋]− 𝑐‖22 . (13)

Jensen’s inequality. For any random vector 𝑋 ∈ R𝑑 and any convex function 𝑔 : R𝑑 ↦→ R, we
have

𝑔(E [𝑋]) ≤ E [𝑔(𝑋)] . (14)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C NOTATION

For matrices 𝑊 ∈ R𝑚×𝑛, where 𝑚 and 𝑛 denote the input and output dimensions respectively,
we employ the Frobenius norm ‖·‖F, defined as ‖𝑊‖F =

√︀
Tr(𝑊⊤𝑊), where Tr(·) denotes the

matrix trace. The inner product between two matrices 𝐴 and 𝐵 is denoted by ⟨𝐴,𝐵⟩ = Tr(𝐴⊤𝐵).
In our low-rank adaptation framework, 𝐵 ∈ R𝑚×𝑟 and 𝐴 ∈ R𝑟×𝑛 represent the factors of rank
𝑟 ≪ min{𝑚,𝑛}. We use 𝒪(·) to hide absolute constants. We denote ∆0 := 𝑓(𝑊 0) − 𝑓*,

𝒢0 :=
⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

and 𝒢0 := 1
𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2
F

. For differentiable functions
𝑓 , the gradient ∇𝑓(𝑊) ∈ R𝑚×𝑛 is computed with respect to the trace inner product, while for
non-smooth functions, the subgradient 𝜕𝑓(𝑊) ∈ R𝑚×𝑛 is similarly defined. The superscript †
denotes the Moore-Penrose pseudoinverse.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D DISCUSSION ON POSITIVE EXPECTED PROJECTION (ASSUMPTION 1)

Recall that in our Bernoulli-LoRA framework, at each iteration we update only one of the low-rank
factors (𝐴 or 𝐵) while the other is treated as a fixed “sketch” sampled from a prescribed distribution.
The resulting updates can be written as projected gradient steps with respect to the full parameter
matrix 𝑊 :

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡,

where the projected estimator 𝐺̂𝑡 has the form

𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, (left sketch),

𝐺𝑡𝐻𝑡
𝐴, (right sketch),

and 𝐻𝑡
𝐵 and 𝐻𝑡

𝐴 are projection matrices defined by the current sketch. In particular, for a left sketch
we use

𝐻𝐵 := 𝐵
(︀
𝐵⊤𝐵

)︀†
𝐵⊤ ∈ R𝑚×𝑚, (15)

with 𝐵 ∈ R𝑚×𝑟, and for a right sketch we use
𝐻𝐴 := 𝐴⊤ (︀𝐴𝐴⊤)︀† 𝐴 ∈ R𝑛×𝑛, (16)

with 𝐴 ∈ R𝑟×𝑛. Here † denotes the Moore–Penrose pseudoinverse. Both 𝐻𝐵 and 𝐻𝐴 are orthogonal
projectors onto the column spaces of 𝐵 and 𝐴⊤, respectively:

𝐻2
𝐵 = 𝐻𝐵 , 𝐻⊤

𝐵 = 𝐻𝐵 , Tr (𝐻𝐵) = rank(𝐻𝐵) ≤ 𝑟,

𝐻2
𝐴 = 𝐻𝐴, 𝐻⊤

𝐴 = 𝐻𝐴, Tr (𝐻𝐴) = rank(𝐻𝐴) ≤ 𝑟.

Our convergence guarantees are derived under Assumption 1, which requires the smallest eigenvalues
of the expected projection matrices to be strictly positive:

𝜆min (E [𝐻𝐵]) > 0, 𝜆min (E [𝐻𝐴]) > 0.
At first glance this may appear restrictive: any single projector has eigenvalues in {0,1}, so
𝜆min(𝐻𝐵) = 0 and 𝜆min(𝐻𝐴) = 0 whenever 𝑟 < 𝑚 or 𝑟 < 𝑛. However, the key point is
that we never require individual projectors to be positive definite. Instead, we only require that the
average projection (over the random sketches) be positive definite. Intuitively, this means that while
each update acts in a low-dimensional subspace, the sequence of random subspaces collectively
“covers” all directions over time.

In this section we show that Assumption 1 is satisfied for several widely used sketch distributions,
including Gaussian, i.i.d. uniform, Kaiming-uniform and random orthonormal initializations. Our
strategy is to exploit symmetry: for many random matrix ensembles the expected projection commutes
with a large group of orthogonal transformations, which forces it to be a scalar multiple of the identity.
The scalar is then determined by the rank/trace constraint.

D.1 ROTATIONAL AND SIGNED-PERMUTATION SYMMETRIES

We begin with a classical result: if a matrix commutes with every orthogonal matrix, it must be a
scalar multiple of the identity.

Lemma 1 (Rotational invariance implies scalar matrix). Let 𝑀 ∈ R𝑛×𝑛 be a matrix satisfying
𝑀 = 𝑄𝑀𝑄⊤ for all orthonormal matrices 𝑄 ∈ R𝑛×𝑛. (17)

Then 𝑀 = 𝛼𝐼𝑛 for some scalar 𝛼 ∈ R.

Proof. Condition (17) is equivalent to 𝑄𝑀 = 𝑀𝑄 for all orthogonal 𝑄, i.e., 𝑀 commutes with
every orthogonal transformation. In particular, 𝑀 commutes with all rotations.

Since 𝑀 is a real symmetric matrix (indeed, 𝑀 = 𝑄𝑀𝑄⊤ for all orthogonal 𝑄 implies 𝑀⊤ = 𝑀),
it admits an orthonormal eigenbasis. Let 𝑣 be an eigenvector of 𝑀 with eigenvalue 𝜆, and normalize
𝑣 to unit length:

𝑢1 :=
𝑣

‖𝑣‖ .
Then 𝑀𝑢1 = 𝜆𝑢1.

Take any other unit vector 𝑢 on the sphere 𝑆𝑛−1. There exists an orthogonal matrix 𝑄 ∈ R𝑛×𝑛 such
that 𝑢 = 𝑄𝑢1 (geometrically, 𝑄 is a rotation sending 𝑢1 to 𝑢). Using 𝑄𝑀 = 𝑀𝑄,

𝑀𝑢 = 𝑀(𝑄𝑢1) = 𝑄𝑀𝑢1 = 𝑄(𝜆𝑢1) = 𝜆(𝑄𝑢1) = 𝜆𝑢.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Thus every unit vector 𝑢 is an eigenvector of 𝑀 with the same eigenvalue 𝜆.

Now let 𝑥 ∈ R𝑛 be arbitrary and non-zero, and write 𝑥 = ‖𝑥‖𝑢𝑥 with 𝑢𝑥 := 𝑥/ ‖𝑥‖ a unit vector.
Then

𝑀𝑥 = 𝑀(‖𝑥‖𝑢𝑥) = ‖𝑥‖𝑀𝑢𝑥 = ‖𝑥‖ (𝜆𝑢𝑥) = 𝜆𝑥.
So every vector 𝑥 is an eigenvector with eigenvalue 𝜆, which implies 𝑀 = 𝜆𝐼𝑛. Setting 𝛼 = 𝜆
completes the proof.

For many random initializations we do not have full rotational invariance, but we do have invariance
under row permutations and independent sign flips. The corresponding group is the set of all signed
permutation matrices

𝐺𝑛 :=
{︀
𝑄 ∈ R𝑛×𝑛 : 𝑄 = 𝑃𝐷, 𝑃 permutation, 𝐷 = diag (±1, . . . ,± 1)

}︀
.

The following lemma shows that invariance under 𝐺𝑛 is already enough to force a scalar matrix.

Lemma 2 (Signed-permutation invariance implies scalar matrix). Let 𝑀 ∈ R𝑛×𝑛 satisfy
𝑄𝑀𝑄⊤ = 𝑀 for all 𝑄 ∈ 𝐺𝑛. (18)

Then 𝑀 = 𝛼𝐼𝑛 for some 𝛼 ∈ R.

Proof. We write 𝑀 = (𝑚𝑖𝑗) to mean that 𝑚𝑖𝑗 is the entry of 𝑀 in row 𝑖 and column 𝑗.

Step 1: sign-flip invariance forces 𝑀 to be diagonal. First consider only those 𝑄 ∈ 𝐺𝑛 that are
pure sign-flip matrices, i.e.,

𝑄 = 𝐷 = diag (𝑞11, . . . ,𝑞𝑛𝑛) , 𝑞𝑖𝑖 ∈ {±1} .
These are orthogonal and belong to 𝐺𝑛 (with 𝑃 = 𝐼𝑛). For such 𝑄, the (𝑖,𝑗)-entry of 𝑄𝑀𝑄⊤ is(︀

𝑄𝑀𝑄⊤)︀
𝑖𝑗
=
∑︁
𝑘,ℓ

𝑞𝑖𝑘𝑚𝑘ℓ𝑞𝑗ℓ = 𝑞𝑖𝑖𝑚𝑖𝑗𝑞𝑗𝑗 ,

because 𝑄 is diagonal. By (18),
𝑞𝑖𝑖𝑞𝑗𝑗𝑚𝑖𝑗 = 𝑚𝑖𝑗 for all 𝑖,𝑗 and all (𝑞11, . . . ,𝑞𝑛𝑛) ∈ {±1}𝑛 . (19)

Fix any 𝑖 ̸= 𝑗. We are free to choose 𝑞𝑖𝑖 and 𝑞𝑗𝑗 independently. Let 𝑞𝑖𝑖 = 1, 𝑞𝑗𝑗 = −1 and 𝑞𝑘𝑘 = 1
for all 𝑘 /∈ {𝑖,𝑗}. Then (19) yields

(−1)𝑚𝑖𝑗 = 𝑚𝑖𝑗 =⇒ 𝑚𝑖𝑗 = 0.
Since 𝑖 ̸= 𝑗 was arbitrary, all off-diagonal entries vanish, and 𝑀 must be diagonal:

𝑀 = diag (𝑚11, . . . ,𝑚𝑛𝑛) .

Step 2: permutation invariance forces all diagonal entries to coincide. Next consider permuta-
tion matrices 𝑃 ∈ 𝐺𝑛, i.e., matrices with exactly one entry equal to 1 in each row and column (and
all other entries 0). Each 𝑃 is orthogonal and belongs to 𝐺𝑛 (with 𝐷 = 𝐼𝑛), so by (18),

𝑃𝑀𝑃⊤ = 𝑀. (20)
Let 𝜋 be the permutation of {1, . . . ,𝑛} represented by 𝑃 , so that 𝑃𝑒𝑗 = 𝑒𝜋(𝑗) for the standard basis
vectors. One checks that (︀

𝑃𝑀𝑃⊤)︀
𝑖𝑖
= 𝑚𝜋(𝑖)𝜋(𝑖),

so (20) implies
𝑚𝑖𝑖 = 𝑚𝜋(𝑖)𝜋(𝑖) for all 𝑖 and all permutations 𝜋.

This is only possible if all diagonal entries are equal to a common value 𝛼 ∈ R:
𝑚11 = · · · = 𝑚𝑛𝑛 = 𝛼.

Therefore 𝑀 = 𝛼𝐼𝑛.

Step 3: consistency with general signed permutations. In the argument above we only used two
special subgroups of 𝐺𝑛: pure sign flips (𝑃 = 𝐼𝑛) and pure permutations (𝐷 = 𝐼𝑛). Since both are
contained in 𝐺𝑛, the assumption (18) applies to them. Once we have shown that 𝑀 = 𝛼𝐼𝑛, it is
immediate that 𝑄𝑀𝑄⊤ = 𝑀 holds for all 𝑄 = 𝑃𝐷 ∈ 𝐺𝑛:

𝑄𝑀𝑄⊤ = (𝑃𝐷)(𝛼𝐼𝑛)(𝐷
⊤𝑃⊤) = 𝛼𝑃𝐷𝐷⊤𝑃⊤ = 𝛼𝐼𝑛 = 𝑀.

This completes the proof.

We will use Lemma 1 in the Gaussian case (where full rotational invariance holds) and Lemma 2 in
the uniform and Kaiming cases (where we have signed-permutation invariance).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.2 GAUSSIAN INITIALIZATION

Gaussian sketches are a standard choice in LoRA-style methods; see, for example, Xia et al. (2024);
Mao et al. (2025). The next lemma shows that for Gaussian initialization, the expected projection
matrices are isotropic and their eigenvalues are exactly 𝑟/𝑚 and 𝑟/𝑛.

Lemma 3 (Expected projections for Gaussian sketches). Let 𝑟 ≤ min{𝑚,𝑛} and consider two
random matrices:

◆ 𝐵 ∈ R𝑚×𝑟 with entries i.i.d. 𝒩 (0,1),

◆ 𝐴 ∈ R𝑟×𝑛 with entries i.i.d. 𝒩 (0,1).

Define 𝐻𝐵 and 𝐻𝐴 as in (15) and (16). Then
E [𝐻𝐵] =

𝑟

𝑚
𝐼𝑚, E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

which implies
𝜆min (E [𝐻𝐵]) =

𝑟

𝑚
, 𝜆min (E [𝐻𝐴]) =

𝑟

𝑛
.

Proof. We first prove the statement for 𝐻𝐵 , then explain the analogous argument for 𝐻𝐴.

Step 1: E [𝐻𝐵] is a scalar multiple of the identity. Let 𝐵 ∈ R𝑚×𝑟 with i.i.d. 𝒩 (0,1) entries, and
let 𝑄 ∈ R𝑚×𝑚 be an arbitrary orthogonal matrix. By rotational invariance of the standard Gaussian
distribution,

𝑄𝐵
𝑑
= 𝐵.

Consider the projector built from 𝑄𝐵:
𝐻𝑄𝐵 := (𝑄𝐵)

(︀
(𝑄𝐵)⊤𝑄𝐵

)︀†
(𝑄𝐵)⊤

= 𝑄𝐵
(︀
𝐵⊤𝑄⊤𝑄𝐵

)︀†
𝐵⊤𝑄⊤

= 𝑄𝐵
(︀
𝐵⊤𝐵

)︀†
𝐵⊤𝑄⊤

= 𝑄
(︀
𝐵(𝐵⊤𝐵)†𝐵⊤)︀𝑄⊤

= 𝑄𝐻𝐵𝑄
⊤.

Since 𝑄𝐵 and 𝐵 are identically distributed, 𝐻𝑄𝐵 and 𝐻𝐵 have the same distribution and hence the
same expectation:

E [𝐻𝑄𝐵] = E [𝐻𝐵] .

Using 𝐻𝑄𝐵 = 𝑄𝐻𝐵𝑄
⊤ and linearity of expectation,

E [𝐻𝐵] = E [𝐻𝑄𝐵] = E
[︀
𝑄𝐻𝐵𝑄

⊤]︀ = 𝑄E [𝐻𝐵] 𝑄
⊤ for all orthogonal 𝑄 ∈ R𝑚×𝑚.

By Lemma 1, a matrix commuting with all orthogonal matrices must be a scalar multiple of the
identity. Hence there exists 𝛼 ∈ R such that

E [𝐻𝐵] = 𝛼𝐼𝑚.

Step 2: determine 𝛼 via the rank/trace. For any realization of 𝐵 with full column rank (which
holds almost surely, since 𝐵 has i.i.d. continuous entries and 𝑟 ≤ 𝑚), the matrix 𝐻𝐵 is the orthogonal
projector onto the 𝑟-dimensional column space of 𝐵. Thus

rank(𝐻𝐵) = 𝑟, Tr (𝐻𝐵) = 𝑟.
Taking expectations and using linearity of the trace,

Tr (E [𝐻𝐵]) = E [Tr (𝐻𝐵)] = 𝑟.
Since E [𝐻𝐵] = 𝛼𝐼𝑚, we also have

Tr (E [𝐻𝐵]) = Tr (𝛼𝐼𝑚) = 𝛼𝑚.
Equating the two expressions yields 𝛼𝑚 = 𝑟 and hence

E [𝐻𝐵] =
𝑟

𝑚
𝐼𝑚.

Because E [𝐻𝐵] is a scalar multiple of the identity, all of its eigenvalues are equal to 𝑟/𝑚, so in
particular 𝜆min (E [𝐻𝐵]) = 𝑟/𝑚.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Step 3: the case of 𝐻𝐴. Now let 𝐴 ∈ R𝑟×𝑛 with i.i.d. 𝒩 (0,1) entries and define

𝐻𝐴 = 𝐴⊤ (︀𝐴𝐴⊤)︀† 𝐴 ∈ R𝑛×𝑛.

Note that 𝐴⊤ ∈ R𝑛×𝑟 also has i.i.d. 𝒩 (0,1) entries. Repeating the same argument as above with 𝐴⊤

in place of 𝐵 (and with ambient dimension 𝑛 instead of 𝑚) gives
E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

and all eigenvalues of E [𝐻𝐴] are equal to 𝑟/𝑛. This completes the proof.

D.3 I.I.D. UNIFORM INITIALIZATION ON [−𝑎,𝑎]

We now consider sketches whose entries are i.i.d. uniform on an interval [−𝑎,𝑎], where 𝑎 > 0. This
initialization strategy is employed, for instance, in AsymmLoRA (Zhu et al., 2024). This setting covers
both simple uniform initializations and serves as a stepping stone to Kaiming-uniform initialization.

Our analysis relies on three ingredients:

◆ equivariance of 𝐻𝐵 under left multiplication by an orthogonal matrix,

◆ equivariance of 𝐻𝐴 under right multiplication by an orthogonal matrix,

◆ signed-permutation invariance of the distribution of the sketch matrix.

Lemma 4 (Equivariance of 𝐻𝐵 and 𝐻𝐴 under orthogonal transforms). Let 𝐵 ∈ R𝑚×𝑟 with
rank(𝐵) = 𝑟 and 𝐴 ∈ R𝑟×𝑛 with rank(𝐴) = 𝑟.

(i) For any orthogonal matrix 𝑄 ∈ R𝑚×𝑚, define

𝐻𝑄𝐵 := (𝑄𝐵)
(︀
(𝑄𝐵)⊤𝑄𝐵

)︀†
(𝑄𝐵)⊤.

Then
𝐻𝑄𝐵 = 𝑄𝐻𝐵 𝑄⊤, (21)

where 𝐻𝐵 is defined in (15).

(ii) For any orthogonal matrix 𝑅 ∈ R𝑛×𝑛, define

𝐻𝐴𝑅 := (𝐴𝑅)⊤
(︀
(𝐴𝑅)(𝐴𝑅)⊤

)︀†
(𝐴𝑅).

Then
𝐻𝐴𝑅 = 𝑅⊤𝐻𝐴𝑅, (22)

where 𝐻𝐴 is defined in (16).

Proof. We prove the two parts separately.

(i) Equivariance of 𝐻𝐵 under left orthogonal transforms. Recall that 𝑄 ∈ R𝑚×𝑚 is orthogonal,
so 𝑄⊤𝑄 = 𝑄𝑄⊤ = 𝐼𝑚. We compute

(𝑄𝐵)⊤𝑄𝐵 = 𝐵⊤𝑄⊤𝑄𝐵 = 𝐵⊤𝐵.
Hence the inner Gram matrix is unchanged and(︀

(𝑄𝐵)⊤𝑄𝐵
)︀†

=
(︀
𝐵⊤𝐵

)︀†
.

Substituting into the definition of 𝐻𝑄𝐵 , we obtain

𝐻𝑄𝐵 = 𝑄𝐵
(︀
𝐵⊤𝐵

)︀†
𝐵⊤𝑄⊤

= 𝑄
(︁
𝐵
(︀
𝐵⊤𝐵

)︀†
𝐵⊤
)︁
𝑄⊤

= 𝑄𝐻𝐵𝑄
⊤,

which proves (21).

(ii) Equivariance of 𝐻𝐴 under right orthogonal transforms. Now let 𝑅 ∈ R𝑛×𝑛 be orthogonal,
so 𝑅⊤𝑅 = 𝑅𝑅⊤ = 𝐼𝑛. We first compute the Gram matrix for 𝐴𝑅:

(𝐴𝑅)(𝐴𝑅)⊤ = 𝐴𝑅𝑅⊤𝐴⊤ = 𝐴𝐴⊤.
Thus (︀

(𝐴𝑅)(𝐴𝑅)⊤
)︀†

=
(︀
𝐴𝐴⊤)︀† .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Using the definition of 𝐻𝐴𝑅, we have
𝐻𝐴𝑅 = (𝐴𝑅)⊤

(︀
(𝐴𝑅)(𝐴𝑅)⊤

)︀†
(𝐴𝑅)

= 𝑅⊤𝐴⊤ (︀𝐴𝐴⊤)︀† 𝐴𝑅

= 𝑅⊤
(︁
𝐴⊤ (︀𝐴𝐴⊤)︀† 𝐴)︁𝑅

= 𝑅⊤𝐻𝐴𝑅,
which establishes (22). This completes the proof.

Lemma 5 (Signed-permutation invariance of i.i.d. uniform sketches for 𝐵 and 𝐴). Let 𝑎 > 0 and
consider:

(i) A random matrix 𝐵𝑆 ∈ R𝑚×𝑟 with i.i.d. entries (𝐵𝑆)𝑖𝑗 ∼ Unif ([−𝑎,𝑎]).

(ii) A random matrix 𝐴𝑆 ∈ R𝑟×𝑛 with i.i.d. entries (𝐴𝑆)𝑖𝑗 ∼ Unif ([−𝑎,𝑎]).

Let 𝐺𝑚 and 𝐺𝑛 denote the groups of 𝑚×𝑚 and 𝑛× 𝑛 signed permutation matrices, respectively:
𝐺𝑚 :=

{︀
𝑄 ∈ R𝑚×𝑚 : 𝑄 = 𝑃𝐷, 𝑃 permutation, 𝐷 = diag (±1, . . . ,± 1)

}︀
,

𝐺𝑛 :=
{︀
𝑅 ∈ R𝑛×𝑛 : 𝑅 = 𝑃 ′𝐷′, 𝑃 ′ permutation, 𝐷′ = diag (±1, . . . ,± 1)

}︀
.

Then:

(i) For any 𝑄 ∈ 𝐺𝑚, the random matrix 𝑄𝐵𝑆 has the same distribution as 𝐵𝑆 .

(ii) For any 𝑅 ∈ 𝐺𝑛, the random matrix 𝐴𝑆𝑅 has the same distribution as 𝐴𝑆 .

Proof. We again treat the two cases separately.

(i) Left signed-permutation invariance for 𝐵𝑆 . Write 𝑄 = 𝑃𝐷 with 𝑃 a permutation matrix
and 𝐷 = diag (±1, . . . ,± 1). Left-multiplying 𝐵𝑆 by 𝑃 permutes its rows. Since the entries of 𝐵𝑆

are i.i.d., each row has the same joint distribution, and permuting rows does not change the joint
distribution of the matrix. Thus 𝑃𝐵𝑆 has the same distribution as 𝐵𝑆 .

Next, left-multiplication by 𝐷 flips the sign of some rows. More precisely, if 𝐷 = diag (𝑑1, . . . ,𝑑𝑚)
with 𝑑𝑖 ∈ {±1}, then the 𝑖-th row of 𝐷𝐵𝑆 is 𝑑𝑖 times the 𝑖-th row of 𝐵𝑆 . For a single scalar random
variable 𝑋 ∼ Unif ([−𝑎,𝑎]), we have

−𝑋 ∼ Unif ([−𝑎,𝑎]) ,
so flipping signs leaves the marginal distribution of each entry unchanged, and independence across
entries is preserved (since the sign pattern is deterministic here). Therefore 𝐷𝐵𝑆 has the same
distribution as 𝐵𝑆 .

Combining the two transformations, we see that
𝑄𝐵𝑆 = 𝑃 (𝐷𝐵𝑆)

is obtained from 𝐵𝑆 by a sequence of operations (row permutations and sign flips) that each leave
the joint distribution invariant. Hence 𝑄𝐵𝑆 has the same distribution as 𝐵𝑆 for any 𝑄 ∈ 𝐺𝑚.

(ii) Right signed-permutation invariance for 𝐴𝑆 . The argument for 𝐴𝑆 is analogous, but now
signed permutations act on the columns rather than the rows. Let 𝑅 ∈ 𝐺𝑛 and write 𝑅 = 𝑃 ′𝐷′ with
𝑃 ′ a permutation matrix and 𝐷′ = diag (±1, . . . ,± 1).

Right-multiplying 𝐴𝑆 by 𝑃 ′ permutes its columns. Since the entries of 𝐴𝑆 are i.i.d., each column
has the same joint distribution, and permuting columns preserves the joint distribution of the matrix.
Thus 𝐴𝑆𝑃

′ has the same distribution as 𝐴𝑆 .

Right-multiplying by 𝐷′ flips the sign of some columns: if 𝐷′ = diag (𝑑′1, . . . ,𝑑
′
𝑛) with 𝑑′𝑗 ∈ {±1},

then the 𝑗-th column of 𝐴𝑆𝐷
′ is 𝑑′𝑗 times the 𝑗-th column of 𝐴𝑆 . As above, each sign flip preserves

the marginal Unif ([−𝑎,𝑎]) distribution of every entry, and independence across entries is preserved,
so 𝐴𝑆𝐷

′ has the same distribution as 𝐴𝑆 .

Combining these, we have
𝐴𝑆𝑅 = 𝐴𝑆(𝑃

′𝐷′) = (𝐴𝑆𝑃
′)𝐷′,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

which is obtained from 𝐴𝑆 by a sequence of column permutations and column-wise sign flips, each
of which leaves the joint distribution invariant. Therefore 𝐴𝑆𝑅 has the same distribution as 𝐴𝑆 for
any 𝑅 ∈ 𝐺𝑛.

This proves both claims.

Combining Lemmas 4 and 5, we can derive the expected projections in closed form.

Lemma 6 (Expected projections for uniform sketches). Let 𝑟 ≤ min{𝑚,𝑛} and consider two random
matrices:

◆ 𝐵𝑆 ∈ R𝑚×𝑟 with entries i.i.d. Unif ([−𝑎,𝑎]),

◆ 𝐴𝑆 ∈ R𝑟×𝑛 with entries i.i.d. Unif ([−𝑎,𝑎]).

Define

𝐻𝐵 := 𝐵𝑆

(︀
𝐵⊤

𝑆 𝐵𝑆

)︀†
𝐵⊤

𝑆 ∈ R𝑚×𝑚,

𝐻𝐴 := 𝐴⊤
𝑆

(︀
𝐴𝑆𝐴

⊤
𝑆

)︀†
𝐴𝑆 ∈ R𝑛×𝑛.

Assume 𝐵𝑆 and 𝐴𝑆 have full rank 𝑟 almost surely. Then
E [𝐻𝐵] =

𝑟

𝑚
𝐼𝑚, E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

and hence
𝜆min (E [𝐻𝐵]) =

𝑟

𝑚
, 𝜆min (E [𝐻𝐴]) =

𝑟

𝑛
.

Proof. We first treat 𝐻𝐵 . For any 𝑄 ∈ 𝐺𝑚, Lemma 5(i) gives 𝑄𝐵𝑆
𝑑
= 𝐵𝑆 , and Lemma 4(i) gives

𝐻𝑄𝐵𝑆
= 𝑄𝐻𝐵𝑄

⊤. Since 𝑄𝐵𝑆 and 𝐵𝑆 have the same distribution, we obtain
E [𝐻𝐵] = E [𝐻𝑄𝐵𝑆

] = E
[︀
𝑄𝐻𝐵𝑄

⊤]︀ = 𝑄E [𝐻𝐵] 𝑄
⊤ for all 𝑄 ∈ 𝐺𝑚.

Thus E [𝐻𝐵] commutes with every signed permutation matrix 𝑄 ∈ 𝐺𝑚. By Lemma 2, there exists
𝛼 ∈ R such that

E [𝐻𝐵] = 𝛼𝐼𝑚.

To determine 𝛼, note that for any realization with rank(𝐵𝑆) = 𝑟, 𝐻𝐵 is an orthogonal projector of
rank 𝑟, so Tr (𝐻𝐵) = 𝑟. Taking expectations and using linearity of the trace,

Tr (E [𝐻𝐵]) = E [Tr (𝐻𝐵)] = 𝑟.
On the other hand,

Tr (E [𝐻𝐵]) = Tr (𝛼𝐼𝑚) = 𝛼𝑚,
so 𝛼𝑚 = 𝑟 and hence

E [𝐻𝐵] =
𝑟

𝑚
𝐼𝑚.

The argument for 𝐻𝐴 is analogous, now working in ambient dimension 𝑛. Specifically, 𝐴⊤
𝑆 ∈ R𝑛×𝑟

has i.i.d. Unif ([−𝑎,𝑎]) entries. For any 𝑅 ∈ 𝐺𝑛, Lemma 5(ii) gives 𝐴𝑆𝑅
𝑑
= 𝐴𝑆 , and Lemma 4(ii)

yields 𝐻𝐴𝑅 = 𝑅⊤𝐻𝐴𝑅. Therefore
E [𝐻𝐴] = E [𝐻𝐴𝑅] = E

[︀
𝑅⊤𝐻𝐴𝑅

]︀
= 𝑅⊤E [𝐻𝐴]𝑅 for all 𝑅 ∈ 𝐺𝑛.

By Lemma 2 applied in R𝑛×𝑛, we must have E [𝐻𝐴] = 𝛽𝐼𝑛 for some 𝛽 ∈ R. As before, rank(𝐴𝑆) =
𝑟 almost surely, so 𝐻𝐴 is a rank-𝑟 projector and Tr (𝐻𝐴) = 𝑟 almost surely, implying

Tr (E [𝐻𝐴]) = E [Tr (𝐻𝐴)] = 𝑟.
On the other hand, Tr (E [𝐻𝐴]) = Tr (𝛽𝐼𝑛) = 𝛽𝑛, so 𝛽 = 𝑟/𝑛 and hence

E [𝐻𝐴] =
𝑟

𝑛
𝐼𝑛.

This completes the proof.

D.4 KAIMING-UNIFORM INITIALIZATION

In this section, we consider the widely used Kaiming-uniform initializer, implemented in PyTorch
as nn.init.kaiming uniform . Kaiming-uniform (He) initialization (?) underlies the default
linear-layer initialization in PyTorch and is therefore inherited by many practical LoRA implemen-
tations that keep the framework defaults for adapter weights (e.g. Hayou et al., 2024; ?; Kopiczko

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

et al., 2023). This initializer samples each entry of a weight matrix independently from a symmetric
uniform distribution on an interval [−𝑏,𝑏], where the bound 𝑏 > 0 depends on the fan-in and the
activation function. In particular, the entries are i.i.d., continuous, and symmetric about zero.

Let 𝐵𝑆 ∈ R𝑚×𝑟 and 𝐴𝑆 ∈ R𝑟×𝑛 be initialized with Kaiming-uniform. Then 𝐵𝑆 and 𝐴𝑆 satisfy
exactly the same symmetry properties as in the uniform [−𝑎,𝑎] case:

◆ The entries are i.i.d. and symmetric around zero, so the distribution is invariant under row
permutations and sign flips (i.e. under 𝐺𝑚 or 𝐺𝑛).

◆ With probability one, rank(𝐵𝑆) = 𝑟 and rank(𝐴𝑆) = 𝑟 (since the entries are drawn from a
continuous distribution).

Therefore the proof of Lemma 6 applies verbatim.

Lemma 7 (Expected projections for Kaiming-uniform sketches). Let 𝑟 ≤ min{𝑚,𝑛} and consider
two random matrices:

◆ 𝐵𝑆 ∈ R𝑚×𝑟 with entries initialized by Kaiming-uniform,

◆ 𝐴𝑆 ∈ R𝑟×𝑛 with entries initialized by Kaiming-uniform.

Define 𝐻𝐵 and 𝐻𝐴 as in (15) and (16). Then
E [𝐻𝐵] =

𝑟

𝑚
𝐼𝑚, E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

and hence
𝜆min (E [𝐻𝐵]) =

𝑟

𝑚
, 𝜆min (E [𝐻𝐴]) =

𝑟

𝑛
.

Proof. Because Kaiming-uniform draws each entry independently from a symmetric uniform distri-
bution [−𝑏,𝑏], the distribution of 𝐵𝑆 is invariant under any signed permutation of rows: permuting
rows leaves the joint law unchanged, and multiplying any row by −1 preserves the marginal law of
each entry (by symmetry). Thus 𝑄𝐵𝑆

𝑑
= 𝐵𝑆 for all 𝑄 ∈ 𝐺𝑚, and the same holds for 𝐴⊤

𝑆 with 𝐺𝑛.

The rest of the argument is exactly as in Lemma 6: by combining Lemma ?? with signed-permutation
invariance, we conclude that E [𝐻𝐵] = 𝛼𝐼𝑚 and E [𝐻𝐴] = 𝛽𝐼𝑛 for some scalars 𝛼,𝛽 ∈ R. Since 𝐻𝐵

and 𝐻𝐴 are rank-𝑟 projectors almost surely, Tr (𝐻𝐵) = 𝑟 and Tr (𝐻𝐴) = 𝑟, and the trace identities
Tr (E [𝐻𝐵]) = 𝛼𝑚 = 𝑟, Tr (E [𝐻𝐴]) = 𝛽𝑛 = 𝑟

imply 𝛼 = 𝑟/𝑚 and 𝛽 = 𝑟/𝑛. This yields the stated formulas.

In summary, for Gaussian, i.i.d. uniform, and Kaiming-uniform sketch distributions, the expected
projection matrices are isotropic:

E [𝐻𝐵] =
𝑟

𝑚
𝐼𝑚, E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

and Assumption 1 holds with 𝜆𝐻
min = min{𝑟/𝑚, 𝑟/𝑛} > 0. This shows that the positive expected

projection condition is naturally satisfied by a broad class of standard initialization schemes used in
LoRA and its variants.

D.5 RANDOM ORTHONORMAL SKETCHES VIA SVD

We now consider the initialization where a dense random matrix 𝑊 ∈ R𝑚×𝑛 with i.i.d. entries
𝑊𝑖𝑗 ∼ Unif ([−𝑎,𝑎]) is first sampled, and then orthonormal sketches are obtained from its singular
vectors. Specifically, let 𝑊 = 𝑈Σ𝑉 ⊤ be an SVD with singular values arranged in strictly decreasing
order, and set

𝐵𝑆(𝑊) := 𝑈[:,1:𝑟] ∈ R𝑚×𝑟,

𝐴𝑆(𝑊) := 𝑉 ⊤
[:,1:𝑟] ∈ R𝑟×𝑛.

By construction,
𝐵𝑆(𝑊)⊤𝐵𝑆(𝑊) = 𝐼𝑟, 𝐴𝑆(𝑊)𝐴𝑆(𝑊)⊤ = 𝐼𝑟.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

In particular, when we plug 𝐵𝑆(𝑊) and 𝐴𝑆(𝑊) into the general projector definitions

𝐻𝐵 := 𝐵𝑆(𝑊)
(︀
𝐵𝑆(𝑊)⊤𝐵𝑆(𝑊)

)︀†
𝐵𝑆(𝑊)⊤ ∈ R𝑚×𝑚,

𝐻𝐴 := 𝐴𝑆(𝑊)⊤
(︀
𝐴𝑆(𝑊)𝐴𝑆(𝑊)⊤

)︀†
𝐴𝑆(𝑊) ∈ R𝑛×𝑛,

the pseudo-inverse is simply the identity (because 𝐵𝑆(𝑊)⊤𝐵𝑆(𝑊) = 𝐴𝑆(𝑊)𝐴𝑆(𝑊)⊤ = 𝐼𝑟), so
𝐻𝐵(𝑊) = 𝐵𝑆(𝑊)𝐵𝑆(𝑊)⊤ = 𝑈[:,1:𝑟]𝑈

⊤
[:,1:𝑟] ∈ R𝑚×𝑚,

𝐻𝐴(𝑊) = 𝐴𝑆(𝑊)⊤𝐴𝑆(𝑊) = 𝑉[:,1:𝑟]𝑉
⊤
[:,1:𝑟] ∈ R𝑛×𝑛.

Both 𝐻𝐵(𝑊) and 𝐻𝐴(𝑊) are orthogonal projectors of rank 𝑟, with eigenvalues {1} on the chosen
𝑟-dimensional subspace and {0} on its orthogonal complement.

This type of initialization (taking 𝑈[:,1:𝑟] or 𝑉[:,1:𝑟] from the SVD of a dense random matrix) appears,
for example, in the experimental studies by Zhu et al. (2024), and is closely related to the orthonormal
constructions used in OLoRA (?).

Our first goal is to understand how the sketch projectors 𝐻𝐵(𝑊) and 𝐻𝐴(𝑊) transform when we
apply signed permutations to the rows or columns of 𝑊 .

Lemma 8 (Equivariance of SVD-based left and right sketches under signed permutations). Let
𝑊 ∈ R𝑚×𝑛 be any matrix with SVD 𝑊 = 𝑈Σ𝑉 ⊤, where Σ = diag (𝜎1, . . . ,𝜎𝑑) with strictly
decreasing singular values 𝜎1 > · · · > 𝜎𝑑 > 0 (here 𝑑 = rank(𝑊)). Define

𝐵𝑆(𝑊) := 𝑈[:,1:𝑟] ∈ R𝑚×𝑟, 𝐻𝐵(𝑊) := 𝐵𝑆(𝑊)𝐵𝑆(𝑊)⊤,

𝐴𝑆(𝑊) := 𝑉 ⊤
[:,1:𝑟] ∈ R𝑟×𝑛, 𝐻𝐴(𝑊) := 𝐴𝑆(𝑊)⊤𝐴𝑆(𝑊).

Then:

(i) For any signed permutation 𝑄 ∈ 𝐺𝑚, consider an SVD of 𝑄𝑊 with the singular values ordered
in the same descending fashion. Up to column-wise sign flips, the left singular vectors of 𝑄𝑊 are
𝑄𝑈 , and the corresponding left-sketch projector satisfies

𝐻𝐵(𝑄𝑊) = 𝑄𝐻𝐵(𝑊)𝑄⊤. (23)

(ii) For any signed permutation 𝑅 ∈ 𝐺𝑛, consider an SVD of 𝑊𝑅 with the singular values ordered in
the same descending fashion. Up to column-wise sign flips, the right singular vectors of 𝑊𝑅 are
𝑅⊤𝑉 , and the corresponding right-sketch projector satisfies

𝐻𝐴(𝑊𝑅) = 𝑅⊤𝐻𝐴(𝑊)𝑅. (24)

Proof. We prove (i) and (ii) separately.

(i) Left sketches: effect of 𝑄 ∈ 𝐺𝑚 acting on rows. Since 𝑄 ∈ 𝐺𝑚 is orthogonal, 𝑄𝑊 admits
the factorization

𝑄𝑊 = (𝑄𝑈)Σ𝑉 ⊤,
where 𝑄𝑈 is also orthogonal. The singular values of 𝑄𝑊 are the same as those of 𝑊 , namely
𝜎1, . . . ,𝜎𝑑, and by assumption they are strictly ordered: 𝜎1 > · · · > 𝜎𝑑 > 0.

Consider an SVD of 𝑄𝑊 with singular values written in descending order:
𝑄𝑊 = 𝑈 ′Σ𝑉 ′⊤,

where 𝑈 ′ and 𝑉 ′ are orthogonal. The uniqueness properties of the SVD when all singular values are
distinct imply that 𝑈 ′ and 𝑉 ′ are determined by 𝑄𝑈 and 𝑉 up to sign flips of individual singular
vectors. More precisely, there exists a diagonal orthogonal matrix 𝑅 = diag (±1, . . . ,± 1) ∈ R𝑑×𝑑

such that
𝑈 ′ = 𝑄𝑈𝑅, 𝑉 ′ = 𝑉 𝑅.

(If some singular values were repeated, 𝑅 could mix singular vectors within blocks corresponding to
equal singular values; the strict-ordering assumption rules this out.)

Let 𝑅1:𝑟 denote the leading 𝑟 × 𝑟 diagonal block of 𝑅. Then the first 𝑟 left singular vectors of 𝑄𝑊
can be written as

𝐵𝑆(𝑄𝑊) = 𝑈 ′
[:,1:𝑟] = 𝑄𝑈[:,1:𝑟]𝑅1:𝑟.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The corresponding projector is
𝐻𝐵(𝑄𝑊) = 𝐵𝑆(𝑄𝑊)𝐵𝑆(𝑄𝑊)⊤

=
(︀
𝑄𝑈[:,1:𝑟]𝑅1:𝑟

)︀ (︀
𝑄𝑈[:,1:𝑟]𝑅1:𝑟

)︀⊤
= 𝑄𝑈[:,1:𝑟]𝑅1:𝑟𝑅

⊤
1:𝑟𝑈

⊤
[:,1:𝑟]𝑄

⊤

= 𝑄𝑈[:,1:𝑟]𝑈
⊤
[:,1:𝑟]𝑄

⊤

= 𝑄𝐻𝐵(𝑊)𝑄⊤,

since 𝑅1:𝑟𝑅
⊤
1:𝑟 = 𝐼𝑟. This proves (23).

(ii) Right sketches: effect of 𝑅 ∈ 𝐺𝑛 acting on columns. Now consider 𝑊𝑅 with 𝑅 ∈ 𝐺𝑛

orthogonal. Using the SVD of 𝑊 , we have
𝑊𝑅 = 𝑈Σ𝑉 ⊤𝑅 = 𝑈Σ

(︀
𝑅⊤𝑉

)︀⊤
.

Since 𝑅⊤𝑉 is orthogonal, this is an SVD of 𝑊𝑅 with left singular matrix 𝑈 and right singular matrix̃︀𝑉 := 𝑅⊤𝑉 . The singular values remain 𝜎1, . . . ,𝜎𝑑, strictly ordered.

Let
𝑊𝑅 = ̃︀𝑈Σ̃︀𝑉 ⊤

be any SVD of 𝑊𝑅 with singular values in descending order. By the same uniqueness argument,
there exists a diagonal orthogonal matrix 𝑆 = diag (±1, . . . ,± 1) ∈ R𝑑×𝑑 such that̃︀𝑈 = 𝑈𝑆, ̃︀𝑉 = ̃︀𝑉0𝑆 = (𝑅⊤𝑉)𝑆.
Let 𝑉𝑟 = 𝑉[:,1:𝑟] and 𝑆1:𝑟 be the leading 𝑟 × 𝑟 block of 𝑆. Then the first 𝑟 right singular vectors of
𝑊𝑅 are given by the first 𝑟 columns of ̃︀𝑉 :̃︀𝑉[:,1:𝑟] = (𝑅⊤𝑉 𝑆)[:,1:𝑟]

= 𝑅⊤𝑉[:,1:𝑟]𝑆1:𝑟.

Recalling that 𝐴𝑆(𝑊) = 𝑉 ⊤
𝑟 , the right-sketch matrix for 𝑊𝑅 is

𝐴𝑆(𝑊𝑅) = ̃︀𝑉 ⊤
[:,1:𝑟]

= 𝑆⊤
1:𝑟𝑉

⊤
[:,1:𝑟]𝑅

= 𝑆1:𝑟𝑉
⊤
𝑟 𝑅,

where we used that 𝑆1:𝑟 is diagonal with entries ±1, so 𝑆⊤
1:𝑟 = 𝑆1:𝑟.

The corresponding right-sketch projector is
𝐻𝐴(𝑊𝑅) = 𝐴𝑆(𝑊𝑅)⊤𝐴𝑆(𝑊𝑅)

=
(︀
𝑆1:𝑟𝑉

⊤
𝑟 𝑅

)︀⊤ (︀
𝑆1:𝑟𝑉

⊤
𝑟 𝑅

)︀
= 𝑅⊤𝑉𝑟𝑆

⊤
1:𝑟𝑆1:𝑟𝑉

⊤
𝑟 𝑅

= 𝑅⊤𝑉𝑟𝑉
⊤
𝑟 𝑅

= 𝑅⊤𝐻𝐴(𝑊)𝑅,

since 𝑆⊤
1:𝑟𝑆1:𝑟 = 𝐼𝑟. This proves (24) and completes the proof.

We now combine this equivariance with the signed-permutation invariance of the i.i.d. uniform matrix
𝑊 to obtain closed-form expressions for the expected projectors.

Lemma 9 (Expected projections for SVD-based uniform orthonormal sketches). Let 𝑊 ∈ R𝑚×𝑛

have i.i.d. entries 𝑊𝑖𝑗 ∼ Unif ([−𝑎,𝑎]), and let 𝐻𝐵(𝑊) and 𝐻𝐴(𝑊) be defined as above from an
SVD 𝑊 = 𝑈Σ𝑉 ⊤ with strictly decreasing singular values. Then

E [𝐻𝐵(𝑊)] =
𝑟

𝑚
𝐼𝑚, E [𝐻𝐴(𝑊)] =

𝑟

𝑛
𝐼𝑛,

and hence
𝜆min (E [𝐻𝐵(𝑊)]) =

𝑟

𝑚
> 0, 𝜆min (E [𝐻𝐴(𝑊)]) =

𝑟

𝑛
> 0.

Proof. We treat 𝐻𝐵(𝑊) and 𝐻𝐴(𝑊) in turn.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Left-sketch projector 𝐻𝐵(𝑊). The rows of 𝑊 are i.i.d. vectors in R𝑛 with continuous, symmetric
entries. For any signed permutation 𝑄 ∈ 𝐺𝑚, left-multiplication by 𝑄 permutes and flips the signs
of rows, so

𝑄𝑊
𝑑
= 𝑊 for all 𝑄 ∈ 𝐺𝑚.

By Lemma 8(i),
𝐻𝐵(𝑄𝑊) = 𝑄𝐻𝐵(𝑊)𝑄⊤.

Since 𝑄𝑊 and 𝑊 are identically distributed, 𝐻𝐵(𝑄𝑊) and 𝐻𝐵(𝑊) are identically distributed, and
hence

E [𝐻𝐵(𝑊)] = E [𝐻𝐵(𝑄𝑊)] = E
[︀
𝑄𝐻𝐵(𝑊)𝑄⊤]︀ = 𝑄E [𝐻𝐵(𝑊)] 𝑄⊤ for all 𝑄 ∈ 𝐺𝑚.

Thus E [𝐻𝐵(𝑊)] commutes with every signed permutation matrix in 𝐺𝑚, and by Lemma 2 there
exists 𝛼 ∈ R such that

E [𝐻𝐵(𝑊)] = 𝛼𝐼𝑚.

To determine 𝛼, recall that 𝐵𝑆(𝑊) has orthonormal columns, so 𝐻𝐵(𝑊) = 𝐵𝑆(𝑊)𝐵𝑆(𝑊)⊤ is a
rank-𝑟 projector with

Tr (𝐻𝐵(𝑊)) = 𝑟
for every realization. Taking expectations and using linearity of the trace,

Tr (E [𝐻𝐵(𝑊)]) = E [Tr (𝐻𝐵(𝑊))] = 𝑟.
On the other hand,

Tr (E [𝐻𝐵(𝑊)]) = Tr (𝛼𝐼𝑚) = 𝛼𝑚,
so 𝛼𝑚 = 𝑟 and hence 𝛼 = 𝑟/𝑚. Therefore

E [𝐻𝐵(𝑊)] =
𝑟

𝑚
𝐼𝑚.

Right-sketch projector 𝐻𝐴(𝑊). The columns of 𝑊 are also i.i.d. vectors in R𝑚 with continuous,
symmetric entries. For any signed permutation 𝑅 ∈ 𝐺𝑛, right-multiplication by 𝑅 permutes and flips
the signs of columns, so

𝑊𝑅
𝑑
= 𝑊 for all 𝑅 ∈ 𝐺𝑛.

By Lemma 8(ii),
𝐻𝐴(𝑊𝑅) = 𝑅⊤𝐻𝐴(𝑊)𝑅.

Since 𝑊𝑅 and 𝑊 have the same distribution, the random matrices 𝐻𝐴(𝑊𝑅) and 𝐻𝐴(𝑊) are
identically distributed. Hence

E [𝐻𝐴(𝑊)] = E [𝐻𝐴(𝑊𝑅)] = E
[︀
𝑅⊤𝐻𝐴(𝑊)𝑅

]︀
= 𝑅⊤E [𝐻𝐴(𝑊)]𝑅 for all 𝑅 ∈ 𝐺𝑛.

Applying Lemma 2 (now in dimension 𝑛) shows that there exists 𝛽 ∈ R such that
E [𝐻𝐴(𝑊)] = 𝛽𝐼𝑛.

Again, 𝐴𝑆(𝑊) has orthonormal rows, so 𝐻𝐴(𝑊) = 𝐴𝑆(𝑊)⊤𝐴𝑆(𝑊) is a rank-𝑟 projector and
Tr (𝐻𝐴(𝑊)) = 𝑟

for every realization. Taking expectations,
Tr (E [𝐻𝐴(𝑊)]) = E [Tr (𝐻𝐴(𝑊))] = 𝑟.

But Tr (E [𝐻𝐴(𝑊)]) = Tr (𝛽𝐼𝑛) = 𝛽𝑛, hence 𝛽𝑛 = 𝑟 and therefore 𝛽 = 𝑟/𝑛. Thus

E [𝐻𝐴(𝑊)] =
𝑟

𝑛
𝐼𝑛.

This completes the proof.

Remark 2. Each individual projector 𝐻𝐵(𝑊) (resp. 𝐻𝐴(𝑊)) is rank-deficient, with eigenvalues
{1} on an 𝑟-dimensional subspace and {0} on its orthogonal complement. The lemma above concerns
the expectation of these projectors over the randomness of 𝑊 . Because the subspace spanned by the
leading singular vectors is random and, in distribution, symmetric under signed permutations, the
expectation E [𝐻𝐵(𝑊)] (resp. E [𝐻𝐴(𝑊)]) becomes a full-rank, isotropic matrix (𝑟/𝑚)𝐼𝑚 (resp.
(𝑟/𝑛)𝐼𝑛). This is exactly analogous to the classical fact that if 𝑢 is a random unit vector in R𝑑, then
E
[︀
𝑢𝑢⊤]︀ = (1/𝑑)𝐼𝑑 even though 𝑢𝑢⊤ has rank 1 for every realization.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E REFORMULATION AS A PROJECTED GRADIENT STEP

Following the approach of Malinovsky et al. (2024), let’s consider the update for the trainable matrix
𝐴𝑡 in the Left Sketch case. Taking a single GD step on the subproblem corresponds to minimizing a
quadratic approximation of the objective. This yields the solution for 𝐴𝑡:

𝐴𝑡 = −𝜂
(︁(︀

𝐵𝑡
𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡),

where 𝜂 is a learning rate for the subproblem and † denotes the Moore-Penrose pseudoinverse.
Substituting this into the update for 𝑊 𝑡+1 gives:

𝑊 𝑡+1 = 𝑊 𝑡 +
𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡 = 𝑊 𝑡 − 𝛼𝜂

𝑟
𝐵𝑡

𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡)

= 𝑊 𝑡 − 𝛾𝐻𝑡
𝐵∇𝑓(𝑊 𝑡),

where we define the effective stepsize 𝛾 := 𝛼𝜂
𝑟 and the projection matrix 𝐻𝑡

𝐵 :=

𝐵𝑡
𝑆

(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤. A similar derivation for the Right Sketch case gives the update:

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴,

where 𝐻𝑡
𝐴 := (𝐴𝑡

𝑆)
⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

𝐴𝑡
𝑆 . This reformulation reveals that both Left and Right sketch

updates are equivalent to applying a standard gradient-based update, but projected onto a randomly
chosen low-rank subspace.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F CORE ALGORITHMIC VARIANTS

Bernoulli-LoRA-GD. The simplest instantiation of our framework is Bernoulli-LoRA-GD (Algo-
rithm 2). This method serves as a foundational building block and a starting point for more elaborate
variants. It uses the full gradient of the objective function as its base estimator, i.e., 𝐺𝑡 = ∇𝑓(𝑊 𝑡).
While impractical for large-scale deep learning, its analysis provides crucial insights into the conver-
gence behavior of the Bernoulli-LoRA mechanism under idealized, deterministic conditions.

Bernoulli-LoRA-SGD. Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) is a highly
effective and widely utilized algorithm for training a variety of machine learning models. The latest
advancements in deep learning training methods are all based on different variations of SGD (Sun,
2020). Its advantage over GD is that it uses stochastic gradients for updates, rather than relying on
full gradients. Within our framework, we develop Bernoulli-LoRA-SGD, where the base estimator 𝐺𝑡

is a general unbiased stochastic gradient of 𝑓 at 𝑊 𝑡.

Bernoulli-LoRA-PAGE. Several optimal algorithms exist for addressing non-convex optimization
problems, such as SPIDER (Fang et al., 2018) and SARAH (Pham et al., 2020). However, their
optimality is supported by a known lower bound that applies only in the small data setting. In
contrast, ProbAbilistic Gradient Estimator (PAGE) (Li et al., 2021) stands out for its simplicity, ease
of implementation, and ability to achieve optimal convergence in non-convex optimization. PAGE
alternates between a full gradient update with probability 𝑞𝑡 and a low-cost gradient adjustment with
probability 1− 𝑞𝑡. Bernoulli-LoRA-PAGE is a new method based on PAGE within our Bernoulli-LoRA
framework.

Bernoulli-LoRA-MVR. VR methods outperform SGD in reaching first-order critical points but
often require finely tuned learning rates and large batch sizes to be effective. To overcome these
challenges, Momentum Variance Reduction (MVR) (Cutkosky & Orabona, 2019) was introduced for
server-only stochastic non-convex optimization. MVR uses a modified momentum technique to reduce
variance without relying on large batch sizes. Several works employ this powerful approach (Tyurin &
Richtárik, 2023; Karagulyan et al., 2024). We propose Bernoulli-LoRA-MVR, where the base estimator
𝐺𝑡 is updated using the MVR rule: a combination of the current stochastic gradient and a momentum
term that incorporates the difference between past estimators and gradients.

G EXTENSIONS FOR FEDERATED LEARNING

Sun et al. (2024) identified instability in LoRA, arising from the mismatch between local clients simul-
taneously optimizing two low-rank matrices and the central server aggregating them independently.
Factors such as data heterogeneity, multi-step local updates, and the amplification of additive noise
applied to gradients for ensuring differential privacy (DP) significantly impact the process. Addition-
ally, the final performance is highly sensitive to hyperparameter choices. Their proposed solution
centers on keeping the randomly initialized non-zero matrices fixed while exclusively fine-tuning
the zero-initialized ones. Based on this asymmetric approach, Malinovsky et al. (2024) proposed a
distributed method Fed-RAC-LoRA.

We develop the theory further by incorporating compression, VR and EF techniques into FL methods
for LoRA within the novel Bernoulli-LoRA framework.

The effectiveness of a distributed training method is primarily measured by its communication
complexity, defined as the product of the required communication rounds and the communication
volume per round. Following common practice, we assume client-to-server communication is the
main bottleneck and exclude server-to-client communication from our analysis.

Fed-Bernoulli-LoRA-QGD. A key challenge for distributed methods lies in the high communica-
tion cost of gradient updates. Lossy compression techniques, such as QSGD (Alistarh et al., 2017),
address this by enabling clients to send quantized gradients. We design Fed-Bernoulli-LoRA-QGD
based on QSGD. The clients send compressed versions of their gradients. The base estimator 𝐺𝑡 is
formed by averaging the compressed local gradients received from all clients.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Fed-Bernoulli-LoRA-MARINA. MARINA (Gorbunov et al., 2021) is a communication-efficient
method for non-convex distributed learning on heterogeneous datasets that uses a novel gradient
difference compression strategy. Its biased gradient estimator underpins its strong theoretical and
practical performance, with proven communication complexity bounds surpassing all prior first-order
methods. We propose Fed-Bernoulli-LoRA-MARINA, where each client’s local estimator 𝐺𝑡

𝑙 is updated
either with a full local gradient (with probability 𝑞) or by adding a compressed gradient difference to
its previous estimator. The server’s base estimator 𝐺𝑡 is the average of these local estimators.

Fed-Bernoulli-LoRA-EF21. Error Feedback (EF) (Seide et al., 2014; Stich et al., 2018; Alistarh
et al., 2018; Richtárik et al., 2021) is a widely adopted technique for stabilizing training with
contractive compressors. We propose Fed-Bernoulli-LoRA-EF21, based on the modern EF21. Here,
each client updates its local estimator 𝐺𝑡

𝑙 by adding a compressed version of the difference between
the current local gradient and the previous local estimator. The server’s base estimator 𝐺𝑡 is again
the average of the clients’ estimators.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

H PROOFS FOR CORE ALGORITHMIC VARIANTS

H.1 ANALYSIS OF BERNOULLI-LORA-GD

Algorithm 2 Bernoulli-LoRA-GD

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0,
stepsize 𝛾𝑡 chain length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤ ∇𝑓(𝑊 𝑡)

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂∇𝑓(𝑊 𝑡) (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: end for

The following lemma establishes that the Bernoulli-LoRA update can be reformulated as a standard
projected gradient descent step, providing a crucial foundation for our subsequent convergence
analysis.

Lemma 10. Consider the updates 𝐴𝑡 and 𝐵̂𝑡 from Algorithm 2 computed as solutions to the following
optimization problems:

𝐴𝑡 := argmin
𝐴

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
∇𝑓(𝑊 𝑡), 𝐵𝑡

𝑆𝐴
⟩︀
F
+

𝛼2

2𝛾𝑟2
⃦⃦
𝐵𝑡

𝑆𝐴
⃦⃦2
F

}︂
,

𝐵̂𝑡 := argmin
𝐵

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
∇𝑓(𝑊 𝑡), 𝐵𝐴𝑡

𝑆

⟩︀
F
+

𝛼2

2𝛾𝑟2
⃦⃦
𝐵𝐴𝑡

𝑆

⃦⃦2
F

}︂
. (25)

Then the Left and Right sketch updates can be expressed as a gradient descent step:
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺𝑡, (26)

where 𝐺𝑡 is defined by

𝐺𝑡 =

{︂
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡), with probability 𝑝

∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴, with probability 1− 𝑝

(27)

with projection matrices 𝐻𝑡
𝐴 and 𝐻𝑡

𝐵 given by:

𝐻𝑡
𝐴 :=

(︀
𝐴𝑡

𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
𝐴𝑡

𝑆 and 𝐻𝑡
𝐵 := 𝐵𝑡

𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤
, (28)

where † denotes the Moore-Penrose pseudoinverse.

Proof. Following Algorithm 2, at each iteration we randomly select either the Left sketch (with
probability 𝑝) or the Right sketch (with probability 1− 𝑝). We analyze both cases separately and then
combine them into a unified update rule.

Left Sketch Analysis. When the Left sketch is selected, the update takes the form:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡. (29)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Minimizing the right-hand side with respect to 𝐴𝑡 yields:
𝛼

𝑟

(︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡) +
𝛼2

𝛾𝑟2
(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆𝐴
𝑡 = 0;(︀

𝐵𝑡
𝑆

)︀⊤
𝐵𝑡

𝑆𝐴
𝑡 = −𝛾𝑟

𝛼

(︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡);

𝐴𝑡 = −𝛾𝑟

𝛼

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡). (30)

This leads to the Left sketch update:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡

= 𝑊 𝑡 − 𝛾𝐵𝑡
𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡)

= 𝑊 𝑡 − 𝛾𝐻𝑡
𝐵∇𝑓(𝑊 𝑡), (31)

where 𝐻𝑡
𝐵 := 𝐵𝑡

𝑆

(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤ is a projection matrix.

Right Sketch Analysis. For the Right sketch, we follow a similar approach. The update rule is:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵̂𝑡𝐴𝑡

𝑆 . (32)

First, observe that:⃦⃦⃦
𝐵̂𝑡𝐴𝑡

𝑆

⃦⃦⃦2
F
=
⟨
𝐵̂𝑡𝐴𝑡

𝑆 , 𝐵̂
𝑡𝐴𝑡

𝑆

⟩
F
=

⟨
𝐴𝑡

𝑆 ,
(︁
𝐵̂𝑡
)︁⊤

𝐵̂𝑡𝐴𝑡
𝑆

⟩
F

. (33)

For the linear term from (25):
𝛼

𝑟

⟨
∇𝑓(𝑊 𝑡), 𝐵̂𝑡𝐴𝑡

𝑆

⟩
F
=

𝛼

𝑟
Tr
(︁(︀

∇𝑓(𝑊 𝑡)
)︀⊤

𝐵̂𝑡𝐴𝑡
𝑆

)︁
, (34)

with gradient ∇𝑓(𝑊 𝑡) (𝐴𝑡
𝑆)

⊤ with respect to 𝐵̂𝑡. Using the matrix calculus identity ∇𝑋 ‖𝑋‖2F =
2𝑋 , the gradient of the quadratic term is:

𝛼2

𝛾𝑟2
𝐵̂𝑡𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤
. (35)

Setting the total gradient to zero and solving for 𝐵̂𝑡:

𝐵̂𝑡 = −𝛾𝑟

𝛼
∇𝑓(𝑊 𝑡)

(︀
𝐴𝑡

𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
, (36)

which yields the Right sketch update:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵̂𝑡𝐴𝑡

𝑆

= 𝑊 𝑡 − 𝛾∇𝑓(𝑊 𝑡)
(︀
𝐴𝑡

𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
𝐴𝑡

𝑆

= 𝑊 𝑡 − 𝛾∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴, (37)

where 𝐻𝑡
𝐴 := (𝐴𝑡

𝑆)
⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

𝐴𝑡
𝑆 is a projection matrix.

Combined Update Rule. Combining equations (31) and (37), we obtain the unified update:
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺𝑡, (38)

where 𝐺𝑡 takes the form given in the lemma statement, completing the proof.

With these assumptions in place, we can now state our main convergence result for RAC-LoRA with
Gradient Descent updates.

H.1.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 1. Let Assumptions 1, 3, and 2 hold, and let the stepsize satisfy 0 < 𝛾 ≤ 1
𝐿 . Then the

iterates of Bernoulli-LoRA-GD (Algorithm 2), with matrices 𝐴𝑡 and 𝐵̂𝑡 computed according to Lemma
10, satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓*)

𝛾𝜆𝑝
min𝑇

, (39)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min+(1−𝑝)𝜆𝐻𝐴

min and̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence
{𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Proof. From Lemma 10, we know that Bernoulli-LoRA updates can be expressed as
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺𝑡, (40)

where 𝐺𝑡 takes the form

𝐺𝑡 =

{︂
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡), with probability 𝑝

∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴, with probability 1− 𝑝

(41)

with projection matrices 𝐻𝑡
𝐴 and 𝐻𝑡

𝐵 as defined in the lemma.

To analyze the convergence, we first compute the conditional expectation and second moment of 𝐺𝑡:
E
[︀
𝐺𝑡 | 𝑊 𝑡, 𝐻𝑡

]︀
= 𝑝𝐻𝑡

𝐵∇𝑓(𝑊 𝑡) + (1− 𝑝)∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴,

E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= 𝑝

⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+ (1− 𝑝)

⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F
, (42)

where we defined 𝐻𝑡 := {𝐻𝑡
𝐴, 𝐻

𝑡
𝐵}.

We begin by establishing several key auxiliary bounds. For the Left sketch term:

−𝛾𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+

𝐿𝛾2

2
𝑝
⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F

= −𝛾𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+

𝐿𝛾2

2
𝑝
⟨︀
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡), 𝐻𝑡
𝐵∇𝑓(𝑊 𝑡)

⟩︀
F

= −𝛾𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+

𝐿𝛾2

2
𝑝
⟨
∇𝑓(𝑊 𝑡),

(︀
𝐻𝑡

𝐵

)︀⊤
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩
F

= 𝑝

(︂
−𝛾
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+

𝐿𝛾2

2

⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F

)︂
𝛾 ≤ 1/𝐿

≤ −𝛾

2
𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
. (43)

For any projection matrix 𝐻𝑡
𝐴, we have:⟨︀

∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴,∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F

= Tr
(︁(︀

𝐻𝑡
𝐴

)︀⊤ (︀∇𝑓(𝑊 𝑡)
)︀⊤ ∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

)︁
= Tr

(︁(︀
∇𝑓(𝑊 𝑡)

)︀⊤ ∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

(︀
𝐻𝑡

𝐴

)︀⊤)︁
= Tr

(︁(︀
∇𝑓(𝑊 𝑡)

)︀⊤ ∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

)︁
=

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
. (44)

Therefore:

−𝛾(1− 𝑝)
⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
+

𝐿𝛾2

2
(1− 𝑝)

⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

= −𝛾(1− 𝑝)
⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
+

𝐿𝛾2

2
(1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴,∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

⟩︀
F

= −𝛾(1− 𝑝)
⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
+

𝐿𝛾2

2
(1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F

𝛾 ≤ 1/𝐿

≤ −𝛾

2
(1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
. (45)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Using the Lipschitz gradient condition and the above bounds:
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡, 𝐻𝑡

]︀
≤ 𝑓(𝑊 𝑡) + E

[︀⟨︀
∇𝑓(𝑊 𝑡),𝑊 𝑡+1 −𝑊 𝑡

⟩︀
F
| 𝑊 𝑡, 𝐻𝑡

]︀
+

𝐿

2
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= 𝑓(𝑊 𝑡)− 𝛾

⟨︀
∇𝑓(𝑊 𝑡),E

[︀
𝐺𝑡 | 𝑊 𝑡, 𝐻𝑡

]︀⟩︀
F
+

𝐿𝛾2

2
E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= 𝑓(𝑊 𝑡)− 𝛾𝑝

⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
− 𝛾(1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F

+
𝐿𝛾2

2
𝑝
⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+

𝐿𝛾2

2
(1− 𝑝)

⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

(43),(45)
≤ 𝑓(𝑊 𝑡)− 𝛾

2

(︀
𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+ (1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F

)︀
.

(46)

For the first term:
−
⟨︀
∇𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵

]︀
∇𝑓(𝑊 𝑡)

⟩︀
F

= −Tr
(︁(︀

∇𝑓(𝑊 𝑡)
)︀⊤ E

[︀
𝐻𝑡

𝐵

]︀
∇𝑓(𝑊 𝑡)

)︁
≤ −𝜆min

(︀
E
[︀
𝐻𝑡

𝐵

]︀)︀
Tr
(︁(︀

∇𝑓(𝑊 𝑡)
)︀⊤ ∇𝑓(𝑊 𝑡)

)︁
= −𝜆𝐻𝐵

min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (47)

Similarly, for the second term:

−
⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴

]︀⟩︀
F

= −Tr
(︁(︀

∇𝑓(𝑊 𝑡)
)︀⊤ ∇𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴

]︀)︁
= −Tr

(︁
E
[︀
𝐻𝑡

𝐴

]︀ (︀
∇𝑓(𝑊 𝑡)

)︀⊤ ∇𝑓(𝑊 𝑡)
)︁

≤ −𝜆𝐻𝐴

min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (48)

Therefore:
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡

]︀
= E

[︀
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡, 𝐻𝑡

]︀
| 𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾

2

(︀
𝑝
⟨︀
∇𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵

]︀
∇𝑓(𝑊 𝑡)

⟩︀
F
+ (1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴

]︀⟩︀
F

)︀
≤ 𝑓(𝑊 𝑡)− 𝛾

2

(︁
𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min

)︁ ⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

= 𝑓(𝑊 𝑡)− 𝛾

2
𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
, (49)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min. Further,

E
[︀
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡, 𝐻𝑡

]︀
| 𝑊 𝑡

]︀
− 𝑓⋆ ≤ 𝑓(𝑊 𝑡)− 𝑓⋆ − 𝛾

2
𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (50)

Taking the sum over 𝑡 = 0, . . . ,𝑇 − 1 and using the tower property of expectation:

E
[︀
𝑓(𝑊𝑇)− 𝑓⋆

]︀
≤ 𝑓(𝑊 0)− 𝑓⋆ − 𝛾

2
𝜆𝑝
min

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
. (51)

By rearranging terms, we get:

𝛾

2
𝜆𝑝
min

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ 𝑓(𝑊 0)− 𝑓⋆. (52)

Finally, dividing both sides by 𝛾𝑇
2 𝜆𝑝

min yields:

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓⋆)

𝛾𝜆𝑝
min𝑇

, (53)

where ̃︁𝑊𝑇 is chosen uniformly at random from {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}, completing the proof.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

H.1.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 9. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy 0 < 𝛾 ≤ 1
𝐿 . Then

the iterates of Bernoulli-LoRA-GD (Algorithm 2), with matrices 𝐴𝑡 and 𝐵̂𝑡 computed according to
Lemma 10, satisfy

E
[︀
𝑓(𝑊𝑇)− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇 (︀

𝑓(𝑊 0)− 𝑓*)︀ ,
where 𝜆𝑝

min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min.

Proof. We begin our analysis from a key inequality derived in the proof of Theorem 1:
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾

2
𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (54)

By invoking the Polyak-Łojasiewicz condition (Assumption 6), which states that 1
2 ‖∇𝑓(𝑊)‖2F ≥

𝜇 (𝑓(𝑊)− 𝑓*), we can further bound the right-hand side of the inequality (54):
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾𝜆𝑝

min

(︀
𝜇
(︀
𝑓(𝑊 𝑡)− 𝑓*)︀)︀ .

Subtracting the optimal function value 𝑓* from both sides, we get a recursive relationship for the
expected suboptimality gap:

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓* | 𝑊 𝑡

]︀
≤
(︀
𝑓(𝑊 𝑡)− 𝑓*)︀− 𝛾𝜇𝜆𝑝

min

(︀
𝑓(𝑊 𝑡)− 𝑓*)︀

= (1− 𝛾𝜇𝜆𝑝
min)

(︀
𝑓(𝑊 𝑡)− 𝑓*)︀ .

By taking the full expectation over all randomness up to iteration 𝑡 and applying the tower property,
we obtain:

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀ .

Unrolling this recursion from 𝑡 = 𝑇 − 1 down to 𝑡 = 0 yields the final linear convergence result:
E
[︀
𝑓(𝑊𝑇)− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇 (︀

𝑓(𝑊 0)− 𝑓*)︀ .
This completes the proof.

H.1.3 CONVERGENCE FOR NON-SMOOTH CONVEX FUNCTIONS

Algorithm 3 Bernoulli-LoRA-GD (Non-smooth setting)

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0,
stepsize 𝛾𝑡 chain length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = argmin𝐴

{︁
𝑓(𝑊 𝑡) + 𝛼

𝑟 ⟨𝜕𝑓 (𝑊 𝑡) , 𝐵𝑡
𝑆𝐴⟩F + 𝛼2

2𝛾𝑡𝑟2
‖𝐵𝑡

𝑆𝐴‖2F
}︁

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = argmin𝐵

{︁
𝑓(𝑊 𝑡) + 𝛼

𝑟 ⟨𝜕𝑓 (𝑊 𝑡) , 𝐵𝐴𝑡
𝑆⟩F + 𝛼2

2𝛾𝑡𝑟2
‖𝐵𝐴𝑡

𝑆‖
2
F

}︁
11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼

𝑟 𝐵̂
𝑡𝐴𝑡

𝑆
12: end if
13: end for

Our analysis relies on the following standard assumptions that are widely used in non-smooth
optimization theory:
Assumption 7. The function 𝑓 has at least one minimizer, denoted by 𝑊 *.
Assumption 8. The function 𝑓 is convex.
Assumption 9 (Lipschitz continuity). The function 𝑓 is 𝐿0-Lipschitz continuous. That is, there exists
𝐿0 > 0 such that

|𝑓(𝑊)− 𝑓(𝑉)| ≤ 𝐿0 ‖𝑊 − 𝑉 ‖F , ∀𝑊,𝑉 ∈ R𝑚×𝑛. (55)

The combination of convexity and Lipschitz continuity represents a standard framework in non-
smooth optimization (Vorontsova et al., 2021; Nesterov, 2013; Bubeck, 2015; Beck, 2017; Duchi,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

2018; Lan, 2020; Drusvyatskiy, 2020). Notably, the 𝐿0-Lipschitz continuity implies uniformly
bounded subgradients (Beck, 2017), a property that plays a crucial role in our analysis:

‖𝜕𝑓(𝑊)‖F ≤ 𝐿0, ∀𝑊 ∈ R𝑚×𝑛. (56)
This boundedness of subgradients ensures the stability of our optimization process and enables us to
establish rigorous convergence guarantees.

The following lemma establishes that the Bernoulli-LoRA update in the non-smooth case can also be
reformulated as a subgradient descent step, which plays a central role in our convergence analysis for
non-smooth objectives.

Lemma 11. Consider the updates 𝐴𝑡 and 𝐵̂𝑡 from Algorithm 3 computed as solutions to the following
optimization problems:

𝐴𝑡 := argmin
𝐴

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
𝜕𝑓
(︀
𝑊 𝑡
)︀
, 𝐵𝑡

𝑆𝐴
⟩︀
F
+

𝛼2

2𝛾𝑡𝑟2
⃦⃦
𝐵𝑡

𝑆𝐴
⃦⃦2
F

}︂
,

𝐵̂𝑡 := argmin
𝐵

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
𝜕𝑓
(︀
𝑊 𝑡
)︀
, 𝐵𝐴𝑡

𝑆

⟩︀
F
+

𝛼2

2𝛾𝑡𝑟2
⃦⃦
𝐵𝐴𝑡

𝑆

⃦⃦2
F

}︂
. (57)

Then the Left and Right sketch updates can be expressed as a subgradient descent step:
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝑡𝐺

𝑡, (58)
where 𝐺𝑡 is defined by

𝐺𝑡 =

{︂
𝐻𝑡

𝐵𝜕𝑓 (𝑊 𝑡) , with probability 𝑝

𝜕𝑓 (𝑊 𝑡)𝐻𝑡
𝐴, with probability 1− 𝑝

(59)

with projection matrices 𝐻𝑡
𝐴 and 𝐻𝑡

𝐵 given by:

𝐻𝑡
𝐴 :=

(︀
𝐴𝑡

𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
𝐴𝑡

𝑆 and 𝐻𝑡
𝐵 := 𝐵𝑡

𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤
, (60)

where † denotes the Moore-Penrose pseudoinverse.

Proof. The proof follows a similar structure to that of Lemma 10, with subgradients replacing
gradients throughout the analysis. We examine both sketch types separately before combining them
into a unified update rule.

Left Sketch Analysis. When the Left sketch is selected, the update takes the form:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡. (61)

The matrix 𝐴𝑡 is defined as the solution to the optimization problem:

𝐴𝑡 := argmin
𝐴

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
𝜕𝑓
(︀
𝑊 𝑡
)︀
, 𝐵𝑡

𝑆𝐴
⟩︀
F
+

𝛼2

2𝛾𝑡𝑟2
⃦⃦
𝐵𝑡

𝑆𝐴
⃦⃦2
F

}︂
. (62)

By computing the gradient of the objective with respect to 𝐴 and setting it to zero, we obtain:
𝛼

𝑟

(︀
𝐵𝑡

𝑆

)︀⊤
𝜕𝑓
(︀
𝑊 𝑡
)︀
+

𝛼2

𝛾𝑡𝑟2
(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆𝐴
𝑡 = 0;

𝐴𝑡 = −𝛾𝑡𝑟

𝛼

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤
𝜕𝑓
(︀
𝑊 𝑡
)︀
. (63)

Substituting this expression back into the update equation yields the Left sketch update:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡

= 𝑊 𝑡 − 𝛾𝑡𝐵
𝑡
𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤
𝜕𝑓
(︀
𝑊 𝑡
)︀

= 𝑊 𝑡 − 𝛾𝑡𝐻
𝑡
𝐵𝜕𝑓

(︀
𝑊 𝑡
)︀
. (64)

Right Sketch Analysis. For the Right sketch, we follow an analogous approach. The update rule
takes the form:

𝑊 𝑡+1 = 𝑊 𝑡 +
𝛼

𝑟
𝐵̂𝑡𝐴𝑡

𝑆 . (65)

Applying similar optimization steps but now with respect to matrix 𝐵, we obtain:

𝐵̂𝑡 = −𝛾𝑡𝑟

𝛼
𝜕𝑓
(︀
𝑊 𝑡
)︀ (︀

𝐴𝑡
𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
, (66)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

which leads to the Right sketch update:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵̂𝑡𝐴𝑡

𝑆

= 𝑊 𝑡 − 𝛾𝑡𝜕𝑓
(︀
𝑊 𝑡
)︀ (︀

𝐴𝑡
𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
𝐴𝑡

𝑆

= 𝑊 𝑡 − 𝛾𝑡𝜕𝑓
(︀
𝑊 𝑡
)︀
𝐻𝑡

𝐴. (67)

Combined Update Rule. By combining equations (64) and (67), we arrive at the unified update rule:
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝑡𝐺

𝑡, (68)
where 𝐺𝑡 takes the form specified in the lemma statement, thus completing the proof.

Assumption 10. Consider a projection matrix 𝐻 generated through either Left Sketch (Definition 5)
or Right Sketch (Definition 6). For the sampling distributions 𝒟𝐵

𝑆 and 𝒟𝐴
𝑆 , the expected projection

matrix 𝐻 satisfies
E[𝐻] = 𝛼𝐼, (69)

where a constant 𝛼 > 0.
Theorem 10. Let Assumptions 1, 7, 8, 9, and 10 hold. Let us define the following quantities:
𝑊

𝑇
:= 1

𝑇

∑︀𝑇−1
𝑡=0 𝑊 𝑡 as the averaged iterate, 𝑅2

0 :=
⃦⃦
𝑊 0 −𝑊 *

⃦⃦2
F

as the initial distance to
optimum. Consider the sequence {𝑊 𝑡} produced by Bernoulli-LoRA (Algorithm 3) with updates of
𝐴𝑡 and 𝐵̂𝑡 computed according to Lemma 11.

1. (Constant stepsize). If the stepsize is constant, i.e., 𝛾𝑡 := 𝛾 > 0, then

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 𝑅2

0

2𝛾𝛼𝑇
+

𝛾𝐿2
0

2
. (70)

Moreover, with the optimal stepsize 𝛾* =
√︁

(𝑅0)2

𝑇𝛼𝐿2
0

, we obtain:

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 𝑅0𝐿0√

𝛼𝑇
. (71)

2. (Polyak stepsize). If the stepsize is chosen adaptively as

𝛾𝑡 =
(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

‖𝜕𝑓(𝑊 𝑡)‖2F
, (72)

then

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 𝑅0𝐿0√

𝛼𝑇
. (73)

Proof. From Lemma 11, we know that Bernoulli-LoRA updates in the non-smooth setting can be
expressed as

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝑡𝐺
𝑡, (74)

where 𝐺𝑡 takes the form

𝐺𝑡 =

{︂
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡), with probability 𝑝

𝜕𝑓(𝑊 𝑡)𝐻𝑡
𝐴, with probability 1− 𝑝

(75)

with projection matrices 𝐻𝑡
𝐴 and 𝐻𝑡

𝐵 as defined in the lemma.

To analyze the convergence, we first compute the conditional expectation and second moment of 𝐺𝑡:
E
[︀
𝐺𝑡 | 𝑊 𝑡, 𝐻𝑡

]︀
= 𝑝𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡) + (1− 𝑝)𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴, (76)

E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= 𝑝

⃦⃦
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⃦⃦2
F
+ (1− 𝑝)

⃦⃦
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F
, (77)

where we defined 𝐻𝑡 := {𝐻𝑡
𝐴, 𝐻

𝑡
𝐵}.

By the definition of subgradient, we have:
𝑓(𝑊 *) ≥ 𝑓(𝑊 𝑡) +

⟨︀
𝜕𝑓(𝑊 𝑡),𝑊 * −𝑊 𝑡

⟩︀
F
, (78)

which implies: ⟨︀
𝜕𝑓(𝑊 𝑡),𝑊 𝑡 −𝑊 *⟩︀

F
≥ 𝑓(𝑊 𝑡)− 𝑓(𝑊 *). (79)

Let us establish key auxiliary bounds. First, for the inner product terms:

−2𝛾𝑡E
[︀⟨︀
𝐺𝑡,𝑊 𝑡 −𝑊 *⟩︀

F
| 𝑊 𝑡, 𝐻𝑡

]︀ (76)
= −2𝛾𝑡𝑝

⟨︀
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡),𝑊 𝑡 −𝑊 *⟩︀

F

−2𝛾𝑡(1− 𝑝)
⟨︀
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴,𝑊
𝑡 −𝑊 *⟩︀

F
. (80)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

For projection matrices, we have the following properties:⃦⃦
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

=
⟨︀
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴, 𝜕𝑓(𝑊
𝑡)𝐻𝑡

𝐴

⟩︀
F

= Tr
(︁(︀

𝐻𝑡
𝐴

)︀⊤ (︀
𝜕𝑓(𝑊 𝑡)

)︀⊤
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

)︁
= Tr

(︁(︀
∇𝑓(𝑊 𝑡)

)︀⊤ ∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

(︀
𝐻𝑡

𝐴

)︀⊤)︁
= Tr

(︁(︀
𝜕𝑓(𝑊 𝑡)

)︀⊤
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

)︁
=

⟨︀
𝜕𝑓(𝑊 𝑡), 𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
, (81)

and similarly, one can show that⃦⃦
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⃦⃦2
F
=
⟨︀
𝜕𝑓(𝑊 𝑡), 𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⟩︀
F
. (82)

This allows us to express the second moment term as:

𝛾2
𝑡 E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
(77)
= 𝛾2

𝑡 𝑝
⃦⃦
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⃦⃦2
F
+ 𝛾2

𝑡 (1− 𝑝)
⃦⃦
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

(81), (82)
= 𝛾2

𝑡 𝑝
⟨︀
𝜕𝑓(𝑊 𝑡), 𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⟩︀
F
+ 𝛾2

𝑡 (1− 𝑝)
⟨︀
𝜕𝑓(𝑊 𝑡), 𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
.

(83)

Combining these bounds, we can analyze the distance to the optimal solution:

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= E

[︁⃦⃦
𝑊 𝑡 − 𝛾𝑡𝐺

𝑡 −𝑊 *⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡E

[︀⟨︀
𝐺𝑡,𝑊 𝑡 −𝑊 *⟩︀

F
| 𝑊 𝑡, 𝐻𝑡

]︀
+𝛾2

𝑡 E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
(80), (83)
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝑝

⟨︀
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡),𝑊 𝑡 −𝑊 *⟩︀

F

−2𝛾𝑡(1− 𝑝)
⟨︀
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴,𝑊
𝑡 −𝑊 *⟩︀

F
+ 𝛾2

𝑡 𝑝
⟨︀
𝜕𝑓(𝑊 𝑡), 𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⟩︀
F

+𝛾2
𝑡 (1− 𝑝)

⟨︀
𝜕𝑓(𝑊 𝑡), 𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
. (84)

For the expected projection matrices (see Assumption 10), we have:⟨︀
𝜕𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵

]︀
𝜕𝑓(𝑊 𝑡)

⟩︀
F

= Tr
(︁(︀

𝜕𝑓(𝑊 𝑡)
)︀⊤ E

[︀
𝐻𝑡

𝐵

]︀
𝜕𝑓(𝑊 𝑡)

)︁
= 𝛼Tr

(︁(︀
𝜕𝑓(𝑊 𝑡)

)︀⊤
𝜕𝑓(𝑊 𝑡)

)︁
= 𝛼

⃦⃦
𝜕𝑓(𝑊 𝑡)

⃦⃦2
F
, (85)

and similarly, ⟨︀
𝜕𝑓(𝑊 𝑡), 𝜕𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴

]︀⟩︀
F

= 𝛼
⃦⃦
𝜕𝑓(𝑊 𝑡)

⃦⃦2
F
. (86)

Taking expectation of both sides of (84) again, we get
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2

F
| 𝑊 𝑡

]︁
= E

[︁
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2

F
| 𝑊 𝑡, 𝐻𝑡

]︁
| 𝑊 𝑡

]︁
(87)

=
⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝑝

⟨︀
E
[︀
𝐻𝑡

𝐵

]︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,𝑊 𝑡 −𝑊 *⟩︀

F
(88)

−2𝛾𝑡(1− 𝑝)
⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀E [︀

𝐻𝑡
𝐴

]︀
,𝑊 𝑡 −𝑊 *⟩︀

F

+𝛾2
𝑡 𝑝

⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,E [︀

𝐻𝑡
𝐵

]︀
𝜕𝑓

(︀
𝑊 𝑡)︀⟩︀

F
+ 𝛾2

𝑡 (1− 𝑝)
⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ , 𝜕𝑓 (︀

𝑊 𝑡)︀E [︀
𝐻𝑡

𝐴

]︀⟩︀
F

(85),(86)
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝑝𝛼

⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,𝑊 𝑡 −𝑊 *⟩︀

F
(89)

−2𝛾𝑡(1− 𝑝)𝛼
⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,𝑊 𝑡 −𝑊 *⟩︀

F
+ 𝛾2

𝑡 𝛼
⃦⃦
𝜕𝑓

(︀
𝑊 𝑡)︀⃦⃦2

F

=
⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝛼

⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,𝑊 𝑡 −𝑊 *⟩︀

F
+ 𝛾2

𝑡 𝛼
⃦⃦
𝜕𝑓

(︀
𝑊 𝑡)︀⃦⃦2

F

(79)
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝛼

(︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

)︀
+ 𝛾2

𝑡 𝛼
⃦⃦
𝜕𝑓

(︀
𝑊 𝑡)︀⃦⃦2

F
. (90)

By Assumption 9, subgradients are uniformly bounded (see (Beck, 2017)):
‖𝜕𝑓(𝑊)‖F ≤ 𝐿0 ∀𝑊 ∈ R𝑚×𝑛. (91)

Now we analyze both stepsize strategies separately.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

1. (Constant stepsize). Let us first consider using a fixed stepsize 𝛾𝑡 := 𝛾 > 0. Taking expectation
of both sides of (87) again, applying tower property (11) and using the bound (91), we obtain:

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F

]︁
≤ E

[︁⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F

]︁
− 2𝛾𝛼E

[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
+ 𝛾2𝛼𝐿2

0. (92)

Rearranging terms in (92):

2𝛾𝛼E
[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
≤ E

[︁⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F

]︁
− E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 *⃦⃦2

F

]︁
+ 𝛾2𝛼𝐿2

0. (93)

Summing inequality (93) for 𝑡 = 0, . . . ,𝑇 − 1:

2𝛾𝛼

𝑇−1∑︁
𝑡=0

E
[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
≤

𝑇−1∑︁
𝑡=0

(︁
E
[︁⃦⃦

𝑊 𝑡 −𝑊 *⃦⃦2
F

]︁
− E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 *⃦⃦2

F

]︁)︁
+𝑇𝛾2𝛼𝐿2

0

= E
[︁⃦⃦

𝑊 0 −𝑊 *⃦⃦2
F

]︁
− E

[︁⃦⃦
𝑊𝑇 −𝑊 *⃦⃦2

F

]︁
+ 𝑇𝛾2𝛼𝐿2

0

≤
⃦⃦
𝑊 0 −𝑊 *⃦⃦2

F
+ 𝑇𝛾2𝛼𝐿2

0, (94)

where the last inequality follows from the non-negativity of
⃦⃦
𝑊𝑇 −𝑊 *

⃦⃦2
F

.

For the averaged iterate 𝑊
𝑇
:= 1

𝑇

∑︀𝑇−1
𝑡=0 𝑊 𝑡, by convexity of 𝑓 we have:

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
(94)
≤

⃦⃦
𝑊 0 −𝑊 *

⃦⃦2
F

2𝛾𝛼𝑇
+

𝛾𝐿2
0

2

=
(𝑅0)2

2𝛾𝛼𝑇
+

𝛾𝐿2
0

2
, (95)

where we denoted (𝑅0)2 :=
⃦⃦
𝑊 0 −𝑊 *

⃦⃦2
F

.

To optimize this bound, we minimize it with respect to 𝛾. The optimal stepsize 𝛾* solves:

𝛾* = argmin
𝛾>0

(︂
(𝑅0)2

2𝛾𝛼𝑇
+

𝛾𝐿2
0

2

)︂

=

√︃
(𝑅0)2

𝑇𝛼𝐿2
0

. (96)

Substituting 𝛾* back into (95), we obtain the optimal convergence rate:

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 𝑅0𝐿0√

𝛼𝑇
. (97)

2. (Polyak stepsize). For this strategy, we choose the stepsize adaptively based on the current
function value:

𝛾𝑡 = argmin
𝛾>0

{︁⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝛼

(︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

)︀
+ 𝛾2𝛼

⃦⃦
𝜕𝑓
(︀
𝑊 𝑡
)︀⃦⃦2

F

}︁
=

(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

‖𝜕𝑓(𝑊 𝑡)‖2F
. (98)

Substituting this stepsize into inequality (87):

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F
| 𝑊 𝑡

]︁
= E

[︁
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
| 𝑊 𝑡

]︁
≤

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝛼

(︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

)︀
+ 𝛾2

𝑡 𝛼
⃦⃦
𝜕𝑓
(︀
𝑊 𝑡
)︀⃦⃦2

F

(98)
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 𝛼 (𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2

‖𝜕𝑓(𝑊 𝑡)‖2F
(91)
≤

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 𝛼 (𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2

𝐿2
0

. (99)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Taking expectation of both sides of (99) again and applying the tower property

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F

]︁
≤ E

[︁⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F

]︁
−

𝛼E
[︁
(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2
]︁

𝐿2
0

(100)

Since 𝑓 is convex, by Jensen’s inequality (14) and the Cauchy-Bunyakovsky-Schwarz inequality (12)
with 𝑋 := 𝑓(𝑊 𝑡)− 𝑓(𝑊 *) and 𝑌 := 1, we have

E
[︁
𝑓𝑖(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁ (14)
≤ E

[︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︃

≤ 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
(12)
≤ 1

𝑇

𝑇−1∑︁
𝑡=0

√︂
E
[︁
(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2
]︁

≤

⎯⎸⎸⎷ 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁
(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2
]︁

(100)
≤ 𝑅0𝐿0√

𝛼𝑇
, (101)

which matches the optimal rate achieved by the constant stepsize strategy with optimal tuning.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

H.2 ANALYSIS OF BERNOULLI-LORA-SGD

Algorithm 4 Bernoulli-LoRA-SGD

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0, chain
length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝑔(𝑊 𝑡)

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝑔(𝑊 𝑡) (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: end for

Earlier findings were derived utilizing full gradient computations. Nonetheless, this method proves
impractical in deep learning applications, where obtaining full gradients is rarely feasible. Our
focus moves to a framework that employs Stochastic Gradient Descent (SGD) while incorporating a
more flexible and generalized data sampling strategy, enabling greater adaptability in the selection
and utilization of data throughout the training process. General sampling techniques for strongly
convex functions have been thoroughly examined in (Gower et al., 2019). For broader convex
optimization problems, Khaled et al. (2023) provide a comprehensive study of how SGD performs
under different sampling strategies. In non-convex scenarios, the works of Khaled & Richtárik (2023)
and (Demidovich et al., 2023b) investigate the effects of generalized sampling methods on SGD
’s convergence and efficiency, offering valuable insights into its adaptability for diverse machine
learning applications. In this section we focus on Bernoulli-LoRA-SGD, a method, designed in the
scope of Bernoulli-LoRA framework, based on the classical SGD algorithm.

For convergence analysis, we notice the gradient step in Algorithm 4 is equivalent to the following
update

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

, (102)

where 𝐺𝑡 = 𝑔(𝑊 𝑡) is an unbiased stochastic gradient, which satisfies Assumption 4.

H.2.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 11. Let Assumptions 2, 3, and 4 hold, and stepsize satisfy

0 < 𝛾 ≤ min

{︃
1√︀

𝐿𝐴1𝜆
𝑝
max𝑇

,
1

𝐿𝐵1

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1
}︃
.

Then iterates generated by Bernoulli-LoRA-SGD (Algorithm 4) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 6(𝑓(𝑊 0)− 𝑓*)

𝛾𝜆𝑝
min𝑇

+ 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

,

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and ̃︁𝑊𝑇 is chosen at

random from
{︀
𝑊 0,𝑊 1, . . . ,𝑊𝑇−1

}︀
with probabilities { 𝑤𝑡

𝒲𝑇−1
}𝑇−1
𝑡=0 , where 𝑤𝑡 =

𝑤𝑡−1

(1+𝛾2𝐿𝐴1𝜆
𝑝
max)

,

𝒲𝑇−1 =
∑︀𝑇−1

𝑡=0 𝑤𝑡, and 𝑤−1 > 0.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Proof. We start with smoothness of function 𝑓 :

𝑓(𝑊 𝑡+1) ≤ 𝑓(𝑊 𝑡) + ⟨∇𝑓(𝑊 𝑡),𝑊 𝑡+1 −𝑊 𝑡⟩+ 𝐿

2

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

(102)
= 𝑓(𝑊 𝑡)− 𝛾⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩+ 𝛾2𝐿

2

⃦⃦⃦
𝐺̂𝑡
⃦⃦⃦2
F
. (103)

Taking a conditional expectation by 𝑊 𝑡, we bound the second and the third terms from inequality
(103):
E
[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩|𝑊 𝑡

]︁
= ⟨∇𝑓(𝑊 𝑡),E

[︁
𝐺̂𝑡|𝑊 𝑡

]︁
⟩

(102)
= 𝑝⟨∇𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵𝐺
𝑡|𝑊 𝑡

]︀
⟩+ (1− 𝑝)⟨∇𝑓(𝑊 𝑡),E

[︀
𝐺𝑡𝐻𝑡

𝐴|𝑊 𝑡
]︀
⟩

(*)
= 𝑝⟨∇𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
E
[︀
𝐺𝑡|𝑊 𝑡

]︀
⟩+ (1− 𝑝)⟨∇𝑓(𝑊 𝑡),E

[︀
𝐺𝑡|𝑊 𝑡

]︀
E
[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
⟩

= 𝑝⟨∇𝑓(𝑊 𝑡),E
[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
∇𝑓(𝑊 𝑡)⟩+ (1− 𝑝)⟨∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
⟩

≥
(︀
𝑝𝜆min(E

[︀
𝐻𝑡

𝐵

]︀
) + (1− 𝑝)𝜆min(E

[︀
𝐻𝑡

𝐴

]︀
)
)︀⏟ ⏞

:=𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

= 𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
, (104)

where in (*) we used that 𝐻𝑡
𝐵 , 𝐻𝑡

𝐴 and 𝐺𝑡 are independent. Now we bound the third term:

E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
|𝑊 𝑡

]︂
(102)
= 𝑝E

[︁⃦⃦
𝐻𝑡

𝐵𝐺
𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
+ (1− 𝑝)E

[︁⃦⃦
𝐺𝑡𝐻𝑡

𝐴

⃦⃦2
F
|𝑊 𝑡

]︁
= 𝑝E

[︀
⟨𝐻𝑡

𝐵𝐺
𝑡, 𝐻𝑡

𝐵𝐺
𝑡⟩|𝑊 𝑡

]︀
+ (1− 𝑝)E

[︀
⟨𝐺𝑡𝐻𝑡

𝐴, 𝐺
𝑡𝐻𝑡

𝐴⟩|𝑊 𝑡
]︀

(**)
= 𝑝E

[︀
⟨𝐺𝑡, 𝐻𝑡

𝐵𝐺
𝑡⟩|𝑊 𝑡

]︀
+ (1− 𝑝)E

[︀
⟨𝐺𝑡, 𝐺𝑡𝐻𝑡

𝐴⟩|𝑊 𝑡
]︀
,

where in (**) we used property of projection matrices 𝐻𝑡
𝐵 , 𝐻

𝑡
𝐵 . By the independence of 𝐻𝑡

𝐵 , 𝐻
𝑡
𝐴, 𝐺

𝑡,
we obtain

E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
|𝑊 𝑡

]︂
= 𝑝E

[︀
⟨𝐺𝑡,E

[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
𝐺𝑡⟩|𝑊 𝑡

]︀
+ (1− 𝑝)E

[︀
⟨𝐺𝑡, 𝐺𝑡E

[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
⟩|𝑊 𝑡

]︀
≤ 𝑝𝜆max(E

[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
)E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
+ (1− 𝑝)𝜆max(E

[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
)E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
= (𝑝𝜆max(E

[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
) + (1− 𝑝)𝜆max(E

[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
))⏟ ⏞

:=𝜆𝑝
max

E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
= 𝜆𝑝

maxE
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
. (105)

Plugging (104) and (105) into (103), we obtain

E
[︀
𝑓(𝑊 𝑡+1)|𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾E

[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩|𝑊 𝑡

]︁
+

𝛾2𝐿

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
|𝑊 𝑡

]︂
≤ 𝑓(𝑊 𝑡)− 𝛾𝜆𝑝

min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
+

𝛾2𝜆𝑝
max𝐿

2
E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
.

By Assumption 4,

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*|𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾E

[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩|𝑊 𝑡

]︁
+

𝛾2𝐿

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
|𝑊 𝑡

]︂
≤ 𝑓(𝑊 𝑡)− 𝑓* − 𝛾𝜆𝑝

min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

+
𝛾2𝜆𝑝

max𝐿

2

(︁
2𝐴1(𝑓(𝑊

𝑡)− 𝑓*) +𝐵1

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
+ 𝐶1

)︁
≤

(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀ (︀
𝑓(𝑊 𝑡)− 𝑓*)︀− 𝛾𝜆𝑝

min

(︂
1− 𝛾𝐿𝐵1𝜆

𝑝
max

2𝜆𝑝
min

)︂ ⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

+
𝛾2𝜆𝑝

max𝐿𝐶1

2
.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Taking mathematical expectation and selecting a stepsize as 0 < 𝛾 ≤ 1
𝐿𝐵1

(︁
𝜆𝑝
max

𝜆𝑝
min

)︁−1

, we get

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*]︀ ≤

(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀
E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀

− 𝛾𝜆𝑝
min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2

F

]︁
+

𝛾2𝜆𝑝
max𝐿𝐶1

2
. (106)

Defining 𝛿𝑡 := E [𝑓(𝑊 𝑡)− 𝑓*], 𝑟𝑡 := E
[︁
‖∇𝑓(𝑊 𝑡)‖2F

]︁
for every 𝑡 ≥ 0, we have

𝛿𝑡+1 ≤
(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀
𝛿𝑡 − 𝛾𝜆𝑝

min

2
𝑟𝑡 +

𝛾2𝜆𝑝
max𝐿𝐶1

2
.

Fixing 𝑤−1 > 0 and defining 𝑤𝑡 =
𝑤𝑡−1

1+𝛾2𝐿𝐴1𝜆
𝑝
max

for all 𝑡 ≥ 0, we have
1

2
𝜆𝑝
min𝑤𝑡𝑟

𝑡 ≤ 𝑤𝑡

𝛾

(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀
𝛿𝑡 − 𝑤𝑡

𝛾
𝛿𝑡+1 +

1

2
𝛾𝐿𝐶1𝜆

𝑝
max𝑤𝑡

=
𝑤𝑡−1𝛿

𝑡

𝛾
− 𝑤𝑡𝛿

𝑡+1

𝛾
+

1

2
𝛾𝐿𝐶1𝜆

𝑝
max𝑤𝑡.

Summing over 𝑡 from 0 to 𝑇 − 1, we have
𝑇−1∑︁
𝑡=0

𝑤𝑡𝑟
𝑡 ≤ 2𝑤−1𝛿

0

𝛾𝜆𝑝
min

− 2𝑤𝑇−1𝛿
𝑇

𝛾𝜆𝑝
min

+ 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

𝑇−1∑︁
𝑡=0

𝑤𝑡.

Defining 𝒲𝑇−1 =
∑︀𝑇−1

𝑡=0 𝑤𝑡, we acquire
𝑇−1∑︁
𝑡=0

𝑤𝑡

𝒲𝑇−1
𝑟𝑡 ≤ 2𝑤−1𝛿

0

𝛾𝜆𝑝
min𝒲𝑇−1

+ 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

.

Using the next chain of inequalities

𝑊𝑇−1 =

𝑇−1∑︁
𝑡=0

𝑤𝑡 ≥ 𝑇 min
0≤𝑡≤𝑇−1

𝑤𝑡 = 𝑇𝑤𝑇−1 =
𝑇𝑤−1

(1 + 𝛾2𝜆𝑝
max𝐿𝐴1)𝑇

,

we have
𝑇−1∑︁
𝑡=0

𝑤𝑡

𝒲𝑇−1
𝑟𝑡 ≤ 2(1 + 𝛾2𝜆𝑝

max𝐿𝐴1)
𝑇

𝛾𝑇𝜆𝑝
min

(𝑓(𝑊 0)− 𝑓*) + 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

.

Selecting 0 < 𝛾 ≤ 1√
𝐿𝐴1𝜆

𝑝
max𝑇

, and using (1+𝛾2𝜆𝑝
max𝐿𝐴1)

𝑇 ≤ exp
(︀
𝛾2𝜆𝑝

max𝐿𝐴1𝑇
)︀
≤ exp (1) ≤

3, we obtain
𝑇−1∑︁
𝑡=0

𝑤𝑡

𝒲𝑇−1
𝑟𝑡 ≤ 6𝛿0

𝛾𝑇𝜆𝑝
min

+ 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

.

Next we show convergence of Bernoulli-LoRA-SGD under additional Assumption 6.

H.2.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 12. Let Assumptions 2, 3, 4, and 6 hold, and stepsize satisfy

0 < 𝛾 ≤ min

{︂
𝜇𝜆𝑝

min

2𝐿𝐴1𝜆
𝑝
max

, 2
𝜇𝜆𝑝

min
, 1
𝐿𝐵1

(︁
𝜆𝑝
max

𝜆𝑝
min

)︁−1
}︂

. Then iterates generated by Bernoulli-LoRA-SGD

(Algorithm 4) satisfy

E
[︀
𝑓(𝑊𝑇)− 𝑓*]︀ ≤ (︂1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑇 (︀
𝑓(𝑊 0)− 𝑓*)︀+ 𝛾𝐿𝐶1

𝜇
· 𝜆

𝑝
max

𝜆𝑝
min

,

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1− 𝑝)𝜆𝐻𝐴
max.

Proof. We start our proof with inequality 106. Using PL-inequality (see Assumption 6), we have

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*]︀ ≤

(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀
E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀− 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾2𝜆𝑝
max𝐿𝐶1

2

≤
(︀
1− 𝛾𝜇𝜆𝑝

min + 𝛾2𝜆𝑝
max𝐿𝐴1

)︀
E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀++

𝛾2𝜆𝑝
max𝐿𝐶1

2
.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Taking the stepsize as 0 < 𝛾 ≤ min
{︁

𝜇𝜆𝑝
min

2𝐿𝐴1𝜆
𝑝
max

, 2
𝜇𝜆𝑝

min

}︁
, we obtain

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*]︀ ≤

(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂
E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀+ 𝛾2𝜆𝑝

max𝐿𝐶1

2

≤
(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑡+1

E
[︀
𝑓(𝑊 0)− 𝑓*]︀+ 𝛾2𝜆𝑝

max𝐿𝐶1

2

𝑡∑︁
𝜏=0

(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑡−𝜏

≤
(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑡+1

E
[︀
𝑓(𝑊 0)− 𝑓*]︀+ 𝛾2𝜆𝑝

max𝐿𝐶1

2

∞∑︁
𝜏=0

(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝜏

=

(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑡+1

E
[︀
𝑓(𝑊 0)− 𝑓*]︀+ 𝛾2𝜆𝑝

max𝐿𝐶1

𝛾𝜇𝜆𝑝
min

,

where in the last equation we use the formula of the sum of geometric progression.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

H.3 ANALYSIS OF BERNOULLI-LORA-MVR

Algorithm 5 Bernoulli-LoRA-MVR

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, 𝐺0 ∈ R𝑚×𝑛 rank 𝑟 ≪ min{𝑚,𝑛}, scaling
factor 𝛼 > 0, chain length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝, momentum

parameter 𝑏 ∈ [0,1]
2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝐺𝑡 (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: Sample 𝜉𝑡+1 ∼ 𝒟
14: 𝐺𝑡+1 = ∇𝑓𝜉𝑡+1(𝑊 𝑡+1) + (1− 𝑏)

(︀
𝐺𝑡 −∇𝑓𝜉𝑡+1(𝑊 𝑡)

)︀
15: end for

Recently, there has been a significant surge of interest in variance-reduced methods for addressing
finite-sum problems (J Reddi et al., 2015; Shang et al., 2018; Malinovsky et al., 2022; Richtárik
et al., 2024). It has gained prominence as a formidable alternative to stochastic gradient descent
(SGD) in tackling non-convex optimization problems. Notably, it has been pivotal in introducing the
first algorithms capable of surpassing SGD ’s convergence rate for locating first-order critical points.
Despite these advancements, variance reduction methods often come with challenges, including
the necessity for meticulously tuned learning rates and the reliance on overly large batch sizes to
realize their benefits. To address some of these limitations, Momentum Variance Reduction (MVR)
was proposed specifically for server-only stochastic non-convex optimization (Cutkosky & Orabona,
2019). This approach leverages a modified form of momentum to achieve variance reduction while
eliminating the dependence on large batch sizes. A proof on MVR technique with better dependence
on momentum parameter was obtained by Tyurin & Richtárik (2023). In the context of Federated
Learning, Karagulyan et al. (2024) proposed the SPAM method. On the server side, MVR is utilized
to enhance optimization efficiency, while the client side incorporates the Stochastic Proximal Point
Method updates. This section is devoted to Bernoulli-LoRA-MVR, a method, designed in the scope of
Bernoulli-LoRA framework, based on the MVR technique.

To show convergence guarantees for Bernoulli-LoRA-MVR, the iterates of the method can be rewritten
in following way

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

(107)

𝐺𝑡+1 = ∇𝑓𝜉𝑡+1(𝑊 𝑡+1) + (1− 𝑏)
(︀
𝐺𝑡 −∇𝑓𝜉𝑡+1(𝑊 𝑡)

)︀
. (108)

First of all, we reprove descent lemma from the paper of Li et al. (2021) for generic gradient step
(107).

Lemma 12. Let Assumptions 1, 3 hold. Then, iterates defined as (107) satisfy

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓* |𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝑓* − 𝛾𝜆𝑝

min

2

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

+
𝛾𝜆𝑝

max

2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Proof. By Assumption 3, we have

𝑓(𝑊 𝑡+1) ≤ 𝑓(𝑊 𝑡) + ⟨∇𝑓(𝑊 𝑡),𝑊 𝑡+1 −𝑊 𝑡⟩𝐹 +
𝐿

2

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

= 𝑓(𝑊 𝑡)− 𝛾⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩𝐹 +
𝐿

2

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F
. (109)

To continue our proof, we need to bound the second term from (109). Taking conditional expectation
by 𝐻𝑡,𝑊 𝑡, we obtain

E
[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩𝐹 | 𝐻𝑡,𝑊 𝑡

]︁
(107)
= 𝑝⟨∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵𝐺
𝑡⟩𝐹 + (1− 𝑝)⟨∇𝑓(𝑊 𝑡), 𝐺𝑡𝐻𝑡

𝐴⟩𝐹
= 𝑝⟨𝐻𝑡

𝐵∇𝑓(𝑊 𝑡), 𝐻𝑡
𝐵𝐺

𝑡⟩𝐹 + (1− 𝑝)⟨∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴, 𝐺

𝑡𝐻𝑡
𝐴⟩𝐹

=
𝑝

2

(︁⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+
⃦⃦
𝐻𝑡

𝐵𝐺
𝑡
⃦⃦2
F
−
⃦⃦
𝐻𝑡

𝐵𝐺
𝑡 −𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F

)︁
+
1− 𝑝

2

(︁⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F
+
⃦⃦
𝐺𝑡𝐻𝑡

𝐴

⃦⃦2
F
−
⃦⃦
𝐺𝑡𝐻𝑡

𝐴 −∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

⃦⃦2
F

)︁
≥ 1

2

(︁
𝑝
⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+ (1− 𝑝)

⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

)︁
+

1

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
| 𝐻𝑡,𝑊 𝑡

]︂
−1

2

(︁
𝑝
⃦⃦
𝐻𝑡

𝐵𝐺
𝑡 −𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+ (1− 𝑝)

⃦⃦
𝐺𝑡𝐻𝑡

𝐴 −∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

⃦⃦2
F

)︁
.

Taking conditional expectation by 𝑊 𝑡, we have

E
[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩𝐹 |𝑊 𝑡

]︁
≥ 1

2

(︁
𝑝E

[︁⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2

F
|𝑊 𝑡

]︁
+ (1− 𝑝)E

[︁⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2

F
|𝑊 𝑡

]︁)︁
+

1

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2

F
| 𝑊 𝑡

]︂
−1

2

(︁
𝑝E

[︁⃦⃦
𝐻𝑡

𝐵𝐺
𝑡 −𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2

F
|𝑊 𝑡

]︁
+ (1− 𝑝)E

[︁⃦⃦
𝐺𝑡𝐻𝑡

𝐴 −∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

⃦⃦2

F
|𝑊 𝑡

]︁)︁
(*)
≥ 1

2

(︀
𝑝𝜆min(E

[︀
𝐻𝑡

𝐵

]︀
) + (1− 𝑝)𝜆min(E

[︀
𝐻𝑡

𝐴

]︀
)
)︀⏟ ⏞

:=𝜆
𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

1

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2

F
| 𝑊 𝑡

]︂

−1

2
(𝑝𝜆max(E

[︀
𝐻𝑡

𝐵

]︀
) + (1− 𝑝)𝜆max(E

[︀
𝐻𝑡

𝐴

]︀
))⏟ ⏞

:=𝜆
𝑝
max

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F

(107)
=

𝜆𝑝
min

2

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

1

2𝛾2
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2

F
| 𝑊 𝑡

]︁
− 𝜆𝑝

max

2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
, (110)

where in (*) we used the following inequalities for any matrix 𝑉 ∈ R𝑚×𝑛

E
[︁⃦⃦

𝐻𝑡
𝐵𝑉
⃦⃦2
F

]︁
= E

[︀
⟨𝐻𝑡

𝐵𝑉,𝐻
𝑡
𝐵𝑉 ⟩𝐹

]︀
= ⟨E

[︀
𝐻𝑡

𝐵

]︀
𝑉, 𝑉 ⟩𝐹 ≥ 𝜆min

(︀
E
[︀
𝐻𝑡

𝐵

]︀)︀
‖𝑉 ‖2F ,

E
[︁⃦⃦

𝐻𝑡
𝐵𝑉
⃦⃦2
F

]︁
≤ 𝜆max

(︀
E
[︀
𝐻𝑡

𝐵

]︀)︀
‖𝑉 ‖2F ,

E
[︁⃦⃦

𝑉 𝐻𝑡
𝐴

⃦⃦2
F

]︁
= E

[︀
⟨𝑉 𝐻𝑡

𝐴, 𝑉 𝐻𝑡
𝐴⟩𝐹

]︀
= ⟨𝑉 E

[︀
𝐻𝑡

𝐴

]︀
, 𝑉 ⟩𝐹 ≥ 𝜆min

(︀
E
[︀
𝐻𝑡

𝐴

]︀)︀
‖𝑉 ‖2F ,

E
[︁⃦⃦

𝑉 𝐻𝑡
𝐴

⃦⃦2
F

]︁
≤ 𝜆max

(︀
E
[︀
𝐻𝑡

𝐴

]︀)︀
‖𝑉 ‖2F .

Plugging in (110) into (109), we get

E
[︀
𝑓(𝑊 𝑡+1) |𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾𝜆𝑝

min

2

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
− 1

2𝛾
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
+
𝛾𝜆𝑝

max

2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
+

𝐿

2
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
.

Lemma 13. Let Assumptions 3, 5 hold. Then, iterates generated by Bernoulli-LoRA-MVR (Algo-
rithm 5) satisfy

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2
F

]︁
≤ (1−𝑏)2E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+2(1−𝑏)2𝐿2E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

]︁
+2𝑏2𝜎2

(111)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Proof. Taking conditional expectation by ℱ 𝑡+1 = {𝑊 𝑡+1, 𝐺𝑡}, we obtain
E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2

F
|ℱ 𝑡+1

]︁
(108)
= E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓(𝑊 𝑡+1) + (1− 𝑏)
(︀
𝐺𝑡 −∇𝑓𝜉𝑡+1(𝑊

𝑡)
)︀⃦⃦2

F
|ℱ 𝑡+1

]︁
(13)
= (1− 𝑏)2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F

+E
[︁⃦⃦

∇𝑓𝜉𝑡+1(𝑊
𝑡+1)−∇𝑓(𝑊 𝑡+1) + (1− 𝑏)

(︀
∇𝑓(𝑊 𝑡)−∇𝑓𝜉𝑡+1(𝑊

𝑡)
)︀⃦⃦2

F
|ℱ 𝑡+1

]︁
≤ (1− 𝑏)2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+ 2𝑏2E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓(𝑊 𝑡+1)
⃦⃦2

F
|ℱ 𝑡+1

]︁
+2(1− 𝑏)2E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓𝜉𝑡+1(𝑊
𝑡)−∇𝑓(𝑊 𝑡+1) +∇𝑓(𝑊 𝑡)

⃦⃦2

F
|ℱ 𝑡+1

]︁
≤ (1− 𝑏)2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+ 2𝑏2E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓(𝑊 𝑡+1)
⃦⃦2

F
|ℱ 𝑡+1

]︁
+2(1− 𝑏)2E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓𝜉𝑡+1(𝑊
𝑡)
⃦⃦2

F
|ℱ 𝑡+1

]︁
≤ (1− 𝑏)2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+ 2(1− 𝑏)2𝐿2

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2

F
+ 2𝑏2𝜎2,

where in the last inequality we used smoothness of 𝑓𝜉 and bounded variance assumption. Taking
math expectation, we conclude the proof.

H.3.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 13. Let Assumptions 1, 2, 3, and 5 hold, and let the stepsize satisfy 0 < 𝛾 ≤
1

𝐿

(︂
1+

√︁
2𝜆

𝑝
max(1−𝑏)2

𝑏

)︂ . Then the iterates of Bernoulli-LoRA-MVR (Algorithm 5) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓*)

𝜆𝑝
min𝛾𝑇

+

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

𝑏(2− 𝑏)𝑇
· 𝜆

𝑝
max

𝜆𝑝
min

+
2𝑏𝜎2

2− 𝑏
· 𝜆

𝑝
max

𝜆𝑝
min

, (112)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, ̃︁𝑊𝑇 is drawn uniformly at

random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

2𝑏(2− 𝑏)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (113)

By Lemma 12 and Lemma 13, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑏)2𝜆𝑝
max

2𝑏(2− 𝑏)
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑏)2𝐿2𝜆𝑝

max

2𝑏(2− 𝑏)
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑏)2𝐿2𝜆𝑝

max

2𝑏(2− 𝑏)

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

Selecting 0 < 𝛾 ≤ 1

𝐿

(︃
1+

√︂
(1−𝑏)2

𝑏(2−𝑏)
𝜆𝑝
max

)︃ , we obtain

E [Φ𝑡+1] ≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏
.

Summing over 𝑡 from 0 to 𝑇 − 1, we get

𝛾𝜆𝑝
min

2

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ E [Φ0]− E [Φ𝑇] +

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏
𝑇.

Finally, dividing both sides by 𝛾𝜆𝑝
min

2 yields

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2Φ0

𝜆𝑝
min𝛾𝑇

+
2𝑏𝜎2

2− 𝑏
· 𝜆

𝑝
max

𝜆𝑝
min

,

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

where ̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Next we show convergence guarantee for Bernoulli-LoRA-MVR, supposing additionally Assumption 6
holds.

H.3.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 14. Let Assumptions 1, 2, 3, 5, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

⎧⎪⎨⎪⎩ 1

𝐿
(︁
1 +

√︁
2(1−𝑏)2

𝑏(2−𝑏) 𝜆
𝑝
max

)︁ , 𝑏

2𝜇𝜆𝑝
min

⎫⎪⎬⎪⎭ .

Then the iterates of Bernoulli-LoRA-MVR (Algorithm 5) satisfy

E
[︀
𝑓(𝑊𝑇)− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇
Φ0 +

𝑏𝜎2

(2− 𝑏)𝜇
· 𝜆

𝑝
max

𝜆𝑝
min

, (114)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and Φ0 = 𝑓(𝑊 0) − 𝑓* +

𝛾𝜆𝑝
max

𝑏(2−𝑏)

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

𝑏(2− 𝑏)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (115)

By Lemma 12 and Lemma 13, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑏)2𝜆𝑝
max

𝑏(2− 𝑏)
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑏)2𝐿2𝜆𝑝

max

𝑏(2− 𝑏)
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

≤ max

{︂
1− 𝛾𝜇𝜆𝑝

min, 1−
𝑏

2

}︂
E [Φ𝑡] +

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑏)2𝐿2𝜆𝑝

max

𝑏(2− 𝑏)

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used Assumption 6. Selecting positive stepsize 𝛾 satisfying the upper
bound assumed in the theorem statement, we obtain

E [Φ𝑡+1] ≤ (1− 𝛾𝜇𝜆𝑝
min)E [Φ𝑡] +

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

≤ (1− 𝛾𝜇𝜆𝑝
min)

𝑡+1 E [Φ0] +
𝛾𝜆𝑝

max𝑏𝜎
2

2− 𝑏

𝑡∑︁
𝜏=0

(1− 𝛾𝜇𝜆𝑝
min)

𝑡−𝜏

≤ (1− 𝛾𝜇𝜆𝑝
min)

𝑡+1 E [Φ0] +
𝛾𝜆𝑝

max𝑏𝜎
2

2− 𝑏

∞∑︁
𝜏=0

(1− 𝛾𝜇𝜆𝑝
min)

𝜏

= (1− 𝛾𝜇𝜆𝑝
min)

𝑡+1 E [Φ0] +
𝛾𝜆𝑝

max𝑏𝜎
2

(2− 𝑏)𝛾𝜇𝜆𝑝
min

,

where, in the last equation, we used the formula for the sum of a geometric progression.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

H.4 ANALYSIS OF BERNOULLI-LORA-PAGE

Algorithm 6 Bernoulli-LoRA-PAGE

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, a vector 𝐺0 ∈∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛},
scaling factor 𝛼 > 0, chain length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝,

probability 𝑞
2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝑔(𝑊 𝑡) (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

𝐴𝑡
𝑆

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: Sample 𝑖𝑡+1 uniformly at random from [𝑛]

14: 𝐺𝑡+1 =

{︂∇𝑓(𝑊 𝑡+1), with probability 𝑞

𝐺𝑡 +
(︀
∇𝑓𝑖𝑡+1

(𝑊 𝑡+1)−∇𝑓𝑖𝑡+1
(𝑊 𝑡)

)︀
, with probability 1− 𝑞

15: end for

There exist several optimal methods for solving a general non-convex optimization problem, e.g.
SPIDER (Fang et al., 2018) and SARAH (Pham et al., 2020). However, the known lower bound used
to establish their optimality works only in the small data regime. ProbAbilistic Gradient Estimator
(PAGE) (Li et al., 2021) is a very simple and easy to implement algorithm, known for achieving
optimal convergence results in non-convex optimization. PAGE uses the full gradient update with
probability 𝑞𝑡, or reuses the previous gradient with a small adjustment (at a low computational
cost) with probability 1 − 𝑞𝑡. A general version of PAGE on Riemannian manifolds is considered
in (Demidovich et al., 2024a). In this section we present Bernoulli-LoRA-PAGE, a new method within
Bernoulli-LoRA framework, based on PAGE algorithm.

Notice, that the iterates of Bernoulli-LoRA-PAGE (Algorithm 6) can be rewritten in the following
simple way

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

(116)

𝐺𝑡+1 =

{︂∇𝑓(𝑊 𝑡+1), with probability 𝑞

𝐺𝑡 +
(︀
∇𝑓𝑖𝑡+1

(𝑊 𝑡+1)−∇𝑓𝑖𝑡+1
(𝑊 𝑡)

)︀
, with probability 1− 𝑞

(117)

Lemma 14. Let Assumption 3 hold. Then, iterates generated by Bernoulli-LoRA-PAGE

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2
F

]︁
≤ (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+ (1− 𝑞)𝐿2E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

]︁
.

(118)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Proof. Taking the full mathematical expectation, we obtain

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2
F

]︁
(117)
= (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡+1) +

(︀
∇𝑓𝑖𝑡+1(𝑊

𝑡+1)−∇𝑓𝑖𝑡+1(𝑊
𝑡)
)︀⃦⃦2

F

]︁
(13)
= (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+(1− 𝑞)E

[︁⃦⃦(︀
∇𝑓𝑖𝑡+1(𝑊

𝑡+1)−∇𝑓𝑖𝑡+1(𝑊
𝑡)
)︀
−
(︀
∇𝑓(𝑊 𝑡+1)−∇𝑓(𝑊 𝑡)

)︀⃦⃦2
F

]︁
≤ (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+(1− 𝑞)E

[︁⃦⃦
∇𝑓𝑖𝑡+1(𝑊

𝑡+1)−∇𝑓𝑖𝑡+1(𝑊
𝑡)
⃦⃦2
F

]︁
≤ (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+ (1− 𝑞)𝐿2E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

]︁
,

where in the last inequality we used smoothness of each 𝑓𝑖.

H.4.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 15. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy

0 < 𝛾 ≤ 1

𝐿
(︁
1 +

√︁
1−𝑞
𝑞 𝜆𝑝

max

)︁ .
Then the iterates of PAGE-Bernoulli-LoRA (Algorithm 6) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓*)

𝜆𝑝
min𝛾𝑇

+ 𝑞

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

𝑇
· 𝜆

𝑝
max

𝜆𝑝
min

, (119)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, ̃︁𝑊𝑇 is drawn uniformly at

random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

2𝑞

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (120)

By Lemma 12 and Lemma 14, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max(1− 𝑞)

2𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max(1− 𝑞)𝐿2

2𝑞
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ E [Φ𝑡]−

𝛾𝜆𝑝
min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑞)𝐿2𝜆𝑝

max

2𝑞

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

Selecting 0 < 𝛾 ≤ 1

𝐿
(︁
1+
√︁

1−𝑞
𝑞 𝜆𝑝

max

)︁ , we obtain

E [Φ𝑡+1] ≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
.

Summing over 𝑡 from 0 to 𝑇 − 1, we get

𝛾𝜆𝑝
min

2

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ E [Φ0]− E [Φ𝑇] .

Finally, dividing both sides by 𝛾𝜆𝑝
min

2 yields

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2Φ0

𝛾𝜆𝑝
min𝑇

.

where ̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

H.4.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 16. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

⎧⎨⎩ 1

𝐿
(︁
1 + 2

√︁
1−𝑞
𝑞 𝜆𝑝

max

)︁ , 𝑞

2𝜇𝜆𝑝
min

⎫⎬⎭ .

Then the iterates of Bernoulli-LoRA-PAGE (Algorithm 6) satisfy
E
[︀
𝑓(𝑊𝑇)− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0, (121)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min, and Φ0 = 𝑓(𝑊 0)− 𝑓* +
𝛾𝜆𝑝

max

𝑞

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

𝑞

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (122)

By Lemma 12 and Lemma 14, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑞)𝜆𝑝
max

𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑞)𝐿2𝜆𝑝

max

𝑞
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ (1− 𝛾𝜇𝜆𝑝

min)E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀+ (︁1− 𝑞

2

)︁ 𝛾𝜆𝑝
max

𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑞)𝐿2𝜆𝑝

max

𝑞

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used Assumption 6. Selecting 0 < 𝛾 ≤

min

{︃
1

𝐿
(︁
1+2

√︁
1−𝑞
𝑞 𝜆𝑝

max

)︁ , 𝑞
2𝜇𝜆𝑝

min

}︃
, we obtain

E [Φ𝑡+1] ≤ (1− 𝛾𝜇𝜆𝑝
min)E [Φ𝑡] .

Unrolling the recursion, we obtain
E [Φ𝑇] ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

I PROOFS FOR FEDERATED LEARNING EXTENSIONS

In recent years, distributed optimization problems and algorithms have become a focal point in the
Machine Learning (ML) community. This surge in interest is driven by the need to train modern deep
neural networks, which often involve billions of parameters and massive datasets (Brown et al., 2020;
Kolesnikov et al., 2020). To achieve practical training times (Li, 2020), parallelizing computations,
such as stochastic gradient evaluations, has emerged as a natural solution, leading to the widespread
adoption of distributed training algorithms (Goyal et al., 2017; You et al., 2019; Le Scao et al., 2023).
Additionally, distributed methods are crucial when data is inherently distributed across multiple
devices or clients, often accompanied by privacy constraints—a common scenario in Federated
Learning (FL) (Konečnỳ et al., 2016; McMahan et al., 2016; Kairouz et al., 2019; Demidovich et al.,
2024b; Sadiev et al., 2024; Yi et al., 2024).

We develop several FL methods within the Bernoulli-LoRA framework and provide a convergence
analysis for them.

I.1 ANALYSIS OF FED-BERNOULLI-LORA-QGD

Algorithm 7 Fed-Bernoulli-LoRA-QGD

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0, chain
length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probabilities 𝑝 and 𝑞

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: for any client 𝑙 ∈ [𝑀] in parallel do
4: Compute gradient ∇𝑓𝑙(𝑊

𝑡+1) and send compressed version 𝐺𝑡
𝑙 = 𝒬𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)
)︀

to the
server

5: end for

6: 𝐺𝑡 = 1
𝑀

𝑀∑︀
𝑙=1

𝐺𝑡
𝑙

7: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
8: if 𝑐𝑡 = 1 then
9: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

10: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

12: else
13: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

14: 𝐵̂𝑡 = −𝜂𝐺𝑡 (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

15: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

16: end if
17: Broadcast 𝑊 𝑡+1 to each client 𝑙 ∈ [𝑀]
18: end for

Parallel implementations of SGD have become a prominent area of study due to their impressive
scalability. However, one of the primary challenges in parallelizing SGD lies in the substantial
communication overhead required to exchange gradient updates across nodes. To address this,
numerous lossy compression techniques have been developed, enabling nodes to transmit quantized
gradients instead of full gradients. While these methods often work well in practice, they are not
universally reliable and may fail to ensure convergence.

To overcome these limitations, Quantized SGD (QSGD) by Alistarh et al. (2017) introduces a family
of compression techniques that provide both theoretical convergence guarantees and strong empirical
performance. QSGD offers a flexible mechanism for balancing communication bandwidth and
convergence speed. By adjusting the number of bits transmitted per iteration, nodes can reduce
bandwidth usage, albeit at the potential cost of increased variance in the gradient estimates. Different
variants of QSGD were considered by Horváth et al. (2022); Wen et al. (2017); Panferov et al. (2024).

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

We consider the following distributed optimization problem:

min
𝑊∈R𝑚×𝑛

1

𝑀

𝑀∑︁
𝑙=1

𝑓𝑙(𝑊),

where 𝑀 represents the number of clients. In Federated Learning, a primary bottleneck is the
communication overhead between clients and the central server. A common approach to mitigate this
issue is communication compression.

Definition 2. A randomized operator 𝒬 : R𝑚×𝑛 → R𝑚×𝑛 is called an unbiased compression
operator (or compressor) if there exists a constant 𝜔 > 0 such that, for any matrix 𝑊 ∈ R𝑚×𝑛 , the
following conditions hold:

E[𝒬(𝑊)] = 𝑊, and E
[︁
‖𝒬(𝑊)−𝑊‖2F

]︁
≤ 𝜔 ‖𝑊‖2F . (123)

To analyze the optimization process, we introduce the following assumption regarding function
dissimilarity:

Assumption 11. Let 𝑓* := inf𝑊 𝑓(𝑊) and 𝑓*
𝑙 := inf𝑊 𝑓𝑙 for each 𝑙 ∈ [𝑀]. In the non-convex

case, the difference at the optimum is defined as:

∆* := 𝑓* − 1

𝑀

𝑀∑︁
𝑙=1

𝑓*
𝑙 ≥ 0. (124)

This assumption quantifies the discrepancy between the global optimal function value and the average
of the local optimal function values between the clients.

To start convergence analysis, we rewrite the updates for 𝑊 𝑡 and 𝐺𝑡 generated by Fed-Bernoulli-
LoRA-QGD (Algorithm 7) as follows

𝐺𝑡 =
1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
; (125)

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

. (126)

To establish the convergence guarantee for Fed-Bernoulli-LoRA-QGD (Algorithm 7), we first demon-
strate that the gradient estimator 𝐺𝑡 satisfies Assumption 4. Once this is verified, the convergence
rate follows directly using the same reasoning as in the proof of Theorem 2.

Lemma 15. Let Assumptions 2, 3, and 11 hold. Then, 𝐺𝑡 defined in Algorithm 7 (see (125)) satisfies
Assumption 4 with the following constants:

𝐴1 =
𝐿𝜔

𝑀
, 𝐵1 = 1, 𝐶1 = 2

𝐿𝜔∆*

𝑀
.

Proof. First, we show 𝐺𝑡 is an unbiased estimator of ∇𝑓(𝑊 𝑡):

E
[︀
𝐺𝑡|𝑊 𝑡

]︀
=

1

𝑀

𝑀∑︁
𝑙=1

E
[︀
𝒬𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
|𝑊 𝑡

]︀ (123)
=

1

𝑀

𝑀∑︁
𝑙=1

∇𝑓𝑙(𝑊
𝑡) = ∇𝑓(𝑊 𝑡).

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Now we establish that 𝐺𝑡 satisfies Assumption 4. Taking the conditional expectation with respect to
𝑊 𝑡, we have

E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
= E

⎡⎣⃦⃦⃦⃦⃦ 1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
−∇𝑓(𝑊 𝑡) +∇𝑓(𝑊 𝑡)

⃦⃦⃦⃦
⃦
2

F

|𝑊 𝑡

⎤⎦
(13)
= E

⎡⎣⃦⃦⃦⃦⃦ 1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
−∇𝑓(𝑊 𝑡)

⃦⃦⃦⃦
⃦
2

F

|𝑊 𝑡

⎤⎦+
⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

=
1

𝑀2

𝑀∑︁
𝑙=1

E
[︁⃦⃦

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
−∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F
|𝑊 𝑡

]︁
+
⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

(123)
≤ 𝜔

𝑀2

𝑀∑︁
𝑙=1

⃦⃦
∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F
+
⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

(*)
≤ 2𝐿𝜔

𝑀2

𝑀∑︁
𝑙=1

(︀
𝑓𝑙(𝑊

𝑡)− 𝑓*
𝑙

)︀
+
⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

= 2
𝐿𝜔

𝑀

(︀
𝑓(𝑊 𝑡)− 𝑓*)︀+ ⃦⃦∇𝑓(𝑊 𝑡)

⃦⃦2
F
+ 2

𝐿𝜔

𝑀

(︃
𝑓* − 1

𝑀

𝑀∑︁
𝑙=1

𝑓*
𝑙

)︃
⏟ ⏞

:=Δ*

,

where in (*) we used smoothness of each 𝑓𝑙 Thus, we have shown that 𝐺𝑡 satisfies Assumption 4
with following constants

𝐴1 =
𝐿𝜔

𝑀
, 𝐵1 = 1, 𝐶1 = 2

𝐿𝜔∆*

𝑀
.

I.1.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 17. Let Assumptions 1 2, and 3 hold, and stepsize satisfy

0 < 𝛾 ≤ min

⎧⎨⎩ 1

𝐿
√︁

𝜔
𝑀 𝜆𝑝

max𝑇
,
1

𝐿

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1
⎫⎬⎭ .

Then iterates generated by Fed-Bernoulli-LoRA-QGD (Algorithm 7) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 6(𝑓(𝑊 0)− 𝑓*)

𝛾𝜆𝑝
min𝑇

+
2𝛾𝐿𝜔∆*

𝑀

𝜆𝑝
max

𝜆𝑝
min

,

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and ̃︁𝑊𝑇 is chosen at

random from
{︀
𝑊 0,𝑊 1, . . . ,𝑊𝑇−1

}︀
with probabilities { 𝑤𝑡

𝒲𝑇−1
}𝑇−1
𝑡=0 , where 𝑤𝑡 =

𝑤𝑡−1

(1+𝛾2𝐿2𝜆𝑝
max𝜔/𝑀)

,

𝒲𝑇−1 =
∑︀𝑇−1

𝑡=0 𝑤𝑡, and 𝑤−1 > 0.

Proof. By Lemma 15, and Theorem 2, we directly obtain the statement of the theorem.

I.1.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 18. Let Assumptions 1, 2, 3, and 6 hold, and stepsize satisfy

0 < 𝛾 ≤ min

{︃
𝜇

2𝐿2𝜔/𝑀

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1

,
2

𝜇𝜆𝑝
min

,
1

𝐿

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1
}︃
.

Then iterates generated by Fed-Bernoulli-LoRA-QGD (Algorithm 7) satisfy

E
[︀
𝑓(𝑊𝑇)− 𝑓*]︀ ≤ (︂1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑇 (︀
𝑓(𝑊 0)− 𝑓*)︀+ 2𝛾𝐿2

𝜇
· 𝜔

𝑀
· 𝜆

𝑝
max

𝜆𝑝
min

,

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1− 𝑝)𝜆𝐻𝐴
max.

Proof. By Lemma 15, and Theorem 12, we directly obtain the statement of the theorem.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

I.2 ANALYSIS OF FED-BERNOULLI-LORA-MARINA

Algorithm 8 Fed-Bernoulli-LoRA-MARINA

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, {𝐺0
𝑙 }𝑙∈[𝑀] ∈ R𝑚×𝑛 rank 𝑟 ≪ min{𝑚,𝑛},

scaling factor 𝛼 > 0, chain length 𝑇 , sketch distribution 𝒟𝐵
𝑆 or 𝒟𝐴

𝑆 , Bernoulli probabilities 𝑝
and 𝑞

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝐺𝑡 (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: Broadcast 𝑊 𝑡+1 to each client 𝑙 ∈ [𝑀]
14: Sample 𝑠𝑡 ∼ Be(𝑞)
15: for any client 𝑙 ∈ [𝑀] in parallel do
16: Compute gradient ∇𝑓𝑙(𝑊

𝑡+1)

17: 𝐺𝑡+1
𝑙 =

{︂∇𝑓𝑙(𝑊
𝑡+1), with probability 𝑞

𝐺𝑡
𝑙 +𝒬𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−∇𝑓𝑙(𝑊
𝑡)
)︀
, with probability 1− 𝑞

18: Send 𝐺𝑡+1
𝑙 to the server

19: end for

20: 𝐺𝑡+1 = 1
𝑀

𝑀∑︀
𝑙=1

𝐺𝑡+1
𝑙

21: end for

MARINA (Gorbunov et al., 2021) is an advanced method that significantly enhances communication
efficiency in non-convex distributed learning across heterogeneous datasets. Its core innovation lies
in a communication reduction mechanism that compresses the differences between gradients. The
communication complexity bounds for MARINA are known to be better than those of all previous
first-order methods. Non-smooth convex analysis of MARINA with different stepsize strategies can
be found in (Sokolov & Richtárik, 2024). This section is devoted to Fed-Bernoulli-LoRA-MARINA
(Algorithm 8), a method within the Bernoulli-LoRA framework, based on MARINA algorithm.

In order to start convergence analysis, we rewrite the updates 𝑊 𝑡, 𝐺𝑡 generated by Fed-Bernoulli-
LoRA-MARINA (Algorithm 8):

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

(127)

𝐺𝑡+1
𝑙 =

{︂∇𝑓𝑙(𝑊
𝑡+1), with probability 𝑞

𝐺𝑡
𝑙 +𝒬𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−∇𝑓𝑙(𝑊
𝑡)
)︀
, with probability 1− 𝑞

(128)

𝐺𝑡+1 =
1

𝑀

𝑀∑︁
𝑙=1

𝐺𝑡+1
𝑙 . (129)

Lemma 16. Let Assumption 3 hold. Then iterates generated by Fed-Bernoulli-LoRA-MARINA satisfy

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2
F

]︁
≤ (1−𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+(1−𝑞)

𝜔𝐿2

𝑀
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

(130)

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Proof. Taking the conditional expectation with respect to 𝑊 𝑡+1 and defining 𝐷𝑡+1
𝑙 := ∇𝑓𝑙(𝑊

𝑡+1)−
∇𝑓𝑙(𝑊

𝑡), 𝐷𝑡+1 = 1
𝑀

∑︀𝑀
𝑙=1 𝐷

𝑡+1
𝑙 , we obtain

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2

F
|𝑊 𝑡+1

]︁
= (1− 𝑞)E

⎡⎣⃦⃦⃦⃦⃦𝐺𝑡 −∇𝑓(𝑊 𝑡) +
1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−∇𝑓𝑙(𝑊
𝑡)
)︀⃦⃦⃦⃦⃦

2

F

|𝑊 𝑡+1

⎤⎦
(13)
= (1− 𝑞)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+ (1− 𝑞)E

⎡⎣⃦⃦⃦⃦⃦ 1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
𝐷𝑡+1

𝑙

)︀
−𝐷𝑡+1

⃦⃦⃦⃦
⃦
2

F

| 𝑊 𝑡+1

⎤⎦
= (1− 𝑞)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

1− 𝑞

𝑀2

𝑀∑︁
𝑚=1

E
[︁⃦⃦

𝒬𝑡
𝑙

(︀
𝐷𝑡+1

𝑙

)︀
−𝐷𝑡+1

𝑙

⃦⃦2

F
|𝑊 𝑡+1

]︁
(123)
≤ (1− 𝑞)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

(1− 𝑞)𝜔

𝑀2

𝑀∑︁
𝑙=1

⃦⃦
∇𝑓𝑙(𝑊

𝑡+1)−∇𝑓𝑙(𝑊
𝑡)
⃦⃦2

F

≤ (1− 𝑞)
⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

(1− 𝑞)𝜔𝐿2

𝑀

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2

F
,

where in the last inequality we used that the gradient of each 𝑓𝑙 is Lipschitz continuous.

I.2.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 19. Let Assumptions 1, 2, 3, and hold, and let the stepsize satisfy

0 < 𝛾 ≤ 1

𝐿
(︁
1 +

√︁
𝜆𝑝
max

1−𝑞
𝑞 · 𝜔

𝑀

)︁ .
Then the iterates of Fed-Bernoulli-LoRA-MARINA (Algorithm 8) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2

(︀
𝑓(𝑊 0)− 𝑓*)︀
𝛾𝜆𝑝

min𝑇
+

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

𝑞𝑇
· 𝜆

𝑝
max

𝜆𝑝
min

, (131)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1− 𝑝)𝜆𝐻𝐴
max, and ̃︁𝑊𝑇 is drawn uniformly

at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

2𝑞

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (132)

By Lemma 12 and Lemma 16, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑞)𝜆𝑝
max

2𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑞)𝐿2𝜔𝜆𝑝

max

2𝑞𝑀
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ E [Φ𝑡]−

𝛾𝜆𝑝
min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑞)𝐿2𝜔𝜆𝑝

max

2𝑞𝑀

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

Selecting 0 < 𝛾 ≤ 1

𝐿
(︁
1+
√︁

𝜆𝑝
max

1−𝑞
𝑞 · 𝜔

𝑀

)︁ , we obtain

E [Φ𝑡+1] ≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
.

Summing over, we get

𝛾𝜆𝑝
min

2

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ E [Φ0]− E [Φ𝑇] .

Finally, we derive

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2Φ0

𝜆𝑝
min𝛾𝑇

.

where ̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

I.2.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 20. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

⎧⎨⎩ 1

𝐿
(︁
1 +

√︁
2𝜆𝑝

max
1−𝑞
𝑞 · 𝜔

𝑀

)︁ , 𝑞

2𝜇𝜆𝑝
min

⎫⎬⎭ .

Then the iterates of Fed-Bernoulli-LoRA-MARINA (Algorithm 8) satisfy
E
[︀
𝑓(𝑊𝑇)− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0, (133)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and Φ0 = 𝑓(𝑊 0) − 𝑓* +

𝛾𝜆𝑝
max

𝑞

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

𝑞

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (134)

By Lemma 12 and Lemma 14, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑞)𝜆𝑝
max

𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑞)𝐿2𝜆𝑝

max

𝑞
· 𝜔

𝑀
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ (1− 𝛾𝜇𝜆𝑝

min)E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀+ (︁1− 𝑞

2

)︁ 𝛾𝜆𝑝
max

𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑞)𝐿2𝜆𝑝

max

𝑞
· 𝜔

𝑀

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used Assumption 6. Selecting 0 < 𝛾 ≤

min

⎧⎨⎩ 1

𝐿

(︂
1+
√︁

2(1−𝑞)𝜔
𝑞𝑀 𝜆𝑝

max

)︂ , 𝑞
2𝜇𝜆𝑝

min

⎫⎬⎭, we obtain

E [Φ𝑡+1] ≤ (1− 𝛾𝜇𝜆𝑝
min)E [Φ𝑡] .

Taking recursion, we have
E [Φ𝑇] ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

I.3 ANALYSIS OF FED-BERNOULLI-LORA-EF21

Algorithm 9 Fed-Bernoulli-LoRA-EF21

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, {𝐺0
𝑙 }𝑙∈[𝑀] ∈ R𝑚×𝑛 rank 𝑟 ≪ min{𝑚,𝑛},

scaling factor 𝛼 > 0, chain length 𝑇 , sketch distribution 𝒟𝐵
𝑆 or 𝒟𝐴

𝑆 , Bernoulli probability 𝑝
2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝐺𝑡 (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: Broadcast 𝑊 𝑡+1 to each client 𝑙 ∈ [𝑀]
14: for any client 𝑙 ∈ [𝑀] in parallel do
15: Compute gradient ∇𝑓𝑙(𝑊

𝑡+1)
16: 𝐺𝑡+1

𝑙 = 𝐺𝑡
𝑙 + 𝒞𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−𝐺𝑡
𝑙

)︀
17: Send 𝐺𝑡+1

𝑙 to the server
18: end for

19: 𝐺𝑡+1 = 1
𝑀

𝑀∑︀
𝑙=1

𝐺𝑡+1
𝑙

20: end for

Error Feedback (EF) (Seide et al., 2014; Stich et al., 2018; Alistarh et al., 2018; Richtárik et al.,
2021; Fatkhullin et al., 2021; Richtárik et al., 2022; Khirirat et al., 2024), often referred to as error
compensation, is an exceptionally influential mechanism for stabilizing convergence in distributed
training of supervised machine learning models, particularly when contractive communication
compression techniques are employed. We design Fed-Bernoulli-LoRA-EF21 within the Bernoulli-
LoRA framework, based on EF-21 method. Our theoretical analysis, built on standard assumptions,
applies to distributed training in heterogeneous data settings and achieves the best known convergence
rates.

Compared to Fed-Bernoulli-LoRA-MARINA, in this section we work with the wider class of compres-
sion operators called contractive.
Definition 3. A randomized operator 𝒞 : R𝑚×𝑛 → R𝑚×𝑛 is called a contractive compression
operator (compressor) if it satisfies the following condition: there exists a constant 0 < 𝛽 ≤ 1 such
that

E
[︁
‖𝒞 (𝑊)−𝑊‖2F

]︁
≤ (1− 𝛽) ‖𝑊‖2F , ∀ 𝑊 ∈ R𝑚×𝑛. (135)

The iterates of Fed-Bernoulli-LoRA-EF21 can be rewritten as follows

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

(136)

𝐺𝑡+1
𝑙 = 𝐺𝑡

𝑙 + 𝒞𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−𝐺𝑡
𝑙

)︀
, ∀ 𝑙 ∈ [𝑀] (137)

𝐺𝑡+1 =
1

𝑀

𝑀∑︁
𝑙=1

𝐺𝑡+1
𝑙 . (138)

Lemma 17. Let Assumption 3 hold. Then for the iterates generated by Fed-Bernoulli-LoRA-EF21
(Algorithm 9)satisfy

E
[︁⃦⃦

𝐺𝑡+1
𝑙 −∇𝑓𝑙(𝑊

𝑡+1)
⃦⃦2
F

]︁
≤
√︀
1− 𝛽E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F

]︁
+

(1− 𝛽)𝐿2

1−√
1− 𝛽

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Proof. For each 𝑙 ∈ [𝑀] we have

E
[︁⃦⃦

𝐺𝑡+1
𝑙 −∇𝑓𝑙(𝑊

𝑡+1)
⃦⃦2
F

]︁
(137),(138)

= E
[︁
E
[︁⃦⃦

𝒞𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−𝐺𝑡
𝑙

)︀
−
(︀
∇𝑓𝑙(𝑊

𝑡+1)−𝐺𝑡
𝑙

)︀⃦⃦2
F
|𝐺𝑡+1

𝑙 ,𝑊 𝑡+1
]︁]︁

(135)
≤ (1− 𝛽)E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡+1)

⃦⃦2
F

]︁
≤ (1− 𝛽) (1 + 𝜃)E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F

]︁
+(1− 𝛽)

(︂
1 +

1

𝜃

)︂
E
[︁⃦⃦

∇𝑓𝑙(𝑊
𝑡+1)−∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
,

where in the last inequality we used ‖𝑈 + 𝑉 ‖2F ≤ (1 + 𝜃) ‖𝑈‖2F +
(︀
1 + 1

𝜃

)︀
‖𝑉 ‖2F for any constant

𝜃 > 0, and matrices 𝑈,𝑉 ∈ R𝑚×𝑛. Taking 𝜃 = 1√
1−𝛽

− 1, we acquire

E
[︁⃦⃦

𝐺𝑡+1
𝑙 −∇𝑓𝑙(𝑊

𝑡+1)
⃦⃦2
F

]︁
≤

√︀
1− 𝛽E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F

]︁
+

1− 𝛽

1−√
1− 𝛽

E
[︁⃦⃦

∇𝑓𝑙(𝑊
𝑡+1)−∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
≤

√︀
1− 𝛽E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F

]︁
+

(1− 𝛽)𝐿2

1−√
1− 𝛽

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used that the gradient of each 𝑓𝑙 is Lipschitz continuous. Summing
over 𝑙 from 1 to 𝑀 , we finish the proof.

I.3.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 21. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy

0 < 𝛾 ≤ 1

𝐿

(︂
1 +

√
𝜆𝑝
max(1−𝛽)

1−
√
1−𝛽

)︂ .

Then the iterates of Fed-Bernoulli-LoRA-EF21 (Algorithm 9) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓*)

𝛾𝜆𝑝
min𝑇

+
𝒢0

(1−√
1− 𝛽)𝑇

· 𝜆
𝑝
max

𝜆𝑝
min

, (139)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min+(1−𝑝)𝜆𝐻𝐴

min, and 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max+(1−𝑝)𝜆𝐻𝐴
max, ̃︁𝑊𝑇 is drawn uniformly at

random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}, and 𝒢0 := 1
𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2
F

.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

2(1−√
1− 𝛽)

· 1

𝑀

𝑀∑︁
𝑙=1

⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F
. (140)

By Lemma 12 and Lemma 17, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max

√
1− 𝛽

2(1−√
1− 𝛽)

· 1

𝑀

𝑀∑︁
𝑙=1

E
[︁⃦⃦

𝐺𝑡
𝑙 −∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max𝐿
2(1− 𝛽)

2(1−√
1− 𝛽)2

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ E [Φ𝑡]−

𝛾𝜆𝑝
min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾𝜆𝑝

max𝐿
2(1− 𝛽)

2(1−√
1− 𝛽)2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

Selecting 0 < 𝛾 ≤ 1

𝐿

(︂
1+

√
𝜆
𝑝
max(1−𝛽)

1−
√

1−𝛽

)︂ , we obtain

E [Φ𝑡+1] ≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
.

Summing over 𝑡 from 0 to 𝑇 − 1, we get

𝛾𝜆𝑝
min

2

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ E [Φ0]− E [Φ𝑇] .

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

Finally, dividing both sides by 𝛾𝜆𝑝
min

2 yields

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇)
⃦⃦⃦2
F

]︂
≤ 2Φ0

𝛾𝜆𝑝
min𝑇

.

where ̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

I.3.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 22. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

⎧⎪⎪⎨⎪⎪⎩
1

𝐿

(︂
1 +

√
2𝜆𝑝

max(1−𝛽)

1−
√
1−𝛽

)︂ ,
1 +

√
1− 𝛽

2𝜇𝜆𝑝
min

⎫⎪⎪⎬⎪⎪⎭
. Then the iterates of Fed-Bernoulli-LoRA-EF21 (Algorithm 9) satisfy

E
[︀
𝑓(𝑊𝑇)− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0, (141)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and Φ0 = 𝑓(𝑊 0) − 𝑓* +

𝛾𝜆𝑝
max

1−
√
1−𝛽

1
𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2
F
.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

1−√
1− 𝛽

· 1

𝑀

𝑀∑︁
𝑙=1

⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F
. (142)

By Lemma 12 and Lemma 17, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
· E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max

√
1− 𝛽

1−√
1− 𝛽

· 1

𝑀

𝑀∑︁
𝑙=1

E
[︁⃦⃦

𝐺𝑡
𝑙 −∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max(1− 𝛽)𝐿2

(1−√
1− 𝛽)2

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ (1− 𝛾𝜇𝜆𝑝

min)E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀+ 𝛾𝜆𝑝

max

(︀
1 +

√
1− 𝛽

)︀
2(1−√

1− 𝛽)
· 1

𝑀

𝑀∑︁
𝑙=1

E
[︁⃦⃦

𝐺𝑡
𝑙 −∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾𝜆𝑝

max(1− 𝛽)𝐿2

(1−√
1− 𝛽)2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used Assumption 6. Selecting 0 < 𝛾 ≤

min

⎧⎨⎩ 1

𝐿

(︂
1+

√
2𝜆

𝑝
max(1−𝛽)

1−
√

1−𝛽

)︂ , 1+
√
1−𝛽

2𝜇𝜆𝑝
min

⎫⎬⎭, we obtain

E [Φ𝑡+1] ≤ (1− 𝛾𝜇𝜆𝑝
min)E [Φ𝑡] .

Taking the recursion, we have
E [Φ𝑇] ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

complete it was that from new reps

J EXPERIMENTS: MISSING DETAILS

In this section, we provide additional details regarding the experimental setting from Section 7.

J.1 LINEAR REGRESSION WITH NON-CONVEX REGULARIZATION

Full gradient setting. We begin by evaluating these methods in a standard optimization setting where
full gradients are computed at each iteration. In this regime, we compare Bernoulli-LoRA-GD and
RAC-LoRA-GD.

0 500 1000 1500 2000 2500 3000
Iterations

103

100

10−3

10−6

10−9

10−12

10−15

‖∇
f

(x
t)
‖2

RAC-LoRA-GD(A)

RAC-LoRA-GD(B)

Bernoulli-LoRA-GD(p=0.2)

Bernoulli-LoRA-GD(p=0.6)

Bernoulli-LoRA-GD(p=0.8)

(a) Rank 𝑟 = 1.

0 250 500 750 1000 1250 1500
Iterations

103

100

10−3

10−6

10−9

10−12

10−15

‖∇
f

(x
t)
‖2

RAC-LoRA-GD(A)

RAC-LoRA-GD(B)

Bernoulli-LoRA-GD(p=0.2)

Bernoulli-LoRA-GD(p=0.6)

Bernoulli-LoRA-GD(p=0.8)

(b) Rank 𝑟 = 2.

Figure 2: Comparison of RAC-LoRA-GD and Bernoulli-LoRA-GD on linear regression fine-tuning.
Curves with 𝑝 = 0.01,0.2, . . . indicate Bernoulli-LoRA-GD sampling parameters. RAC-LoRA-GD(A)
trains 𝐵 after resampling 𝐴, while RAC-LoRA-GD(B) does the reverse. All methods use 𝛾 = 𝑐/𝐿̂ with
𝑐 ∈ {1,2} tuned individually.

Figure 2 shows that, across all tested probabilities, Bernoulli-LoRA-GD and both variants of RAC-
LoRA-GD exhibit similar convergence on the linear regression task. This numerical stability suggests
that the ratio of updates between 𝐴 and 𝐵 has little effect on the performance for this problem. We
also observe that higher ranks 𝑟 produce faster convergence, which aligns with the theoretical 𝑟/𝑛
factor in our analysis.

Hardware and Software. All algorithms were implemented in Python 3.10 and executed on three
different CPU cluster node types:

1. AMD EPYC 7702 64-Core,
2. Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz,
3. Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

Implementation Details. For each method, we set the stepsize to 𝛾 = 𝑐/𝐿̂, where 𝑐 is a constant
multiplier tuned individually for every algorithm. Convergence was monitored by computing the
squared norm of the full gradient at each iteration. The algorithms terminated when either a maximum
iteration limit was reached or the criterion ‖∇𝑓(𝑥𝑡)‖22 ≤ 5 × 10−16 was satisfied. To ensure
reliability, each method was run 20 times using different random seeds, and all figures show the
median performance over these trials.

Datasets. The synthetic pre-training dataset (̃︀𝐷,̃︀𝑏) was generated using

sklearn.datasets.make regression

with moderate noise and a controlled rank structure:

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

1 wt_D, wt_b = make_regression(n_samples=90000, n_features=4096,
2 n_informative=4096, noise=20.0,
3 bias=0.0, tail_strength=0.8,
4 effective_rank=64, random_state=42)

followed by standard scaling. The fine-tuning dataset (𝐷̂, 𝑏̂) was produced similarly:

1 h_D, h_b = make_regression(n_samples=10000, n_features=4096,
2 n_informative=4096//2, noise=50.0,
3 bias=10.0, tail_strength=0.9,
4 effective_rank=32, random_state=84)

and subsequently adjusted with a biased scaling (mean 1, standard deviation 2).

LLM USE ACKNOWLEDGMENT

In this paper, we used large language models (LLMs) to assist with grammar and wording during
the preparation of the manuscript. We did not use LLMs to derive convergence theorems, generate
empirical plots, or search for citations. This usage is in accordance with two primary LLM-related
policies.

63

	Introduction
	Motivation
	Problem Statement
	Contributions
	Bernoulli-LoRA Framework
	Reformulation as a Projected Gradient Step

	Convergence Results
	Experiments
	Linear Regression with Non-convex Regularization.
	MLP on MNIST

	Appendix
	Basic Facts and Useful Inequalities
	Notation
	Discussion on Positive Expected Projection (Assumption 1)
	Rotational and signed-permutation symmetries
	Gaussian initialization
	i.i.d. uniform initialization on [-a,a]
	Kaiming-uniform initialization
	Random Orthonormal Sketches via SVD

	Reformulation as a Projected Gradient Step
	Core Algorithmic Variants
	Extensions for Federated Learning
	Proofs for Core Algorithmic Variants
	Analysis of Bernoulli-LoRA-GD
	Convergence for Smooth Non-Convex Functions
	Convergence under Polyak-Lojasiewicz Condition
	Convergence for Non-Smooth Convex Functions

	Analysis of Bernoulli-LoRA-SGD
	Convergence for Smooth Non-Convex Functions
	Convergence under Polyak-Lojasiewicz Condition

	Analysis of Bernoulli-LoRA-MVR
	Convergence for Smooth Non-Convex Functions
	Convergence under Polyak-Lojasiewicz Condition

	Analysis of Bernoulli-LoRA-PAGE
	Convergence for Smooth Non-Convex Functions
	Convergence under Polyak-Lojasiewicz Condition

	Proofs for Federated Learning Extensions
	Analysis of Fed-Bernoulli-LoRA-QGD
	Convergence for Smooth Non-Convex Functions
	Convergence under Polyak-Lojasiewicz Condition

	Analysis of Fed-Bernoulli-LoRA-MARINA
	Convergence for Smooth Non-Convex Functions
	Convergence under Polyak-Lojasiewicz Condition

	Analysis of Fed-Bernoulli-LoRA-EF21
	Convergence for Smooth Non-Convex Functions
	Convergence under Polyak-Lojasiewicz Condition

	Experiments: Missing Details
	Linear Regression with Non-convex Regularization

