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ABSTRACT

Parameter-efficient fine-tuning (PEFT) has emerged as a crucial approach for adapt-
ing large foundational models to specific tasks, particularly as model sizes continue
to grow exponentially. Among PEFT methods, Low-Rank Adaptation (LoRA) (Hu
et al., 2022) stands out for its effectiveness and simplicity, expressing adaptations as
a product of two low-rank matrices. While extensive empirical studies demonstrate
LoRA’s practical utility, theoretical understanding of such methods remains limited.
Recent work on RAC-LoRA (Malinovsky et al., 2024) took initial steps toward
rigorous analysis. In this work, we introduce Bernoulli-LoRA, a novel theoretical
framework that unifies and extends existing LoRA approaches. Our method intro-
duces a probabilistic Bernoulli mechanism for selecting which matrix to update.
This approach encompasses and generalizes various existing update strategies while
maintaining theoretical tractability. Under standard assumptions from non-convex
optimization literature, we analyze several variants of our framework: Bernoulli-
LoRA-GD, Bernoulli-LoRA-SGD, Bernoulli-LoRA-PAGE, and Bernoulli-LoRA-MVR,
Bernoulli-LoRA-QGD, Bernoulli-LoRA-MARINA, Bernoulli-LoRA-EF21, establishing
convergence guarantees for each variant. Additionally, we extend our analysis
to convex non-smooth functions, providing convergence rates for both constant
and adaptive (Polyak-type) stepsizes. Through extensive experiments on various
tasks, we validate our theoretical findings and demonstrate the practical efficacy of
our approach. This work is a step toward developing theoretically grounded yet
practically effective PEFT methods.

1 INTRODUCTION

Fine-tuning adapts pre-trained models to new datasets, a central task in modern deep learning,
particularly NLP (Peters et al., 2018; Devlin et al., 2019). However, full fine-tuning is computationally
expensive for large models. Parameter-Efficient Fine-Tuning (PEFT) (He et al., 2021) addresses
this by updating only a fraction of parameters (Richtárik & Takáč, 2016; Demidovich et al., 2023a),
matching full fine-tuning performance with significantly lower costs (Radford et al., 2019; Brown
et al., 2020; Han et al., 2024).

Leveraging the low intrinsic dimensionality of pre-trained models (Li et al., 2018; Aghajanyan et al.,
2020), Low-Rank Adaptation (LoRA) (Hu et al., 2022) optimizes updates in a reduced subspace. It
replaces large matrix updates with the product of two trainable low-rank matrices:

𝑊 = 𝑊 0 + 𝛼
𝑟𝐵𝐴,

where 𝑊 0 ∈ R𝑚×𝑛 is fixed, and 𝐵 ∈ R𝑚×𝑟, 𝐴 ∈ R𝑟×𝑛 are trainable (𝑟 ≪ min{𝑚,𝑛}). While
typically initialized with Gaussian 𝐴 and zero 𝐵, other strategies exist (Zhu et al., 2024; Hayou et al.,
2024; Meng et al., 2024; Wang et al., 2025). Beyond improving efficiency (Cherniuk et al., 2023;
Mao et al., 2025), LoRA mitigates catastrophic forgetting and enhances output diversity (Biderman
et al., 2024).

To approach full fine-tuning performance, Xia et al. (2024) introduced Chain of LoRA (COLA). This
framework iteratively builds higher-rank updates from a sequence of low-rank modules at no extra
computational cost. By merging updates into fixed parameters, it yields:

𝑊 = 𝑊 0 + 𝛼
𝑟

𝑇−1∑︀
𝑡=0

𝐵𝑡𝐴𝑡.
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Unlike standard LoRA, COLA uses sequential decompositions to efficiently approximate high-rank
adaptations.

Recent theoretical works analyze LoRA from complementary angles. Jang et al. (2024) prove that
sufficiently high-rank LoRA eliminates spurious local minima in the NTK regime. Kim et al. (2025)
show that training typically converges to a low-rank global minimum or diverges toward high-rank
solutions. In continuous-time settings, Xu et al. (2025) highlight the pivotal role of initialization in
matrix factorization gradient flows, while Dayi & Chen (2025) position low-rank fine-tuning between
lazy training and feature learning.

2 MOTIVATION

Theoretical advances above highlight what happens in specific regimes, but they leave open whether
practical, discrete-time LoRA updates converge under realistic training noise and communication
constraints. This gap motivates our framework: we seek general convergence guarantees for random-
ized low-rank adaptation with stochastic gradients, variance reduction, and federated communication
savings. At the same time, despite their practical success, Low-Rank Adaptation (LoRA) and its
variants like Chain of LoRA (COLA) still lack a unified and practically relevant convergence theory.
LoRA’s re-parameterization makes smooth loss functions non-smooth, creating significant theoretical
hurdles (Sun et al., 2024). Second, existing COLA analysis ignores its core low-rank updates by fo-
cusing on full-rank optimization, thus failing to explain its efficiency (Xia et al., 2024). Consequently,
most LoRA-based methods are heuristics without convergence guarantees, making them sensitive to
hyperparameters (Khodak et al., 2021; Kuang et al., 2024). Malinovsky et al. (2024) even showed
COLA can diverge and introduced RAC-LoRA, the first framework to establish convergence rates
for LoRA-style updates. However, the RAC-LoRA framework is limited. It lacks optimal variance-
reduced techniques for non-convex problems and fails to address advanced Federated Learning (FL)
scenarios incorporating communication compression and error feedback (Alistarh et al., 2018; Wen
et al., 2017; Horváth et al., 2022; Panferov et al., 2024). The need for distributed optimization like
FL is driven by the challenge of training massive models (Brown et al., 2020; Kolesnikov et al., 2020;
Goyal et al., 2017; You et al., 2019; Le Scao et al., 2023). Our work aims to bridge this gap by
extending a theoretically sound LoRA framework to these vital, practical optimization settings. In
the next section, we formalize the optimization problems we study.

3 PROBLEM STATEMENT

Supervised learning is an optimization problem that minimizes a loss function. We focus on this
challenge in fine-tuning, using a general, model-agnostic formulation:

min
Δ𝑊∈R𝑚×𝑛

𝑓(𝑊 0 +∆𝑊 ). (1)

Here, 𝑊 0 represents the pre-trained parameters, ∆𝑊 is the trainable adaptation, and 𝑓 is the
empirical loss. Since 𝑚× 𝑛 is very large, ∆𝑊 requires a simple, trainable structure.

Throughout the paper, we treat 𝑊 0 as a fixed pre-trained model and view 𝑓 as the fine-tuning loss
that already encodes the effect of the pre-training and fine-tuning data distributions (including any
mismatch between them). All of our convergence guarantees are therefore conditional on this given
𝑊 0 and the associated fine-tuning objective 𝑓 . We do not model the representation-learning dynamics
of the pre-training phase, nor do we analyze generalization; our focus is purely on the optimization
behavior of low-rank LoRA-style updates when minimizing the fine-tuning loss.

For our stochastic methods, we consider these objective structures:

• Finite-Sum Setting: The objective is an average over 𝑁 data samples, used in methods like
Bernoulli-LoRA-PAGE:

𝑓(𝑊 0 +∆𝑊 ) =
1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑖(𝑊
0 +∆𝑊 ). (2)

• Expectation Setting: The objective is an expectation over a data distribution 𝒟, for methods
like Bernoulli-LoRA-MVR:

𝑓(𝑊 0 +∆𝑊 ) = E𝜉∼𝒟
[︀
𝑓𝜉(𝑊

0 +∆𝑊 )
]︀
. (3)
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We also address the distributed optimization setting for our proposed Federated Learning (FL)
algorithms (e.g., Fed-Bernoulli-LoRA-QGD). Here, the goal is to minimize a global objective averaged
over 𝑀 clients:

𝑓(𝑊 0 +∆𝑊 ) =
1

𝑀

𝑀∑︁
𝑙=1

𝑓𝑙(𝑊
0 +∆𝑊 ), (4)

where 𝑓𝑙 is the local loss for client 𝑙. The goal is to find ∆𝑊 that minimizes this global objective.

In practical applications, LoRA is often applied to many matrices across multiple layers (e.g., query,
key, value, and feed-forward projections). Our analysis covers this case as well: one can view
all LoRA-modified matrices as being stacked or arranged in block-diagonal form inside a single
𝑊 0 and ∆𝑊 . Because we work with the Frobenius norm and inner product, our assumptions and
convergence results extend verbatim to this concatenated/block-diagonal representation, following
the same abstraction used in Hu et al. (2022); Sun et al. (2024); Malinovsky et al. (2024); Xia et al.
(2024); Zhu et al. (2024).

4 CONTRIBUTIONS

LoRA-based methods are sensitive to hyperparameters (Khodak et al., 2021; Kuang et al., 2024) and re-
quire a stronger theoretical foundation. While Malinovsky et al. (2024) provided an initial framework
with RAC-LoRA, we aim to further advance the theory and versatility of low-rank adaptation.

Low-rank PEFT updates two matrices, 𝐴 and 𝐵, either individually or alternating deterministi-
cally (Malinovsky et al., 2024; Xia et al., 2024; Zhu et al., 2024). Our main contribution, Bernoulli-
LoRA, is a generic framework with a probabilistic update: at each step, a Bernoulli trial selects either
𝐴 or 𝐵 for optimization while the other is fixed. This randomized selection unifies and generalizes
existing update strategies. Similar to COLA (Xia et al., 2024), our framework applies a sequence of
these probabilistic low-rank updates.

Our analysis uses standard non-convex optimization assumptions, like 𝐿-smoothness. We instantiate
Bernoulli-LoRA with several algorithms, from foundational gradient methods to advanced stochastic,
variance-reduced, and federated learning variants. We establish rigorous convergence guarantees for
each method. Our key contributions include:

◆ Foundational Algorithmic Variants: We establish the framework’s properties with two funda-
mental schemes to understand the interplay between randomized selection and standard descent.

– Bernoulli-LoRA-GD (Algorithm 2) uses full gradients, providing a foundational analysis of
convergence in an idealized setting.

– Bernoulli-LoRA-SGD (Algorithm 4) uses practical stochastic gradients, offering insights into the
interplay of stochasticity and randomized adaptation for large-scale tasks.

◆ Advanced Variance Reduction for Non-Convex Optimization: To counter variance from
stochastic gradients, we develop VR-enhanced variants, providing the first theoretical analysis of
LoRA-type methods with advanced VR schemes in 𝐿-smooth non-convex settings.

– Bernoulli-LoRA-PAGE (Algorithm 6) adapts the optimal and simple PAGE (Li et al., 2021) for
the finite-sum setting (2).

– Bernoulli-LoRA-MVR (Algorithm 5) uses Momentum Variance Reduction inspired by
STORM (Cutkosky & Orabona, 2019) for the expectation setting, proving its effectiveness in
our framework.

◆ Communication-Efficient Federated Learning Extensions: We extend Bernoulli-LoRA to FL,
addressing communication overhead. We provide the first comprehensive analysis of LoRA-type
methods integrated with established communication-saving techniques like quantization, gradient
difference compression, and error feedback.

– Fed-Bernoulli-LoRA-QGD (Algorithm 7) incorporates QSGD-style quantization (Alistarh et al.,
2017; Wen et al., 2017; Horváth et al., 2022; Panferov et al., 2024) to compress gradients and
reduce communication bandwidth.

– Fed-Bernoulli-LoRA-MARINA (Algorithm 8) adapts the MARINA strategy (Gorbunov et al., 2021)
to efficiently compress gradient differences.
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– Fed-Bernoulli-LoRA-EF21 (Algorithm 9) integrates the EF21 error feedback mecha-
nism (Richtárik et al., 2021) to stabilize training with contractive compressors.

◆ Analysis for Non-Smooth Convex Functions: We broaden our framework’s applicability by
providing the first theoretical analysis of LoRA-type methods for non-smooth convex optimization.
We present a version of Bernoulli-LoRA-GD (Algorithm 3) and establish its convergence rates with
different stepsize policies.

5 BERNOULLI-LORA FRAMEWORK

In this section, we introduce the Bernoulli-LoRA framework, a novel and generic approach for low-
rank adaptation. The core idea is to perform a sequence of low-rank updates, where at each step, a
probabilistic choice determines which of the two factor matrices (𝐴 or 𝐵) is trained. This randomized
mechanism, formalized in Algorithm 1, not only provides a flexible and unifying theoretical construct
for existing LoRA-style methods but also allows for a rigorous convergence analysis.

At each iteration, one of the two low-rank matrices is sampled from a fixed distribution and remains
frozen, while the other is trained to minimize the objective. This strategy prevents optimization
from being confined to a fixed subspace, reducing the risk of converging to a suboptimal point. We
formalize these two configurations as Left and Right sketch updates.

Definition 1 (Left and Right Sketch Updates). We define two complementary update rules based on
which factor matrix is sampled from a fixed distribution and which is adjustable. The Left Sketch
and Right Sketch updates are given, respectively, by:

∆𝑊 =
𝛼

𝑟
𝐵𝑆𝐴, with 𝐵𝑆 ∼ 𝒟𝐵 fixed and 𝐴 ∈ R𝑟×𝑛 adjustable, (5)

∆𝑊 =
𝛼

𝑟
𝐵̂𝐴𝑆 , with 𝐴𝑆 ∼ 𝒟𝐴 fixed and 𝐵̂ ∈ R𝑚×𝑟 adjustable, (6)

where 𝒟𝐵 and 𝒟𝐴 are fixed distributions over R𝑚×𝑟 and R𝑟×𝑛 matrices.

Algorithm 1 Bernoulli-LoRA Framework

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0, chain
length 𝑇 , sketch distributions 𝒟𝐵

𝑆 and 𝒟𝐴
𝑆 , Bernoulli probability 𝑝.

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 (Left sketch)

6: Using a chosen optimizer, approximately solve 𝐴𝑡 ≈ argmin𝐴 𝑓(𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴).

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡.
8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 (Right sketch)

10: Using a chosen optimizer, approximately solve 𝐵̂𝑡 ≈ argmin𝐵 𝑓(𝑊 𝑡 + 𝛼
𝑟𝐵𝐴𝑡

𝑆).
11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼

𝑟 𝐵̂
𝑡𝐴𝑡

𝑆 .
12: end if
13: end for

5.1 REFORMULATION AS A PROJECTED GRADIENT STEP

Building upon the work of Malinovsky et al. (2024) on their RAC-LoRA framework, the update steps
in Algorithm 1 can be reformulated as projected gradient steps. The subproblems in lines 6 and 10
are typically solved approximately, for instance, by taking a single step of a suitable optimizer like
Gradient Descent (GD) or its variants. More discussion can be found in Appendix E.

While RAC-LoRA employs a deterministic choice for which matrix to update, our Bernoulli-LoRA
framework generalizes this concept by introducing a probabilistic selection at each step. This allows
us to express the update for any of our proposed methods in a single, unified form:

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, (7)
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Setting Method &
Base Gradient Estimator 𝐺𝑡 NC conver-

gence rate
PŁ convergence
rate

(1)
Bernoulli-LoRA-GD (Alg. 2)
𝐺𝑡 = ∇𝑓(𝑊 𝑡)

Thm. 1:
Δ0

𝛾𝜆min𝑇

Thm. 9:
(1− 𝛾𝜇𝜆min)

𝑇 Δ0

(1)
Bernoulli-LoRA-SGD (Alg. 4)
𝐺𝑡 = 𝑔(𝑊 𝑡)

Thm. 2:
Δ0

𝛾𝜆min𝑇

+ 𝛾𝐿𝐶1𝜆max
𝜆min

Thm. 12:
(1− 𝛾𝜇𝜆min)

𝑇 Δ0

+ 𝛾𝐿𝐶1𝜆max
𝜇𝜆min

(1)+(3)
Bernoulli-LoRA-MVR (Alg. 5)
𝐺𝑡 = ∇𝑓𝜉𝑡(𝑊

𝑡) + (1− 𝑏)(𝐺𝑡−1 −∇𝑓𝜉𝑡(𝑊
𝑡−1))

Thm. 3:
Φ1

𝛾𝜆min𝑇

+ 𝑏𝜎2𝜆max
(2−𝑏)𝜆min

(1)

Thm. 14:
(1− 𝛾𝜇𝜆min)

𝑇Φ1

+ 𝑏𝜎2𝜆max
(2−𝑏)𝜇𝜆min

(1)

(1)+(2)

Bernoulli-LoRA-PAGE (Alg. 6)

𝐺𝑡 =

{︃
∇𝑓(𝑊 𝑡), w.p. 𝑞
𝐺𝑡−1 +∇𝑓𝑖𝑡(𝑊

𝑡)−∇𝑓𝑖𝑡(𝑊
𝑡−1), w.p. 1− 𝑞

Thm. 4:
Φ2

𝛾𝜆min𝑇
(2)

Thm. 16:
(1− 𝛾𝜇𝜆min)

𝑇Φ2
(2)

(1)+(4)
Fed-Bernoulli-LoRA-QGD (Alg. 7)
𝐺𝑡 = 1

𝑀

∑︀𝑀
𝑙=1 𝒬

𝑡
𝑙(∇𝑓𝑙(𝑊

𝑡))

Thm. 5:
Δ0

𝛾𝜆min𝑇

+ 𝛾𝐿𝜔Δ*𝜆max
𝑀𝜆min

Thm. 18:
(1− 𝛾𝜇𝜆min)

𝑇 Δ0

+ 𝛾𝐿2𝜔𝜆max
𝑀𝜇𝜆min

(1)+(4)

Fed-Bernoulli-LoRA-MARINA (Alg. 8)

𝐺𝑡
𝑙 =

{︃
∇𝑓𝑙(𝑊

𝑡), w.p. 𝑞

𝐺𝑡−1
𝑙 +𝒬𝑡

𝑙(∇𝑓𝑙(𝑊
𝑡)−∇𝑓𝑙(𝑊

𝑡−1)), w.p. 1− 𝑞

𝐺𝑡 = 1
𝑀

∑︀𝑀
𝑙=1 𝐺

𝑡
𝑙

Thm. 6:
Φ2

𝛾𝜆min𝑇
(2)

Thm. 20:
(1− 𝛾𝜇𝜆min)

𝑇Φ2
(2)

(1)+(4)
Fed-Bernoulli-LoRA-EF21 (Alg. 9)
𝐺𝑡

𝑙 = 𝐺𝑡−1
𝑙 + 𝒞𝑡

𝑙 (∇𝑓𝑙(𝑊
𝑡)−𝐺𝑡−1

𝑙 )

𝐺𝑡 = 1
𝑀

∑︀𝑀
𝑙=1 𝐺

𝑡
𝑙

Thm. 7:
Φ3

𝛾𝜆min𝑇
(3)

Thm. 22:
(1− 𝛾𝜇𝜆min)

𝑇Φ3
(3)

(1) Φ1 := Δ0 + 𝛾
𝑏(2−𝑏)

𝒢0;
(2) Φ2 := Δ0 + 𝛾

𝑞 𝒢
0;

(3) Φ3 := Δ0 + 𝛾

1−
√

1−𝛽
𝒢0.

Table 1: Unified summary of the proposed methods, their base gradient estimators, and convergence rates for
smooth non-convex (“NC”) and PŁ settings. All methods follow the general update rule 𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡,
where the projected estimator 𝐺̂𝑡 is defined in (8). The table specifies the definition of the base gradient
estimator 𝐺𝑡 for each method. Absolute constant factors are omitted. Notation: Δ0 := 𝑓(𝑊 0) − 𝑓*;
𝒢0 :=

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2

F
; 𝒢0 := 1

𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2

F
; 𝑇 is the chain length; 𝜔 is the compression

parameter; Δ* := 𝑓* − 1
𝑀

∑︀𝑀
𝑙=1 𝑓

*
𝑙 ; 𝐶1 is a constant from Asm. 4; 𝑞 is the probability of a full gradient

computation; 𝛽 is the contractive compression parameter; 𝑏 is the momentum parameter; 𝜆min = 𝜆𝑝
min :=

𝑝𝜆𝐻𝐵
min + (1− 𝑝)𝜆𝐻𝐴

min, and 𝜆max = 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1− 𝑝)𝜆𝐻𝐴
max.

where 𝐺̂𝑡 is the projected gradient estimator. It is formed by taking a base gradient estimator 𝐺𝑡

(e.g., a full gradient, a stochastic gradient, or a variance-reduced one) and projecting it based on the
outcome of a Bernoulli trial:

𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

. (8)

The specific choice of the base estimator 𝐺𝑡 defines the particular algorithm within the Bernoulli-
LoRA family. We summarize our proposed methods and their convergence guarantees in Table 1 and
describe them next.

6 CONVERGENCE RESULTS

The optimization dynamics of our framework depend on the spectral properties of the expected
projection matrix (Section 5.1). To derive non-asymptotic guarantees, we rely on standard modeling
abstractions used in the analysis of first-order methods (e.g., Lipschitz smoothness, PŁ condition).
Our results are conditional on these assumptions, consistent with classical analyses of GD, SGD, and
FL (Bottou et al., 2018; Bubeck, 2015; Nesterov, 2018; Khaled & Richtárik, 2023).
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Assumption 1. (Positive Expected Projection) Consider the projection matrices associated with the
Left and Right Sketch updates:

𝐻𝐵 := 𝐵𝑆(𝐵
⊤
𝑆 𝐵𝑆)

†𝐵⊤
𝑆 and 𝐻𝐴 := 𝐴⊤

𝑆 (𝐴𝑆𝐴
⊤
𝑆 )

†𝐴𝑆 ,
where † denotes the Moore-Penrose pseudoinverse. We assume that for the sampling distributions
𝒟𝐵

𝑆 and 𝒟𝐴
𝑆 , the smallest eigenvalues of the expected projection matrices are strictly positive:

𝜆𝐻𝐵

min = 𝜆min(E[𝐻𝐵 ]) > 0 and 𝜆𝐻𝐴

min = 𝜆min(E[𝐻𝐴]) > 0.

Remark 1 (On the practicality of Assumption 1). At first sight Assumption 1 may look restrictive:
every single projector has eigenvalues in {0,1}, so 𝜆min(𝐻𝐵) = 𝜆min(𝐻𝐴) = 0 whenever 𝑟 < 𝑚 or
𝑟 < 𝑛. Crucially, we never require individual projectors to be positive definite, only their expectation
over the sketch distribution. Intuitively, each step updates along a low-dimensional subspace, but the
random subspaces collectively “cover” all directions over time. In fact, the assumption is mild: as
shown in Section D, it is satisfied with E [𝐻𝐵 ] =

𝑟
𝑚𝐼𝑚, E [𝐻𝐴] =

𝑟
𝑛𝐼𝑛 for standard choices such

as Gaussian, i.i.d. uniform, Kaiming-uniform, and SVD-based orthonormal sketches widely used in
practice (Xia et al., 2024; Mao et al., 2025; Zhu et al., 2024; Hayou et al., 2024; Li et al., 2025;
Kopiczko et al., 2023).
Assumption 2. (Lower Bounded Function) The objective function 𝑓 has a finite infimum 𝑓* ∈ R.

Following classical literature (Nemirovski et al., 2009; Beck, 2017; Duchi, 2018; Lan, 2020; Drusvy-
atskiy, 2020; Nesterov, 2018), we seek an 𝜀-suboptimal solution for convex (or PŁ) objectives,
satisfying

E
[︁
𝑓(𝑊̂ )− 𝑓(𝑊 *)

]︁
≤ 𝜀, (9)

where 𝑊 * minimizes 𝑓 . For smooth non-convex problems, we aim for an 𝜀-stationary point 𝑊̂ such
that

E
[︂⃦⃦⃦

∇𝑓(𝑊̂ )
⃦⃦⃦2
F

]︂
≤ 𝜀2. (10)

We quantify algorithmic efficiency via iteration complexity. To establish convergence rates, we use
the standard assumption of gradient Lipschitz continuity (Bubeck, 2015; Nesterov, 2018; Beck, 2017;
Demidovich et al., 2023b; Khaled & Richtárik, 2023; Bottou et al., 2018; Sun, 2020).
Assumption 3. (Lipschitz Smooth Gradient) A function 𝑓 is differentiable, and there exists a constant
𝐿 > 0 such that

‖∇𝑓(𝑊 )−∇𝑓(𝑉 )‖F ≤ 𝐿 ‖𝑊 − 𝑉 ‖F ,

for all 𝑊,𝑉 ∈ R𝑚×𝑛.

To unify our analysis, we define a probability-weighted eigenvalue 𝜆𝑝
min(max) := 𝑝𝜆𝐻𝐵

min(max) + (1−
𝑝)𝜆𝐻𝐴

min(max). Let ̃︁𝑊𝑇 be an iterate drawn randomly from the sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}, with
the specific sampling distribution depending on the method.

We begin by presenting the convergence result for the foundational Bernoulli-LoRA-GD method.
Theorem 1 (Smooth Non-Convex Setting). Let Assumptions 1, 2, and 3 hold, and let the stepsize
satisfy 0 < 𝛾 ≤ 1

𝐿 . Then the iterates of Bernoulli-LoRA-GD (Algorithm 2), with matrices 𝐴𝑡 and 𝐵̂𝑡

computed according to Lemma 10, satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

,

where ∆0 := 𝑓(𝑊 0)− 𝑓*.

While insightful, full-gradient methods are often impractical for large-scale problems. We therefore
extend our analysis to the stochastic setting, where the gradient is replaced by an unbiased estimator
𝑔(𝑊 ). For this, we use the general expected smoothness assumption.
Assumption 4 (Expected Smoothness (Khaled & Richtárik, 2023)). The stochastic gradient estimator
𝑔(𝑊 ) satisfies

E
[︁
‖𝑔(𝑊 )‖2F

]︁
≤ 2𝐴1 (𝑓(𝑊 )− 𝑓*) +𝐵1 · ‖∇𝑓(𝑊 )‖2F + 𝐶1,

for some constants 𝐴1, 𝐵1, 𝐶1 ≥ 0 and all 𝑊 ∈ R𝑚×𝑛.

The following theorem establishes the convergence for Bernoulli-LoRA-SGD. Its proof is in Ap-
pendix H.2.
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Theorem 2. Let Assumptions 2, 3, and 4 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

{︃
1√︀

𝐿𝐴1𝜆
𝑝
max𝑇

,
1

𝐿𝐵1

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1
}︃
.

Then the iterates generated by Bernoulli-LoRA-SGD (Algorithm 4) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 6Δ0

𝛾𝜆𝑝
min𝑇

+ 𝛾𝐿𝐶1 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓*.

To analyze our variance-reduced methods, we consider a specific bounded variance assumption.

Assumption 5 (Bounded Variance (Nemirovski et al., 2009)). There exists a constant 𝜎 > 0 such
that, for all 𝑊 ∈ R𝑚×𝑛,

E [∇𝑓𝜉(𝑊 )] = ∇𝑓(𝑊 ), E
[︁
‖∇𝑓𝜉(𝑊 )−∇𝑓(𝑊 )‖2F

]︁
≤ 𝜎2.

The next result establishes convergence for Bernoulli-LoRA-MVR.

Theorem 3. Let Assumptions 1, 2, 3, and 5 hold, and let the stepsize satisfy 0 < 𝛾 ≤
1

𝐿

(︂
1+

√︁
2𝜆

𝑝
max(1−𝑏)2

𝑏

)︂ . Then the iterates of Bernoulli-LoRA-MVR (Algorithm 5) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

+
(︁

𝒢0

𝑏𝑇 + 2𝑏𝜎2

2−𝑏

)︁
· 𝜆𝑝

max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓* and 𝒢0 :=
⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

For the finite-sum setting, we analyze Bernoulli-LoRA-PAGE, with its convergence detailed in the
following theorem and proven in Appendix H.4.

Theorem 4. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy 0 < 𝛾 ≤ 1

𝐿
(︁
1+
√︁

1−𝑞
𝑞 𝜆𝑝

max

)︁ .

Then the iterates of Bernoulli-LoRA-PAGE (Algorithm 6) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

+ 𝒢0

𝑞𝑇 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓* and 𝒢0 :=
⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

We now shift to our Federated Learning variants. The following theorem provides convergence
guarantees for Fed-Bernoulli-LoRA-QGD, with the proof available in Appendix I.1.

Theorem 5. Let Assumptions 1, 2, 3, and 11 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

{︂
1

𝐿
√

𝜔
𝑀 𝜆𝑝

max𝑇
, 1
𝐿

(︁
𝜆𝑝
max

𝜆𝑝
min

)︁−1
}︂

. Then the iterates of Fed-Bernoulli-LoRA-QGD (Algo-

rithm 7) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 6Δ0

𝛾𝜆𝑝
min𝑇

+ 2𝛾𝐿𝜔Δ*

𝑀 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓*.

Next, we present the convergence result for Fed-Bernoulli-LoRA-MARINA. The proof can be found in
Appendix I.2.

Theorem 6. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy 0 < 𝛾 ≤
1

𝐿
(︁
1+
√︁

𝜆𝑝
max

1−𝑞
𝑞 · 𝜔

𝑀

)︁ . Then the iterates of Fed-Bernoulli-LoRA-MARINA (Algorithm 8) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

+ 𝒢0

𝑞𝑇 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓* and 𝒢0 :=
⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

The convergence of Fed-Bernoulli-LoRA-EF21 is established below, with a detailed proof in Ap-
pendix I.3.

7
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Theorem 7. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy 0 < 𝛾 ≤ 1

𝐿

(︂
1+

√
𝜆
𝑝
max(1−𝛽)

1−
√

1−𝛽

)︂ .

Then the iterates of Fed-Bernoulli-LoRA-EF21 (Algorithm 9) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2Δ0

𝛾𝜆𝑝
min𝑇

+ 2𝒢0

𝛽𝑇 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓* and 𝒢0 := 1
𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2
F

.

To obtain stronger, linear convergence rates, we introduce the Polyak–Łojasiewicz condition, a
common generalization of strong convexity.

Assumption 6 (Polyak–Łojasiewicz condition (Polyak, 1963; Lojasiewicz, 1963)). There exists
𝜇 > 0 such that

1
2 ‖∇𝑓(𝑊 )‖2F ≥ 𝜇 (𝑓(𝑊 )− 𝑓*) .

The next theorem states the convergence of Bernoulli-LoRA-SGD under this condition. It is proven in
Appendix H.2.

Theorem 8. Let Assumptions 2, 3, 4, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

{︂
𝜇𝜆𝑝

min

2𝐿𝐴1𝜆
𝑝
max

, 2
𝜇𝜆𝑝

min
, 1
𝐿𝐵1

(︁
𝜆𝑝
max

𝜆𝑝
min

)︁−1
}︂

. Then the iterates of Bernoulli-LoRA-SGD

(Algorithm 4) satisfy

E
[︀
𝑓(𝑊𝑇 )− 𝑓*]︀ ≤ (︁1− 𝛾𝜇𝜆𝑝

min

2

)︁𝑇
∆0 + 𝛾𝐿𝐶1

𝜇 · 𝜆𝑝
max

𝜆𝑝
min

,

where ∆0 := 𝑓(𝑊 0)− 𝑓*.

All other PŁ-condition results are relegated to the Appendix.

7 EXPERIMENTS

To validate our theoretical findings, we conducted numerical experiments across multiple machine
learning tasks.

7.1 LINEAR REGRESSION WITH NON-CONVEX REGULARIZATION.

We begin with a controlled linear regression problem with non-convex regularization, split into
pre-training and fine-tuning phases. We use ̃︁(·) for pre-training quantities and (̂·) for fine-tuning.

During the pre-training phase, we solve min𝑥∈R𝑛

{︂̃︀𝑓(𝑥) := 1
2̃︀𝑚
⃦⃦⃦ ̃︀𝐷𝑥−̃︀𝑏⃦⃦⃦2

2
+ ̃︀𝜆∑︀𝑑

𝑗=1

𝑥2
𝑗

1+𝑥2
𝑗

}︂
,

where ̃︀𝐷 ∈ R̃︀𝑚×𝑛, ̃︀𝑏 ∈ R̃︀𝑚, ̃︀𝑚 = 9 × 104, and 𝑛 = 4096. We set ̃︀𝜆 =
⃦⃦⃦ ̃︀𝐷⃦⃦⃦

2
≈ 18.2, giving̃︀𝐿 ≈ 54.7. We optimize until ‖∇𝑓(̃︀𝑥*)‖2 ≤ 10−8 to obtain ̃︀𝑥*. For the fine-tuning phase, we

use ̃︀𝑥* as the initialization and then solve min𝑥∈R𝑛

{︂
𝑓(𝑥) := 1

2𝑚̂

⃦⃦⃦
𝐷̂𝑥− 𝑏̂

⃦⃦⃦2
2
+ 𝜆̂

∑︀𝑑
𝑗=1

𝑥2
𝑗

1+𝑥2
𝑗

}︂
,

where 𝐷̂ ∈ R𝑚̂×𝑛, 𝑏̂ ∈ R𝑚̂, and 𝑚̂ = 104. We keep 𝑛 = 4096 and set 𝜆̂ =
⃦⃦⃦
𝐷̂
⃦⃦⃦
2
≈ 4101.7,

yielding 𝐿̂ ≈ 12305.3. This second phase uses a dataset with notably different characteristics to
mirror realistic domain shifts.

Stochastic setting. We consider the stochastic setting, comparing RAC-LoRA-SGD, Bernoulli-LoRA-
SGD, and Bernoulli-LoRA-PAGE. In all experiments, we use a batch size of 100, which corresponds
to 1% of the data.

Figure 1 shows that Bernoulli-LoRA-PAGE successfully reduces variance and converges to the target
tolerance, whereas all SGD variants stall at a certain accuracy. This underscores the practical
advantage of Bernoulli-LoRA-PAGE over the baseline RAC-LoRA-SGD in the stochastic setting from
an optimization standpoint.

8
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103

100

10−3

10−6

10−9

10−12

10−15

‖∇
f

(x
t )
‖2 Bernoulli-LoRA-PAGE(p=0.5)

Bernoulli-LoRA-SGD(p=0.5)

RAC-LoRA-SGD(A)

RAC-LoRA-SGD(B)

Figure 1: Comparison of RAC-LoRA-SGD, Bernoulli-LoRA-SGD and Bernoulli-LoRA-PAGE on linear
regression fine-tuning. Curves with 𝑝 = 0.01,0.2, . . . indicate Bernoulli-LoRA sampling parameters.
RAC-LoRA-SGD(A) trains 𝐵 after resampling 𝐴, while RAC-LoRA-SGD(B) does the reverse. All
methods use 𝛾 = 𝑐/𝐿̂ with 𝑐 tuned individually.

7.2 MLP ON MNIST

In this section, we evaluate Bernoulli-LoRA against established baselines in parameter-efficient
fine-tuning, following the setup of Malinovsky et al. (2024).

Methodology. We first pre-train a three-layer MLP on MNIST digits 0–4 (LeCun et al., 1998), then
adapt it with various LoRA-type methods to classify digits 5–9. Only unseen classes are used for
evaluation. All adaptations use rank 𝑟 = 1 and train for 50 epochs with AdamW (Loshchilov, 2017)
(𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8), a fixed learning rate of 2 × 10−4, and batch size 128. Each
method is run 20 times using different seeds, and Table 2 reports the median accuracy (with standard
deviation). For Bernoulli-LoRA, we show the best median accuracy among all tested settings.

Method 𝒟𝐴 𝒟𝐵 Acc. (test) Train Params
FPFT - - 99.5 54,700
LoRA Gaussian Zero 85.69± 1.60 1K
LoRA Zero Gaussian 89.82± 0.90 1K
COLA Gaussian Zero 93.32± 0.50 1K
COLA Zero Gaussian 96.55± 0.20 1K
AsymmLoRA Gaussian Zero 64.04± 6.90 133
AsymmLoRA Zero Gaussian 74.52± 7.20 912
RAC-LoRA Gaussian Zero 93.02± 0.50 133
RAC-LoRA Zero Gaussian 96.49± 0.20 912
Bernoulli-LoRA 2 Zero1 Gaussian 96.46± 0.17 ≈ 904
1 Although Bernoulli-LoRA prescribes probabilistic selection from the
first iteration, a deterministic assignment of fixed and trainable matrices
at initialization yielded better performance.
2 Achieved with 𝑝 = 0.99, giving an expected trainable parameter count
𝑝 · 912 + (1 − 𝑝) · 133 ≈ 904. Here, 912 and 133 are the parameter
counts for matrices 𝐴 and 𝐵, respectively.

Table 2: Performance on MNIST classification using an MLP with rank 𝑟 and scaling 𝛼 = 1. For
AsymmLoRA and RAC-LoRA, only the zero-initialized matrix is trained.

Discussion. From Table 2, standard LoRA attains roughly 86% of full-parameter fine-tuning (FPFT)
accuracy, indicating room for improvements via chaining. COLA improves upon vanilla LoRA, though
both lack formal convergence guarantees. AsymmLoRA approximates LoRA in practice (Sun et al.,
2024) but similarly lacks convergence analysis, whereas RAC-LoRA and Bernoulli-LoRA both boost
accuracy and have theoretical backing. Notably, Bernoulli-LoRA matches RAC-LoRA in generalization
and also guarantees convergence. An additional benefit is that RAC-LoRA and Bernoulli-LoRA each
train only one matrix per LoRA block, whereas COLA needs two. In RAC-LoRA, either 𝐴 or 𝐵
is trained deterministically; in Bernoulli-LoRA, the choice is probabilistic, yielding an expected
𝑝𝑚𝑟+ (1− 𝑝)𝑟𝑛 trainable parameters. This advantage is especially valuable in resource-constrained
settings such as Federated Learning.

Detailed configurations, hardware specs, and dataset descriptions are provided in Appendix J.
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Bhagoji, Keith Bonawitz, Zachary B. Charles, Graham Cormode, Rachel Cummings, Rafael
G. L. D’Oliveira, Salim Y. El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià
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analysis of stochastic gradient methods for composite convex and smooth optimization. Journal of
Optimization Theory and Applications, 199(2):499–540, 2023.

Sarit Khirirat, Abdurakhmon Sadiev, Artem Riabinin, Eduard Gorbunov, and Peter Richtárik.
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B BASIC FACTS AND USEFUL INEQUALITIES

Tower property. For any random variables 𝑋 and 𝑌 , we have
E [E [𝑋 | 𝑌 ]] = E [𝑋] . (11)

Cauchy-Bunyakovsky-Schwarz inequality. For any random variables 𝑋 and 𝑌 , we have
|E [𝑋𝑌 ]| ≤

√︀
E [𝑋2]E [𝑌 2]. (12)

Variance decomposition. For any random vector 𝑋 ∈ R𝑑 and any non-random 𝑐 ∈ R𝑑, we have

E
[︁
‖𝑋 − 𝑐‖22

]︁
= E

[︁
‖𝑋 − E [𝑋]‖22

]︁
+ ‖E [𝑋]− 𝑐‖22 . (13)

Jensen’s inequality. For any random vector 𝑋 ∈ R𝑑 and any convex function 𝑔 : R𝑑 ↦→ R, we
have

𝑔(E [𝑋]) ≤ E [𝑔(𝑋)] . (14)
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C NOTATION

For matrices 𝑊 ∈ R𝑚×𝑛, where 𝑚 and 𝑛 denote the input and output dimensions respectively,
we employ the Frobenius norm ‖·‖F, defined as ‖𝑊‖F =

√︀
Tr(𝑊⊤𝑊 ), where Tr(·) denotes the

matrix trace. The inner product between two matrices 𝐴 and 𝐵 is denoted by ⟨𝐴,𝐵⟩ = Tr(𝐴⊤𝐵).
In our low-rank adaptation framework, 𝐵 ∈ R𝑚×𝑟 and 𝐴 ∈ R𝑟×𝑛 represent the factors of rank
𝑟 ≪ min{𝑚,𝑛}. We use 𝒪(·) to hide absolute constants. We denote ∆0 := 𝑓(𝑊 0) − 𝑓*,

𝒢0 :=
⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

and 𝒢0 := 1
𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2
F

. For differentiable functions
𝑓 , the gradient ∇𝑓(𝑊 ) ∈ R𝑚×𝑛 is computed with respect to the trace inner product, while for
non-smooth functions, the subgradient 𝜕𝑓(𝑊 ) ∈ R𝑚×𝑛 is similarly defined. The superscript †
denotes the Moore-Penrose pseudoinverse.
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D DISCUSSION ON POSITIVE EXPECTED PROJECTION (ASSUMPTION 1)

Recall that in our Bernoulli-LoRA framework, at each iteration we update only one of the low-rank
factors (𝐴 or 𝐵) while the other is treated as a fixed “sketch” sampled from a prescribed distribution.
The resulting updates can be written as projected gradient steps with respect to the full parameter
matrix 𝑊 :

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡,

where the projected estimator 𝐺̂𝑡 has the form

𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, (left sketch),

𝐺𝑡𝐻𝑡
𝐴, (right sketch),

and 𝐻𝑡
𝐵 and 𝐻𝑡

𝐴 are projection matrices defined by the current sketch. In particular, for a left sketch
we use

𝐻𝐵 := 𝐵
(︀
𝐵⊤𝐵

)︀†
𝐵⊤ ∈ R𝑚×𝑚, (15)

with 𝐵 ∈ R𝑚×𝑟, and for a right sketch we use
𝐻𝐴 := 𝐴⊤ (︀𝐴𝐴⊤)︀† 𝐴 ∈ R𝑛×𝑛, (16)

with 𝐴 ∈ R𝑟×𝑛. Here † denotes the Moore–Penrose pseudoinverse. Both 𝐻𝐵 and 𝐻𝐴 are orthogonal
projectors onto the column spaces of 𝐵 and 𝐴⊤, respectively:

𝐻2
𝐵 = 𝐻𝐵 , 𝐻⊤

𝐵 = 𝐻𝐵 , Tr (𝐻𝐵) = rank(𝐻𝐵) ≤ 𝑟,

𝐻2
𝐴 = 𝐻𝐴, 𝐻⊤

𝐴 = 𝐻𝐴, Tr (𝐻𝐴) = rank(𝐻𝐴) ≤ 𝑟.

Our convergence guarantees are derived under Assumption 1, which requires the smallest eigenvalues
of the expected projection matrices to be strictly positive:

𝜆min (E [𝐻𝐵 ]) > 0, 𝜆min (E [𝐻𝐴]) > 0.
At first glance this may appear restrictive: any single projector has eigenvalues in {0,1}, so
𝜆min(𝐻𝐵) = 0 and 𝜆min(𝐻𝐴) = 0 whenever 𝑟 < 𝑚 or 𝑟 < 𝑛. However, the key point is
that we never require individual projectors to be positive definite. Instead, we only require that the
average projection (over the random sketches) be positive definite. Intuitively, this means that while
each update acts in a low-dimensional subspace, the sequence of random subspaces collectively
“covers” all directions over time.

In this section we show that Assumption 1 is satisfied for several widely used sketch distributions,
including Gaussian, i.i.d. uniform, Kaiming-uniform and random orthonormal initializations. Our
strategy is to exploit symmetry: for many random matrix ensembles the expected projection commutes
with a large group of orthogonal transformations, which forces it to be a scalar multiple of the identity.
The scalar is then determined by the rank/trace constraint.

D.1 ROTATIONAL AND SIGNED-PERMUTATION SYMMETRIES

We begin with a classical result: if a matrix commutes with every orthogonal matrix, it must be a
scalar multiple of the identity.

Lemma 1 (Rotational invariance implies scalar matrix). Let 𝑀 ∈ R𝑛×𝑛 be a matrix satisfying
𝑀 = 𝑄𝑀𝑄⊤ for all orthonormal matrices 𝑄 ∈ R𝑛×𝑛. (17)

Then 𝑀 = 𝛼𝐼𝑛 for some scalar 𝛼 ∈ R.

Proof. Condition (17) is equivalent to 𝑄𝑀 = 𝑀𝑄 for all orthogonal 𝑄, i.e., 𝑀 commutes with
every orthogonal transformation. In particular, 𝑀 commutes with all rotations.

Since 𝑀 is a real symmetric matrix (indeed, 𝑀 = 𝑄𝑀𝑄⊤ for all orthogonal 𝑄 implies 𝑀⊤ = 𝑀 ),
it admits an orthonormal eigenbasis. Let 𝑣 be an eigenvector of 𝑀 with eigenvalue 𝜆, and normalize
𝑣 to unit length:

𝑢1 :=
𝑣

‖𝑣‖ .
Then 𝑀𝑢1 = 𝜆𝑢1.

Take any other unit vector 𝑢 on the sphere 𝑆𝑛−1. There exists an orthogonal matrix 𝑄 ∈ R𝑛×𝑛 such
that 𝑢 = 𝑄𝑢1 (geometrically, 𝑄 is a rotation sending 𝑢1 to 𝑢). Using 𝑄𝑀 = 𝑀𝑄,

𝑀𝑢 = 𝑀(𝑄𝑢1) = 𝑄𝑀𝑢1 = 𝑄(𝜆𝑢1) = 𝜆(𝑄𝑢1) = 𝜆𝑢.
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Thus every unit vector 𝑢 is an eigenvector of 𝑀 with the same eigenvalue 𝜆.

Now let 𝑥 ∈ R𝑛 be arbitrary and non-zero, and write 𝑥 = ‖𝑥‖𝑢𝑥 with 𝑢𝑥 := 𝑥/ ‖𝑥‖ a unit vector.
Then

𝑀𝑥 = 𝑀(‖𝑥‖𝑢𝑥) = ‖𝑥‖𝑀𝑢𝑥 = ‖𝑥‖ (𝜆𝑢𝑥) = 𝜆𝑥.
So every vector 𝑥 is an eigenvector with eigenvalue 𝜆, which implies 𝑀 = 𝜆𝐼𝑛. Setting 𝛼 = 𝜆
completes the proof.

For many random initializations we do not have full rotational invariance, but we do have invariance
under row permutations and independent sign flips. The corresponding group is the set of all signed
permutation matrices

𝐺𝑛 :=
{︀
𝑄 ∈ R𝑛×𝑛 : 𝑄 = 𝑃𝐷, 𝑃 permutation, 𝐷 = diag (±1, . . . ,± 1)

}︀
.

The following lemma shows that invariance under 𝐺𝑛 is already enough to force a scalar matrix.

Lemma 2 (Signed-permutation invariance implies scalar matrix). Let 𝑀 ∈ R𝑛×𝑛 satisfy
𝑄𝑀𝑄⊤ = 𝑀 for all 𝑄 ∈ 𝐺𝑛. (18)

Then 𝑀 = 𝛼𝐼𝑛 for some 𝛼 ∈ R.

Proof. We write 𝑀 = (𝑚𝑖𝑗) to mean that 𝑚𝑖𝑗 is the entry of 𝑀 in row 𝑖 and column 𝑗.

Step 1: sign-flip invariance forces 𝑀 to be diagonal. First consider only those 𝑄 ∈ 𝐺𝑛 that are
pure sign-flip matrices, i.e.,

𝑄 = 𝐷 = diag (𝑞11, . . . ,𝑞𝑛𝑛) , 𝑞𝑖𝑖 ∈ {±1} .
These are orthogonal and belong to 𝐺𝑛 (with 𝑃 = 𝐼𝑛). For such 𝑄, the (𝑖,𝑗)-entry of 𝑄𝑀𝑄⊤ is(︀

𝑄𝑀𝑄⊤)︀
𝑖𝑗
=
∑︁
𝑘,ℓ

𝑞𝑖𝑘𝑚𝑘ℓ𝑞𝑗ℓ = 𝑞𝑖𝑖𝑚𝑖𝑗𝑞𝑗𝑗 ,

because 𝑄 is diagonal. By (18),
𝑞𝑖𝑖𝑞𝑗𝑗𝑚𝑖𝑗 = 𝑚𝑖𝑗 for all 𝑖,𝑗 and all (𝑞11, . . . ,𝑞𝑛𝑛) ∈ {±1}𝑛 . (19)

Fix any 𝑖 ̸= 𝑗. We are free to choose 𝑞𝑖𝑖 and 𝑞𝑗𝑗 independently. Let 𝑞𝑖𝑖 = 1, 𝑞𝑗𝑗 = −1 and 𝑞𝑘𝑘 = 1
for all 𝑘 /∈ {𝑖,𝑗}. Then (19) yields

(−1)𝑚𝑖𝑗 = 𝑚𝑖𝑗 =⇒ 𝑚𝑖𝑗 = 0.
Since 𝑖 ̸= 𝑗 was arbitrary, all off-diagonal entries vanish, and 𝑀 must be diagonal:

𝑀 = diag (𝑚11, . . . ,𝑚𝑛𝑛) .

Step 2: permutation invariance forces all diagonal entries to coincide. Next consider permuta-
tion matrices 𝑃 ∈ 𝐺𝑛, i.e., matrices with exactly one entry equal to 1 in each row and column (and
all other entries 0). Each 𝑃 is orthogonal and belongs to 𝐺𝑛 (with 𝐷 = 𝐼𝑛), so by (18),

𝑃𝑀𝑃⊤ = 𝑀. (20)
Let 𝜋 be the permutation of {1, . . . ,𝑛} represented by 𝑃 , so that 𝑃𝑒𝑗 = 𝑒𝜋(𝑗) for the standard basis
vectors. One checks that (︀

𝑃𝑀𝑃⊤)︀
𝑖𝑖
= 𝑚𝜋(𝑖)𝜋(𝑖),

so (20) implies
𝑚𝑖𝑖 = 𝑚𝜋(𝑖)𝜋(𝑖) for all 𝑖 and all permutations 𝜋.

This is only possible if all diagonal entries are equal to a common value 𝛼 ∈ R:
𝑚11 = · · · = 𝑚𝑛𝑛 = 𝛼.

Therefore 𝑀 = 𝛼𝐼𝑛.

Step 3: consistency with general signed permutations. In the argument above we only used two
special subgroups of 𝐺𝑛: pure sign flips (𝑃 = 𝐼𝑛) and pure permutations (𝐷 = 𝐼𝑛). Since both are
contained in 𝐺𝑛, the assumption (18) applies to them. Once we have shown that 𝑀 = 𝛼𝐼𝑛, it is
immediate that 𝑄𝑀𝑄⊤ = 𝑀 holds for all 𝑄 = 𝑃𝐷 ∈ 𝐺𝑛:

𝑄𝑀𝑄⊤ = (𝑃𝐷)(𝛼𝐼𝑛)(𝐷
⊤𝑃⊤) = 𝛼𝑃𝐷𝐷⊤𝑃⊤ = 𝛼𝐼𝑛 = 𝑀.

This completes the proof.

We will use Lemma 1 in the Gaussian case (where full rotational invariance holds) and Lemma 2 in
the uniform and Kaiming cases (where we have signed-permutation invariance).
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D.2 GAUSSIAN INITIALIZATION

Gaussian sketches are a standard choice in LoRA-style methods; see, for example, Xia et al. (2024);
Mao et al. (2025). The next lemma shows that for Gaussian initialization, the expected projection
matrices are isotropic and their eigenvalues are exactly 𝑟/𝑚 and 𝑟/𝑛.

Lemma 3 (Expected projections for Gaussian sketches). Let 𝑟 ≤ min{𝑚,𝑛} and consider two
random matrices:

◆ 𝐵 ∈ R𝑚×𝑟 with entries i.i.d. 𝒩 (0,1),

◆ 𝐴 ∈ R𝑟×𝑛 with entries i.i.d. 𝒩 (0,1).

Define 𝐻𝐵 and 𝐻𝐴 as in (15) and (16). Then
E [𝐻𝐵 ] =

𝑟

𝑚
𝐼𝑚, E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

which implies
𝜆min (E [𝐻𝐵 ]) =

𝑟

𝑚
, 𝜆min (E [𝐻𝐴]) =

𝑟

𝑛
.

Proof. We first prove the statement for 𝐻𝐵 , then explain the analogous argument for 𝐻𝐴.

Step 1: E [𝐻𝐵 ] is a scalar multiple of the identity. Let 𝐵 ∈ R𝑚×𝑟 with i.i.d. 𝒩 (0,1) entries, and
let 𝑄 ∈ R𝑚×𝑚 be an arbitrary orthogonal matrix. By rotational invariance of the standard Gaussian
distribution,

𝑄𝐵
𝑑
= 𝐵.

Consider the projector built from 𝑄𝐵:
𝐻𝑄𝐵 := (𝑄𝐵)

(︀
(𝑄𝐵)⊤𝑄𝐵

)︀†
(𝑄𝐵)⊤

= 𝑄𝐵
(︀
𝐵⊤𝑄⊤𝑄𝐵

)︀†
𝐵⊤𝑄⊤

= 𝑄𝐵
(︀
𝐵⊤𝐵

)︀†
𝐵⊤𝑄⊤

= 𝑄
(︀
𝐵(𝐵⊤𝐵)†𝐵⊤)︀𝑄⊤

= 𝑄𝐻𝐵𝑄
⊤.

Since 𝑄𝐵 and 𝐵 are identically distributed, 𝐻𝑄𝐵 and 𝐻𝐵 have the same distribution and hence the
same expectation:

E [𝐻𝑄𝐵 ] = E [𝐻𝐵 ] .

Using 𝐻𝑄𝐵 = 𝑄𝐻𝐵𝑄
⊤ and linearity of expectation,

E [𝐻𝐵 ] = E [𝐻𝑄𝐵 ] = E
[︀
𝑄𝐻𝐵𝑄

⊤]︀ = 𝑄E [𝐻𝐵 ] 𝑄
⊤ for all orthogonal 𝑄 ∈ R𝑚×𝑚.

By Lemma 1, a matrix commuting with all orthogonal matrices must be a scalar multiple of the
identity. Hence there exists 𝛼 ∈ R such that

E [𝐻𝐵 ] = 𝛼𝐼𝑚.

Step 2: determine 𝛼 via the rank/trace. For any realization of 𝐵 with full column rank (which
holds almost surely, since 𝐵 has i.i.d. continuous entries and 𝑟 ≤ 𝑚), the matrix 𝐻𝐵 is the orthogonal
projector onto the 𝑟-dimensional column space of 𝐵. Thus

rank(𝐻𝐵) = 𝑟, Tr (𝐻𝐵) = 𝑟.
Taking expectations and using linearity of the trace,

Tr (E [𝐻𝐵 ]) = E [Tr (𝐻𝐵)] = 𝑟.
Since E [𝐻𝐵 ] = 𝛼𝐼𝑚, we also have

Tr (E [𝐻𝐵 ]) = Tr (𝛼𝐼𝑚) = 𝛼𝑚.
Equating the two expressions yields 𝛼𝑚 = 𝑟 and hence

E [𝐻𝐵 ] =
𝑟

𝑚
𝐼𝑚.

Because E [𝐻𝐵 ] is a scalar multiple of the identity, all of its eigenvalues are equal to 𝑟/𝑚, so in
particular 𝜆min (E [𝐻𝐵 ]) = 𝑟/𝑚.
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Step 3: the case of 𝐻𝐴. Now let 𝐴 ∈ R𝑟×𝑛 with i.i.d. 𝒩 (0,1) entries and define

𝐻𝐴 = 𝐴⊤ (︀𝐴𝐴⊤)︀† 𝐴 ∈ R𝑛×𝑛.

Note that 𝐴⊤ ∈ R𝑛×𝑟 also has i.i.d. 𝒩 (0,1) entries. Repeating the same argument as above with 𝐴⊤

in place of 𝐵 (and with ambient dimension 𝑛 instead of 𝑚) gives
E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

and all eigenvalues of E [𝐻𝐴] are equal to 𝑟/𝑛. This completes the proof.

D.3 I.I.D. UNIFORM INITIALIZATION ON [−𝑎,𝑎]

We now consider sketches whose entries are i.i.d. uniform on an interval [−𝑎,𝑎], where 𝑎 > 0. This
initialization strategy is employed, for instance, in AsymmLoRA (Zhu et al., 2024). This setting covers
both simple uniform initializations and serves as a stepping stone to Kaiming-uniform initialization.

Our analysis relies on three ingredients:

◆ equivariance of 𝐻𝐵 under left multiplication by an orthogonal matrix,

◆ equivariance of 𝐻𝐴 under right multiplication by an orthogonal matrix,

◆ signed-permutation invariance of the distribution of the sketch matrix.

Lemma 4 (Equivariance of 𝐻𝐵 and 𝐻𝐴 under orthogonal transforms). Let 𝐵 ∈ R𝑚×𝑟 with
rank(𝐵) = 𝑟 and 𝐴 ∈ R𝑟×𝑛 with rank(𝐴) = 𝑟.

(i) For any orthogonal matrix 𝑄 ∈ R𝑚×𝑚, define

𝐻𝑄𝐵 := (𝑄𝐵)
(︀
(𝑄𝐵)⊤𝑄𝐵

)︀†
(𝑄𝐵)⊤.

Then
𝐻𝑄𝐵 = 𝑄𝐻𝐵 𝑄⊤, (21)

where 𝐻𝐵 is defined in (15).

(ii) For any orthogonal matrix 𝑅 ∈ R𝑛×𝑛, define

𝐻𝐴𝑅 := (𝐴𝑅)⊤
(︀
(𝐴𝑅)(𝐴𝑅)⊤

)︀†
(𝐴𝑅).

Then
𝐻𝐴𝑅 = 𝑅⊤𝐻𝐴𝑅, (22)

where 𝐻𝐴 is defined in (16).

Proof. We prove the two parts separately.

(i) Equivariance of 𝐻𝐵 under left orthogonal transforms. Recall that 𝑄 ∈ R𝑚×𝑚 is orthogonal,
so 𝑄⊤𝑄 = 𝑄𝑄⊤ = 𝐼𝑚. We compute

(𝑄𝐵)⊤𝑄𝐵 = 𝐵⊤𝑄⊤𝑄𝐵 = 𝐵⊤𝐵.
Hence the inner Gram matrix is unchanged and(︀

(𝑄𝐵)⊤𝑄𝐵
)︀†

=
(︀
𝐵⊤𝐵

)︀†
.

Substituting into the definition of 𝐻𝑄𝐵 , we obtain

𝐻𝑄𝐵 = 𝑄𝐵
(︀
𝐵⊤𝐵

)︀†
𝐵⊤𝑄⊤

= 𝑄
(︁
𝐵
(︀
𝐵⊤𝐵

)︀†
𝐵⊤
)︁
𝑄⊤

= 𝑄𝐻𝐵𝑄
⊤,

which proves (21).

(ii) Equivariance of 𝐻𝐴 under right orthogonal transforms. Now let 𝑅 ∈ R𝑛×𝑛 be orthogonal,
so 𝑅⊤𝑅 = 𝑅𝑅⊤ = 𝐼𝑛. We first compute the Gram matrix for 𝐴𝑅:

(𝐴𝑅)(𝐴𝑅)⊤ = 𝐴𝑅𝑅⊤𝐴⊤ = 𝐴𝐴⊤.
Thus (︀

(𝐴𝑅)(𝐴𝑅)⊤
)︀†

=
(︀
𝐴𝐴⊤)︀† .
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Using the definition of 𝐻𝐴𝑅, we have
𝐻𝐴𝑅 = (𝐴𝑅)⊤

(︀
(𝐴𝑅)(𝐴𝑅)⊤

)︀†
(𝐴𝑅)

= 𝑅⊤𝐴⊤ (︀𝐴𝐴⊤)︀† 𝐴𝑅

= 𝑅⊤
(︁
𝐴⊤ (︀𝐴𝐴⊤)︀† 𝐴)︁𝑅

= 𝑅⊤𝐻𝐴𝑅,
which establishes (22). This completes the proof.

Lemma 5 (Signed-permutation invariance of i.i.d. uniform sketches for 𝐵 and 𝐴). Let 𝑎 > 0 and
consider:

(i) A random matrix 𝐵𝑆 ∈ R𝑚×𝑟 with i.i.d. entries (𝐵𝑆)𝑖𝑗 ∼ Unif ([−𝑎,𝑎]).

(ii) A random matrix 𝐴𝑆 ∈ R𝑟×𝑛 with i.i.d. entries (𝐴𝑆)𝑖𝑗 ∼ Unif ([−𝑎,𝑎]).

Let 𝐺𝑚 and 𝐺𝑛 denote the groups of 𝑚×𝑚 and 𝑛× 𝑛 signed permutation matrices, respectively:
𝐺𝑚 :=

{︀
𝑄 ∈ R𝑚×𝑚 : 𝑄 = 𝑃𝐷, 𝑃 permutation, 𝐷 = diag (±1, . . . ,± 1)

}︀
,

𝐺𝑛 :=
{︀
𝑅 ∈ R𝑛×𝑛 : 𝑅 = 𝑃 ′𝐷′, 𝑃 ′ permutation, 𝐷′ = diag (±1, . . . ,± 1)

}︀
.

Then:

(i) For any 𝑄 ∈ 𝐺𝑚, the random matrix 𝑄𝐵𝑆 has the same distribution as 𝐵𝑆 .

(ii) For any 𝑅 ∈ 𝐺𝑛, the random matrix 𝐴𝑆𝑅 has the same distribution as 𝐴𝑆 .

Proof. We again treat the two cases separately.

(i) Left signed-permutation invariance for 𝐵𝑆 . Write 𝑄 = 𝑃𝐷 with 𝑃 a permutation matrix
and 𝐷 = diag (±1, . . . ,± 1). Left-multiplying 𝐵𝑆 by 𝑃 permutes its rows. Since the entries of 𝐵𝑆

are i.i.d., each row has the same joint distribution, and permuting rows does not change the joint
distribution of the matrix. Thus 𝑃𝐵𝑆 has the same distribution as 𝐵𝑆 .

Next, left-multiplication by 𝐷 flips the sign of some rows. More precisely, if 𝐷 = diag (𝑑1, . . . ,𝑑𝑚)
with 𝑑𝑖 ∈ {±1}, then the 𝑖-th row of 𝐷𝐵𝑆 is 𝑑𝑖 times the 𝑖-th row of 𝐵𝑆 . For a single scalar random
variable 𝑋 ∼ Unif ([−𝑎,𝑎]), we have

−𝑋 ∼ Unif ([−𝑎,𝑎]) ,
so flipping signs leaves the marginal distribution of each entry unchanged, and independence across
entries is preserved (since the sign pattern is deterministic here). Therefore 𝐷𝐵𝑆 has the same
distribution as 𝐵𝑆 .

Combining the two transformations, we see that
𝑄𝐵𝑆 = 𝑃 (𝐷𝐵𝑆)

is obtained from 𝐵𝑆 by a sequence of operations (row permutations and sign flips) that each leave
the joint distribution invariant. Hence 𝑄𝐵𝑆 has the same distribution as 𝐵𝑆 for any 𝑄 ∈ 𝐺𝑚.

(ii) Right signed-permutation invariance for 𝐴𝑆 . The argument for 𝐴𝑆 is analogous, but now
signed permutations act on the columns rather than the rows. Let 𝑅 ∈ 𝐺𝑛 and write 𝑅 = 𝑃 ′𝐷′ with
𝑃 ′ a permutation matrix and 𝐷′ = diag (±1, . . . ,± 1).

Right-multiplying 𝐴𝑆 by 𝑃 ′ permutes its columns. Since the entries of 𝐴𝑆 are i.i.d., each column
has the same joint distribution, and permuting columns preserves the joint distribution of the matrix.
Thus 𝐴𝑆𝑃

′ has the same distribution as 𝐴𝑆 .

Right-multiplying by 𝐷′ flips the sign of some columns: if 𝐷′ = diag (𝑑′1, . . . ,𝑑
′
𝑛) with 𝑑′𝑗 ∈ {±1},

then the 𝑗-th column of 𝐴𝑆𝐷
′ is 𝑑′𝑗 times the 𝑗-th column of 𝐴𝑆 . As above, each sign flip preserves

the marginal Unif ([−𝑎,𝑎]) distribution of every entry, and independence across entries is preserved,
so 𝐴𝑆𝐷

′ has the same distribution as 𝐴𝑆 .

Combining these, we have
𝐴𝑆𝑅 = 𝐴𝑆(𝑃

′𝐷′) = (𝐴𝑆𝑃
′)𝐷′,
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which is obtained from 𝐴𝑆 by a sequence of column permutations and column-wise sign flips, each
of which leaves the joint distribution invariant. Therefore 𝐴𝑆𝑅 has the same distribution as 𝐴𝑆 for
any 𝑅 ∈ 𝐺𝑛.

This proves both claims.

Combining Lemmas 4 and 5, we can derive the expected projections in closed form.

Lemma 6 (Expected projections for uniform sketches). Let 𝑟 ≤ min{𝑚,𝑛} and consider two random
matrices:

◆ 𝐵𝑆 ∈ R𝑚×𝑟 with entries i.i.d. Unif ([−𝑎,𝑎]),

◆ 𝐴𝑆 ∈ R𝑟×𝑛 with entries i.i.d. Unif ([−𝑎,𝑎]).

Define

𝐻𝐵 := 𝐵𝑆

(︀
𝐵⊤

𝑆 𝐵𝑆

)︀†
𝐵⊤

𝑆 ∈ R𝑚×𝑚,

𝐻𝐴 := 𝐴⊤
𝑆

(︀
𝐴𝑆𝐴

⊤
𝑆

)︀†
𝐴𝑆 ∈ R𝑛×𝑛.

Assume 𝐵𝑆 and 𝐴𝑆 have full rank 𝑟 almost surely. Then
E [𝐻𝐵 ] =

𝑟

𝑚
𝐼𝑚, E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

and hence
𝜆min (E [𝐻𝐵 ]) =

𝑟

𝑚
, 𝜆min (E [𝐻𝐴]) =

𝑟

𝑛
.

Proof. We first treat 𝐻𝐵 . For any 𝑄 ∈ 𝐺𝑚, Lemma 5(i) gives 𝑄𝐵𝑆
𝑑
= 𝐵𝑆 , and Lemma 4(i) gives

𝐻𝑄𝐵𝑆
= 𝑄𝐻𝐵𝑄

⊤. Since 𝑄𝐵𝑆 and 𝐵𝑆 have the same distribution, we obtain
E [𝐻𝐵 ] = E [𝐻𝑄𝐵𝑆

] = E
[︀
𝑄𝐻𝐵𝑄

⊤]︀ = 𝑄E [𝐻𝐵 ] 𝑄
⊤ for all 𝑄 ∈ 𝐺𝑚.

Thus E [𝐻𝐵 ] commutes with every signed permutation matrix 𝑄 ∈ 𝐺𝑚. By Lemma 2, there exists
𝛼 ∈ R such that

E [𝐻𝐵 ] = 𝛼𝐼𝑚.

To determine 𝛼, note that for any realization with rank(𝐵𝑆) = 𝑟, 𝐻𝐵 is an orthogonal projector of
rank 𝑟, so Tr (𝐻𝐵) = 𝑟. Taking expectations and using linearity of the trace,

Tr (E [𝐻𝐵 ]) = E [Tr (𝐻𝐵)] = 𝑟.
On the other hand,

Tr (E [𝐻𝐵 ]) = Tr (𝛼𝐼𝑚) = 𝛼𝑚,
so 𝛼𝑚 = 𝑟 and hence

E [𝐻𝐵 ] =
𝑟

𝑚
𝐼𝑚.

The argument for 𝐻𝐴 is analogous, now working in ambient dimension 𝑛. Specifically, 𝐴⊤
𝑆 ∈ R𝑛×𝑟

has i.i.d. Unif ([−𝑎,𝑎]) entries. For any 𝑅 ∈ 𝐺𝑛, Lemma 5(ii) gives 𝐴𝑆𝑅
𝑑
= 𝐴𝑆 , and Lemma 4(ii)

yields 𝐻𝐴𝑅 = 𝑅⊤𝐻𝐴𝑅. Therefore
E [𝐻𝐴] = E [𝐻𝐴𝑅] = E

[︀
𝑅⊤𝐻𝐴𝑅

]︀
= 𝑅⊤E [𝐻𝐴]𝑅 for all 𝑅 ∈ 𝐺𝑛.

By Lemma 2 applied in R𝑛×𝑛, we must have E [𝐻𝐴] = 𝛽𝐼𝑛 for some 𝛽 ∈ R. As before, rank(𝐴𝑆) =
𝑟 almost surely, so 𝐻𝐴 is a rank-𝑟 projector and Tr (𝐻𝐴) = 𝑟 almost surely, implying

Tr (E [𝐻𝐴]) = E [Tr (𝐻𝐴)] = 𝑟.
On the other hand, Tr (E [𝐻𝐴]) = Tr (𝛽𝐼𝑛) = 𝛽𝑛, so 𝛽 = 𝑟/𝑛 and hence

E [𝐻𝐴] =
𝑟

𝑛
𝐼𝑛.

This completes the proof.

D.4 KAIMING-UNIFORM INITIALIZATION

In this section, we consider the widely used Kaiming-uniform initializer, implemented in PyTorch
as nn.init.kaiming uniform . Kaiming-uniform (He) initialization (?) underlies the default
linear-layer initialization in PyTorch and is therefore inherited by many practical LoRA implemen-
tations that keep the framework defaults for adapter weights (e.g. Hayou et al., 2024; ?; Kopiczko
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et al., 2023). This initializer samples each entry of a weight matrix independently from a symmetric
uniform distribution on an interval [−𝑏,𝑏], where the bound 𝑏 > 0 depends on the fan-in and the
activation function. In particular, the entries are i.i.d., continuous, and symmetric about zero.

Let 𝐵𝑆 ∈ R𝑚×𝑟 and 𝐴𝑆 ∈ R𝑟×𝑛 be initialized with Kaiming-uniform. Then 𝐵𝑆 and 𝐴𝑆 satisfy
exactly the same symmetry properties as in the uniform [−𝑎,𝑎] case:

◆ The entries are i.i.d. and symmetric around zero, so the distribution is invariant under row
permutations and sign flips (i.e. under 𝐺𝑚 or 𝐺𝑛).

◆ With probability one, rank(𝐵𝑆) = 𝑟 and rank(𝐴𝑆) = 𝑟 (since the entries are drawn from a
continuous distribution).

Therefore the proof of Lemma 6 applies verbatim.

Lemma 7 (Expected projections for Kaiming-uniform sketches). Let 𝑟 ≤ min{𝑚,𝑛} and consider
two random matrices:

◆ 𝐵𝑆 ∈ R𝑚×𝑟 with entries initialized by Kaiming-uniform,

◆ 𝐴𝑆 ∈ R𝑟×𝑛 with entries initialized by Kaiming-uniform.

Define 𝐻𝐵 and 𝐻𝐴 as in (15) and (16). Then
E [𝐻𝐵 ] =

𝑟

𝑚
𝐼𝑚, E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

and hence
𝜆min (E [𝐻𝐵 ]) =

𝑟

𝑚
, 𝜆min (E [𝐻𝐴]) =

𝑟

𝑛
.

Proof. Because Kaiming-uniform draws each entry independently from a symmetric uniform distri-
bution [−𝑏,𝑏], the distribution of 𝐵𝑆 is invariant under any signed permutation of rows: permuting
rows leaves the joint law unchanged, and multiplying any row by −1 preserves the marginal law of
each entry (by symmetry). Thus 𝑄𝐵𝑆

𝑑
= 𝐵𝑆 for all 𝑄 ∈ 𝐺𝑚, and the same holds for 𝐴⊤

𝑆 with 𝐺𝑛.

The rest of the argument is exactly as in Lemma 6: by combining Lemma ?? with signed-permutation
invariance, we conclude that E [𝐻𝐵 ] = 𝛼𝐼𝑚 and E [𝐻𝐴] = 𝛽𝐼𝑛 for some scalars 𝛼,𝛽 ∈ R. Since 𝐻𝐵

and 𝐻𝐴 are rank-𝑟 projectors almost surely, Tr (𝐻𝐵) = 𝑟 and Tr (𝐻𝐴) = 𝑟, and the trace identities
Tr (E [𝐻𝐵 ]) = 𝛼𝑚 = 𝑟, Tr (E [𝐻𝐴]) = 𝛽𝑛 = 𝑟

imply 𝛼 = 𝑟/𝑚 and 𝛽 = 𝑟/𝑛. This yields the stated formulas.

In summary, for Gaussian, i.i.d. uniform, and Kaiming-uniform sketch distributions, the expected
projection matrices are isotropic:

E [𝐻𝐵 ] =
𝑟

𝑚
𝐼𝑚, E [𝐻𝐴] =

𝑟

𝑛
𝐼𝑛,

and Assumption 1 holds with 𝜆𝐻
min = min{𝑟/𝑚, 𝑟/𝑛} > 0. This shows that the positive expected

projection condition is naturally satisfied by a broad class of standard initialization schemes used in
LoRA and its variants.

D.5 RANDOM ORTHONORMAL SKETCHES VIA SVD

We now consider the initialization where a dense random matrix 𝑊 ∈ R𝑚×𝑛 with i.i.d. entries
𝑊𝑖𝑗 ∼ Unif ([−𝑎,𝑎]) is first sampled, and then orthonormal sketches are obtained from its singular
vectors. Specifically, let 𝑊 = 𝑈Σ𝑉 ⊤ be an SVD with singular values arranged in strictly decreasing
order, and set

𝐵𝑆(𝑊 ) := 𝑈[:,1:𝑟] ∈ R𝑚×𝑟,

𝐴𝑆(𝑊 ) := 𝑉 ⊤
[:,1:𝑟] ∈ R𝑟×𝑛.

By construction,
𝐵𝑆(𝑊 )⊤𝐵𝑆(𝑊 ) = 𝐼𝑟, 𝐴𝑆(𝑊 )𝐴𝑆(𝑊 )⊤ = 𝐼𝑟.
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In particular, when we plug 𝐵𝑆(𝑊 ) and 𝐴𝑆(𝑊 ) into the general projector definitions

𝐻𝐵 := 𝐵𝑆(𝑊 )
(︀
𝐵𝑆(𝑊 )⊤𝐵𝑆(𝑊 )

)︀†
𝐵𝑆(𝑊 )⊤ ∈ R𝑚×𝑚,

𝐻𝐴 := 𝐴𝑆(𝑊 )⊤
(︀
𝐴𝑆(𝑊 )𝐴𝑆(𝑊 )⊤

)︀†
𝐴𝑆(𝑊 ) ∈ R𝑛×𝑛,

the pseudo-inverse is simply the identity (because 𝐵𝑆(𝑊 )⊤𝐵𝑆(𝑊 ) = 𝐴𝑆(𝑊 )𝐴𝑆(𝑊 )⊤ = 𝐼𝑟), so
𝐻𝐵(𝑊 ) = 𝐵𝑆(𝑊 )𝐵𝑆(𝑊 )⊤ = 𝑈[:,1:𝑟]𝑈

⊤
[:,1:𝑟] ∈ R𝑚×𝑚,

𝐻𝐴(𝑊 ) = 𝐴𝑆(𝑊 )⊤𝐴𝑆(𝑊 ) = 𝑉[:,1:𝑟]𝑉
⊤
[:,1:𝑟] ∈ R𝑛×𝑛.

Both 𝐻𝐵(𝑊 ) and 𝐻𝐴(𝑊 ) are orthogonal projectors of rank 𝑟, with eigenvalues {1} on the chosen
𝑟-dimensional subspace and {0} on its orthogonal complement.

This type of initialization (taking 𝑈[:,1:𝑟] or 𝑉[:,1:𝑟] from the SVD of a dense random matrix) appears,
for example, in the experimental studies by Zhu et al. (2024), and is closely related to the orthonormal
constructions used in OLoRA (?).

Our first goal is to understand how the sketch projectors 𝐻𝐵(𝑊 ) and 𝐻𝐴(𝑊 ) transform when we
apply signed permutations to the rows or columns of 𝑊 .

Lemma 8 (Equivariance of SVD-based left and right sketches under signed permutations). Let
𝑊 ∈ R𝑚×𝑛 be any matrix with SVD 𝑊 = 𝑈Σ𝑉 ⊤, where Σ = diag (𝜎1, . . . ,𝜎𝑑) with strictly
decreasing singular values 𝜎1 > · · · > 𝜎𝑑 > 0 (here 𝑑 = rank(𝑊 )). Define

𝐵𝑆(𝑊 ) := 𝑈[:,1:𝑟] ∈ R𝑚×𝑟, 𝐻𝐵(𝑊 ) := 𝐵𝑆(𝑊 )𝐵𝑆(𝑊 )⊤,

𝐴𝑆(𝑊 ) := 𝑉 ⊤
[:,1:𝑟] ∈ R𝑟×𝑛, 𝐻𝐴(𝑊 ) := 𝐴𝑆(𝑊 )⊤𝐴𝑆(𝑊 ).

Then:

(i) For any signed permutation 𝑄 ∈ 𝐺𝑚, consider an SVD of 𝑄𝑊 with the singular values ordered
in the same descending fashion. Up to column-wise sign flips, the left singular vectors of 𝑄𝑊 are
𝑄𝑈 , and the corresponding left-sketch projector satisfies

𝐻𝐵(𝑄𝑊 ) = 𝑄𝐻𝐵(𝑊 )𝑄⊤. (23)

(ii) For any signed permutation 𝑅 ∈ 𝐺𝑛, consider an SVD of 𝑊𝑅 with the singular values ordered in
the same descending fashion. Up to column-wise sign flips, the right singular vectors of 𝑊𝑅 are
𝑅⊤𝑉 , and the corresponding right-sketch projector satisfies

𝐻𝐴(𝑊𝑅) = 𝑅⊤𝐻𝐴(𝑊 )𝑅. (24)

Proof. We prove (i) and (ii) separately.

(i) Left sketches: effect of 𝑄 ∈ 𝐺𝑚 acting on rows. Since 𝑄 ∈ 𝐺𝑚 is orthogonal, 𝑄𝑊 admits
the factorization

𝑄𝑊 = (𝑄𝑈)Σ𝑉 ⊤,
where 𝑄𝑈 is also orthogonal. The singular values of 𝑄𝑊 are the same as those of 𝑊 , namely
𝜎1, . . . ,𝜎𝑑, and by assumption they are strictly ordered: 𝜎1 > · · · > 𝜎𝑑 > 0.

Consider an SVD of 𝑄𝑊 with singular values written in descending order:
𝑄𝑊 = 𝑈 ′Σ𝑉 ′⊤,

where 𝑈 ′ and 𝑉 ′ are orthogonal. The uniqueness properties of the SVD when all singular values are
distinct imply that 𝑈 ′ and 𝑉 ′ are determined by 𝑄𝑈 and 𝑉 up to sign flips of individual singular
vectors. More precisely, there exists a diagonal orthogonal matrix 𝑅 = diag (±1, . . . ,± 1) ∈ R𝑑×𝑑

such that
𝑈 ′ = 𝑄𝑈𝑅, 𝑉 ′ = 𝑉 𝑅.

(If some singular values were repeated, 𝑅 could mix singular vectors within blocks corresponding to
equal singular values; the strict-ordering assumption rules this out.)

Let 𝑅1:𝑟 denote the leading 𝑟 × 𝑟 diagonal block of 𝑅. Then the first 𝑟 left singular vectors of 𝑄𝑊
can be written as

𝐵𝑆(𝑄𝑊 ) = 𝑈 ′
[:,1:𝑟] = 𝑄𝑈[:,1:𝑟]𝑅1:𝑟.
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The corresponding projector is
𝐻𝐵(𝑄𝑊 ) = 𝐵𝑆(𝑄𝑊 )𝐵𝑆(𝑄𝑊 )⊤

=
(︀
𝑄𝑈[:,1:𝑟]𝑅1:𝑟

)︀ (︀
𝑄𝑈[:,1:𝑟]𝑅1:𝑟

)︀⊤
= 𝑄𝑈[:,1:𝑟]𝑅1:𝑟𝑅

⊤
1:𝑟𝑈

⊤
[:,1:𝑟]𝑄

⊤

= 𝑄𝑈[:,1:𝑟]𝑈
⊤
[:,1:𝑟]𝑄

⊤

= 𝑄𝐻𝐵(𝑊 )𝑄⊤,

since 𝑅1:𝑟𝑅
⊤
1:𝑟 = 𝐼𝑟. This proves (23).

(ii) Right sketches: effect of 𝑅 ∈ 𝐺𝑛 acting on columns. Now consider 𝑊𝑅 with 𝑅 ∈ 𝐺𝑛

orthogonal. Using the SVD of 𝑊 , we have
𝑊𝑅 = 𝑈Σ𝑉 ⊤𝑅 = 𝑈Σ

(︀
𝑅⊤𝑉

)︀⊤
.

Since 𝑅⊤𝑉 is orthogonal, this is an SVD of 𝑊𝑅 with left singular matrix 𝑈 and right singular matrix̃︀𝑉 := 𝑅⊤𝑉 . The singular values remain 𝜎1, . . . ,𝜎𝑑, strictly ordered.

Let
𝑊𝑅 = ̃︀𝑈Σ̃︀𝑉 ⊤

be any SVD of 𝑊𝑅 with singular values in descending order. By the same uniqueness argument,
there exists a diagonal orthogonal matrix 𝑆 = diag (±1, . . . ,± 1) ∈ R𝑑×𝑑 such that̃︀𝑈 = 𝑈𝑆, ̃︀𝑉 = ̃︀𝑉0𝑆 = (𝑅⊤𝑉 )𝑆.
Let 𝑉𝑟 = 𝑉[:,1:𝑟] and 𝑆1:𝑟 be the leading 𝑟 × 𝑟 block of 𝑆. Then the first 𝑟 right singular vectors of
𝑊𝑅 are given by the first 𝑟 columns of ̃︀𝑉 :̃︀𝑉[:,1:𝑟] = (𝑅⊤𝑉 𝑆)[:,1:𝑟]

= 𝑅⊤𝑉[:,1:𝑟]𝑆1:𝑟.

Recalling that 𝐴𝑆(𝑊 ) = 𝑉 ⊤
𝑟 , the right-sketch matrix for 𝑊𝑅 is

𝐴𝑆(𝑊𝑅) = ̃︀𝑉 ⊤
[:,1:𝑟]

= 𝑆⊤
1:𝑟𝑉

⊤
[:,1:𝑟]𝑅

= 𝑆1:𝑟𝑉
⊤
𝑟 𝑅,

where we used that 𝑆1:𝑟 is diagonal with entries ±1, so 𝑆⊤
1:𝑟 = 𝑆1:𝑟.

The corresponding right-sketch projector is
𝐻𝐴(𝑊𝑅) = 𝐴𝑆(𝑊𝑅)⊤𝐴𝑆(𝑊𝑅)

=
(︀
𝑆1:𝑟𝑉

⊤
𝑟 𝑅

)︀⊤ (︀
𝑆1:𝑟𝑉

⊤
𝑟 𝑅

)︀
= 𝑅⊤𝑉𝑟𝑆

⊤
1:𝑟𝑆1:𝑟𝑉

⊤
𝑟 𝑅

= 𝑅⊤𝑉𝑟𝑉
⊤
𝑟 𝑅

= 𝑅⊤𝐻𝐴(𝑊 )𝑅,

since 𝑆⊤
1:𝑟𝑆1:𝑟 = 𝐼𝑟. This proves (24) and completes the proof.

We now combine this equivariance with the signed-permutation invariance of the i.i.d. uniform matrix
𝑊 to obtain closed-form expressions for the expected projectors.

Lemma 9 (Expected projections for SVD-based uniform orthonormal sketches). Let 𝑊 ∈ R𝑚×𝑛

have i.i.d. entries 𝑊𝑖𝑗 ∼ Unif ([−𝑎,𝑎]), and let 𝐻𝐵(𝑊 ) and 𝐻𝐴(𝑊 ) be defined as above from an
SVD 𝑊 = 𝑈Σ𝑉 ⊤ with strictly decreasing singular values. Then

E [𝐻𝐵(𝑊 )] =
𝑟

𝑚
𝐼𝑚, E [𝐻𝐴(𝑊 )] =

𝑟

𝑛
𝐼𝑛,

and hence
𝜆min (E [𝐻𝐵(𝑊 )]) =

𝑟

𝑚
> 0, 𝜆min (E [𝐻𝐴(𝑊 )]) =

𝑟

𝑛
> 0.

Proof. We treat 𝐻𝐵(𝑊 ) and 𝐻𝐴(𝑊 ) in turn.
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Left-sketch projector 𝐻𝐵(𝑊 ). The rows of 𝑊 are i.i.d. vectors in R𝑛 with continuous, symmetric
entries. For any signed permutation 𝑄 ∈ 𝐺𝑚, left-multiplication by 𝑄 permutes and flips the signs
of rows, so

𝑄𝑊
𝑑
= 𝑊 for all 𝑄 ∈ 𝐺𝑚.

By Lemma 8(i),
𝐻𝐵(𝑄𝑊 ) = 𝑄𝐻𝐵(𝑊 )𝑄⊤.

Since 𝑄𝑊 and 𝑊 are identically distributed, 𝐻𝐵(𝑄𝑊 ) and 𝐻𝐵(𝑊 ) are identically distributed, and
hence

E [𝐻𝐵(𝑊 )] = E [𝐻𝐵(𝑄𝑊 )] = E
[︀
𝑄𝐻𝐵(𝑊 )𝑄⊤]︀ = 𝑄E [𝐻𝐵(𝑊 )] 𝑄⊤ for all 𝑄 ∈ 𝐺𝑚.

Thus E [𝐻𝐵(𝑊 )] commutes with every signed permutation matrix in 𝐺𝑚, and by Lemma 2 there
exists 𝛼 ∈ R such that

E [𝐻𝐵(𝑊 )] = 𝛼𝐼𝑚.

To determine 𝛼, recall that 𝐵𝑆(𝑊 ) has orthonormal columns, so 𝐻𝐵(𝑊 ) = 𝐵𝑆(𝑊 )𝐵𝑆(𝑊 )⊤ is a
rank-𝑟 projector with

Tr (𝐻𝐵(𝑊 )) = 𝑟
for every realization. Taking expectations and using linearity of the trace,

Tr (E [𝐻𝐵(𝑊 )]) = E [Tr (𝐻𝐵(𝑊 ))] = 𝑟.
On the other hand,

Tr (E [𝐻𝐵(𝑊 )]) = Tr (𝛼𝐼𝑚) = 𝛼𝑚,
so 𝛼𝑚 = 𝑟 and hence 𝛼 = 𝑟/𝑚. Therefore

E [𝐻𝐵(𝑊 )] =
𝑟

𝑚
𝐼𝑚.

Right-sketch projector 𝐻𝐴(𝑊 ). The columns of 𝑊 are also i.i.d. vectors in R𝑚 with continuous,
symmetric entries. For any signed permutation 𝑅 ∈ 𝐺𝑛, right-multiplication by 𝑅 permutes and flips
the signs of columns, so

𝑊𝑅
𝑑
= 𝑊 for all 𝑅 ∈ 𝐺𝑛.

By Lemma 8(ii),
𝐻𝐴(𝑊𝑅) = 𝑅⊤𝐻𝐴(𝑊 )𝑅.

Since 𝑊𝑅 and 𝑊 have the same distribution, the random matrices 𝐻𝐴(𝑊𝑅) and 𝐻𝐴(𝑊 ) are
identically distributed. Hence

E [𝐻𝐴(𝑊 )] = E [𝐻𝐴(𝑊𝑅)] = E
[︀
𝑅⊤𝐻𝐴(𝑊 )𝑅

]︀
= 𝑅⊤E [𝐻𝐴(𝑊 )]𝑅 for all 𝑅 ∈ 𝐺𝑛.

Applying Lemma 2 (now in dimension 𝑛) shows that there exists 𝛽 ∈ R such that
E [𝐻𝐴(𝑊 )] = 𝛽𝐼𝑛.

Again, 𝐴𝑆(𝑊 ) has orthonormal rows, so 𝐻𝐴(𝑊 ) = 𝐴𝑆(𝑊 )⊤𝐴𝑆(𝑊 ) is a rank-𝑟 projector and
Tr (𝐻𝐴(𝑊 )) = 𝑟

for every realization. Taking expectations,
Tr (E [𝐻𝐴(𝑊 )]) = E [Tr (𝐻𝐴(𝑊 ))] = 𝑟.

But Tr (E [𝐻𝐴(𝑊 )]) = Tr (𝛽𝐼𝑛) = 𝛽𝑛, hence 𝛽𝑛 = 𝑟 and therefore 𝛽 = 𝑟/𝑛. Thus

E [𝐻𝐴(𝑊 )] =
𝑟

𝑛
𝐼𝑛.

This completes the proof.

Remark 2. Each individual projector 𝐻𝐵(𝑊 ) (resp. 𝐻𝐴(𝑊 )) is rank-deficient, with eigenvalues
{1} on an 𝑟-dimensional subspace and {0} on its orthogonal complement. The lemma above concerns
the expectation of these projectors over the randomness of 𝑊 . Because the subspace spanned by the
leading singular vectors is random and, in distribution, symmetric under signed permutations, the
expectation E [𝐻𝐵(𝑊 )] (resp. E [𝐻𝐴(𝑊 )]) becomes a full-rank, isotropic matrix (𝑟/𝑚)𝐼𝑚 (resp.
(𝑟/𝑛)𝐼𝑛). This is exactly analogous to the classical fact that if 𝑢 is a random unit vector in R𝑑, then
E
[︀
𝑢𝑢⊤]︀ = (1/𝑑)𝐼𝑑 even though 𝑢𝑢⊤ has rank 1 for every realization.
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E REFORMULATION AS A PROJECTED GRADIENT STEP

Following the approach of Malinovsky et al. (2024), let’s consider the update for the trainable matrix
𝐴𝑡 in the Left Sketch case. Taking a single GD step on the subproblem corresponds to minimizing a
quadratic approximation of the objective. This yields the solution for 𝐴𝑡:

𝐴𝑡 = −𝜂
(︁(︀

𝐵𝑡
𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡),

where 𝜂 is a learning rate for the subproblem and † denotes the Moore-Penrose pseudoinverse.
Substituting this into the update for 𝑊 𝑡+1 gives:

𝑊 𝑡+1 = 𝑊 𝑡 +
𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡 = 𝑊 𝑡 − 𝛼𝜂

𝑟
𝐵𝑡

𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡)

= 𝑊 𝑡 − 𝛾𝐻𝑡
𝐵∇𝑓(𝑊 𝑡),

where we define the effective stepsize 𝛾 := 𝛼𝜂
𝑟 and the projection matrix 𝐻𝑡

𝐵 :=

𝐵𝑡
𝑆

(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤. A similar derivation for the Right Sketch case gives the update:

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴,

where 𝐻𝑡
𝐴 := (𝐴𝑡

𝑆)
⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

𝐴𝑡
𝑆 . This reformulation reveals that both Left and Right sketch

updates are equivalent to applying a standard gradient-based update, but projected onto a randomly
chosen low-rank subspace.
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F CORE ALGORITHMIC VARIANTS

Bernoulli-LoRA-GD. The simplest instantiation of our framework is Bernoulli-LoRA-GD (Algo-
rithm 2). This method serves as a foundational building block and a starting point for more elaborate
variants. It uses the full gradient of the objective function as its base estimator, i.e., 𝐺𝑡 = ∇𝑓(𝑊 𝑡).
While impractical for large-scale deep learning, its analysis provides crucial insights into the conver-
gence behavior of the Bernoulli-LoRA mechanism under idealized, deterministic conditions.

Bernoulli-LoRA-SGD. Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) is a highly
effective and widely utilized algorithm for training a variety of machine learning models. The latest
advancements in deep learning training methods are all based on different variations of SGD (Sun,
2020). Its advantage over GD is that it uses stochastic gradients for updates, rather than relying on
full gradients. Within our framework, we develop Bernoulli-LoRA-SGD, where the base estimator 𝐺𝑡

is a general unbiased stochastic gradient of 𝑓 at 𝑊 𝑡.

Bernoulli-LoRA-PAGE. Several optimal algorithms exist for addressing non-convex optimization
problems, such as SPIDER (Fang et al., 2018) and SARAH (Pham et al., 2020). However, their
optimality is supported by a known lower bound that applies only in the small data setting. In
contrast, ProbAbilistic Gradient Estimator (PAGE) (Li et al., 2021) stands out for its simplicity, ease
of implementation, and ability to achieve optimal convergence in non-convex optimization. PAGE
alternates between a full gradient update with probability 𝑞𝑡 and a low-cost gradient adjustment with
probability 1− 𝑞𝑡. Bernoulli-LoRA-PAGE is a new method based on PAGE within our Bernoulli-LoRA
framework.

Bernoulli-LoRA-MVR. VR methods outperform SGD in reaching first-order critical points but
often require finely tuned learning rates and large batch sizes to be effective. To overcome these
challenges, Momentum Variance Reduction (MVR) (Cutkosky & Orabona, 2019) was introduced for
server-only stochastic non-convex optimization. MVR uses a modified momentum technique to reduce
variance without relying on large batch sizes. Several works employ this powerful approach (Tyurin &
Richtárik, 2023; Karagulyan et al., 2024). We propose Bernoulli-LoRA-MVR, where the base estimator
𝐺𝑡 is updated using the MVR rule: a combination of the current stochastic gradient and a momentum
term that incorporates the difference between past estimators and gradients.

G EXTENSIONS FOR FEDERATED LEARNING

Sun et al. (2024) identified instability in LoRA, arising from the mismatch between local clients simul-
taneously optimizing two low-rank matrices and the central server aggregating them independently.
Factors such as data heterogeneity, multi-step local updates, and the amplification of additive noise
applied to gradients for ensuring differential privacy (DP) significantly impact the process. Addition-
ally, the final performance is highly sensitive to hyperparameter choices. Their proposed solution
centers on keeping the randomly initialized non-zero matrices fixed while exclusively fine-tuning
the zero-initialized ones. Based on this asymmetric approach, Malinovsky et al. (2024) proposed a
distributed method Fed-RAC-LoRA.

We develop the theory further by incorporating compression, VR and EF techniques into FL methods
for LoRA within the novel Bernoulli-LoRA framework.

The effectiveness of a distributed training method is primarily measured by its communication
complexity, defined as the product of the required communication rounds and the communication
volume per round. Following common practice, we assume client-to-server communication is the
main bottleneck and exclude server-to-client communication from our analysis.

Fed-Bernoulli-LoRA-QGD. A key challenge for distributed methods lies in the high communica-
tion cost of gradient updates. Lossy compression techniques, such as QSGD (Alistarh et al., 2017),
address this by enabling clients to send quantized gradients. We design Fed-Bernoulli-LoRA-QGD
based on QSGD. The clients send compressed versions of their gradients. The base estimator 𝐺𝑡 is
formed by averaging the compressed local gradients received from all clients.
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Fed-Bernoulli-LoRA-MARINA. MARINA (Gorbunov et al., 2021) is a communication-efficient
method for non-convex distributed learning on heterogeneous datasets that uses a novel gradient
difference compression strategy. Its biased gradient estimator underpins its strong theoretical and
practical performance, with proven communication complexity bounds surpassing all prior first-order
methods. We propose Fed-Bernoulli-LoRA-MARINA, where each client’s local estimator 𝐺𝑡

𝑙 is updated
either with a full local gradient (with probability 𝑞) or by adding a compressed gradient difference to
its previous estimator. The server’s base estimator 𝐺𝑡 is the average of these local estimators.

Fed-Bernoulli-LoRA-EF21. Error Feedback (EF) (Seide et al., 2014; Stich et al., 2018; Alistarh
et al., 2018; Richtárik et al., 2021) is a widely adopted technique for stabilizing training with
contractive compressors. We propose Fed-Bernoulli-LoRA-EF21, based on the modern EF21. Here,
each client updates its local estimator 𝐺𝑡

𝑙 by adding a compressed version of the difference between
the current local gradient and the previous local estimator. The server’s base estimator 𝐺𝑡 is again
the average of the clients’ estimators.
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H PROOFS FOR CORE ALGORITHMIC VARIANTS

H.1 ANALYSIS OF BERNOULLI-LORA-GD

Algorithm 2 Bernoulli-LoRA-GD

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0,
stepsize 𝛾𝑡 chain length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤ ∇𝑓(𝑊 𝑡)

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂∇𝑓(𝑊 𝑡) (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: end for

The following lemma establishes that the Bernoulli-LoRA update can be reformulated as a standard
projected gradient descent step, providing a crucial foundation for our subsequent convergence
analysis.

Lemma 10. Consider the updates 𝐴𝑡 and 𝐵̂𝑡 from Algorithm 2 computed as solutions to the following
optimization problems:

𝐴𝑡 := argmin
𝐴

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
∇𝑓(𝑊 𝑡), 𝐵𝑡

𝑆𝐴
⟩︀
F
+

𝛼2

2𝛾𝑟2
⃦⃦
𝐵𝑡

𝑆𝐴
⃦⃦2
F

}︂
,

𝐵̂𝑡 := argmin
𝐵

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
∇𝑓(𝑊 𝑡), 𝐵𝐴𝑡

𝑆

⟩︀
F
+

𝛼2

2𝛾𝑟2
⃦⃦
𝐵𝐴𝑡

𝑆

⃦⃦2
F

}︂
. (25)

Then the Left and Right sketch updates can be expressed as a gradient descent step:
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺𝑡, (26)

where 𝐺𝑡 is defined by

𝐺𝑡 =

{︂
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡), with probability 𝑝

∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴, with probability 1− 𝑝

(27)

with projection matrices 𝐻𝑡
𝐴 and 𝐻𝑡

𝐵 given by:

𝐻𝑡
𝐴 :=

(︀
𝐴𝑡

𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
𝐴𝑡

𝑆 and 𝐻𝑡
𝐵 := 𝐵𝑡

𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤
, (28)

where † denotes the Moore-Penrose pseudoinverse.

Proof. Following Algorithm 2, at each iteration we randomly select either the Left sketch (with
probability 𝑝) or the Right sketch (with probability 1− 𝑝). We analyze both cases separately and then
combine them into a unified update rule.

Left Sketch Analysis. When the Left sketch is selected, the update takes the form:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡. (29)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Minimizing the right-hand side with respect to 𝐴𝑡 yields:
𝛼

𝑟

(︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡) +
𝛼2

𝛾𝑟2
(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆𝐴
𝑡 = 0;(︀

𝐵𝑡
𝑆

)︀⊤
𝐵𝑡

𝑆𝐴
𝑡 = −𝛾𝑟

𝛼

(︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡);

𝐴𝑡 = −𝛾𝑟

𝛼

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡). (30)

This leads to the Left sketch update:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡

= 𝑊 𝑡 − 𝛾𝐵𝑡
𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤ ∇𝑓(𝑊 𝑡)

= 𝑊 𝑡 − 𝛾𝐻𝑡
𝐵∇𝑓(𝑊 𝑡), (31)

where 𝐻𝑡
𝐵 := 𝐵𝑡

𝑆

(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤ is a projection matrix.

Right Sketch Analysis. For the Right sketch, we follow a similar approach. The update rule is:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵̂𝑡𝐴𝑡

𝑆 . (32)

First, observe that:⃦⃦⃦
𝐵̂𝑡𝐴𝑡

𝑆

⃦⃦⃦2
F
=
⟨
𝐵̂𝑡𝐴𝑡

𝑆 , 𝐵̂
𝑡𝐴𝑡

𝑆

⟩
F
=

⟨
𝐴𝑡

𝑆 ,
(︁
𝐵̂𝑡
)︁⊤

𝐵̂𝑡𝐴𝑡
𝑆

⟩
F

. (33)

For the linear term from (25):
𝛼

𝑟

⟨
∇𝑓(𝑊 𝑡), 𝐵̂𝑡𝐴𝑡

𝑆

⟩
F
=

𝛼

𝑟
Tr
(︁(︀

∇𝑓(𝑊 𝑡)
)︀⊤

𝐵̂𝑡𝐴𝑡
𝑆

)︁
, (34)

with gradient ∇𝑓(𝑊 𝑡) (𝐴𝑡
𝑆)

⊤ with respect to 𝐵̂𝑡. Using the matrix calculus identity ∇𝑋 ‖𝑋‖2F =
2𝑋 , the gradient of the quadratic term is:

𝛼2

𝛾𝑟2
𝐵̂𝑡𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤
. (35)

Setting the total gradient to zero and solving for 𝐵̂𝑡:

𝐵̂𝑡 = −𝛾𝑟

𝛼
∇𝑓(𝑊 𝑡)

(︀
𝐴𝑡

𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
, (36)

which yields the Right sketch update:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵̂𝑡𝐴𝑡

𝑆

= 𝑊 𝑡 − 𝛾∇𝑓(𝑊 𝑡)
(︀
𝐴𝑡

𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
𝐴𝑡

𝑆

= 𝑊 𝑡 − 𝛾∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴, (37)

where 𝐻𝑡
𝐴 := (𝐴𝑡

𝑆)
⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

𝐴𝑡
𝑆 is a projection matrix.

Combined Update Rule. Combining equations (31) and (37), we obtain the unified update:
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺𝑡, (38)

where 𝐺𝑡 takes the form given in the lemma statement, completing the proof.

With these assumptions in place, we can now state our main convergence result for RAC-LoRA with
Gradient Descent updates.

H.1.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 1. Let Assumptions 1, 3, and 2 hold, and let the stepsize satisfy 0 < 𝛾 ≤ 1
𝐿 . Then the

iterates of Bernoulli-LoRA-GD (Algorithm 2), with matrices 𝐴𝑡 and 𝐵̂𝑡 computed according to Lemma
10, satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓*)

𝛾𝜆𝑝
min𝑇

, (39)
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where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min+(1−𝑝)𝜆𝐻𝐴

min and̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence
{𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Proof. From Lemma 10, we know that Bernoulli-LoRA updates can be expressed as
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺𝑡, (40)

where 𝐺𝑡 takes the form

𝐺𝑡 =

{︂
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡), with probability 𝑝

∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴, with probability 1− 𝑝

(41)

with projection matrices 𝐻𝑡
𝐴 and 𝐻𝑡

𝐵 as defined in the lemma.

To analyze the convergence, we first compute the conditional expectation and second moment of 𝐺𝑡:
E
[︀
𝐺𝑡 | 𝑊 𝑡, 𝐻𝑡

]︀
= 𝑝𝐻𝑡

𝐵∇𝑓(𝑊 𝑡) + (1− 𝑝)∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴,

E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= 𝑝

⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+ (1− 𝑝)

⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F
, (42)

where we defined 𝐻𝑡 := {𝐻𝑡
𝐴, 𝐻

𝑡
𝐵}.

We begin by establishing several key auxiliary bounds. For the Left sketch term:

−𝛾𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+

𝐿𝛾2

2
𝑝
⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F

= −𝛾𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+

𝐿𝛾2

2
𝑝
⟨︀
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡), 𝐻𝑡
𝐵∇𝑓(𝑊 𝑡)

⟩︀
F

= −𝛾𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+

𝐿𝛾2

2
𝑝
⟨
∇𝑓(𝑊 𝑡),

(︀
𝐻𝑡

𝐵

)︀⊤
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩
F

= 𝑝

(︂
−𝛾
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+

𝐿𝛾2

2

⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F

)︂
𝛾 ≤ 1/𝐿

≤ −𝛾

2
𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
. (43)

For any projection matrix 𝐻𝑡
𝐴, we have:⟨︀

∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴,∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F

= Tr
(︁(︀

𝐻𝑡
𝐴

)︀⊤ (︀∇𝑓(𝑊 𝑡)
)︀⊤ ∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

)︁
= Tr

(︁(︀
∇𝑓(𝑊 𝑡)

)︀⊤ ∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

(︀
𝐻𝑡

𝐴

)︀⊤)︁
= Tr

(︁(︀
∇𝑓(𝑊 𝑡)

)︀⊤ ∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

)︁
=

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
. (44)

Therefore:

−𝛾(1− 𝑝)
⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
+

𝐿𝛾2

2
(1− 𝑝)

⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

= −𝛾(1− 𝑝)
⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
+

𝐿𝛾2

2
(1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴,∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

⟩︀
F

= −𝛾(1− 𝑝)
⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
+

𝐿𝛾2

2
(1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F

𝛾 ≤ 1/𝐿

≤ −𝛾

2
(1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
. (45)
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Using the Lipschitz gradient condition and the above bounds:
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡, 𝐻𝑡

]︀
≤ 𝑓(𝑊 𝑡) + E

[︀⟨︀
∇𝑓(𝑊 𝑡),𝑊 𝑡+1 −𝑊 𝑡

⟩︀
F
| 𝑊 𝑡, 𝐻𝑡

]︀
+

𝐿

2
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= 𝑓(𝑊 𝑡)− 𝛾

⟨︀
∇𝑓(𝑊 𝑡),E

[︀
𝐺𝑡 | 𝑊 𝑡, 𝐻𝑡

]︀⟩︀
F
+

𝐿𝛾2

2
E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= 𝑓(𝑊 𝑡)− 𝛾𝑝

⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
− 𝛾(1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F

+
𝐿𝛾2

2
𝑝
⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+

𝐿𝛾2

2
(1− 𝑝)

⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

(43),(45)
≤ 𝑓(𝑊 𝑡)− 𝛾

2

(︀
𝑝
⟨︀
∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⟩︀
F
+ (1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F

)︀
.

(46)

For the first term:
−
⟨︀
∇𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵

]︀
∇𝑓(𝑊 𝑡)

⟩︀
F

= −Tr
(︁(︀

∇𝑓(𝑊 𝑡)
)︀⊤ E

[︀
𝐻𝑡

𝐵

]︀
∇𝑓(𝑊 𝑡)

)︁
≤ −𝜆min

(︀
E
[︀
𝐻𝑡

𝐵

]︀)︀
Tr
(︁(︀

∇𝑓(𝑊 𝑡)
)︀⊤ ∇𝑓(𝑊 𝑡)

)︁
= −𝜆𝐻𝐵

min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (47)

Similarly, for the second term:

−
⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴

]︀⟩︀
F

= −Tr
(︁(︀

∇𝑓(𝑊 𝑡)
)︀⊤ ∇𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴

]︀)︁
= −Tr

(︁
E
[︀
𝐻𝑡

𝐴

]︀ (︀
∇𝑓(𝑊 𝑡)

)︀⊤ ∇𝑓(𝑊 𝑡)
)︁

≤ −𝜆𝐻𝐴

min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (48)

Therefore:
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡

]︀
= E

[︀
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡, 𝐻𝑡

]︀
| 𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾

2

(︀
𝑝
⟨︀
∇𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵

]︀
∇𝑓(𝑊 𝑡)

⟩︀
F
+ (1− 𝑝)

⟨︀
∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴

]︀⟩︀
F

)︀
≤ 𝑓(𝑊 𝑡)− 𝛾

2

(︁
𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min

)︁ ⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

= 𝑓(𝑊 𝑡)− 𝛾

2
𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
, (49)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min. Further,

E
[︀
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡, 𝐻𝑡

]︀
| 𝑊 𝑡

]︀
− 𝑓⋆ ≤ 𝑓(𝑊 𝑡)− 𝑓⋆ − 𝛾

2
𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (50)

Taking the sum over 𝑡 = 0, . . . ,𝑇 − 1 and using the tower property of expectation:

E
[︀
𝑓(𝑊𝑇 )− 𝑓⋆

]︀
≤ 𝑓(𝑊 0)− 𝑓⋆ − 𝛾

2
𝜆𝑝
min

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
. (51)

By rearranging terms, we get:

𝛾

2
𝜆𝑝
min

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ 𝑓(𝑊 0)− 𝑓⋆. (52)

Finally, dividing both sides by 𝛾𝑇
2 𝜆𝑝

min yields:

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓⋆)

𝛾𝜆𝑝
min𝑇

, (53)

where ̃︁𝑊𝑇 is chosen uniformly at random from {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}, completing the proof.
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H.1.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 9. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy 0 < 𝛾 ≤ 1
𝐿 . Then

the iterates of Bernoulli-LoRA-GD (Algorithm 2), with matrices 𝐴𝑡 and 𝐵̂𝑡 computed according to
Lemma 10, satisfy

E
[︀
𝑓(𝑊𝑇 )− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇 (︀

𝑓(𝑊 0)− 𝑓*)︀ ,
where 𝜆𝑝

min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min.

Proof. We begin our analysis from a key inequality derived in the proof of Theorem 1:
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾

2
𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (54)

By invoking the Polyak-Łojasiewicz condition (Assumption 6), which states that 1
2 ‖∇𝑓(𝑊 )‖2F ≥

𝜇 (𝑓(𝑊 )− 𝑓*), we can further bound the right-hand side of the inequality (54):
E
[︀
𝑓(𝑊 𝑡+1) | 𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾𝜆𝑝

min

(︀
𝜇
(︀
𝑓(𝑊 𝑡)− 𝑓*)︀)︀ .

Subtracting the optimal function value 𝑓* from both sides, we get a recursive relationship for the
expected suboptimality gap:

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓* | 𝑊 𝑡

]︀
≤
(︀
𝑓(𝑊 𝑡)− 𝑓*)︀− 𝛾𝜇𝜆𝑝

min

(︀
𝑓(𝑊 𝑡)− 𝑓*)︀

= (1− 𝛾𝜇𝜆𝑝
min)

(︀
𝑓(𝑊 𝑡)− 𝑓*)︀ .

By taking the full expectation over all randomness up to iteration 𝑡 and applying the tower property,
we obtain:

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀ .

Unrolling this recursion from 𝑡 = 𝑇 − 1 down to 𝑡 = 0 yields the final linear convergence result:
E
[︀
𝑓(𝑊𝑇 )− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇 (︀

𝑓(𝑊 0)− 𝑓*)︀ .
This completes the proof.

H.1.3 CONVERGENCE FOR NON-SMOOTH CONVEX FUNCTIONS

Algorithm 3 Bernoulli-LoRA-GD (Non-smooth setting)

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0,
stepsize 𝛾𝑡 chain length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = argmin𝐴

{︁
𝑓(𝑊 𝑡) + 𝛼

𝑟 ⟨𝜕𝑓 (𝑊 𝑡) , 𝐵𝑡
𝑆𝐴⟩F + 𝛼2

2𝛾𝑡𝑟2
‖𝐵𝑡

𝑆𝐴‖2F
}︁

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = argmin𝐵

{︁
𝑓(𝑊 𝑡) + 𝛼

𝑟 ⟨𝜕𝑓 (𝑊 𝑡) , 𝐵𝐴𝑡
𝑆⟩F + 𝛼2

2𝛾𝑡𝑟2
‖𝐵𝐴𝑡

𝑆‖
2
F

}︁
11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼

𝑟 𝐵̂
𝑡𝐴𝑡

𝑆
12: end if
13: end for

Our analysis relies on the following standard assumptions that are widely used in non-smooth
optimization theory:
Assumption 7. The function 𝑓 has at least one minimizer, denoted by 𝑊 *.
Assumption 8. The function 𝑓 is convex.
Assumption 9 (Lipschitz continuity). The function 𝑓 is 𝐿0-Lipschitz continuous. That is, there exists
𝐿0 > 0 such that

|𝑓(𝑊 )− 𝑓(𝑉 )| ≤ 𝐿0 ‖𝑊 − 𝑉 ‖F , ∀𝑊,𝑉 ∈ R𝑚×𝑛. (55)

The combination of convexity and Lipschitz continuity represents a standard framework in non-
smooth optimization (Vorontsova et al., 2021; Nesterov, 2013; Bubeck, 2015; Beck, 2017; Duchi,
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2018; Lan, 2020; Drusvyatskiy, 2020). Notably, the 𝐿0-Lipschitz continuity implies uniformly
bounded subgradients (Beck, 2017), a property that plays a crucial role in our analysis:

‖𝜕𝑓(𝑊 )‖F ≤ 𝐿0, ∀𝑊 ∈ R𝑚×𝑛. (56)
This boundedness of subgradients ensures the stability of our optimization process and enables us to
establish rigorous convergence guarantees.

The following lemma establishes that the Bernoulli-LoRA update in the non-smooth case can also be
reformulated as a subgradient descent step, which plays a central role in our convergence analysis for
non-smooth objectives.

Lemma 11. Consider the updates 𝐴𝑡 and 𝐵̂𝑡 from Algorithm 3 computed as solutions to the following
optimization problems:

𝐴𝑡 := argmin
𝐴

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
𝜕𝑓
(︀
𝑊 𝑡
)︀
, 𝐵𝑡

𝑆𝐴
⟩︀
F
+

𝛼2

2𝛾𝑡𝑟2
⃦⃦
𝐵𝑡

𝑆𝐴
⃦⃦2
F

}︂
,

𝐵̂𝑡 := argmin
𝐵

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
𝜕𝑓
(︀
𝑊 𝑡
)︀
, 𝐵𝐴𝑡

𝑆

⟩︀
F
+

𝛼2

2𝛾𝑡𝑟2
⃦⃦
𝐵𝐴𝑡

𝑆

⃦⃦2
F

}︂
. (57)

Then the Left and Right sketch updates can be expressed as a subgradient descent step:
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝑡𝐺

𝑡, (58)
where 𝐺𝑡 is defined by

𝐺𝑡 =

{︂
𝐻𝑡

𝐵𝜕𝑓 (𝑊 𝑡) , with probability 𝑝

𝜕𝑓 (𝑊 𝑡)𝐻𝑡
𝐴, with probability 1− 𝑝

(59)

with projection matrices 𝐻𝑡
𝐴 and 𝐻𝑡

𝐵 given by:

𝐻𝑡
𝐴 :=

(︀
𝐴𝑡

𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
𝐴𝑡

𝑆 and 𝐻𝑡
𝐵 := 𝐵𝑡

𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤
, (60)

where † denotes the Moore-Penrose pseudoinverse.

Proof. The proof follows a similar structure to that of Lemma 10, with subgradients replacing
gradients throughout the analysis. We examine both sketch types separately before combining them
into a unified update rule.

Left Sketch Analysis. When the Left sketch is selected, the update takes the form:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡. (61)

The matrix 𝐴𝑡 is defined as the solution to the optimization problem:

𝐴𝑡 := argmin
𝐴

{︂
𝑓(𝑊 𝑡) +

𝛼

𝑟

⟨︀
𝜕𝑓
(︀
𝑊 𝑡
)︀
, 𝐵𝑡

𝑆𝐴
⟩︀
F
+

𝛼2

2𝛾𝑡𝑟2
⃦⃦
𝐵𝑡

𝑆𝐴
⃦⃦2
F

}︂
. (62)

By computing the gradient of the objective with respect to 𝐴 and setting it to zero, we obtain:
𝛼

𝑟

(︀
𝐵𝑡

𝑆

)︀⊤
𝜕𝑓
(︀
𝑊 𝑡
)︀
+

𝛼2

𝛾𝑡𝑟2
(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆𝐴
𝑡 = 0;

𝐴𝑡 = −𝛾𝑡𝑟

𝛼

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤
𝜕𝑓
(︀
𝑊 𝑡
)︀
. (63)

Substituting this expression back into the update equation yields the Left sketch update:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵𝑡

𝑆𝐴
𝑡

= 𝑊 𝑡 − 𝛾𝑡𝐵
𝑡
𝑆

(︁(︀
𝐵𝑡

𝑆

)︀⊤
𝐵𝑡

𝑆

)︁† (︀
𝐵𝑡

𝑆

)︀⊤
𝜕𝑓
(︀
𝑊 𝑡
)︀

= 𝑊 𝑡 − 𝛾𝑡𝐻
𝑡
𝐵𝜕𝑓

(︀
𝑊 𝑡
)︀
. (64)

Right Sketch Analysis. For the Right sketch, we follow an analogous approach. The update rule
takes the form:

𝑊 𝑡+1 = 𝑊 𝑡 +
𝛼

𝑟
𝐵̂𝑡𝐴𝑡

𝑆 . (65)

Applying similar optimization steps but now with respect to matrix 𝐵, we obtain:

𝐵̂𝑡 = −𝛾𝑡𝑟

𝛼
𝜕𝑓
(︀
𝑊 𝑡
)︀ (︀

𝐴𝑡
𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
, (66)
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which leads to the Right sketch update:
𝑊 𝑡+1 = 𝑊 𝑡 +

𝛼

𝑟
𝐵̂𝑡𝐴𝑡

𝑆

= 𝑊 𝑡 − 𝛾𝑡𝜕𝑓
(︀
𝑊 𝑡
)︀ (︀

𝐴𝑡
𝑆

)︀⊤ (︁
𝐴𝑡

𝑆

(︀
𝐴𝑡

𝑆

)︀⊤)︁†
𝐴𝑡

𝑆

= 𝑊 𝑡 − 𝛾𝑡𝜕𝑓
(︀
𝑊 𝑡
)︀
𝐻𝑡

𝐴. (67)

Combined Update Rule. By combining equations (64) and (67), we arrive at the unified update rule:
𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝑡𝐺

𝑡, (68)
where 𝐺𝑡 takes the form specified in the lemma statement, thus completing the proof.

Assumption 10. Consider a projection matrix 𝐻 generated through either Left Sketch (Definition 5)
or Right Sketch (Definition 6). For the sampling distributions 𝒟𝐵

𝑆 and 𝒟𝐴
𝑆 , the expected projection

matrix 𝐻 satisfies
E[𝐻] = 𝛼𝐼, (69)

where a constant 𝛼 > 0.
Theorem 10. Let Assumptions 1, 7, 8, 9, and 10 hold. Let us define the following quantities:
𝑊

𝑇
:= 1

𝑇

∑︀𝑇−1
𝑡=0 𝑊 𝑡 as the averaged iterate, 𝑅2

0 :=
⃦⃦
𝑊 0 −𝑊 *

⃦⃦2
F

as the initial distance to
optimum. Consider the sequence {𝑊 𝑡} produced by Bernoulli-LoRA (Algorithm 3) with updates of
𝐴𝑡 and 𝐵̂𝑡 computed according to Lemma 11.

1. (Constant stepsize). If the stepsize is constant, i.e., 𝛾𝑡 := 𝛾 > 0, then

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 𝑅2

0

2𝛾𝛼𝑇
+

𝛾𝐿2
0

2
. (70)

Moreover, with the optimal stepsize 𝛾* =
√︁

(𝑅0)2

𝑇𝛼𝐿2
0

, we obtain:

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 𝑅0𝐿0√

𝛼𝑇
. (71)

2. (Polyak stepsize). If the stepsize is chosen adaptively as

𝛾𝑡 =
(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

‖𝜕𝑓(𝑊 𝑡)‖2F
, (72)

then

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 𝑅0𝐿0√

𝛼𝑇
. (73)

Proof. From Lemma 11, we know that Bernoulli-LoRA updates in the non-smooth setting can be
expressed as

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝑡𝐺
𝑡, (74)

where 𝐺𝑡 takes the form

𝐺𝑡 =

{︂
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡), with probability 𝑝

𝜕𝑓(𝑊 𝑡)𝐻𝑡
𝐴, with probability 1− 𝑝

(75)

with projection matrices 𝐻𝑡
𝐴 and 𝐻𝑡

𝐵 as defined in the lemma.

To analyze the convergence, we first compute the conditional expectation and second moment of 𝐺𝑡:
E
[︀
𝐺𝑡 | 𝑊 𝑡, 𝐻𝑡

]︀
= 𝑝𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡) + (1− 𝑝)𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴, (76)

E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= 𝑝

⃦⃦
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⃦⃦2
F
+ (1− 𝑝)

⃦⃦
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F
, (77)

where we defined 𝐻𝑡 := {𝐻𝑡
𝐴, 𝐻

𝑡
𝐵}.

By the definition of subgradient, we have:
𝑓(𝑊 *) ≥ 𝑓(𝑊 𝑡) +

⟨︀
𝜕𝑓(𝑊 𝑡),𝑊 * −𝑊 𝑡

⟩︀
F
, (78)

which implies: ⟨︀
𝜕𝑓(𝑊 𝑡),𝑊 𝑡 −𝑊 *⟩︀

F
≥ 𝑓(𝑊 𝑡)− 𝑓(𝑊 *). (79)

Let us establish key auxiliary bounds. First, for the inner product terms:

−2𝛾𝑡E
[︀⟨︀
𝐺𝑡,𝑊 𝑡 −𝑊 *⟩︀

F
| 𝑊 𝑡, 𝐻𝑡

]︀ (76)
= −2𝛾𝑡𝑝

⟨︀
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡),𝑊 𝑡 −𝑊 *⟩︀

F

−2𝛾𝑡(1− 𝑝)
⟨︀
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴,𝑊
𝑡 −𝑊 *⟩︀

F
. (80)
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For projection matrices, we have the following properties:⃦⃦
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

=
⟨︀
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴, 𝜕𝑓(𝑊
𝑡)𝐻𝑡

𝐴

⟩︀
F

= Tr
(︁(︀

𝐻𝑡
𝐴

)︀⊤ (︀
𝜕𝑓(𝑊 𝑡)

)︀⊤
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

)︁
= Tr

(︁(︀
∇𝑓(𝑊 𝑡)

)︀⊤ ∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

(︀
𝐻𝑡

𝐴

)︀⊤)︁
= Tr

(︁(︀
𝜕𝑓(𝑊 𝑡)

)︀⊤
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

)︁
=

⟨︀
𝜕𝑓(𝑊 𝑡), 𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
, (81)

and similarly, one can show that⃦⃦
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⃦⃦2
F
=
⟨︀
𝜕𝑓(𝑊 𝑡), 𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⟩︀
F
. (82)

This allows us to express the second moment term as:

𝛾2
𝑡 E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
(77)
= 𝛾2

𝑡 𝑝
⃦⃦
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⃦⃦2
F
+ 𝛾2

𝑡 (1− 𝑝)
⃦⃦
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

(81), (82)
= 𝛾2

𝑡 𝑝
⟨︀
𝜕𝑓(𝑊 𝑡), 𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⟩︀
F
+ 𝛾2

𝑡 (1− 𝑝)
⟨︀
𝜕𝑓(𝑊 𝑡), 𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
.

(83)

Combining these bounds, we can analyze the distance to the optimal solution:

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
= E

[︁⃦⃦
𝑊 𝑡 − 𝛾𝑡𝐺

𝑡 −𝑊 *⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡E

[︀⟨︀
𝐺𝑡,𝑊 𝑡 −𝑊 *⟩︀

F
| 𝑊 𝑡, 𝐻𝑡

]︀
+𝛾2

𝑡 E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
(80), (83)
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝑝

⟨︀
𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡),𝑊 𝑡 −𝑊 *⟩︀

F

−2𝛾𝑡(1− 𝑝)
⟨︀
𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴,𝑊
𝑡 −𝑊 *⟩︀

F
+ 𝛾2

𝑡 𝑝
⟨︀
𝜕𝑓(𝑊 𝑡), 𝐻𝑡

𝐵𝜕𝑓(𝑊
𝑡)
⟩︀
F

+𝛾2
𝑡 (1− 𝑝)

⟨︀
𝜕𝑓(𝑊 𝑡), 𝜕𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⟩︀
F
. (84)

For the expected projection matrices (see Assumption 10), we have:⟨︀
𝜕𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵

]︀
𝜕𝑓(𝑊 𝑡)

⟩︀
F

= Tr
(︁(︀

𝜕𝑓(𝑊 𝑡)
)︀⊤ E

[︀
𝐻𝑡

𝐵

]︀
𝜕𝑓(𝑊 𝑡)

)︁
= 𝛼Tr

(︁(︀
𝜕𝑓(𝑊 𝑡)

)︀⊤
𝜕𝑓(𝑊 𝑡)

)︁
= 𝛼

⃦⃦
𝜕𝑓(𝑊 𝑡)

⃦⃦2
F
, (85)

and similarly, ⟨︀
𝜕𝑓(𝑊 𝑡), 𝜕𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴

]︀⟩︀
F

= 𝛼
⃦⃦
𝜕𝑓(𝑊 𝑡)

⃦⃦2
F
. (86)

Taking expectation of both sides of (84) again, we get
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2

F
| 𝑊 𝑡

]︁
= E

[︁
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2

F
| 𝑊 𝑡, 𝐻𝑡

]︁
| 𝑊 𝑡

]︁
(87)

=
⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝑝

⟨︀
E
[︀
𝐻𝑡

𝐵

]︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,𝑊 𝑡 −𝑊 *⟩︀

F
(88)

−2𝛾𝑡(1− 𝑝)
⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀E [︀

𝐻𝑡
𝐴

]︀
,𝑊 𝑡 −𝑊 *⟩︀

F

+𝛾2
𝑡 𝑝

⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,E [︀

𝐻𝑡
𝐵

]︀
𝜕𝑓

(︀
𝑊 𝑡)︀⟩︀

F
+ 𝛾2

𝑡 (1− 𝑝)
⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ , 𝜕𝑓 (︀

𝑊 𝑡)︀E [︀
𝐻𝑡

𝐴

]︀⟩︀
F

(85),(86)
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝑝𝛼

⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,𝑊 𝑡 −𝑊 *⟩︀

F
(89)

−2𝛾𝑡(1− 𝑝)𝛼
⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,𝑊 𝑡 −𝑊 *⟩︀

F
+ 𝛾2

𝑡 𝛼
⃦⃦
𝜕𝑓

(︀
𝑊 𝑡)︀⃦⃦2

F

=
⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝛼

⟨︀
𝜕𝑓

(︀
𝑊 𝑡)︀ ,𝑊 𝑡 −𝑊 *⟩︀

F
+ 𝛾2

𝑡 𝛼
⃦⃦
𝜕𝑓

(︀
𝑊 𝑡)︀⃦⃦2

F

(79)
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝛼

(︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

)︀
+ 𝛾2

𝑡 𝛼
⃦⃦
𝜕𝑓

(︀
𝑊 𝑡)︀⃦⃦2

F
. (90)

By Assumption 9, subgradients are uniformly bounded (see (Beck, 2017)):
‖𝜕𝑓(𝑊 )‖F ≤ 𝐿0 ∀𝑊 ∈ R𝑚×𝑛. (91)

Now we analyze both stepsize strategies separately.
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1. (Constant stepsize). Let us first consider using a fixed stepsize 𝛾𝑡 := 𝛾 > 0. Taking expectation
of both sides of (87) again, applying tower property (11) and using the bound (91), we obtain:

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F

]︁
≤ E

[︁⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F

]︁
− 2𝛾𝛼E

[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
+ 𝛾2𝛼𝐿2

0. (92)

Rearranging terms in (92):

2𝛾𝛼E
[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
≤ E

[︁⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F

]︁
− E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 *⃦⃦2

F

]︁
+ 𝛾2𝛼𝐿2

0. (93)

Summing inequality (93) for 𝑡 = 0, . . . ,𝑇 − 1:

2𝛾𝛼

𝑇−1∑︁
𝑡=0

E
[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
≤

𝑇−1∑︁
𝑡=0

(︁
E
[︁⃦⃦

𝑊 𝑡 −𝑊 *⃦⃦2
F

]︁
− E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 *⃦⃦2

F

]︁)︁
+𝑇𝛾2𝛼𝐿2

0

= E
[︁⃦⃦

𝑊 0 −𝑊 *⃦⃦2
F

]︁
− E

[︁⃦⃦
𝑊𝑇 −𝑊 *⃦⃦2

F

]︁
+ 𝑇𝛾2𝛼𝐿2

0

≤
⃦⃦
𝑊 0 −𝑊 *⃦⃦2

F
+ 𝑇𝛾2𝛼𝐿2

0, (94)

where the last inequality follows from the non-negativity of
⃦⃦
𝑊𝑇 −𝑊 *

⃦⃦2
F

.

For the averaged iterate 𝑊
𝑇
:= 1

𝑇

∑︀𝑇−1
𝑡=0 𝑊 𝑡, by convexity of 𝑓 we have:

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
(94)
≤

⃦⃦
𝑊 0 −𝑊 *

⃦⃦2
F

2𝛾𝛼𝑇
+

𝛾𝐿2
0

2

=
(𝑅0)2

2𝛾𝛼𝑇
+

𝛾𝐿2
0

2
, (95)

where we denoted (𝑅0)2 :=
⃦⃦
𝑊 0 −𝑊 *

⃦⃦2
F

.

To optimize this bound, we minimize it with respect to 𝛾. The optimal stepsize 𝛾* solves:

𝛾* = argmin
𝛾>0

(︂
(𝑅0)2

2𝛾𝛼𝑇
+

𝛾𝐿2
0

2

)︂

=

√︃
(𝑅0)2

𝑇𝛼𝐿2
0

. (96)

Substituting 𝛾* back into (95), we obtain the optimal convergence rate:

E
[︁
𝑓(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁
≤ 𝑅0𝐿0√

𝛼𝑇
. (97)

2. (Polyak stepsize). For this strategy, we choose the stepsize adaptively based on the current
function value:

𝛾𝑡 = argmin
𝛾>0

{︁⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝛼

(︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

)︀
+ 𝛾2𝛼

⃦⃦
𝜕𝑓
(︀
𝑊 𝑡
)︀⃦⃦2

F

}︁
=

(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

‖𝜕𝑓(𝑊 𝑡)‖2F
. (98)

Substituting this stepsize into inequality (87):

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F
| 𝑊 𝑡

]︁
= E

[︁
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F
| 𝑊 𝑡, 𝐻𝑡

]︁
| 𝑊 𝑡

]︁
≤

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 2𝛾𝑡𝛼

(︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

)︀
+ 𝛾2

𝑡 𝛼
⃦⃦
𝜕𝑓
(︀
𝑊 𝑡
)︀⃦⃦2

F

(98)
=

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 𝛼 (𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2

‖𝜕𝑓(𝑊 𝑡)‖2F
(91)
≤

⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F
− 𝛼 (𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2

𝐿2
0

. (99)
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Taking expectation of both sides of (99) again and applying the tower property

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 *⃦⃦2
F

]︁
≤ E

[︁⃦⃦
𝑊 𝑡 −𝑊 *⃦⃦2

F

]︁
−

𝛼E
[︁
(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2
]︁

𝐿2
0

(100)

Since 𝑓 is convex, by Jensen’s inequality (14) and the Cauchy-Bunyakovsky-Schwarz inequality (12)
with 𝑋 := 𝑓(𝑊 𝑡)− 𝑓(𝑊 *) and 𝑌 := 1, we have

E
[︁
𝑓𝑖(𝑊

𝑇
)− 𝑓(𝑊 *)

]︁ (14)
≤ E

[︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︃

≤ 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︀
𝑓(𝑊 𝑡)− 𝑓(𝑊 *)

]︀
(12)
≤ 1

𝑇

𝑇−1∑︁
𝑡=0

√︂
E
[︁
(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2
]︁

≤

⎯⎸⎸⎷ 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁
(𝑓(𝑊 𝑡)− 𝑓(𝑊 *))

2
]︁

(100)
≤ 𝑅0𝐿0√

𝛼𝑇
, (101)

which matches the optimal rate achieved by the constant stepsize strategy with optimal tuning.
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H.2 ANALYSIS OF BERNOULLI-LORA-SGD

Algorithm 4 Bernoulli-LoRA-SGD

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0, chain
length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝑔(𝑊 𝑡)

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝑔(𝑊 𝑡) (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: end for

Earlier findings were derived utilizing full gradient computations. Nonetheless, this method proves
impractical in deep learning applications, where obtaining full gradients is rarely feasible. Our
focus moves to a framework that employs Stochastic Gradient Descent (SGD) while incorporating a
more flexible and generalized data sampling strategy, enabling greater adaptability in the selection
and utilization of data throughout the training process. General sampling techniques for strongly
convex functions have been thoroughly examined in (Gower et al., 2019). For broader convex
optimization problems, Khaled et al. (2023) provide a comprehensive study of how SGD performs
under different sampling strategies. In non-convex scenarios, the works of Khaled & Richtárik (2023)
and (Demidovich et al., 2023b) investigate the effects of generalized sampling methods on SGD
’s convergence and efficiency, offering valuable insights into its adaptability for diverse machine
learning applications. In this section we focus on Bernoulli-LoRA-SGD, a method, designed in the
scope of Bernoulli-LoRA framework, based on the classical SGD algorithm.

For convergence analysis, we notice the gradient step in Algorithm 4 is equivalent to the following
update

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

, (102)

where 𝐺𝑡 = 𝑔(𝑊 𝑡) is an unbiased stochastic gradient, which satisfies Assumption 4.

H.2.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 11. Let Assumptions 2, 3, and 4 hold, and stepsize satisfy

0 < 𝛾 ≤ min

{︃
1√︀

𝐿𝐴1𝜆
𝑝
max𝑇

,
1

𝐿𝐵1

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1
}︃
.

Then iterates generated by Bernoulli-LoRA-SGD (Algorithm 4) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 6(𝑓(𝑊 0)− 𝑓*)

𝛾𝜆𝑝
min𝑇

+ 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

,

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and ̃︁𝑊𝑇 is chosen at

random from
{︀
𝑊 0,𝑊 1, . . . ,𝑊𝑇−1

}︀
with probabilities { 𝑤𝑡

𝒲𝑇−1
}𝑇−1
𝑡=0 , where 𝑤𝑡 =

𝑤𝑡−1

(1+𝛾2𝐿𝐴1𝜆
𝑝
max)

,

𝒲𝑇−1 =
∑︀𝑇−1

𝑡=0 𝑤𝑡, and 𝑤−1 > 0.
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Proof. We start with smoothness of function 𝑓 :

𝑓(𝑊 𝑡+1) ≤ 𝑓(𝑊 𝑡) + ⟨∇𝑓(𝑊 𝑡),𝑊 𝑡+1 −𝑊 𝑡⟩+ 𝐿

2

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

(102)
= 𝑓(𝑊 𝑡)− 𝛾⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩+ 𝛾2𝐿

2

⃦⃦⃦
𝐺̂𝑡
⃦⃦⃦2
F
. (103)

Taking a conditional expectation by 𝑊 𝑡, we bound the second and the third terms from inequality
(103):
E
[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩|𝑊 𝑡

]︁
= ⟨∇𝑓(𝑊 𝑡),E

[︁
𝐺̂𝑡|𝑊 𝑡

]︁
⟩

(102)
= 𝑝⟨∇𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵𝐺
𝑡|𝑊 𝑡

]︀
⟩+ (1− 𝑝)⟨∇𝑓(𝑊 𝑡),E

[︀
𝐺𝑡𝐻𝑡

𝐴|𝑊 𝑡
]︀
⟩

(*)
= 𝑝⟨∇𝑓(𝑊 𝑡),E

[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
E
[︀
𝐺𝑡|𝑊 𝑡

]︀
⟩+ (1− 𝑝)⟨∇𝑓(𝑊 𝑡),E

[︀
𝐺𝑡|𝑊 𝑡

]︀
E
[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
⟩

= 𝑝⟨∇𝑓(𝑊 𝑡),E
[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
∇𝑓(𝑊 𝑡)⟩+ (1− 𝑝)⟨∇𝑓(𝑊 𝑡),∇𝑓(𝑊 𝑡)E

[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
⟩

≥
(︀
𝑝𝜆min(E

[︀
𝐻𝑡

𝐵

]︀
) + (1− 𝑝)𝜆min(E

[︀
𝐻𝑡

𝐴

]︀
)
)︀⏟  ⏞  

:=𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

= 𝜆𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
, (104)

where in (*) we used that 𝐻𝑡
𝐵 , 𝐻𝑡

𝐴 and 𝐺𝑡 are independent. Now we bound the third term:

E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
|𝑊 𝑡

]︂
(102)
= 𝑝E

[︁⃦⃦
𝐻𝑡

𝐵𝐺
𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
+ (1− 𝑝)E

[︁⃦⃦
𝐺𝑡𝐻𝑡

𝐴

⃦⃦2
F
|𝑊 𝑡

]︁
= 𝑝E

[︀
⟨𝐻𝑡

𝐵𝐺
𝑡, 𝐻𝑡

𝐵𝐺
𝑡⟩|𝑊 𝑡

]︀
+ (1− 𝑝)E

[︀
⟨𝐺𝑡𝐻𝑡

𝐴, 𝐺
𝑡𝐻𝑡

𝐴⟩|𝑊 𝑡
]︀

(**)
= 𝑝E

[︀
⟨𝐺𝑡, 𝐻𝑡

𝐵𝐺
𝑡⟩|𝑊 𝑡

]︀
+ (1− 𝑝)E

[︀
⟨𝐺𝑡, 𝐺𝑡𝐻𝑡

𝐴⟩|𝑊 𝑡
]︀
,

where in (**) we used property of projection matrices 𝐻𝑡
𝐵 , 𝐻

𝑡
𝐵 . By the independence of 𝐻𝑡

𝐵 , 𝐻
𝑡
𝐴, 𝐺

𝑡,
we obtain

E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
|𝑊 𝑡

]︂
= 𝑝E

[︀
⟨𝐺𝑡,E

[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
𝐺𝑡⟩|𝑊 𝑡

]︀
+ (1− 𝑝)E

[︀
⟨𝐺𝑡, 𝐺𝑡E

[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
⟩|𝑊 𝑡

]︀
≤ 𝑝𝜆max(E

[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
)E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
+ (1− 𝑝)𝜆max(E

[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
)E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
= (𝑝𝜆max(E

[︀
𝐻𝑡

𝐵 |𝑊 𝑡
]︀
) + (1− 𝑝)𝜆max(E

[︀
𝐻𝑡

𝐴|𝑊 𝑡
]︀
))⏟  ⏞  

:=𝜆𝑝
max

E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
= 𝜆𝑝

maxE
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
. (105)

Plugging (104) and (105) into (103), we obtain

E
[︀
𝑓(𝑊 𝑡+1)|𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾E

[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩|𝑊 𝑡

]︁
+

𝛾2𝐿

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
|𝑊 𝑡

]︂
≤ 𝑓(𝑊 𝑡)− 𝛾𝜆𝑝

min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
+

𝛾2𝜆𝑝
max𝐿

2
E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
.

By Assumption 4,

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*|𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾E

[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩|𝑊 𝑡

]︁
+

𝛾2𝐿

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
|𝑊 𝑡

]︂
≤ 𝑓(𝑊 𝑡)− 𝑓* − 𝛾𝜆𝑝

min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

+
𝛾2𝜆𝑝

max𝐿

2

(︁
2𝐴1(𝑓(𝑊

𝑡)− 𝑓*) +𝐵1

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
+ 𝐶1

)︁
≤

(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀ (︀
𝑓(𝑊 𝑡)− 𝑓*)︀− 𝛾𝜆𝑝

min

(︂
1− 𝛾𝐿𝐵1𝜆

𝑝
max

2𝜆𝑝
min

)︂ ⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

+
𝛾2𝜆𝑝

max𝐿𝐶1

2
.
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Taking mathematical expectation and selecting a stepsize as 0 < 𝛾 ≤ 1
𝐿𝐵1

(︁
𝜆𝑝
max

𝜆𝑝
min

)︁−1

, we get

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*]︀ ≤

(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀
E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀

− 𝛾𝜆𝑝
min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2

F

]︁
+

𝛾2𝜆𝑝
max𝐿𝐶1

2
. (106)

Defining 𝛿𝑡 := E [𝑓(𝑊 𝑡)− 𝑓*], 𝑟𝑡 := E
[︁
‖∇𝑓(𝑊 𝑡)‖2F

]︁
for every 𝑡 ≥ 0, we have

𝛿𝑡+1 ≤
(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀
𝛿𝑡 − 𝛾𝜆𝑝

min

2
𝑟𝑡 +

𝛾2𝜆𝑝
max𝐿𝐶1

2
.

Fixing 𝑤−1 > 0 and defining 𝑤𝑡 =
𝑤𝑡−1

1+𝛾2𝐿𝐴1𝜆
𝑝
max

for all 𝑡 ≥ 0, we have
1

2
𝜆𝑝
min𝑤𝑡𝑟

𝑡 ≤ 𝑤𝑡

𝛾

(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀
𝛿𝑡 − 𝑤𝑡

𝛾
𝛿𝑡+1 +

1

2
𝛾𝐿𝐶1𝜆

𝑝
max𝑤𝑡

=
𝑤𝑡−1𝛿

𝑡

𝛾
− 𝑤𝑡𝛿

𝑡+1

𝛾
+

1

2
𝛾𝐿𝐶1𝜆

𝑝
max𝑤𝑡.

Summing over 𝑡 from 0 to 𝑇 − 1, we have
𝑇−1∑︁
𝑡=0

𝑤𝑡𝑟
𝑡 ≤ 2𝑤−1𝛿

0

𝛾𝜆𝑝
min

− 2𝑤𝑇−1𝛿
𝑇

𝛾𝜆𝑝
min

+ 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

𝑇−1∑︁
𝑡=0

𝑤𝑡.

Defining 𝒲𝑇−1 =
∑︀𝑇−1

𝑡=0 𝑤𝑡, we acquire
𝑇−1∑︁
𝑡=0

𝑤𝑡

𝒲𝑇−1
𝑟𝑡 ≤ 2𝑤−1𝛿

0

𝛾𝜆𝑝
min𝒲𝑇−1

+ 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

.

Using the next chain of inequalities

𝑊𝑇−1 =

𝑇−1∑︁
𝑡=0

𝑤𝑡 ≥ 𝑇 min
0≤𝑡≤𝑇−1

𝑤𝑡 = 𝑇𝑤𝑇−1 =
𝑇𝑤−1

(1 + 𝛾2𝜆𝑝
max𝐿𝐴1)𝑇

,

we have
𝑇−1∑︁
𝑡=0

𝑤𝑡

𝒲𝑇−1
𝑟𝑡 ≤ 2(1 + 𝛾2𝜆𝑝

max𝐿𝐴1)
𝑇

𝛾𝑇𝜆𝑝
min

(𝑓(𝑊 0)− 𝑓*) + 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

.

Selecting 0 < 𝛾 ≤ 1√
𝐿𝐴1𝜆

𝑝
max𝑇

, and using (1+𝛾2𝜆𝑝
max𝐿𝐴1)

𝑇 ≤ exp
(︀
𝛾2𝜆𝑝

max𝐿𝐴1𝑇
)︀
≤ exp (1) ≤

3, we obtain
𝑇−1∑︁
𝑡=0

𝑤𝑡

𝒲𝑇−1
𝑟𝑡 ≤ 6𝛿0

𝛾𝑇𝜆𝑝
min

+ 𝛾𝐿𝐶1
𝜆𝑝
max

𝜆𝑝
min

.

Next we show convergence of Bernoulli-LoRA-SGD under additional Assumption 6.

H.2.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 12. Let Assumptions 2, 3, 4, and 6 hold, and stepsize satisfy

0 < 𝛾 ≤ min

{︂
𝜇𝜆𝑝

min

2𝐿𝐴1𝜆
𝑝
max

, 2
𝜇𝜆𝑝

min
, 1
𝐿𝐵1

(︁
𝜆𝑝
max

𝜆𝑝
min

)︁−1
}︂

. Then iterates generated by Bernoulli-LoRA-SGD

(Algorithm 4) satisfy

E
[︀
𝑓(𝑊𝑇 )− 𝑓*]︀ ≤ (︂1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑇 (︀
𝑓(𝑊 0)− 𝑓*)︀+ 𝛾𝐿𝐶1

𝜇
· 𝜆

𝑝
max

𝜆𝑝
min

,

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1− 𝑝)𝜆𝐻𝐴
max.

Proof. We start our proof with inequality 106. Using PL-inequality (see Assumption 6), we have

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*]︀ ≤

(︀
1 + 𝛾2𝜆𝑝

max𝐿𝐴1

)︀
E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀− 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾2𝜆𝑝
max𝐿𝐶1

2

≤
(︀
1− 𝛾𝜇𝜆𝑝

min + 𝛾2𝜆𝑝
max𝐿𝐴1

)︀
E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀++

𝛾2𝜆𝑝
max𝐿𝐶1

2
.
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Taking the stepsize as 0 < 𝛾 ≤ min
{︁

𝜇𝜆𝑝
min

2𝐿𝐴1𝜆
𝑝
max

, 2
𝜇𝜆𝑝

min

}︁
, we obtain

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓*]︀ ≤

(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂
E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀+ 𝛾2𝜆𝑝

max𝐿𝐶1

2

≤
(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑡+1

E
[︀
𝑓(𝑊 0)− 𝑓*]︀+ 𝛾2𝜆𝑝

max𝐿𝐶1

2

𝑡∑︁
𝜏=0

(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑡−𝜏

≤
(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑡+1

E
[︀
𝑓(𝑊 0)− 𝑓*]︀+ 𝛾2𝜆𝑝

max𝐿𝐶1

2

∞∑︁
𝜏=0

(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝜏

=

(︂
1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑡+1

E
[︀
𝑓(𝑊 0)− 𝑓*]︀+ 𝛾2𝜆𝑝

max𝐿𝐶1

𝛾𝜇𝜆𝑝
min

,

where in the last equation we use the formula of the sum of geometric progression.
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H.3 ANALYSIS OF BERNOULLI-LORA-MVR

Algorithm 5 Bernoulli-LoRA-MVR

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, 𝐺0 ∈ R𝑚×𝑛 rank 𝑟 ≪ min{𝑚,𝑛}, scaling
factor 𝛼 > 0, chain length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝, momentum

parameter 𝑏 ∈ [0,1]
2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝐺𝑡 (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: Sample 𝜉𝑡+1 ∼ 𝒟
14: 𝐺𝑡+1 = ∇𝑓𝜉𝑡+1(𝑊 𝑡+1) + (1− 𝑏)

(︀
𝐺𝑡 −∇𝑓𝜉𝑡+1(𝑊 𝑡)

)︀
15: end for

Recently, there has been a significant surge of interest in variance-reduced methods for addressing
finite-sum problems (J Reddi et al., 2015; Shang et al., 2018; Malinovsky et al., 2022; Richtárik
et al., 2024). It has gained prominence as a formidable alternative to stochastic gradient descent
(SGD) in tackling non-convex optimization problems. Notably, it has been pivotal in introducing the
first algorithms capable of surpassing SGD ’s convergence rate for locating first-order critical points.
Despite these advancements, variance reduction methods often come with challenges, including
the necessity for meticulously tuned learning rates and the reliance on overly large batch sizes to
realize their benefits. To address some of these limitations, Momentum Variance Reduction (MVR)
was proposed specifically for server-only stochastic non-convex optimization (Cutkosky & Orabona,
2019). This approach leverages a modified form of momentum to achieve variance reduction while
eliminating the dependence on large batch sizes. A proof on MVR technique with better dependence
on momentum parameter was obtained by Tyurin & Richtárik (2023). In the context of Federated
Learning, Karagulyan et al. (2024) proposed the SPAM method. On the server side, MVR is utilized
to enhance optimization efficiency, while the client side incorporates the Stochastic Proximal Point
Method updates. This section is devoted to Bernoulli-LoRA-MVR, a method, designed in the scope of
Bernoulli-LoRA framework, based on the MVR technique.

To show convergence guarantees for Bernoulli-LoRA-MVR, the iterates of the method can be rewritten
in following way

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

(107)

𝐺𝑡+1 = ∇𝑓𝜉𝑡+1(𝑊 𝑡+1) + (1− 𝑏)
(︀
𝐺𝑡 −∇𝑓𝜉𝑡+1(𝑊 𝑡)

)︀
. (108)

First of all, we reprove descent lemma from the paper of Li et al. (2021) for generic gradient step
(107).

Lemma 12. Let Assumptions 1, 3 hold. Then, iterates defined as (107) satisfy

E
[︀
𝑓(𝑊 𝑡+1)− 𝑓* |𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝑓* − 𝛾𝜆𝑝

min

2

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

+
𝛾𝜆𝑝

max

2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
.
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Proof. By Assumption 3, we have

𝑓(𝑊 𝑡+1) ≤ 𝑓(𝑊 𝑡) + ⟨∇𝑓(𝑊 𝑡),𝑊 𝑡+1 −𝑊 𝑡⟩𝐹 +
𝐿

2

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

= 𝑓(𝑊 𝑡)− 𝛾⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩𝐹 +
𝐿

2

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F
. (109)

To continue our proof, we need to bound the second term from (109). Taking conditional expectation
by 𝐻𝑡,𝑊 𝑡, we obtain

E
[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩𝐹 | 𝐻𝑡,𝑊 𝑡

]︁
(107)
= 𝑝⟨∇𝑓(𝑊 𝑡), 𝐻𝑡

𝐵𝐺
𝑡⟩𝐹 + (1− 𝑝)⟨∇𝑓(𝑊 𝑡), 𝐺𝑡𝐻𝑡

𝐴⟩𝐹
= 𝑝⟨𝐻𝑡

𝐵∇𝑓(𝑊 𝑡), 𝐻𝑡
𝐵𝐺

𝑡⟩𝐹 + (1− 𝑝)⟨∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴, 𝐺

𝑡𝐻𝑡
𝐴⟩𝐹

=
𝑝

2

(︁⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+
⃦⃦
𝐻𝑡

𝐵𝐺
𝑡
⃦⃦2
F
−
⃦⃦
𝐻𝑡

𝐵𝐺
𝑡 −𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F

)︁
+
1− 𝑝

2

(︁⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F
+
⃦⃦
𝐺𝑡𝐻𝑡

𝐴

⃦⃦2
F
−
⃦⃦
𝐺𝑡𝐻𝑡

𝐴 −∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

⃦⃦2
F

)︁
≥ 1

2

(︁
𝑝
⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+ (1− 𝑝)

⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2
F

)︁
+

1

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2
F
| 𝐻𝑡,𝑊 𝑡

]︂
−1

2

(︁
𝑝
⃦⃦
𝐻𝑡

𝐵𝐺
𝑡 −𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2
F
+ (1− 𝑝)

⃦⃦
𝐺𝑡𝐻𝑡

𝐴 −∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

⃦⃦2
F

)︁
.

Taking conditional expectation by 𝑊 𝑡, we have

E
[︁
⟨∇𝑓(𝑊 𝑡), 𝐺̂𝑡⟩𝐹 |𝑊 𝑡

]︁
≥ 1

2

(︁
𝑝E

[︁⃦⃦
𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2

F
|𝑊 𝑡

]︁
+ (1− 𝑝)E

[︁⃦⃦
∇𝑓(𝑊 𝑡)𝐻𝑡

𝐴

⃦⃦2

F
|𝑊 𝑡

]︁)︁
+

1

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2

F
| 𝑊 𝑡

]︂
−1

2

(︁
𝑝E

[︁⃦⃦
𝐻𝑡

𝐵𝐺
𝑡 −𝐻𝑡

𝐵∇𝑓(𝑊 𝑡)
⃦⃦2

F
|𝑊 𝑡

]︁
+ (1− 𝑝)E

[︁⃦⃦
𝐺𝑡𝐻𝑡

𝐴 −∇𝑓(𝑊 𝑡)𝐻𝑡
𝐴

⃦⃦2

F
|𝑊 𝑡

]︁)︁
(*)
≥ 1

2

(︀
𝑝𝜆min(E

[︀
𝐻𝑡

𝐵

]︀
) + (1− 𝑝)𝜆min(E

[︀
𝐻𝑡

𝐴

]︀
)
)︀⏟  ⏞  

:=𝜆
𝑝
min

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

1

2
E
[︂⃦⃦⃦

𝐺̂𝑡
⃦⃦⃦2

F
| 𝑊 𝑡

]︂

−1

2
(𝑝𝜆max(E

[︀
𝐻𝑡

𝐵

]︀
) + (1− 𝑝)𝜆max(E

[︀
𝐻𝑡

𝐴

]︀
))⏟  ⏞  

:=𝜆
𝑝
max

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F

(107)
=

𝜆𝑝
min

2

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

1

2𝛾2
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2

F
| 𝑊 𝑡

]︁
− 𝜆𝑝

max

2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
, (110)

where in (*) we used the following inequalities for any matrix 𝑉 ∈ R𝑚×𝑛

E
[︁⃦⃦

𝐻𝑡
𝐵𝑉
⃦⃦2
F

]︁
= E

[︀
⟨𝐻𝑡

𝐵𝑉,𝐻
𝑡
𝐵𝑉 ⟩𝐹

]︀
= ⟨E

[︀
𝐻𝑡

𝐵

]︀
𝑉, 𝑉 ⟩𝐹 ≥ 𝜆min

(︀
E
[︀
𝐻𝑡

𝐵

]︀)︀
‖𝑉 ‖2F ,

E
[︁⃦⃦

𝐻𝑡
𝐵𝑉
⃦⃦2
F

]︁
≤ 𝜆max

(︀
E
[︀
𝐻𝑡

𝐵

]︀)︀
‖𝑉 ‖2F ,

E
[︁⃦⃦

𝑉 𝐻𝑡
𝐴

⃦⃦2
F

]︁
= E

[︀
⟨𝑉 𝐻𝑡

𝐴, 𝑉 𝐻𝑡
𝐴⟩𝐹

]︀
= ⟨𝑉 E

[︀
𝐻𝑡

𝐴

]︀
, 𝑉 ⟩𝐹 ≥ 𝜆min

(︀
E
[︀
𝐻𝑡

𝐴

]︀)︀
‖𝑉 ‖2F ,

E
[︁⃦⃦

𝑉 𝐻𝑡
𝐴

⃦⃦2
F

]︁
≤ 𝜆max

(︀
E
[︀
𝐻𝑡

𝐴

]︀)︀
‖𝑉 ‖2F .

Plugging in (110) into (109), we get

E
[︀
𝑓(𝑊 𝑡+1) |𝑊 𝑡

]︀
≤ 𝑓(𝑊 𝑡)− 𝛾𝜆𝑝

min

2

⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F
− 1

2𝛾
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
+
𝛾𝜆𝑝

max

2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
+

𝐿

2
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
.

Lemma 13. Let Assumptions 3, 5 hold. Then, iterates generated by Bernoulli-LoRA-MVR (Algo-
rithm 5) satisfy

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2
F

]︁
≤ (1−𝑏)2E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+2(1−𝑏)2𝐿2E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

]︁
+2𝑏2𝜎2

(111)
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Proof. Taking conditional expectation by ℱ 𝑡+1 = {𝑊 𝑡+1, 𝐺𝑡}, we obtain
E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2

F
|ℱ 𝑡+1

]︁
(108)
= E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓(𝑊 𝑡+1) + (1− 𝑏)
(︀
𝐺𝑡 −∇𝑓𝜉𝑡+1(𝑊

𝑡)
)︀⃦⃦2

F
|ℱ 𝑡+1

]︁
(13)
= (1− 𝑏)2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F

+E
[︁⃦⃦

∇𝑓𝜉𝑡+1(𝑊
𝑡+1)−∇𝑓(𝑊 𝑡+1) + (1− 𝑏)

(︀
∇𝑓(𝑊 𝑡)−∇𝑓𝜉𝑡+1(𝑊

𝑡)
)︀⃦⃦2

F
|ℱ 𝑡+1

]︁
≤ (1− 𝑏)2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+ 2𝑏2E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓(𝑊 𝑡+1)
⃦⃦2

F
|ℱ 𝑡+1

]︁
+2(1− 𝑏)2E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓𝜉𝑡+1(𝑊
𝑡)−∇𝑓(𝑊 𝑡+1) +∇𝑓(𝑊 𝑡)

⃦⃦2

F
|ℱ 𝑡+1

]︁
≤ (1− 𝑏)2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+ 2𝑏2E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓(𝑊 𝑡+1)
⃦⃦2

F
|ℱ 𝑡+1

]︁
+2(1− 𝑏)2E

[︁⃦⃦
∇𝑓𝜉𝑡+1(𝑊

𝑡+1)−∇𝑓𝜉𝑡+1(𝑊
𝑡)
⃦⃦2

F
|ℱ 𝑡+1

]︁
≤ (1− 𝑏)2

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+ 2(1− 𝑏)2𝐿2

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2

F
+ 2𝑏2𝜎2,

where in the last inequality we used smoothness of 𝑓𝜉 and bounded variance assumption. Taking
math expectation, we conclude the proof.

H.3.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 13. Let Assumptions 1, 2, 3, and 5 hold, and let the stepsize satisfy 0 < 𝛾 ≤
1

𝐿

(︂
1+

√︁
2𝜆

𝑝
max(1−𝑏)2

𝑏

)︂ . Then the iterates of Bernoulli-LoRA-MVR (Algorithm 5) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓*)

𝜆𝑝
min𝛾𝑇

+

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

𝑏(2− 𝑏)𝑇
· 𝜆

𝑝
max

𝜆𝑝
min

+
2𝑏𝜎2

2− 𝑏
· 𝜆

𝑝
max

𝜆𝑝
min

, (112)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, ̃︁𝑊𝑇 is drawn uniformly at

random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

2𝑏(2− 𝑏)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (113)

By Lemma 12 and Lemma 13, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑏)2𝜆𝑝
max

2𝑏(2− 𝑏)
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑏)2𝐿2𝜆𝑝

max

2𝑏(2− 𝑏)
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑏)2𝐿2𝜆𝑝

max

2𝑏(2− 𝑏)

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

Selecting 0 < 𝛾 ≤ 1

𝐿

(︃
1+

√︂
(1−𝑏)2

𝑏(2−𝑏)
𝜆𝑝
max

)︃ , we obtain

E [Φ𝑡+1] ≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏
.

Summing over 𝑡 from 0 to 𝑇 − 1, we get

𝛾𝜆𝑝
min

2

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ E [Φ0]− E [Φ𝑇 ] +

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏
𝑇.

Finally, dividing both sides by 𝛾𝜆𝑝
min

2 yields

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2Φ0

𝜆𝑝
min𝛾𝑇

+
2𝑏𝜎2

2− 𝑏
· 𝜆

𝑝
max

𝜆𝑝
min

,
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where ̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Next we show convergence guarantee for Bernoulli-LoRA-MVR, supposing additionally Assumption 6
holds.

H.3.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 14. Let Assumptions 1, 2, 3, 5, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

⎧⎪⎨⎪⎩ 1

𝐿
(︁
1 +

√︁
2(1−𝑏)2

𝑏(2−𝑏) 𝜆
𝑝
max

)︁ , 𝑏

2𝜇𝜆𝑝
min

⎫⎪⎬⎪⎭ .

Then the iterates of Bernoulli-LoRA-MVR (Algorithm 5) satisfy

E
[︀
𝑓(𝑊𝑇 )− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇
Φ0 +

𝑏𝜎2

(2− 𝑏)𝜇
· 𝜆

𝑝
max

𝜆𝑝
min

, (114)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and Φ0 = 𝑓(𝑊 0) − 𝑓* +

𝛾𝜆𝑝
max

𝑏(2−𝑏)

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

𝑏(2− 𝑏)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (115)

By Lemma 12 and Lemma 13, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑏)2𝜆𝑝
max

𝑏(2− 𝑏)
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑏)2𝐿2𝜆𝑝

max

𝑏(2− 𝑏)
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

≤ max

{︂
1− 𝛾𝜇𝜆𝑝

min, 1−
𝑏

2

}︂
E [Φ𝑡] +

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑏)2𝐿2𝜆𝑝

max

𝑏(2− 𝑏)

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used Assumption 6. Selecting positive stepsize 𝛾 satisfying the upper
bound assumed in the theorem statement, we obtain

E [Φ𝑡+1] ≤ (1− 𝛾𝜇𝜆𝑝
min)E [Φ𝑡] +

𝛾𝜆𝑝
max𝑏𝜎

2

2− 𝑏

≤ (1− 𝛾𝜇𝜆𝑝
min)

𝑡+1 E [Φ0] +
𝛾𝜆𝑝

max𝑏𝜎
2

2− 𝑏

𝑡∑︁
𝜏=0

(1− 𝛾𝜇𝜆𝑝
min)

𝑡−𝜏

≤ (1− 𝛾𝜇𝜆𝑝
min)

𝑡+1 E [Φ0] +
𝛾𝜆𝑝

max𝑏𝜎
2

2− 𝑏

∞∑︁
𝜏=0

(1− 𝛾𝜇𝜆𝑝
min)

𝜏

= (1− 𝛾𝜇𝜆𝑝
min)

𝑡+1 E [Φ0] +
𝛾𝜆𝑝

max𝑏𝜎
2

(2− 𝑏)𝛾𝜇𝜆𝑝
min

,

where, in the last equation, we used the formula for the sum of a geometric progression.
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H.4 ANALYSIS OF BERNOULLI-LORA-PAGE

Algorithm 6 Bernoulli-LoRA-PAGE

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, a vector 𝐺0 ∈∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛},
scaling factor 𝛼 > 0, chain length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probability 𝑝,

probability 𝑞
2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝑔(𝑊 𝑡) (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

𝐴𝑡
𝑆

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: Sample 𝑖𝑡+1 uniformly at random from [𝑛]

14: 𝐺𝑡+1 =

{︂∇𝑓(𝑊 𝑡+1), with probability 𝑞

𝐺𝑡 +
(︀
∇𝑓𝑖𝑡+1

(𝑊 𝑡+1)−∇𝑓𝑖𝑡+1
(𝑊 𝑡)

)︀
, with probability 1− 𝑞

15: end for

There exist several optimal methods for solving a general non-convex optimization problem, e.g.
SPIDER (Fang et al., 2018) and SARAH (Pham et al., 2020). However, the known lower bound used
to establish their optimality works only in the small data regime. ProbAbilistic Gradient Estimator
(PAGE) (Li et al., 2021) is a very simple and easy to implement algorithm, known for achieving
optimal convergence results in non-convex optimization. PAGE uses the full gradient update with
probability 𝑞𝑡, or reuses the previous gradient with a small adjustment (at a low computational
cost) with probability 1 − 𝑞𝑡. A general version of PAGE on Riemannian manifolds is considered
in (Demidovich et al., 2024a). In this section we present Bernoulli-LoRA-PAGE, a new method within
Bernoulli-LoRA framework, based on PAGE algorithm.

Notice, that the iterates of Bernoulli-LoRA-PAGE (Algorithm 6) can be rewritten in the following
simple way

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

(116)

𝐺𝑡+1 =

{︂∇𝑓(𝑊 𝑡+1), with probability 𝑞

𝐺𝑡 +
(︀
∇𝑓𝑖𝑡+1

(𝑊 𝑡+1)−∇𝑓𝑖𝑡+1
(𝑊 𝑡)

)︀
, with probability 1− 𝑞

(117)

Lemma 14. Let Assumption 3 hold. Then, iterates generated by Bernoulli-LoRA-PAGE

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2
F

]︁
≤ (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+ (1− 𝑞)𝐿2E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

]︁
.

(118)
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Proof. Taking the full mathematical expectation, we obtain

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2
F

]︁
(117)
= (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡+1) +

(︀
∇𝑓𝑖𝑡+1(𝑊

𝑡+1)−∇𝑓𝑖𝑡+1(𝑊
𝑡)
)︀⃦⃦2

F

]︁
(13)
= (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+(1− 𝑞)E

[︁⃦⃦(︀
∇𝑓𝑖𝑡+1(𝑊

𝑡+1)−∇𝑓𝑖𝑡+1(𝑊
𝑡)
)︀
−
(︀
∇𝑓(𝑊 𝑡+1)−∇𝑓(𝑊 𝑡)

)︀⃦⃦2
F

]︁
≤ (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+(1− 𝑞)E

[︁⃦⃦
∇𝑓𝑖𝑡+1(𝑊

𝑡+1)−∇𝑓𝑖𝑡+1(𝑊
𝑡)
⃦⃦2
F

]︁
≤ (1− 𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+ (1− 𝑞)𝐿2E

[︁⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2
F

]︁
,

where in the last inequality we used smoothness of each 𝑓𝑖.

H.4.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 15. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy

0 < 𝛾 ≤ 1

𝐿
(︁
1 +

√︁
1−𝑞
𝑞 𝜆𝑝

max

)︁ .
Then the iterates of PAGE-Bernoulli-LoRA (Algorithm 6) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓*)

𝜆𝑝
min𝛾𝑇

+ 𝑞

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

𝑇
· 𝜆

𝑝
max

𝜆𝑝
min

, (119)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, ̃︁𝑊𝑇 is drawn uniformly at

random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

2𝑞

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (120)

By Lemma 12 and Lemma 14, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max(1− 𝑞)

2𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max(1− 𝑞)𝐿2

2𝑞
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ E [Φ𝑡]−

𝛾𝜆𝑝
min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑞)𝐿2𝜆𝑝

max

2𝑞

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

Selecting 0 < 𝛾 ≤ 1

𝐿
(︁
1+
√︁

1−𝑞
𝑞 𝜆𝑝

max

)︁ , we obtain

E [Φ𝑡+1] ≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
.

Summing over 𝑡 from 0 to 𝑇 − 1, we get

𝛾𝜆𝑝
min

2

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ E [Φ0]− E [Φ𝑇 ] .

Finally, dividing both sides by 𝛾𝜆𝑝
min

2 yields

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2Φ0

𝛾𝜆𝑝
min𝑇

.

where ̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.
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H.4.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 16. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

⎧⎨⎩ 1

𝐿
(︁
1 + 2

√︁
1−𝑞
𝑞 𝜆𝑝

max

)︁ , 𝑞

2𝜇𝜆𝑝
min

⎫⎬⎭ .

Then the iterates of Bernoulli-LoRA-PAGE (Algorithm 6) satisfy
E
[︀
𝑓(𝑊𝑇 )− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0, (121)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min, and Φ0 = 𝑓(𝑊 0)− 𝑓* +
𝛾𝜆𝑝

max

𝑞

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

𝑞

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (122)

By Lemma 12 and Lemma 14, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑞)𝜆𝑝
max

𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑞)𝐿2𝜆𝑝

max

𝑞
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ (1− 𝛾𝜇𝜆𝑝

min)E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀+ (︁1− 𝑞

2

)︁ 𝛾𝜆𝑝
max

𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑞)𝐿2𝜆𝑝

max

𝑞

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used Assumption 6. Selecting 0 < 𝛾 ≤

min

{︃
1

𝐿
(︁
1+2

√︁
1−𝑞
𝑞 𝜆𝑝

max

)︁ , 𝑞
2𝜇𝜆𝑝

min

}︃
, we obtain

E [Φ𝑡+1] ≤ (1− 𝛾𝜇𝜆𝑝
min)E [Φ𝑡] .

Unrolling the recursion, we obtain
E [Φ𝑇 ] ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0.
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I PROOFS FOR FEDERATED LEARNING EXTENSIONS

In recent years, distributed optimization problems and algorithms have become a focal point in the
Machine Learning (ML) community. This surge in interest is driven by the need to train modern deep
neural networks, which often involve billions of parameters and massive datasets (Brown et al., 2020;
Kolesnikov et al., 2020). To achieve practical training times (Li, 2020), parallelizing computations,
such as stochastic gradient evaluations, has emerged as a natural solution, leading to the widespread
adoption of distributed training algorithms (Goyal et al., 2017; You et al., 2019; Le Scao et al., 2023).
Additionally, distributed methods are crucial when data is inherently distributed across multiple
devices or clients, often accompanied by privacy constraints—a common scenario in Federated
Learning (FL) (Konečnỳ et al., 2016; McMahan et al., 2016; Kairouz et al., 2019; Demidovich et al.,
2024b; Sadiev et al., 2024; Yi et al., 2024).

We develop several FL methods within the Bernoulli-LoRA framework and provide a convergence
analysis for them.

I.1 ANALYSIS OF FED-BERNOULLI-LORA-QGD

Algorithm 7 Fed-Bernoulli-LoRA-QGD

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, rank 𝑟 ≪ min{𝑚,𝑛}, scaling factor 𝛼 > 0, chain
length 𝑇 , sketch distribution 𝒟𝐵

𝑆 or 𝒟𝐴
𝑆 , Bernoulli probabilities 𝑝 and 𝑞

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: for any client 𝑙 ∈ [𝑀 ] in parallel do
4: Compute gradient ∇𝑓𝑙(𝑊

𝑡+1) and send compressed version 𝐺𝑡
𝑙 = 𝒬𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)
)︀

to the
server

5: end for

6: 𝐺𝑡 = 1
𝑀

𝑀∑︀
𝑙=1

𝐺𝑡
𝑙

7: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
8: if 𝑐𝑡 = 1 then
9: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

10: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

12: else
13: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

14: 𝐵̂𝑡 = −𝜂𝐺𝑡 (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

15: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

16: end if
17: Broadcast 𝑊 𝑡+1 to each client 𝑙 ∈ [𝑀 ]
18: end for

Parallel implementations of SGD have become a prominent area of study due to their impressive
scalability. However, one of the primary challenges in parallelizing SGD lies in the substantial
communication overhead required to exchange gradient updates across nodes. To address this,
numerous lossy compression techniques have been developed, enabling nodes to transmit quantized
gradients instead of full gradients. While these methods often work well in practice, they are not
universally reliable and may fail to ensure convergence.

To overcome these limitations, Quantized SGD (QSGD) by Alistarh et al. (2017) introduces a family
of compression techniques that provide both theoretical convergence guarantees and strong empirical
performance. QSGD offers a flexible mechanism for balancing communication bandwidth and
convergence speed. By adjusting the number of bits transmitted per iteration, nodes can reduce
bandwidth usage, albeit at the potential cost of increased variance in the gradient estimates. Different
variants of QSGD were considered by Horváth et al. (2022); Wen et al. (2017); Panferov et al. (2024).
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We consider the following distributed optimization problem:

min
𝑊∈R𝑚×𝑛

1

𝑀

𝑀∑︁
𝑙=1

𝑓𝑙(𝑊 ),

where 𝑀 represents the number of clients. In Federated Learning, a primary bottleneck is the
communication overhead between clients and the central server. A common approach to mitigate this
issue is communication compression.

Definition 2. A randomized operator 𝒬 : R𝑚×𝑛 → R𝑚×𝑛 is called an unbiased compression
operator (or compressor) if there exists a constant 𝜔 > 0 such that, for any matrix 𝑊 ∈ R𝑚×𝑛 , the
following conditions hold:

E[𝒬(𝑊 )] = 𝑊, and E
[︁
‖𝒬(𝑊 )−𝑊‖2F

]︁
≤ 𝜔 ‖𝑊‖2F . (123)

To analyze the optimization process, we introduce the following assumption regarding function
dissimilarity:

Assumption 11. Let 𝑓* := inf𝑊 𝑓(𝑊 ) and 𝑓*
𝑙 := inf𝑊 𝑓𝑙 for each 𝑙 ∈ [𝑀 ]. In the non-convex

case, the difference at the optimum is defined as:

∆* := 𝑓* − 1

𝑀

𝑀∑︁
𝑙=1

𝑓*
𝑙 ≥ 0. (124)

This assumption quantifies the discrepancy between the global optimal function value and the average
of the local optimal function values between the clients.

To start convergence analysis, we rewrite the updates for 𝑊 𝑡 and 𝐺𝑡 generated by Fed-Bernoulli-
LoRA-QGD (Algorithm 7) as follows

𝐺𝑡 =
1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
; (125)

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

. (126)

To establish the convergence guarantee for Fed-Bernoulli-LoRA-QGD (Algorithm 7), we first demon-
strate that the gradient estimator 𝐺𝑡 satisfies Assumption 4. Once this is verified, the convergence
rate follows directly using the same reasoning as in the proof of Theorem 2.

Lemma 15. Let Assumptions 2, 3, and 11 hold. Then, 𝐺𝑡 defined in Algorithm 7 (see (125)) satisfies
Assumption 4 with the following constants:

𝐴1 =
𝐿𝜔

𝑀
, 𝐵1 = 1, 𝐶1 = 2

𝐿𝜔∆*

𝑀
.

Proof. First, we show 𝐺𝑡 is an unbiased estimator of ∇𝑓(𝑊 𝑡):

E
[︀
𝐺𝑡|𝑊 𝑡

]︀
=

1

𝑀

𝑀∑︁
𝑙=1

E
[︀
𝒬𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
|𝑊 𝑡

]︀ (123)
=

1

𝑀

𝑀∑︁
𝑙=1

∇𝑓𝑙(𝑊
𝑡) = ∇𝑓(𝑊 𝑡).
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Now we establish that 𝐺𝑡 satisfies Assumption 4. Taking the conditional expectation with respect to
𝑊 𝑡, we have

E
[︁⃦⃦

𝐺𝑡
⃦⃦2
F
|𝑊 𝑡

]︁
= E

⎡⎣⃦⃦⃦⃦⃦ 1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
−∇𝑓(𝑊 𝑡) +∇𝑓(𝑊 𝑡)

⃦⃦⃦⃦
⃦
2

F

|𝑊 𝑡

⎤⎦
(13)
= E

⎡⎣⃦⃦⃦⃦⃦ 1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
−∇𝑓(𝑊 𝑡)

⃦⃦⃦⃦
⃦
2

F

|𝑊 𝑡

⎤⎦+
⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

=
1

𝑀2

𝑀∑︁
𝑙=1

E
[︁⃦⃦

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡)
)︀
−∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F
|𝑊 𝑡

]︁
+
⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

(123)
≤ 𝜔

𝑀2

𝑀∑︁
𝑙=1

⃦⃦
∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F
+
⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

(*)
≤ 2𝐿𝜔

𝑀2

𝑀∑︁
𝑙=1

(︀
𝑓𝑙(𝑊

𝑡)− 𝑓*
𝑙

)︀
+
⃦⃦
∇𝑓(𝑊 𝑡)

⃦⃦2
F

= 2
𝐿𝜔

𝑀

(︀
𝑓(𝑊 𝑡)− 𝑓*)︀+ ⃦⃦∇𝑓(𝑊 𝑡)

⃦⃦2
F
+ 2

𝐿𝜔

𝑀

(︃
𝑓* − 1

𝑀

𝑀∑︁
𝑙=1

𝑓*
𝑙

)︃
⏟  ⏞  

:=Δ*

,

where in (*) we used smoothness of each 𝑓𝑙 Thus, we have shown that 𝐺𝑡 satisfies Assumption 4
with following constants

𝐴1 =
𝐿𝜔

𝑀
, 𝐵1 = 1, 𝐶1 = 2

𝐿𝜔∆*

𝑀
.

I.1.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 17. Let Assumptions 1 2, and 3 hold, and stepsize satisfy

0 < 𝛾 ≤ min

⎧⎨⎩ 1

𝐿
√︁

𝜔
𝑀 𝜆𝑝

max𝑇
,
1

𝐿

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1
⎫⎬⎭ .

Then iterates generated by Fed-Bernoulli-LoRA-QGD (Algorithm 7) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 6(𝑓(𝑊 0)− 𝑓*)

𝛾𝜆𝑝
min𝑇

+
2𝛾𝐿𝜔∆*

𝑀

𝜆𝑝
max

𝜆𝑝
min

,

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and ̃︁𝑊𝑇 is chosen at

random from
{︀
𝑊 0,𝑊 1, . . . ,𝑊𝑇−1

}︀
with probabilities { 𝑤𝑡

𝒲𝑇−1
}𝑇−1
𝑡=0 , where 𝑤𝑡 =

𝑤𝑡−1

(1+𝛾2𝐿2𝜆𝑝
max𝜔/𝑀)

,

𝒲𝑇−1 =
∑︀𝑇−1

𝑡=0 𝑤𝑡, and 𝑤−1 > 0.

Proof. By Lemma 15, and Theorem 2, we directly obtain the statement of the theorem.

I.1.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 18. Let Assumptions 1, 2, 3, and 6 hold, and stepsize satisfy

0 < 𝛾 ≤ min

{︃
𝜇

2𝐿2𝜔/𝑀

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1

,
2

𝜇𝜆𝑝
min

,
1

𝐿

(︂
𝜆𝑝
max

𝜆𝑝
min

)︂−1
}︃
.

Then iterates generated by Fed-Bernoulli-LoRA-QGD (Algorithm 7) satisfy

E
[︀
𝑓(𝑊𝑇 )− 𝑓*]︀ ≤ (︂1− 1

2
𝛾𝜇𝜆𝑝

min

)︂𝑇 (︀
𝑓(𝑊 0)− 𝑓*)︀+ 2𝛾𝐿2

𝜇
· 𝜔

𝑀
· 𝜆

𝑝
max

𝜆𝑝
min

,

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1− 𝑝)𝜆𝐻𝐴
max.

Proof. By Lemma 15, and Theorem 12, we directly obtain the statement of the theorem.
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I.2 ANALYSIS OF FED-BERNOULLI-LORA-MARINA

Algorithm 8 Fed-Bernoulli-LoRA-MARINA

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, {𝐺0
𝑙 }𝑙∈[𝑀 ] ∈ R𝑚×𝑛 rank 𝑟 ≪ min{𝑚,𝑛},

scaling factor 𝛼 > 0, chain length 𝑇 , sketch distribution 𝒟𝐵
𝑆 or 𝒟𝐴

𝑆 , Bernoulli probabilities 𝑝
and 𝑞

2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝐺𝑡 (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: Broadcast 𝑊 𝑡+1 to each client 𝑙 ∈ [𝑀 ]
14: Sample 𝑠𝑡 ∼ Be(𝑞)
15: for any client 𝑙 ∈ [𝑀 ] in parallel do
16: Compute gradient ∇𝑓𝑙(𝑊

𝑡+1)

17: 𝐺𝑡+1
𝑙 =

{︂∇𝑓𝑙(𝑊
𝑡+1), with probability 𝑞

𝐺𝑡
𝑙 +𝒬𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−∇𝑓𝑙(𝑊
𝑡)
)︀
, with probability 1− 𝑞

18: Send 𝐺𝑡+1
𝑙 to the server

19: end for

20: 𝐺𝑡+1 = 1
𝑀

𝑀∑︀
𝑙=1

𝐺𝑡+1
𝑙

21: end for

MARINA (Gorbunov et al., 2021) is an advanced method that significantly enhances communication
efficiency in non-convex distributed learning across heterogeneous datasets. Its core innovation lies
in a communication reduction mechanism that compresses the differences between gradients. The
communication complexity bounds for MARINA are known to be better than those of all previous
first-order methods. Non-smooth convex analysis of MARINA with different stepsize strategies can
be found in (Sokolov & Richtárik, 2024). This section is devoted to Fed-Bernoulli-LoRA-MARINA
(Algorithm 8), a method within the Bernoulli-LoRA framework, based on MARINA algorithm.

In order to start convergence analysis, we rewrite the updates 𝑊 𝑡, 𝐺𝑡 generated by Fed-Bernoulli-
LoRA-MARINA (Algorithm 8):

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

(127)

𝐺𝑡+1
𝑙 =

{︂∇𝑓𝑙(𝑊
𝑡+1), with probability 𝑞

𝐺𝑡
𝑙 +𝒬𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−∇𝑓𝑙(𝑊
𝑡)
)︀
, with probability 1− 𝑞

(128)

𝐺𝑡+1 =
1

𝑀

𝑀∑︁
𝑙=1

𝐺𝑡+1
𝑙 . (129)

Lemma 16. Let Assumption 3 hold. Then iterates generated by Fed-Bernoulli-LoRA-MARINA satisfy

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2
F

]︁
≤ (1−𝑞)E

[︁⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F

]︁
+(1−𝑞)

𝜔𝐿2

𝑀
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

(130)
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Proof. Taking the conditional expectation with respect to 𝑊 𝑡+1 and defining 𝐷𝑡+1
𝑙 := ∇𝑓𝑙(𝑊

𝑡+1)−
∇𝑓𝑙(𝑊

𝑡), 𝐷𝑡+1 = 1
𝑀

∑︀𝑀
𝑙=1 𝐷

𝑡+1
𝑙 , we obtain

E
[︁⃦⃦

𝐺𝑡+1 −∇𝑓(𝑊 𝑡+1)
⃦⃦2

F
|𝑊 𝑡+1

]︁
= (1− 𝑞)E

⎡⎣⃦⃦⃦⃦⃦𝐺𝑡 −∇𝑓(𝑊 𝑡) +
1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−∇𝑓𝑙(𝑊
𝑡)
)︀⃦⃦⃦⃦⃦

2

F

|𝑊 𝑡+1

⎤⎦
(13)
= (1− 𝑞)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+ (1− 𝑞)E

⎡⎣⃦⃦⃦⃦⃦ 1

𝑀

𝑀∑︁
𝑙=1

𝒬𝑡
𝑙

(︀
𝐷𝑡+1

𝑙

)︀
−𝐷𝑡+1

⃦⃦⃦⃦
⃦
2

F

| 𝑊 𝑡+1

⎤⎦
= (1− 𝑞)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

1− 𝑞

𝑀2

𝑀∑︁
𝑚=1

E
[︁⃦⃦

𝒬𝑡
𝑙

(︀
𝐷𝑡+1

𝑙

)︀
−𝐷𝑡+1

𝑙

⃦⃦2

F
|𝑊 𝑡+1

]︁
(123)
≤ (1− 𝑞)

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

(1− 𝑞)𝜔

𝑀2

𝑀∑︁
𝑙=1

⃦⃦
∇𝑓𝑙(𝑊

𝑡+1)−∇𝑓𝑙(𝑊
𝑡)
⃦⃦2

F

≤ (1− 𝑞)
⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2

F
+

(1− 𝑞)𝜔𝐿2

𝑀

⃦⃦
𝑊 𝑡+1 −𝑊 𝑡

⃦⃦2

F
,

where in the last inequality we used that the gradient of each 𝑓𝑙 is Lipschitz continuous.

I.2.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 19. Let Assumptions 1, 2, 3, and hold, and let the stepsize satisfy

0 < 𝛾 ≤ 1

𝐿
(︁
1 +

√︁
𝜆𝑝
max

1−𝑞
𝑞 · 𝜔

𝑀

)︁ .
Then the iterates of Fed-Bernoulli-LoRA-MARINA (Algorithm 8) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2

(︀
𝑓(𝑊 0)− 𝑓*)︀
𝛾𝜆𝑝

min𝑇
+

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

𝑞𝑇
· 𝜆

𝑝
max

𝜆𝑝
min

, (131)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1− 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1− 𝑝)𝜆𝐻𝐴
max, and ̃︁𝑊𝑇 is drawn uniformly

at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

2𝑞

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (132)

By Lemma 12 and Lemma 16, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑞)𝜆𝑝
max

2𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑞)𝐿2𝜔𝜆𝑝

max

2𝑞𝑀
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ E [Φ𝑡]−

𝛾𝜆𝑝
min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑞)𝐿2𝜔𝜆𝑝

max

2𝑞𝑀

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

Selecting 0 < 𝛾 ≤ 1

𝐿
(︁
1+
√︁

𝜆𝑝
max

1−𝑞
𝑞 · 𝜔

𝑀

)︁ , we obtain

E [Φ𝑡+1] ≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
.

Summing over, we get

𝛾𝜆𝑝
min

2

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ E [Φ0]− E [Φ𝑇 ] .

Finally, we derive

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2Φ0

𝜆𝑝
min𝛾𝑇

.

where ̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.
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I.2.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 20. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

⎧⎨⎩ 1

𝐿
(︁
1 +

√︁
2𝜆𝑝

max
1−𝑞
𝑞 · 𝜔

𝑀

)︁ , 𝑞

2𝜇𝜆𝑝
min

⎫⎬⎭ .

Then the iterates of Fed-Bernoulli-LoRA-MARINA (Algorithm 8) satisfy
E
[︀
𝑓(𝑊𝑇 )− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0, (133)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and Φ0 = 𝑓(𝑊 0) − 𝑓* +

𝛾𝜆𝑝
max

𝑞

⃦⃦
𝐺0 −∇𝑓(𝑊 0)

⃦⃦2
F

.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

𝑞

⃦⃦
𝐺𝑡 −∇𝑓(𝑊 𝑡)

⃦⃦2
F
. (134)

By Lemma 12 and Lemma 14, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾(1− 𝑞)𝜆𝑝
max

𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+
𝛾(1− 𝑞)𝐿2𝜆𝑝

max

𝑞
· 𝜔

𝑀
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ (1− 𝛾𝜇𝜆𝑝

min)E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀+ (︁1− 𝑞

2

)︁ 𝛾𝜆𝑝
max

𝑞
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾(1− 𝑞)𝐿2𝜆𝑝

max

𝑞
· 𝜔

𝑀

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used Assumption 6. Selecting 0 < 𝛾 ≤

min

⎧⎨⎩ 1

𝐿

(︂
1+
√︁

2(1−𝑞)𝜔
𝑞𝑀 𝜆𝑝

max

)︂ , 𝑞
2𝜇𝜆𝑝

min

⎫⎬⎭, we obtain

E [Φ𝑡+1] ≤ (1− 𝛾𝜇𝜆𝑝
min)E [Φ𝑡] .

Taking recursion, we have
E [Φ𝑇 ] ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0.
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I.3 ANALYSIS OF FED-BERNOULLI-LORA-EF21

Algorithm 9 Fed-Bernoulli-LoRA-EF21

1: Parameters: pre-trained model 𝑊 0 ∈ R𝑚×𝑛, {𝐺0
𝑙 }𝑙∈[𝑀 ] ∈ R𝑚×𝑛 rank 𝑟 ≪ min{𝑚,𝑛},

scaling factor 𝛼 > 0, chain length 𝑇 , sketch distribution 𝒟𝐵
𝑆 or 𝒟𝐴

𝑆 , Bernoulli probability 𝑝
2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample 𝑐𝑡 ∼ Be(𝑝) Bernoulli random variable
4: if 𝑐𝑡 = 1 then
5: Sample 𝐵𝑡

𝑆 ∼ 𝒟𝐵
𝑆 Left sketch

6: 𝐴𝑡 = −𝜂
(︁
(𝐵𝑡

𝑆)
⊤
𝐵𝑡

𝑆

)︁†
(𝐵𝑡

𝑆)
⊤
𝐺𝑡

7: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟𝐵

𝑡
𝑆𝐴

𝑡

8: else
9: Sample 𝐴𝑡

𝑆 ∼ 𝒟𝐴
𝑆 Right sketch

10: 𝐵̂𝑡 = −𝜂𝐺𝑡 (𝐴𝑡
𝑆)

⊤
(︁
𝐴𝑡

𝑆 (𝐴𝑡
𝑆)

⊤
)︁†

11: 𝑊 𝑡+1 = 𝑊 𝑡 + 𝛼
𝑟 𝐵̂

𝑡𝐴𝑡
𝑆

12: end if
13: Broadcast 𝑊 𝑡+1 to each client 𝑙 ∈ [𝑀 ]
14: for any client 𝑙 ∈ [𝑀 ] in parallel do
15: Compute gradient ∇𝑓𝑙(𝑊

𝑡+1)
16: 𝐺𝑡+1

𝑙 = 𝐺𝑡
𝑙 + 𝒞𝑡

𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−𝐺𝑡
𝑙

)︀
17: Send 𝐺𝑡+1

𝑙 to the server
18: end for

19: 𝐺𝑡+1 = 1
𝑀

𝑀∑︀
𝑙=1

𝐺𝑡+1
𝑙

20: end for

Error Feedback (EF) (Seide et al., 2014; Stich et al., 2018; Alistarh et al., 2018; Richtárik et al.,
2021; Fatkhullin et al., 2021; Richtárik et al., 2022; Khirirat et al., 2024), often referred to as error
compensation, is an exceptionally influential mechanism for stabilizing convergence in distributed
training of supervised machine learning models, particularly when contractive communication
compression techniques are employed. We design Fed-Bernoulli-LoRA-EF21 within the Bernoulli-
LoRA framework, based on EF-21 method. Our theoretical analysis, built on standard assumptions,
applies to distributed training in heterogeneous data settings and achieves the best known convergence
rates.

Compared to Fed-Bernoulli-LoRA-MARINA, in this section we work with the wider class of compres-
sion operators called contractive.
Definition 3. A randomized operator 𝒞 : R𝑚×𝑛 → R𝑚×𝑛 is called a contractive compression
operator (compressor) if it satisfies the following condition: there exists a constant 0 < 𝛽 ≤ 1 such
that

E
[︁
‖𝒞 (𝑊 )−𝑊‖2F

]︁
≤ (1− 𝛽) ‖𝑊‖2F , ∀ 𝑊 ∈ R𝑚×𝑛. (135)

The iterates of Fed-Bernoulli-LoRA-EF21 can be rewritten as follows

𝑊 𝑡+1 = 𝑊 𝑡 − 𝛾𝐺̂𝑡, where 𝐺̂𝑡 =

{︂
𝐻𝑡

𝐵𝐺
𝑡, with probability 𝑝

𝐺𝑡𝐻𝑡
𝐴, with probability 1− 𝑝

(136)

𝐺𝑡+1
𝑙 = 𝐺𝑡

𝑙 + 𝒞𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−𝐺𝑡
𝑙

)︀
, ∀ 𝑙 ∈ [𝑀 ] (137)

𝐺𝑡+1 =
1

𝑀

𝑀∑︁
𝑙=1

𝐺𝑡+1
𝑙 . (138)

Lemma 17. Let Assumption 3 hold. Then for the iterates generated by Fed-Bernoulli-LoRA-EF21
(Algorithm 9)satisfy

E
[︁⃦⃦

𝐺𝑡+1
𝑙 −∇𝑓𝑙(𝑊

𝑡+1)
⃦⃦2
F

]︁
≤
√︀
1− 𝛽E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F

]︁
+

(1− 𝛽)𝐿2

1−√
1− 𝛽

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
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Proof. For each 𝑙 ∈ [𝑀 ] we have

E
[︁⃦⃦

𝐺𝑡+1
𝑙 −∇𝑓𝑙(𝑊

𝑡+1)
⃦⃦2
F

]︁
(137),(138)

= E
[︁
E
[︁⃦⃦

𝒞𝑡
𝑙

(︀
∇𝑓𝑙(𝑊

𝑡+1)−𝐺𝑡
𝑙

)︀
−
(︀
∇𝑓𝑙(𝑊

𝑡+1)−𝐺𝑡
𝑙

)︀⃦⃦2
F
|𝐺𝑡+1

𝑙 ,𝑊 𝑡+1
]︁]︁

(135)
≤ (1− 𝛽)E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡+1)

⃦⃦2
F

]︁
≤ (1− 𝛽) (1 + 𝜃)E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F

]︁
+(1− 𝛽)

(︂
1 +

1

𝜃

)︂
E
[︁⃦⃦

∇𝑓𝑙(𝑊
𝑡+1)−∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
,

where in the last inequality we used ‖𝑈 + 𝑉 ‖2F ≤ (1 + 𝜃) ‖𝑈‖2F +
(︀
1 + 1

𝜃

)︀
‖𝑉 ‖2F for any constant

𝜃 > 0, and matrices 𝑈,𝑉 ∈ R𝑚×𝑛. Taking 𝜃 = 1√
1−𝛽

− 1, we acquire

E
[︁⃦⃦

𝐺𝑡+1
𝑙 −∇𝑓𝑙(𝑊

𝑡+1)
⃦⃦2
F

]︁
≤

√︀
1− 𝛽E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F

]︁
+

1− 𝛽

1−√
1− 𝛽

E
[︁⃦⃦

∇𝑓𝑙(𝑊
𝑡+1)−∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
≤

√︀
1− 𝛽E

[︁⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F

]︁
+

(1− 𝛽)𝐿2

1−√
1− 𝛽

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used that the gradient of each 𝑓𝑙 is Lipschitz continuous. Summing
over 𝑙 from 1 to 𝑀 , we finish the proof.

I.3.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 21. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy

0 < 𝛾 ≤ 1

𝐿

(︂
1 +

√
𝜆𝑝
max(1−𝛽)

1−
√
1−𝛽

)︂ .

Then the iterates of Fed-Bernoulli-LoRA-EF21 (Algorithm 9) satisfy

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2(𝑓(𝑊 0)− 𝑓*)

𝛾𝜆𝑝
min𝑇

+
𝒢0

(1−√
1− 𝛽)𝑇

· 𝜆
𝑝
max

𝜆𝑝
min

, (139)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min+(1−𝑝)𝜆𝐻𝐴

min, and 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max+(1−𝑝)𝜆𝐻𝐴
max, ̃︁𝑊𝑇 is drawn uniformly at

random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}, and 𝒢0 := 1
𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2
F

.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

2(1−√
1− 𝛽)

· 1

𝑀

𝑀∑︁
𝑙=1

⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F
. (140)

By Lemma 12 and Lemma 17, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max

√
1− 𝛽

2(1−√
1− 𝛽)

· 1

𝑀

𝑀∑︁
𝑙=1

E
[︁⃦⃦

𝐺𝑡
𝑙 −∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max𝐿
2(1− 𝛽)

2(1−√
1− 𝛽)2

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ E [Φ𝑡]−

𝛾𝜆𝑝
min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾𝜆𝑝

max𝐿
2(1− 𝛽)

2(1−√
1− 𝛽)2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
.

Selecting 0 < 𝛾 ≤ 1

𝐿

(︂
1+

√
𝜆
𝑝
max(1−𝛽)

1−
√

1−𝛽

)︂ , we obtain

E [Φ𝑡+1] ≤ E [Φ𝑡]−
𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
.

Summing over 𝑡 from 0 to 𝑇 − 1, we get

𝛾𝜆𝑝
min

2

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
≤ E [Φ0]− E [Φ𝑇 ] .
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Finally, dividing both sides by 𝛾𝜆𝑝
min

2 yields

E
[︂⃦⃦⃦

∇𝑓(̃︁𝑊𝑇 )
⃦⃦⃦2
F

]︂
≤ 2Φ0

𝛾𝜆𝑝
min𝑇

.

where ̃︁𝑊𝑇 is drawn uniformly at random from the iterate sequence {𝑊 0,𝑊 1, . . . ,𝑊𝑇−1}.

I.3.2 CONVERGENCE UNDER POLYAK-ŁOJASIEWICZ CONDITION

Theorem 22. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy

0 < 𝛾 ≤ min

⎧⎪⎪⎨⎪⎪⎩
1

𝐿

(︂
1 +

√
2𝜆𝑝

max(1−𝛽)

1−
√
1−𝛽

)︂ ,
1 +

√
1− 𝛽

2𝜇𝜆𝑝
min

⎫⎪⎪⎬⎪⎪⎭
. Then the iterates of Fed-Bernoulli-LoRA-EF21 (Algorithm 9) satisfy

E
[︀
𝑓(𝑊𝑇 )− 𝑓*]︀ ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0, (141)

where 𝜆𝑝
min := 𝑝𝜆𝐻𝐵

min + (1 − 𝑝)𝜆𝐻𝐴

min, 𝜆𝑝
max := 𝑝𝜆𝐻𝐵

max + (1 − 𝑝)𝜆𝐻𝐴
max, and Φ0 = 𝑓(𝑊 0) − 𝑓* +

𝛾𝜆𝑝
max

1−
√
1−𝛽

1
𝑀

∑︀𝑀
𝑙=1

⃦⃦
𝐺0

𝑙 −∇𝑓𝑙(𝑊
0)
⃦⃦2
F
.

Proof. Denote Lyapunov function Φ𝑡 as follows

Φ𝑡 = 𝑓(𝑊 𝑡)− 𝑓* +
𝛾𝜆𝑝

max

1−√
1− 𝛽

· 1

𝑀

𝑀∑︁
𝑙=1

⃦⃦
𝐺𝑡

𝑙 −∇𝑓𝑙(𝑊
𝑡)
⃦⃦2
F
. (142)

By Lemma 12 and Lemma 17, we have

E [Φ𝑡+1] ≤ E
[︀
𝑓(𝑊 𝑡)

]︀
− 𝑓* − 𝛾𝜆𝑝

min

2
E
[︁⃦⃦

∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max

2
· E
[︁⃦⃦

𝐺𝑡 −∇𝑓(𝑊 𝑡)
⃦⃦2
F

]︁
+

𝛾𝜆𝑝
max

√
1− 𝛽

1−√
1− 𝛽

· 1

𝑀

𝑀∑︁
𝑙=1

E
[︁⃦⃦

𝐺𝑡
𝑙 −∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
+
𝛾𝜆𝑝

max(1− 𝛽)𝐿2

(1−√
1− 𝛽)2

E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
≤ (1− 𝛾𝜇𝜆𝑝

min)E
[︀
𝑓(𝑊 𝑡)− 𝑓*]︀+ 𝛾𝜆𝑝

max

(︀
1 +

√
1− 𝛽

)︀
2(1−√

1− 𝛽)
· 1

𝑀

𝑀∑︁
𝑙=1

E
[︁⃦⃦

𝐺𝑡
𝑙 −∇𝑓𝑙(𝑊

𝑡)
⃦⃦2
F

]︁
−
(︂

1

2𝛾
− 𝐿

2
− 𝛾𝜆𝑝

max(1− 𝛽)𝐿2

(1−√
1− 𝛽)2

)︂
E
[︁⃦⃦

𝑊 𝑡+1 −𝑊 𝑡
⃦⃦2
F

]︁
,

where in the last inequality we used Assumption 6. Selecting 0 < 𝛾 ≤

min

⎧⎨⎩ 1

𝐿

(︂
1+

√
2𝜆

𝑝
max(1−𝛽)

1−
√

1−𝛽

)︂ , 1+
√
1−𝛽

2𝜇𝜆𝑝
min

⎫⎬⎭, we obtain

E [Φ𝑡+1] ≤ (1− 𝛾𝜇𝜆𝑝
min)E [Φ𝑡] .

Taking the recursion, we have
E [Φ𝑇 ] ≤ (1− 𝛾𝜇𝜆𝑝

min)
𝑇Φ0.
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complete it was that from new reps

J EXPERIMENTS: MISSING DETAILS

In this section, we provide additional details regarding the experimental setting from Section 7.

J.1 LINEAR REGRESSION WITH NON-CONVEX REGULARIZATION

Full gradient setting. We begin by evaluating these methods in a standard optimization setting where
full gradients are computed at each iteration. In this regime, we compare Bernoulli-LoRA-GD and
RAC-LoRA-GD.

0 500 1000 1500 2000 2500 3000
Iterations
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(a) Rank 𝑟 = 1.
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(b) Rank 𝑟 = 2.

Figure 2: Comparison of RAC-LoRA-GD and Bernoulli-LoRA-GD on linear regression fine-tuning.
Curves with 𝑝 = 0.01,0.2, . . . indicate Bernoulli-LoRA-GD sampling parameters. RAC-LoRA-GD(A)
trains 𝐵 after resampling 𝐴, while RAC-LoRA-GD(B) does the reverse. All methods use 𝛾 = 𝑐/𝐿̂ with
𝑐 ∈ {1,2} tuned individually.

Figure 2 shows that, across all tested probabilities, Bernoulli-LoRA-GD and both variants of RAC-
LoRA-GD exhibit similar convergence on the linear regression task. This numerical stability suggests
that the ratio of updates between 𝐴 and 𝐵 has little effect on the performance for this problem. We
also observe that higher ranks 𝑟 produce faster convergence, which aligns with the theoretical 𝑟/𝑛
factor in our analysis.

Hardware and Software. All algorithms were implemented in Python 3.10 and executed on three
different CPU cluster node types:

1. AMD EPYC 7702 64-Core,
2. Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz,
3. Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

Implementation Details. For each method, we set the stepsize to 𝛾 = 𝑐/𝐿̂, where 𝑐 is a constant
multiplier tuned individually for every algorithm. Convergence was monitored by computing the
squared norm of the full gradient at each iteration. The algorithms terminated when either a maximum
iteration limit was reached or the criterion ‖∇𝑓(𝑥𝑡)‖22 ≤ 5 × 10−16 was satisfied. To ensure
reliability, each method was run 20 times using different random seeds, and all figures show the
median performance over these trials.

Datasets. The synthetic pre-training dataset ( ̃︀𝐷,̃︀𝑏) was generated using

sklearn.datasets.make regression

with moderate noise and a controlled rank structure:
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1 wt_D, wt_b = make_regression(n_samples=90000, n_features=4096,
2 n_informative=4096, noise=20.0,
3 bias=0.0, tail_strength=0.8,
4 effective_rank=64, random_state=42)

followed by standard scaling. The fine-tuning dataset (𝐷̂, 𝑏̂) was produced similarly:

1 h_D, h_b = make_regression(n_samples=10000, n_features=4096,
2 n_informative=4096//2, noise=50.0,
3 bias=10.0, tail_strength=0.9,
4 effective_rank=32, random_state=84)

and subsequently adjusted with a biased scaling (mean 1, standard deviation 2).
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