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ABSTRACT

Parameter-efficient fine-tuning (PEFT) has emerged as a crucial approach for adapt-
ing large foundational models to specific tasks, particularly as model sizes continue
to grow exponentially. Among PEFT methods, Low-Rank Adaptation (LoRA) (Hu
et al., 2022) stands out for its effectiveness and simplicity, expressing adaptations as
a product of two low-rank matrices. While extensive empirical studies demonstrate
LoRA’s practical utility, theoretical understanding of such methods remains limited.
Recent work on RAC-LoRA (Malinovsky et al., 2024) took initial steps toward
rigorous analysis. In this work, we introduce Bernoulli-LoRA, a novel theoretical
framework that unifies and extends existing LoRA approaches. Our method intro-
duces a probabilistic Bernoulli mechanism for selecting which matrix to update.
This approach encompasses and generalizes various existing update strategies while
maintaining theoretical tractability. Under standard assumptions from non-convex
optimization literature, we analyze several variants of our framework: Bernoulli-
LoRA-GD, Bernoulli-LoRA-SGD, Bernoulli-LoRA-PAGE, and Bernoulli-LoRA-MVR,
Bernoulli-LoRA-QGD, Bernoulli-LoRA-MARINA, Bernoulli-LoRA-EF21, establishing
convergence guarantees for each variant. Additionally, we extend our analysis
to convex non-smooth functions, providing convergence rates for both constant
and adaptive (Polyak-type) stepsizes. Through extensive experiments on various
tasks, we validate our theoretical findings and demonstrate the practical efficacy of
our approach. This work is a step toward developing theoretically grounded yet
practically effective PEFT methods.

1 INTRODUCTION

Fine-tuning adapts pre-trained models to new datasets, a central task in modern deep learning,
particularly NLP (Peters et al., 2018; Devlin et al., 2019). However, full fine-tuning is computationally
expensive for large models. Parameter-Efficient Fine-Tuning (PEFT) (He et al., 2021) addresses
this by updating only a fraction of parameters (Richtdrik & Takac, 2016; Demidovich et al., 2023a),
matching full fine-tuning performance with significantly lower costs (Radford et al., 2019; Brown
et al., 2020; Han et al., 2024).

Leveraging the low intrinsic dimensionality of pre-trained models (Li et al., 2018; Aghajanyan et al.,
2020), Low-Rank Adaptation (LoRA) (Hu et al., 2022) optimizes updates in a reduced subspace. It
replaces large matrix updates with the product of two trainable low-rank matrices:
W =W"+2BA,

where W0 € R™*" is fixed, and B € R™*" A € R"*" are trainable (r < min{m,n}). While
typically initialized with Gaussian A and zero B, other strategies exist (Zhu et al., 2024; Hayou et al.,
2024; Meng et al., 2024; Wang et al., 2025). Beyond improving efficiency (Cherniuk et al., 2023;
Mao et al., 2025), LoRA mitigates catastrophic forgetting and enhances output diversity (Biderman
et al., 2024).

To approach full fine-tuning performance, Xia et al. (2024) introduced Chain of LoRA (COLA). This
framework iteratively builds higher-rank updates from a sequence of low-rank modules at no extra
computational cost. By merging updates into fixed parameters, it yields:

T-1
W=WO+2a S BrAL,
t=0
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Unlike standard LoRA, COLA uses sequential decompositions to efficiently approximate high-rank
adaptations.

Recent theoretical works analyze LoRA from complementary angles. Jang et al. (2024) prove that
sufficiently high-rank LoRA eliminates spurious local minima in the NTK regime. Kim et al. (2025)
show that training typically converges to a low-rank global minimum or diverges toward high-rank
solutions. In continuous-time settings, Xu et al. (2025) highlight the pivotal role of initialization in
matrix factorization gradient flows, while Dayi & Chen (2025) position low-rank fine-tuning between
lazy training and feature learning.

2  MOTIVATION

Theoretical advances above highlight what happens in specific regimes, but they leave open whether
practical, discrete-time LoRA updates converge under realistic training noise and communication
constraints. This gap motivates our framework: we seek general convergence guarantees for random-
ized low-rank adaptation with stochastic gradients, variance reduction, and federated communication
savings. At the same time, despite their practical success, Low-Rank Adaptation (LoRA) and its
variants like Chain of LoRA (COLA) still lack a unified and practically relevant convergence theory.
LoRA’s re-parameterization makes smooth loss functions non-smooth, creating significant theoretical
hurdles (Sun et al., 2024). Second, existing COLA analysis ignores its core low-rank updates by fo-
cusing on full-rank optimization, thus failing to explain its efficiency (Xia et al., 2024). Consequently,
most LoRA-based methods are heuristics without convergence guarantees, making them sensitive to
hyperparameters (Khodak et al., 2021; Kuang et al., 2024). Malinovsky et al. (2024) even showed
COLA can diverge and introduced RAC-LoRA, the first framework to establish convergence rates
for LoRA-style updates. However, the RAC-LoRA framework is limited. It lacks optimal variance-
reduced techniques for non-convex problems and fails to address advanced Federated Learning (FL)
scenarios incorporating communication compression and error feedback (Alistarh et al., 2018; Wen
etal.,, 2017; Horvath et al., 2022; Panferov et al., 2024). The need for distributed optimization like
FL is driven by the challenge of training massive models (Brown et al., 2020; Kolesnikov et al., 2020;
Goyal et al., 2017; You et al., 2019; Le Scao et al., 2023). Our work aims to bridge this gap by
extending a theoretically sound LoRA framework to these vital, practical optimization settings. In
the next section, we formalize the optimization problems we study.

3 PROBLEM STATEMENT

Supervised learning is an optimization problem that minimizes a loss function. We focus on this
challenge in fine-tuning, using a general, model-agnostic formulation:

min  f(W° + AW). 1)
AW eRmxn

Here, W represents the pre-trained parameters, AW is the trainable adaptation, and f is the
empirical loss. Since m x n is very large, AW requires a simple, trainable structure.

Throughout the paper, we treat W9 as a fixed pre-trained model and view f as the fine-tuning loss
that already encodes the effect of the pre-training and fine-tuning data distributions (including any
mismatch between them). All of our convergence guarantees are therefore conditional on this given
WY and the associated fine-tuning objective f. We do not model the representation-learning dynamics
of the pre-training phase, nor do we analyze generalization; our focus is purely on the optimization
behavior of low-rank LoRA-style updates when minimizing the fine-tuning loss.

For our stochastic methods, we consider these objective structures:

* Finite-Sum Setting: The objective is an average over N data samples, used in methods like
Bernoulli-LoRA-PAGE:

N
1
0 — ) 0
FOWVO + AW) = N;fz(w +AW). )
» Expectation Setting: The objective is an expectation over a data distribution D, for methods
like Bernoulli-LoRA-MVR:
SW+ AW) = Eeop [fe(W° + AW)] . 3)
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We also address the distributed optimization setting for our proposed Federated Learning (FL)
algorithms (e.g., Fed-Bernoulli-LoRA-QGD). Here, the goal is to minimize a global objective averaged
over M clients:

M
1
0 _ 0
Fw +AW)—M;fl(W +AW), @
where f; is the local loss for client [. The goal is to find AW that minimizes this global objective.

In practical applications, LoRA is often applied to many matrices across multiple layers (e.g., query,
key, value, and feed-forward projections). Our analysis covers this case as well: one can view
all LoRA-modified matrices as being stacked or arranged in block-diagonal form inside a single
W0 and AW. Because we work with the Frobenius norm and inner product, our assumptions and
convergence results extend verbatim to this concatenated/block-diagonal representation, following
the same abstraction used in Hu et al. (2022); Sun et al. (2024); Malinovsky et al. (2024); Xia et al.
(2024); Zhu et al. (2024).

4 CONTRIBUTIONS

LoRA-based methods are sensitive to hyperparameters (Khodak et al., 2021; Kuang et al., 2024) and re-
quire a stronger theoretical foundation. While Malinovsky et al. (2024) provided an initial framework
with RAC-LoRA, we aim to further advance the theory and versatility of low-rank adaptation.

Low-rank PEFT updates two matrices, A and B, either individually or alternating deterministi-
cally (Malinovsky et al., 2024; Xia et al., 2024; Zhu et al., 2024). Our main contribution, Bernoulli-
LoRA, is a generic framework with a probabilistic update: at each step, a Bernoulli trial selects either
A or B for optimization while the other is fixed. This randomized selection unifies and generalizes
existing update strategies. Similar to COLA (Xia et al., 2024), our framework applies a sequence of
these probabilistic low-rank updates.

Our analysis uses standard non-convex optimization assumptions, like L-smoothness. We instantiate
Bernoulli-LoRA with several algorithms, from foundational gradient methods to advanced stochastic,
variance-reduced, and federated learning variants. We establish rigorous convergence guarantees for
each method. Our key contributions include:

4 Foundational Algorithmic Variants: We establish the framework’s properties with two funda-
mental schemes to understand the interplay between randomized selection and standard descent.

— Bernoulli-LoRA-GD (Algorithm 2) uses full gradients, providing a foundational analysis of
convergence in an idealized setting.

— Bernoulli-LoRA-SGD (Algorithm 4) uses practical stochastic gradients, offering insights into the
interplay of stochasticity and randomized adaptation for large-scale tasks.

4 Advanced Variance Reduction for Non-Convex Optimization: To counter variance from
stochastic gradients, we develop VR-enhanced variants, providing the first theoretical analysis of
LoRA-type methods with advanced VR schemes in L-smooth non-convex settings.

— Bernoulli-LoRA-PAGE (Algorithm 6) adapts the optimal and simple PAGE (Li et al., 2021) for
the finite-sum setting (2).

— Bernoulli-LoRA-MVR (Algorithm 5) uses Momentum Variance Reduction inspired by
STORM (Cutkosky & Orabona, 2019) for the expectation setting, proving its effectiveness in
our framework.

4 Communication-Efficient Federated Learning Extensions: We extend Bernoulli-LoRA to FL,
addressing communication overhead. We provide the first comprehensive analysis of LoRA-type
methods integrated with established communication-saving techniques like quantization, gradient
difference compression, and error feedback.

— Fed-Bernoulli-LoRA-QGD (Algorithm 7) incorporates QSGD-style quantization (Alistarh et al.,
2017; Wen et al., 2017; Horvath et al., 2022; Panferov et al., 2024) to compress gradients and
reduce communication bandwidth.

— Fed-Bernoulli-LoRA-MARINA (Algorithm 8) adapts the MARINA strategy (Gorbunov et al., 2021)
to efficiently compress gradient differences.
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— Fed-Bernoulli-LoRA-EF21 (Algorithm 9) integrates the EF21 error feedback mecha-
nism (Richtarik et al., 2021) to stabilize training with contractive compressors.

4 Analysis for Non-Smooth Convex Functions: We broaden our framework’s applicability by
providing the first theoretical analysis of LoRA-type methods for non-smooth convex optimization.
We present a version of Bernoulli-LoRA-GD (Algorithm 3) and establish its convergence rates with
different stepsize policies.

5 BERNOULLI-LORA FRAMEWORK

In this section, we introduce the Bernoulli-LoRA framework, a novel and generic approach for low-
rank adaptation. The core idea is to perform a sequence of low-rank updates, where at each step, a
probabilistic choice determines which of the two factor matrices (A or B) is trained. This randomized
mechanism, formalized in Algorithm 1, not only provides a flexible and unifying theoretical construct
for existing LoRA-style methods but also allows for a rigorous convergence analysis.

At each iteration, one of the two low-rank matrices is sampled from a fixed distribution and remains
frozen, while the other is trained to minimize the objective. This strategy prevents optimization
from being confined to a fixed subspace, reducing the risk of converging to a suboptimal point. We
formalize these two configurations as Left and Right sketch updates.

Definition 1 (Left and Right Sketch Updates). We define two complementary update rules based on
which factor matrix is sampled from a fixed distribution and which is adjustable. The Left Sketch
and Right Sketch updates are given, respectively, by:

AW = £BgA,  with Bs ~ Dy fixed and A € R™*™ adjustable, 5)
T

AW = L BAg, with Ag ~ D4 fived and B € R™*" adjustable, (6)
T

where D and D 4 are fixed distributions over R™*" and R"*"™ matrices.

Algorithm 1 Bernoulli-LoRA Framework

1: Parameters: pre-trained model WO € RM™X™ rank r < min{m,n}, scaling factor o > 0, chain
length 7, sketch distributions DE and Dé, Bernoulli probability p.

2: fort=0,1,...,T — 1do

3:  Sample ¢! ~ Be(p) Bernoulli random variable
4: ifct =1 then

5: Sample Bts ~ 'Dg (Left sketch)
6: Using a chosen optimizer, approximately solve A* ~ arg min , f(W* + 2BLA).

7: Wil = Wt + 2 BL AL,

8: else

9: Sample Ats ~ Dg (Right sketch)
10 Using a chosen optimizer, approximately solve B! ~ arg minp f(W* + 2BAY).

1 Wl =Wt 4 2ptal
12:  endif
13: end for

5.1 REFORMULATION AS A PROJECTED GRADIENT STEP

Building upon the work of Malinovsky et al. (2024) on their RAC-LoRA framework, the update steps
in Algorithm | can be reformulated as projected gradient steps. The subproblems in lines 6 and 10
are typically solved approximately, for instance, by taking a single step of a suitable optimizer like
Gradient Descent (GD) or its variants. More discussion can be found in Appendix E.

While RAC-LoRA employs a deterministic choice for which matrix to update, our Bernoulli-LoRA
framework generalizes this concept by introducing a probabilistic selection at each step. This allows
us to express the update for any of our proposed methods in a single, unified form:

W = W' -G, @)
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. Method &
Setting Base Gradient Estimator (' NC conver- | PL.  convergence
gence rate rate
) Bernoulli-LoRA-GD (Alg. 2) Thm. I: Thm. 9:
0
G' = VW) s (1 — YpAmin) " A°
Bernoulli-LoRA-SGD (Alg. 4) Thn Thim. 12
ernoulli-LoRA- 0
M Gt = g(Wt) : 'Y)\rAninT (1 - ’yg\f){‘i")T A°
+WL§;?:mx +ﬁ
Thm. 3: Thm. 14:
(1)+(3) Bernoulli-LoRA-MVR (Alg. 5) Py (1 = g hanin) T ®
DG = Ve (W) + (1= B~ Vfe (W) e | 4 et )
Tt T e iomm
Bernoulli-LoRA-PAGE (Alg. 6) Thm. 4 Thm. 16
m. 4: m. 16:
(H+2) Gt — VW), W.p. q Dy (2) (1 = g Amin) T @22
G 4 VAW = VWY, wp1—g | P THAmin) 2
Thm. 5: Thm. 18:
Fed-Bernoulli-LoRA-QGD (Alg. 7) A0 T x0
1)+(4 - 1-— 'Vﬂ)\lnin A
( ) ( ) Gt = ﬁ lA:Il Q;‘(Vfl(wt)) ’Y)\i‘PYEWA*)\max ( +’YL2W>\ma1
MXmin MpAmin
Fed-Bernoulli-LoRA-MARINA (Alg. 8)
Vi(WY), w.p. q Thm. 6: Thm. 20:
(H+HH) Gl = at-1 t t t—1 L PENO)) T (2)
. QAVAWY) = VAWT), wp.l—q| 557 (1 = YpAmin) " P2
G'= ﬁ lkzjl G
Fed-Bernoulli-LoRA-EF21 (Alg. 9) Thm. 7 .
LT Thm. 22:
(4 | G = G + CHV AW — G o o (L i) 7B
G= 1M G T VHAmin) " B3

@y = AT 4 5l 0%
2) Dy = AO + lgU.
g%

3) . AO ol 50
P35 := AY + 17\/@9 .

Table 1: Unified summary of the proposed methods, their base gradient estimators, and convergence rates for
smooth non-convex (“NC”) and PL settings. All methods follow the general update rule W' = W* — 4G,
where the projected estimator G* is defined in (8). The table specifies the definition of the base gradient
estimator G* for each method. Absolute constant factors are omitted. Notation: A := f(W?°) — f*;
G0 = |G° = VW[5 6° = 57 X0, [|GP — VA(WO)]
parameter; A* = f* — ﬁ Zl]\il fi"; Ci is a constant from Asm. 4; q is the probability of a full gradient
computation; [ is the contractive compression parameter; b is the momentum parameter; Amin = A0, =
PALE + (1= P)ASA, and Aax = Maax 1= PARE + (1 — p)Ainik.

min min?

2 . . . .
> T 1s the chain length; w is the compression

where G? is the projected gradient estimator. It is formed by taking a base gradient estimator G
(e.g., a full gradient, a stochastic gradient, or a variance-reduced one) and projecting it based on the
outcome of a Bernoulli trial:

ot _ HEG?!,  with probability p @)

- | G'HY,, with probability 1 —p

The specific choice of the base estimator G defines the particular algorithm within the Bernoulli-
LoRA family. We summarize our proposed methods and their convergence guarantees in Table | and
describe them next.

6 CONVERGENCE RESULTS

The optimization dynamics of our framework depend on the spectral properties of the expected
projection matrix (Section 5.1). To derive non-asymptotic guarantees, we rely on standard modeling
abstractions used in the analysis of first-order methods (e.g., Lipschitz smoothness, PL. condition).
Our results are conditional on these assumptions, consistent with classical analyses of GD, SGD, and
FL (Bottou et al., 2018; Bubeck, 2015; Nesterov, 2018; Khaled & Richtarik, 2023).
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Assumption 1. (Positive Expected Projection) Consider the projection matrices associated with the
Left and Right Sketch updates:

Hp = Bg(BIBs)'BS and Hy:= Al(AsAl) Ag,
where t denotes the Moore-Penrose pseudoinverse. We assume that for the sampling distributions
Dg and Dﬁ, the smallest eigenvalues of the expected projection matrices are strictly positive:

M — Nin(BE[HB]) >0 and NI2 = Apin(E[H 4]) > 0.

min min

Remark 1 (On the practicality of Assumption ). At first sight Assumption | may look restrictive:
every single projector has eigenvalues in {0,1}, 50 Anin(Hg) = Amin(Ha) = 0 whenever r < m or
r < n. Crucially, we never require individual projectors to be positive definite, only their expectation
over the sketch distribution. Intuitively, each step updates along a low-dimensional subspace, but the
random subspaces collectively “cover” all directions over time. In fact, the assumption is mild: as
shown in Section D, it is satisfied with E [Hp| = - I,,, E[Ha] = I, for standard choices such
as Gaussian, i.i.d. uniform, Kaiming-uniform, and SVD-based orthonormal sketches widely used in
practice (Xia et al., 2024; Mao et al., 2025; Zhu et al., 2024; Hayou et al., 2024; Li et al., 2025;
Kopiczko et al., 2023).

Assumption 2. (Lower Bounded Function) The objective function f has a finite infimum f* € R.

Following classical literature (Nemirovski et al., 2009; Beck, 2017; Duchi, 2018; Lan, 2020; Drusvy-
atskiy, 2020; Nesterov, 2018), we seek an e-suboptimal solution for convex (or PL) objectives,
satisfying

E [f(W) - f(W*)} <e, ©)

where W* minimizes f. For smooth non-convex problems, we aim for an e-stationary point W such
that

N 2
E [HW(W)HF] < (10)

We quantify algorithmic efficiency via iteration complexity. To establish convergence rates, we use
the standard assumption of gradient Lipschitz continuity (Bubeck, 2015; Nesterov, 2018; Beck, 2017,
Demidovich et al., 2023b; Khaled & Richtarik, 2023; Bottou et al., 2018; Sun, 2020).
Assumption 3. (Lipschitz Smooth Gradient) A function f is differentiable, and there exists a constant
L > 0 such that

VW) =ViV)llg < LIW = Vg,
Sforall W,V € R"™*",

To unify our analysis, we define a probability-weighted eigenvalue )‘ﬁ in(max) ‘= p/\gﬁ’l(max) +(1-
p)AIa (max)- Let W7 be an iterate drawn randomly from the sequence {W°, W, ... WT=1} with

the specific sampling distribution depending on the method.

We begin by presenting the convergence result for the foundational Bernoulli-LoRA-GD method.

Theorem 1 (Smooth Non-Convex Setting). Let Assumptions I, 2, and 3 hold, and let the stepsize

satisfy 0 < v < % Then the iterates of Bernoulli-LoRA-GD (Algorithm 2), with matrices At and B
computed according to Lemma 10, satisfy

— 2 o
2 e <

min

where A° := f(W0) — f*.

While insightful, full-gradient methods are often impractical for large-scale problems. We therefore
extend our analysis to the stochastic setting, where the gradient is replaced by an unbiased estimator
g(W). For this, we use the general expected smoothness assumption.

Assumption 4 (Expected Smoothness (Khaled & Richtarik, 2023)). The stochastic gradient estimator
g(W) satisfies

E[lgW)I}] < 240 (FW) = %) + Bu - [V FOW)II} + €,
for some constants Ay, B1,C7 > 0 and all W € R™*™,

The following theorem establishes the convergence for Bernoulli-LoRA-SGD. Its proof is in Ap-
pendix H.2.
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Theorem 2. Let Assumptions 2, 3, and 4 hold, and let the stepsize satisfy

0 <~y <mi ! ! (Ama" > -
min .
fY B \/ LA )\max LBl min

Then the iterates generated by Bernoulli-LoRA-SGD (Algorlthm 4) sansfy
2
E MVf(WT)HF] < 8% L0y - A
where A% := f(W?) — f*.

To analyze our variance-reduced methods, we consider a specific bounded variance assumption.

Assumption 5 (Bounded Variance (Nemirovski et al., 2009)). There exists a constant o > 0 such
that, for all W € R™*"

E[V(W) =VIW),  E[IVV) - VW] <o?

The next result establishes convergence for Bernoulli-LoRA-MVR.

Theorem 3. Let Assumptions 1, 2, 3, and 5 hold, and let the stepsize satisfy 0 < v <
210 —-. Then the iterates of Bernoulli-LoRA-MVR (Algorithm 5) satisfy
L<1+\/2AI!laXb(17b) )

2 , )
[l < i+ 5+ 25) e
where AY := f(W°) — f* and G° := HGO V(W) HF‘

For the finite-sum setting, we analyze Bernoulli-LoRA-PAGE, with its convergence detailed in the
following theorem and proven in Appendix H.4.

1

L(1+,/ qA&ax) ’

Theorem 4. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy 0 < v <
Then the iterates of Bernoulli-LoRA-PAGE (Algorithm 6) satisfy
0 P
2 Josvf] < e e 54

where A® := f(WO) — f* and G° := ||G® — V f( VV0 HF

We now shift to our Federated Learning variants. The following theorem provides convergence
guarantees for Fed-Bernoulli-LoRA-QGD, with the proof available in Appendix I.1.

Theorem 5. Let Assumptions 1, 2, 3, and 11 hold, and let the stepsize satisfy

b N1
0 < v <min {1 1 (k%‘a") } Then the iterates of Fed-Bernoulli-LoRA-QGD (Algo-
= L/ 20T’ Arnin

rithm 7) satisfy

6A 2yLwA* ,\Px
||V ] < gt + s S,

where AY := f(W°) — f*.
Next, we present the convergence result for Fed-Bernoulli-LoRA-MARINA. The proof can be found in
Appendix [.2.

Theorem 6. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy 0 < v <
(1 \/A ) Then the iterates of Fed-Bernoulli-LoRA-MARINA (Algorithm §) satisfy
+ max q i

[Hw )| } ANE
where A* := f(WO) — f* and G° := ||G® — V f( WO HF

The convergence of Fed-Bernoulli-LoRA-EF21 is established below, with a detailed proof in Ap-
pendix [.3.
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1
N
14 Y2max (1-5)

Theorem 7. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy 0 < v <
L( 1Vi=5

Then the iterates of Fed-Bernoulli-LoRA-EF21 (Algorithm 9) satisfy
. U’Vf(WT)HT < 2042 e
el =

TN T T BT NP

min min

where A° := f(W°) — f* and G° := = Zf\il |Gy — Vfl(WO)H;

To obtain stronger, linear convergence rates, we introduce the Polyak—t.ojasiewicz condition, a
common generalization of strong convexity.

Assumption 6 (Polyak—t.ojasiewicz condition (Polyak, 1963; Lojasiewicz, 1963)). There exists
> 0 such that

2
s IVFW)g = n(FW) = f7).
The next theorem states the convergence of Bernoulli-LoRA-SGD under this condition. It is proven in
Appendix H.2.
Theorem 8. Let Assumptions 2, 3, 4, and 6 hold, and let the stepsize satisfy
—1
0 < v £ min {m, ﬁ7 %Bl (;\\%‘]a:) } Then the iterates of Bernoulli-LoRA-SGD
(Algorithm 4) satisfy
. v\ p

E [f(WT) _ f ] < (1 _ 'YILQmm) A0 + ’yLucl . )\[51?:’

where A := f(W0) — f*.

All other PL-condition results are relegated to the Appendix.

7 EXPERIMENTS

To validate our theoretical findings, we conducted numerical experiments across multiple machine
learning tasks.

7.1 LINEAR REGRESSION WITH NON-CONVEX REGULARIZATION.

We begin with a controlled linear regression problem with non-convex regularization, split into

pre-training and fine-tuning phases. We use (-) for pre-training quantities and () for fine-tuning.
~ ~ ~|12 ~ 2

During the pre-training phase, we solve min,cg» { fl@) = 5= HDa: —b T A Z?Zl 11—&? ,

where D € R™Xx7n be R™ m = 9 x 104, and n = 4096. We set )= EHQ ~ 18.2, giving

L ~ 54.7. We optimize until |V f(Z*)||> < 1078 to obtain Z*. For the fine-tuning phase, we

2 2
~ L . T 2 ixd 7
use T* as the initialization and then solve mingeg»§ f(7) = 5= HDm —b , 1 AD e 1+Jz§ ;

where D € R™*" b ¢ R™, and 7 = 10*. We keep n = 4096 and set \ = HﬁH2 ~ 4101.7,

yielding L ~ 12305.3. This second phase uses a dataset with notably different characteristics to
mirror realistic domain shifts.

Stochastic setting. We consider the stochastic setting, comparing RAC-LoRA-SGD, Bernoulli-LoRA-
SGD, and Bernoulli-LoRA-PAGE. In all experiments, we use a batch size of 100, which corresponds
to 1% of the data.

Figure | shows that Bernoulli-LoRA-PAGE successfully reduces variance and converges to the target
tolerance, whereas all SGD variants stall at a certain accuracy. This underscores the practical
advantage of Bernoulli-LoRA-PAGE over the baseline RAC-LoRA-SGD in the stochastic setting from
an optimization standpoint.
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10-3 —#*— Bernoulli-LoRA-PAGE(p=0.5)
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Data passes

Figure 1: Comparison of RAC-LoRA-SGD, Bernoulli-LoRA-SGD and Bernoulli-LoRA-PAGE on linear
regression fine-tuning. Curves with p = 0.01,0.2, ... indicate Bernoulli-LoRA sampling parameters.
RAC-LoRA-SGD(A) trains B after resampling A, while RAC-LoRA-SGD(B) does the reverse. All
methods use y = ¢/, with ¢ tuned individually.

7.2 MLP oN MNIST

In this section, we evaluate Bernoulli-LoRA against established baselines in parameter-efficient
fine-tuning, following the setup of Malinovsky et al. (2024).

Methodology. We first pre-train a three-layer MLP on MNIST digits 0—4 (LeCun et al., 1998), then
adapt it with various LoRA-type methods to classify digits 5—9. Only unseen classes are used for
evaluation. All adaptations use rank = 1 and train for 50 epochs with AdamW (Loshchilov, 2017)
(B1 = 0.9, By = 0.999, ¢ = 10~®), a fixed learning rate of 2 x 10~%, and batch size 128. Each
method is run 20 times using different seeds, and Table 2 reports the median accuracy (with standard
deviation). For Bernoulli-LoRA, we show the best median accuracy among all tested settings.

Method Da Dp Acc. (test) Train Params
FPFT - - 99.5 54,700
LoRA Gaussian Zero 85.69 £+ 1.60 1K
LoRA Zero Gaussian 89.82 £ 0.90 1K
COLA Gaussian  Zero 93.32 + 0.50 1K
COLA Zero Gaussian 96.55 £ 0.20 1K

AsymmLoRA  Gaussian Zero 64.04 £ 6.90 133
AsymmLoRA Zero Gaussian 74.52 &£ 7.20 912
RAC-LoRA Gaussian  Zero 93.02 £ 0.50 133
RAC-LoRA Zero Gaussian 96.49 4+ 0.20 912
Bernoulli-LoRA 2 Zero' Gaussian 96.46 +0.17  ~ 904

! Although Bernoulli-LoRA prescribes probabilistic selection from the
first iteration, a deterministic assignment of fixed and trainable matrices
at initialization yielded better performance.

2 Achieved with p = 0.99, giving an expected trainable parameter count
p-912 + (1 — p) - 133 &~ 904. Here, 912 and 133 are the parameter
counts for matrices A and B, respectively.

Table 2: Performance on MNIST classification using an MLP with rank r and scaling o = 1. For
AsymmLoRA and RAC-LoRA, only the zero-initialized matrix is trained.

Discussion. From Table 2, standard LoRA attains roughly 86% of full-parameter fine-tuning (FPFT)
accuracy, indicating room for improvements via chaining. COLA improves upon vanilla LoRA, though
both lack formal convergence guarantees. AsymmLoRA approximates LoRA in practice (Sun et al.,
2024) but similarly lacks convergence analysis, whereas RAC-LoRA and Bernoulli-LoRA both boost
accuracy and have theoretical backing. Notably, Bernoulli-LoRA matches RAC-LoRA in generalization
and also guarantees convergence. An additional benefit is that RAC-LoRA and Bernoulli-LoRA each
train only one matrix per LoRA block, whereas COLA needs two. In RAC-LoRA, either A or B
is trained deterministically; in Bernoulli-LoRA, the choice is probabilistic, yielding an expected
pmr + (1 — p)rn trainable parameters. This advantage is especially valuable in resource-constrained
settings such as Federated Learning.

Detailed configurations, hardware specs, and dataset descriptions are provided in Appendix J.
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B BASIC FACTS AND USEFUL INEQUALITIES

Tower property. For any random variables X and Y, we have
EE[X Y] =E[X]. (11)

Cauchy-Bunyakovsky-Schwarz inequality. For any random variables X and Y, we have

E[xY] < VEX?E[Y7] (12)

Variance decomposition. For any random vector X € R? and any non-random ¢ € R%, we have
2 2 2
E[IX - ell}] =E[IX - E[X]I3] + IE1X] - cl. (13)

Jensen’s inequality. For any random vector X € R? and any convex function g : R? — R, we
have
9(E[X]) <E[g(X)]. (14)
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C NOTATION

For matrices W € R™*", where m and n denote the input and output dimensions respectively,
we employ the Frobenius norm ||-|, defined as ||W |, = /Tr(W TW), where Tr(-) denotes the
matrix trace. The inner product between two matrices A and B is denoted by (A, B) = Tr(AT B).
In our low-rank adaptation framework, B € R™*" and A € R"*" represent the factors of rank
r < min{m,n}. We use O(-) to hide absolute constants. We denote A® := f(WO?) — f*,
G = ||G° - Vf(WO)Hi and G0 == & M |GY — Vfl(WO)H; For differentiable functions
f, the gradient V f(W) € R™*" is computed with respect to the trace inner product, while for
non-smooth functions, the subgradient 0 f (W) € R™*™ is similarly defined. The superscript {
denotes the Moore-Penrose pseudoinverse.

18
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D DIScUSSION ON POSITIVE EXPECTED PROJECTION (ASSUMPTION 1)

Recall that in our Bernoulli-LoRA framework, at each iteration we update only one of the low-rank
factors (A or B) while the other is treated as a fixed “sketch” sampled from a prescribed distribution.
The resulting updates can be written as projected gradient steps with respect to the full parameter
matrix W:
Wt — Wt — ’Yéta
where the projected estimator G? has the form
Gt HLGY,  (left sketch),
G'HY,, (right sketch),
and HY;, and H', are projection matrices defined by the current sketch. In particular, for a left sketch
we use

Hp:=B(B"B)' BT e Rmxm, (15)
with B € R™*", and for a right sketch we use
Hy = AT (AAT)" 4 e Rrxn, (16)

with A € R"*"™. Here t denotes the Moore—Penrose pseudoinverse. Both H g and H 4 are orthogonal
projectors onto the column spaces of B and AT, respectively:
H% =Hp, H}=Hgp, Tr(Hg)=rank(Hg)<r,

H% =Hs, H)=Ha, Tr(Hs)=rank(Ha) <.

Our convergence guarantees are derived under Assumption |, which requires the smallest eigenvalues
of the expected projection matrices to be strictly positive:
Amin (E[HB]) > 0, Amin (E[Ha]) > 0.

At first glance this may appear restrictive: any single projector has eigenvalues in {0,1}, so
Amin(Hg) = 0 and Apin(Ha) = 0 whenever r < m or r < n. However, the key point is
that we never require individual projectors to be positive definite. Instead, we only require that the
average projection (over the random sketches) be positive definite. Intuitively, this means that while
each update acts in a low-dimensional subspace, the sequence of random subspaces collectively
“covers” all directions over time.

In this section we show that Assumption | is satisfied for several widely used sketch distributions,
including Gaussian, i.i.d. uniform, Kaiming-uniform and random orthonormal initializations. Our
strategy is to exploit symmetry: for many random matrix ensembles the expected projection commutes
with a large group of orthogonal transformations, which forces it to be a scalar multiple of the identity.
The scalar is then determined by the rank/trace constraint.

D.1 ROTATIONAL AND SIGNED-PERMUTATION SYMMETRIES

We begin with a classical result: if a matrix commutes with every orthogonal matrix, it must be a
scalar multiple of the identity.

Lemma 1 (Rotational invariance implies scalar matrix). Let M € R"™*"™ be a matrix satisfying
M =QMQT" for all orthonormal matrices Q € R™ ™. 17
Then M = «l,, for some scalar o € R.

Proof. Condition (17) is equivalent to QM = MQ for all orthogonal @, i.e., M commutes with
every orthogonal transformation. In particular, M commutes with all rotations.

Since M is a real symmetric matrix (indeed, M = QM Q" for all orthogonal @ implies M T = M),
it admits an orthonormal eigenbasis. Let v be an eigenvector of M with eigenvalue A, and normalize

v to unit length:
v
Uy = -
o]

Then Mu; = A\uq.

Take any other unit vector u on the sphere S™~!. There exists an orthogonal matrix @ € R™*™ such
that u = Qu (geometrically, () is a rotation sending u; to w). Using QM = MQ,
Mu = M(Qui) = QMu; = Q(Auy) = MQuy) = Au.
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Thus every unit vector w is an eigenvector of M with the same eigenvalue .

Now let z € R™ be arbitrary and non-zero, and write x = ||z|| u, with u, := z/ ||x|| a unit vector.
Then

Ma = M(|e] u,) = |2l Mu, = ]| (Viz) = Aa.
So every vector x is an eigenvector with eigenvalue A\, which implies M = \I,,. Setting a = A
completes the proof. O

For many random initializations we do not have full rotational invariance, but we do have invariance
under row permutations and independent sign flips. The corresponding group is the set of all signed
permutation matrices

Gn:={Q € R"*": Q = PD, P permutation, D = diag (+1,...,£1)}.
The following lemma shows that invariance under G, is already enough to force a scalar matrix.

Lemma 2 (Signed-permutation invariance implies scalar matrix). Let M € R™*" satisfy
QMQT =M forallQ € G,,. (18)
Then M = oI, for some o € R.

Proof. We write M = (m;;) to mean that m;; is the entry of M in row ¢ and column j.

Step 1: sign-flip invariance forces M to be diagonal. First consider only those ) € G, that are
pure sign-flip matrices, i.e.,
Q = D =diag (q11,- - - ,qnn) ; qi € {£1}.
These are orthogonal and belong to G,, (with P = I,,). For such Q, the (i,j)-entry of QM Q" is
(QMQT)M = Z%‘kmkwﬂ = 4iiMi5955,
k¢

because () is diagonal. By (18),

Qiiq5; M55 = My for all Z,] and all ((J117 - ,qnn) S {:l:l}n . (19)

Fix any i # j. We are free to choose ¢;; and ¢;; independently. Let ¢;; = 1, ¢;; = —1and gz, = 1
forall k ¢ {i,j}. Then (19) yields
(—1) m;; = Myj — m;; = 0.
Since ¢ # j was arbitrary, all off-diagonal entries vanish, and M must be diagonal:
M = dlag (mlla v am’rm) .

Step 2: permutation invariance forces all diagonal entries to coincide. Next consider permuta-
tion matrices P € GG,,, i.e., matrices with exactly one entry equal to 1 in each row and column (and
all other entries 0). Each P is orthogonal and belongs to G, (with D = I,), so by (18),
PMP" = M. (20)

Let 7 be the permutation of {1,...,n} represented by P, so that Pe; = e, (; for the standard basis
vectors. One checks that

(PMPT); = mr(inci)
so (20) implies

Mii = My()r(;) 1or all i and all permutations .

This is only possible if all diagonal entries are equal to a common value o € R:

mi1 = = Mpp = Q.
Therefore M = ol,,.

Step 3: consistency with general signed permutations. In the argument above we only used two
special subgroups of G,,: pure sign flips (P = I,,) and pure permutations (D = I,,). Since both are
contained in G,,, the assumption (18) applies to them. Once we have shown that M = «l,, it is
immediate that QA QT = M holds forall Q = PD € G,,:

QMQ" = (PD)(al,)(D"P")=aPDD"PT =al, = M.
This completes the proof. O

We will use Lemma | in the Gaussian case (where full rotational invariance holds) and Lemma 2 in
the uniform and Kaiming cases (where we have signed-permutation invariance).
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D.2 GAUSSIAN INITIALIZATION

Gaussian sketches are a standard choice in LoRA-style methods; see, for example, Xia et al. (2024);
Mao et al. (2025). The next lemma shows that for Gaussian initialization, the expected projection
matrices are isotropic and their eigenvalues are exactly r/m and r/n.

Lemma 3 (Expected projections for Gaussian sketches). Let r < min{m,n} and consider two
random matrices:

® B € R™*" with entries i.i.d. N'(0,1),

& A € R™" with entries i.i.d. N'(0,1).

Define Hp and H 5 as in (15) and (16). Then
E[Hp) = —I,, E[Hi="_1I,,
m n
which implies

Amin (B [Hp)) = % A (E[Ha]) =~

=

Proof. We first prove the statement for g, then explain the analogous argument for H 4.

Step 1: E [H ] is a scalar multiple of the identity. Let B € R™*" with i.i.d. A(0,1) entries, and
let @ € R™*™ be an arbitrary orthogonal matrix. By rotational invariance of the standard Gaussian
distribution,
QB < B.
Consider the projector built from QB:
t
Hop = (QB) ((QB)QB)' (@B)"

_ QB (BTQTQB)T BTQT

_ QB (BTB)T BTQT

=Q(B(B'B)'B")Q"

=QHpEQ'.
Since QB and B are identically distributed, Hgp and Hp have the same distribution and hence the
same expectation:

E[Hop| =E[Hg].
Using Hop = QHpQ' and linearity of expectation,
E[Hp] =E[Hgp] =E[QHEQ'] = QE[Hp] Q" for all orthogonal @ € R™*™.

By Lemma [, a matrix commuting with all orthogonal matrices must be a scalar multiple of the

identity. Hence there exists o € R such that
E[Hp| = alp,.

Step 2: determine « via the rank/trace. For any realization of B with full column rank (which
holds almost surely, since B has i.i.d. continuous entries and r < m), the matrix H g is the orthogonal
projector onto the r-dimensional column space of B. Thus
rank(Hg) =, Tr(Hg) =

Taking expectations and using linearity of the trace,

Tr (E [Hp)) = E[Tr (Hp)] = r.
Since E [Hg] = al,,, we also have

Tr (E[Hp]) = Tr (al,,) = am.
Equating the two expressions yields am = r and hence

E[Hg] = — I,,.
m

Because E [Hp| is a scalar multiple of the identity, all of its eigenvalues are equal to r/m, so in
particular Ap,in (E [Hp]) = r/m.
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Step 3: the case of H4. Now let A € R"™*" with i.i.d. N'(0,1) entries and define

Hy=AT (AAT)" A4 e R,
Note that AT € R™*" also has i.i.d. V'(0,1) entries. Repeating the same argument as above with AT
in place of B (and with ambient dimension n instead of m) gives

E[H4| = — I,
n
and all eigenvalues of IE [H 4] are equal to r/n. This completes the proof. O

D.3 LLD. UNIFORM INITIALIZATION ON [—a,a]

We now consider sketches whose entries are i.i.d. uniform on an interval [—a,a], where a > 0. This
initialization strategy is employed, for instance, in AsymmLoRA (Zhu et al., 2024). This setting covers
both simple uniform initializations and serves as a stepping stone to Kaiming-uniform initialization.

Our analysis relies on three ingredients:

@ cquivariance of Hp under left multiplication by an orthogonal matrix,

@ cquivariance of H 4 under right multiplication by an orthogonal matrix,

@ signed-permutation invariance of the distribution of the sketch matrix.

Lemma 4 (Equivariance of Hg and H,4 under orthogonal transforms). Let B € R™*" with
rank(B) =1 and A € R™*™ with rank(A) = r.

(i) For any orthogonal matrix Q € R™*™  define

Hop = (QB) ((QB)TQB) (QB)".

Hop=QHpQ', 21)

Then

where Hp is defined in (15).

(ii) For any orthogonal matrix R € R™*", define

Har = (AR)T ((AR)(AR)T)" (AR).
Then
Har = RTH4R, (22)
where H 4 is defined in (16).

Proof. We prove the two parts separately.

(i) Equivariance of H g under left orthogonal transforms. Recall that () € R™*" is orthogonal,
s0Q'Q=QQ" = I,,. We compute
(@B)"QB=B"Q"QB=B'B.
Hence the inner Gram matrix is unchanged and
(@B @B)' = (BTB)".

Substituting into the definition of Hgp, we obtain
Hop =QB(B'B)' BTQT
-Q(B(B™B) BT)Q"
= QHB QT )

which proves (21).

(ii) Equivariance of H 4 under right orthogonal transforms. Now let R € R"*" be orthogonal,
so RTR= RR" = I,,. We first compute the Gram matrix for AR:
(AR)(AR)" = ARRTAT = AAT.
Thus
(AR)(AR)T)" = (4aT)".
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Using the definition of H 4, we have
Har = (AR)" (AR)(AR)")' (AR)

— RTAT (AAT)" AR
=RT (AT (a47)' A) R

= RTH4R,
which establishes (22). This completes the proof. O

Lemma 5 (Signed-permutation invariance of i.i.d. uniform sketches for B and A). Let a > 0 and
consider:

(i) A random matrix Bg € R™*" with i.i.d. entries (Bg);; ~ Unif ([—a,a]).
(ii) A random matrix Ag € R™*" with i.i.d. entries (Ag);; ~ Unif ([—a,a]).

Let G,,, and G, denote the groups of m x m and n X n signed permutation matrices, respectively:
G = {Q € R™*™: Q = PD, P permutation, D = diag (+1,...,+ 1)},

Gn:={ReR"™": R= P'D', P permutation, D' = diag (+1,...,+1)}.
Then:

(i) Forany Q € G, the random matrix QQ Bg has the same distribution as Bg.

(ii) For any R € G, the random matrix Ag R has the same distribution as Ag.
Proof. We again treat the two cases separately.

(i) Left signed-permutation invariance for Bg. Write Q = PD with P a permutation matrix
and D = diag (£1, ..., £ 1). Left-multiplying Bg by P permutes its rows. Since the entries of Bg
are i.i.d., each row has the same joint distribution, and permuting rows does not change the joint
distribution of the matrix. Thus P Bg has the same distribution as Bg.

Next, left-multiplication by D flips the sign of some rows. More precisely, if D = diag (d1, . .. ,dm)
with d; € {+1}, then the i-th row of DBg is d; times the i-th row of Bg. For a single scalar random
variable X ~ Unif ([—a,a]), we have

—X ~ Unif ([—a,a]),
so flipping signs leaves the marginal distribution of each entry unchanged, and independence across
entries is preserved (since the sign pattern is deterministic here). Therefore D Bg has the same
distribution as Bg.

Combining the two transformations, we see that

@Bs = P(DBs)
is obtained from Bg by a sequence of operations (row permutations and sign flips) that each leave
the joint distribution invariant. Hence () Bg has the same distribution as Bg for any Q) € G,,.

(ii) Right signed-permutation invariance for Ag. The argument for Ag is analogous, but now
signed permutations act on the columns rather than the rows. Let R € G,, and write R = P’ D’ with
P’ a permutation matrix and D’ = diag (+1,..., £ 1).

Right-multiplying Ag by P’ permutes its columns. Since the entries of Ag are i.i.d., each column
has the same joint distribution, and permuting columns preserves the joint distribution of the matrix.
Thus Ag P’ has the same distribution as Ag.

Right-multiplying by D’ flips the sign of some columns: if D" = diag (d1, ... ,d;,) with d} € {£1},
then the j-th column of AgD’ is d} times the j-th column of Ag. As above, each sign flip preserves
the marginal Unif ([—a,a]) distribution of every entry, and independence across entries is preserved,
s0 Ag D' has the same distribution as Ag.

Combining these, we have
AsR = Ag(P'D") = (AsP") D',
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which is obtained from Ag by a sequence of column permutations and column-wise sign flips, each
of which leaves the joint distribution invariant. Therefore Ag R has the same distribution as Ag for
any R € G,.

This proves both claims. O

Combining Lemmas 4 and 5, we can derive the expected projections in closed form.

Lemma 6 (Expected projections for uniform sketches). Let r < min{m,n} and consider two random
matrices:

€ Bg € R™*" with entries i.i.d. Unif ([—a,al),
® Ag € R™*™ with entries i.i.d. Unif ([—a,al).

Define
Hp = Bs (B Bs)' BY e R™ ™,

Hy = A:gr (AsA;:)T Ag € R,
Assume Bg and Ag have full rank v almost surely. Then
r r
E[HB] = 7177“ E[HA} = *Iny
m n

and hence ” r
Amin (E [H = Amin (E [H = .
(E[H5]) = — (B[Ha]) = =

Proof. We first treat Hg. For any @Q € G,,,, Lemma 5(i) gives QBg 4 Bg, and Lemma 4(i) gives
Hgps = QHpQ'. Since QBg and Bg have the same distribution, we obtain
E[Hp] =E[Hop) =E[QHpQT] =QE[Hp] Q" forallQ € G,,.
Thus E [Hp] commutes with every signed permutation matrix @ € G,,,. By Lemma 2, there exists
a € R such that
E[Hp| = alp,.

To determine «, note that for any realization with rank(Bg) = r, Hp is an orthogonal projector of
rank 7, so Tr (Hp) = r. Taking expectations and using linearity of the trace,
Tr (E[Hp])) =E[Tr (Hp)] = r.
On the other hand,
Tr (E[Hp]) = Tr (al,,) = am,
so am = r and hence

.,
E[Hp) = — In.

The argument for H 4 is analogous, now working in ambient dimension n. Specifically, Ag € R
has i.i.d. Unif ([—a,a]) entries. For any R € G,,, Lemma 5(ii) gives AgR 4 Ag, and Lemma 4(ii)
yields H4r = R H 4 R. Therefore
E[Ha] =E[Hag] =E[RTHAR] = R'E[HA]R forall R € G,.
By Lemma 2 applied in R"*™, we must have E [H 4] = SI,, for some 5 € R. As before, rank(Ag) =
r almost surely, so H 4 is a rank-r projector and Tr (H 4) = r almost surely, implying
Tr(E[Ha]) =E[Tr (Ha)] =
On the other hand, Tr (E [H4]) = Tr (81,,) = Bn, so 8 = r/n and hence
E[Hl = - I,.
n
This completes the proof. O
D.4 KAIMING-UNIFORM INITIALIZATION
In this section, we consider the widely used Kaiming-uniform initializer, implemented in PyTorch
asnn.init.kaiming-uniform.. Kaiming-uniform (He) initialization (?) underlies the default

linear-layer initialization in PyTorch and is therefore inherited by many practical LORA implemen-
tations that keep the framework defaults for adapter weights (e.g. Hayou et al., 2024; ?; Kopiczko
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et al., 2023). This initializer samples each entry of a weight matrix independently from a symmetric
uniform distribution on an interval [—b,b], where the bound b > 0 depends on the fan-in and the
activation function. In particular, the entries are i.i.d., continuous, and symmetric about zero.

Let Bs € R™*" and Ag € R"*" be initialized with Kaiming-uniform. Then Bg and Ag satisfy
exactly the same symmetry properties as in the uniform [—a,a] case:
@ The entries are i.i.d. and symmetric around zero, so the distribution is invariant under row

permutations and sign flips (i.e. under G,,, or G,,).

€ With probability one, rank(Bg) = r and rank(Ag) = r (since the entries are drawn from a
continuous distribution).

Therefore the proof of Lemma 6 applies verbatim.

Lemma 7 (Expected projections for Kaiming-uniform sketches). Let r < min{m,n} and consider
two random matrices:

& Bg € R™*" with entries initialized by Kaiming-uniform,
& Ag € R"™™™ with entries initialized by Kaiming-uniform.

Define Hg and H 4 as in (15) and (16). Then
E[Hp)= I,  E[Hal =1,
m n

and hence

<

Amin (E [HB]) = ) Amin (E [HA]) = E

r
m

Proof. Because Kaiming-uniform draws each entry independently from a symmetric uniform distri-
bution [—b,b], the distribution of Bg is invariant under any signed permutation of rows: permuting
rows leaves the joint law unchanged, and multiplying any row by —1 preserves the marginal law of

each entry (by symmetry). Thus QBg 4 Bg for all @ € GG,,, and the same holds for Ag with G,,.

The rest of the argument is exactly as in Lemma 6: by combining Lemma ?? with signed-permutation

invariance, we conclude that E [Hg] = al,,, and E [H 4] = SI,, for some scalars a,,8 € R. Since Hp

and H 4 are rank-r projectors almost surely, Tr (Hg) = r and Tr (H4) = r, and the trace identities
Tr(E[Hg]) =am=r, Tr(E[Hal)=pn=r

imply & = r/m and 8 = r/n. This yields the stated formulas. O

In summary, for Gaussian, i.i.d. uniform, and Kaiming-uniform sketch distributions, the expected
projection matrices are isotropic:
r T

E[Hg] = Ejm’ E[H4] = E.Tn,

and Assumption | holds with A2, = min{r/m,r/n} > 0. This shows that the positive expected
projection condition is naturally satisfied by a broad class of standard initialization schemes used in
LoRA and its variants.

D.5 RANDOM ORTHONORMAL SKETCHES VIA SVD

We now consider the initialization where a dense random matrix W € R™*" with i.i.d. entries
W;j ~ Unif ([—a,a]) is first sampled, and then orthonormal sketches are obtained from its singular
vectors. Specifically, let W = UV T be an SVD with singular values arranged in strictly decreasing
order, and set

BS(W) = U[gl:r] € Rmxr’

As(W) =V}, e R
By construction,

Bs(W)"Bs(W) = 1I,., As(W)As(W)T =1,.
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In particular, when we plug Bg(W) and Ag(W) into the general projector definitions
Hp = Bs(W) (Bs(W) " Bs(W))' Bo(W)T € R™™,

Ha = As(W)T (As(W)As(W)T) As(W) € R,
the pseudo-inverse is simply the identity (because Bs(W) T Bs(W) = Ag(W)As(W)T = I,), so
Hp(W) = Bs(W)Bs(W)" = U, 1.qU[ 1.,y € R™™,

HA(W) = AS(W)TAS(W) = V[:,lzr]v[jlzr] € R™ ™
Both Hp (W) and H 4(W) are orthogonal projectors of rank r, with eigenvalues {1} on the chosen
r-dimensional subspace and {0} on its orthogonal complement.

This type of initialization (taking U[. 1.,] or V. 1.,) from the SVD of a dense random matrix) appears,
for example, in the experimental studies by Zhu et al. (2024), and is closely related to the orthonormal
constructions used in OLoRA (?).

Our first goal is to understand how the sketch projectors Hg (W) and H 4 (W) transform when we
apply signed permutations to the rows or columns of .

Lemma 8 (Equivariance of SVD-based left and right sketches under signed permutations). Let
W € R™ " be any matrix with SVD W = UXV ', where ¥ = diag (01, ...,04) with strictly
decreasing singular values o1 > --- > o4 > 0 (here d = rank(W)). Define

Bs(W) := U 1.,) € R, Hg(W) := Bs(W)Bg(W) T,

As(W) =V}, e R, Hs(W):= As(W) " Ag(W).
Then:

(i) For any signed permutation QQ € G.,,, consider an SVD of QW with the singular values ordered
in the same descending fashion. Up to column-wise sign flips, the left singular vectors of QW are
QU, and the corresponding left-sketch projector satisfies

Hp(QW)=QHp(W)Q". (23)

(ii) For any signed permutation R € G, consider an SVD of W R with the singular values ordered in
the same descending fashion. Up to column-wise sign flips, the right singular vectors of W R are
RV, and the corresponding right-sketch projector satisfies

Hi(WR) = R"HA(W)R. (24)

Proof. We prove (i) and (ii) separately.

(i) Left sketches: effect of ) € GG,,, acting on rows. Since () € GG, is orthogonal, QW admits
the factorization

QW = (QU)TV T,
where QU is also orthogonal. The singular values of QW are the same as those of W, namely
o1, ...,04, and by assumption they are strictly ordered: o1 > --- > o4 > 0.

Consider an SVD of QW with singular values written in descending order:
QW =U'sV'T,

where U’ and V' are orthogonal. The uniqueness properties of the SVD when all singular values are
distinct imply that U’ and V' are determined by QU and V up to sign flips of individual singular
vectors. More precisely, there exists a diagonal orthogonal matrix R = diag (+1,...,4 1) € R?x4
such that

U' = QUR, V' =VR.
(If some singular values were repeated, R could mix singular vectors within blocks corresponding to
equal singular values; the strict-ordering assumption rules this out.)

Let R;., denote the leading r x r diagonal block of R. Then the first r left singular vectors of QW
can be written as

BS(QW) = U[/:,lzr] = QU[:,lzr]R1:r~
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The corresponding projector is
Hp(QW) = Bs(QW)Bs(QW)"
-
= (QU[:,l:r]Rlzr) (QU[:,lzr]Rlz'r')
= QU[:,I:T]RI:TRITU[:T,I:T]QT

= QU[:,l:T] U[—;r’lzr]QT

= QHB(W>QT7
since R1.,.R{.,. = I,. This proves (23).

(ii) Right sketches: effect of R € (,, acting on columns. Now consider WR with R € G,
orthogonal. Using the SVD of W, we have

WR=USV R=US(R'V) .
Since R "V is orthogonal, this is an SVD of W R with left singular matrix U and right singular matrix
V:=RTV. The singular values remain o1, . . . ,04, strictly ordered.
Let
WR=UxV"
be any SVD of W R with singular values in descending order. By the same uniqueness argument,
there exists a diagonal orthogonal matrix S = diag (£1,..., 4 1) € R%*9 such that

U=US, V=VWS=(R'V)S.
Let V;. = V], 1., and S1.,- be the leading r x r block of S. Then the first r right singular vectors of

W R are given by the first » columns of V:
‘/[:,1:7“] = (RTVS)[:,LT]
= RT‘/[Z,IIT]Sll’I"
Recalling that Ag(W) = V.1, the right-sketch matrix for W R is
AS(WR) = VV[:TI:T]
= Sirrv[—rlr]R
= SI:TVTTR7
where we used that S, is diagonal with entries 1, so SIT = S1.,.
The corresponding right-sketch projector is
Hs(WR) = As(WR)" As(WR)
= (SI:TV;TR)T (SI:TV;TR)
=R"V,S/,81.V.'R
— RT‘/;VVTTR
=R"H,(W)R,
since SITSL,,« = I,.. This proves (24) and completes the proof. O

We now combine this equivariance with the signed-permutation invariance of the i.i.d. uniform matrix
W to obtain closed-form expressions for the expected projectors.

Lemma 9 (Expected projections for SVD-based uniform orthonormal sketches). Ler W € R™*"
have i.i.d. entries W;; ~ Unif ([—a,a]), and let Hg(W') and H (W) be defined as above from an
SVD W = UXV T with strictly decreasing singular values. Then
T r
E[HB(W)] = %Imv E[HA(W)] = ELH

and hence ,

Amin (E [Hp(W)]) = — >0, Amin (E[HA(W)]) = % > 0.

Proof. We treat Hg (W) and H 4 (W) in turn.
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Left-sketch projector Hp(W). The rows of W are i.i.d. vectors in R™ with continuous, symmetric
entries. For any signed permutation ) € G,,, left-multiplication by ) permutes and flips the signs
of rows, so

QW LW forallQ € Gy
By Lemma 8(i),

Hp(QW) = QHp(W)Q".
Since QW and W are identically distributed, Hp(QW) and Hp (W) are identically distributed, and
hence

E[Hp(W) =E[Hp(QW)] =E [QHg(W)Q"| = QE[Hg(W)] Q" forallQ € G,.
Thus E [Hp(W)] commutes with every signed permutation matrix in G, and by Lemma 2 there
exists & € R such that
E[Hg(W)] = al,.

To determine v, recall that Bg (W) has orthonormal columns, so Hg (W) = Bs(W)Bgs(W)T is a
rank-r projector with
Te(Hg(W))=r
for every realization. Taking expectations and using linearity of the trace,
Tr (E[Hp(W)]) = E[Tr (Hp(W))] = r.
On the other hand,
Tr (E[Hg(W)]) = Tr (al,,) = am,
so am = r and hence o = r/m. Therefore

E[Hp(W)] = % I,.

Right-sketch projector H 4 (/). The columns of W are also i.i.d. vectors in R with continuous,
symmetric entries. For any signed permutation R € G,,, right-multiplication by R permutes and flips
the signs of columns, so

WRZW forall R€ G,.
By Lemma 8(ii),

Hs(WR) = R"Hs(W)R.
Since WR and W have the same distribution, the random matrices H4 (W R) and H4 (W) are
identically distributed. Hence

E[Hs(W)]=E[Hs(WR)]=E [RTHs(W)R] = RTE[H4(W)|R forall R € G,.
Applying Lemma 2 (now in dimension ) shows that there exists 5 € R such that
E[HA(W)] = BI,.

Again, As(W) has orthonormal rows, so H (W) = Ag(W)T As(W) is a rank-r projector and
Tr(Ha(W)) =7
for every realization. Taking expectations,
Tr (E[HA(W)]) = E[Tr (Ha(W))] = 7.
But Tr (E [Ha(W)]) = Tr (81,) = PBn, hence fn = r and therefore 8 = r/n. Thus
E[HA(W)] = ~ L.
This completes the proof. O

Remark 2. Each individual projector Hg(W) (resp. Ha(W)) is rank-deficient, with eigenvalues
{1} on an r-dimensional subspace and {0} on its orthogonal complement. The lemma above concerns
the expectation of these projectors over the randomness of W. Because the subspace spanned by the
leading singular vectors is random and, in distribution, symmetric under signed permutations, the
expectation E [Hg(W)] (resp. E[Ha(W)]) becomes a full-rank, isotropic matrix (r/m)I,, (resp.
(r/n)I,). This is exactly analogous to the classical fact that if u is a random unit vector in R?, then
E [uu—r} = (1/d)1; even though uu' has rank 1 for every realization.
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E REFORMULATION AS A PROJECTED GRADIENT STEP

Following the approach of Malinovsky et al. (2024), let’s consider the update for the trainable matrix
At in the Left Sketch case. Taking a single GD step on the subproblem corresponds to minimizing a
quadratic approximation of the objective. This yields the solution for A*:

« T

A==y ((BY)" BS) (BY)" VIOV,
where 7 is a learning rate for the subproblem and { denotes the Moore-Penrose pseudoinverse.
Substituting this into the update for Wi+ gives:

W = w4 SBLAT = wt - S1BY ((BY)' Bg)T (BL) " VW)
= W' —yHpVf(W"),
where we define the effective stepsize v := <! and the projection matrix HY =
B ((Bfg)T BtS)T (BY)". A similar derivation for the Right Sketch case gives the update:
W= WAV W HY,
where HY, := (A%)" (Ats (Ag)T)T A% This reformulation reveals that both Left and Right sketch

updates are equivalent to applying a standard gradient-based update, but projected onto a randomly
chosen low-rank subspace.
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F CORE ALGORITHMIC VARIANTS

Bernoulli-LoRA-GD. The simplest instantiation of our framework is Bernoulli-LoRA-GD (Algo-
rithm 2). This method serves as a foundational building block and a starting point for more elaborate
variants. It uses the full gradient of the objective function as its base estimator, i.e., G* = V f(W?).
While impractical for large-scale deep learning, its analysis provides crucial insights into the conver-
gence behavior of the Bernoulli-LoRA mechanism under idealized, deterministic conditions.

Bernoulli-LoRA-SGD.  Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) is a highly
effective and widely utilized algorithm for training a variety of machine learning models. The latest
advancements in deep learning training methods are all based on different variations of SGD (Sun,
2020). Its advantage over GD is that it uses stochastic gradients for updates, rather than relying on
full gradients. Within our framework, we develop Bernoulli-LoRA-SGD, where the base estimator G*
is a general unbiased stochastic gradient of f at W*.

Bernoulli-LoRA-PAGE. Several optimal algorithms exist for addressing non-convex optimization
problems, such as SPIDER (Fang et al., 2018) and SARAH (Pham et al., 2020). However, their
optimality is supported by a known lower bound that applies only in the small data setting. In
contrast, ProbAbilistic Gradient Estimator (PAGE) (Li et al., 2021) stands out for its simplicity, ease
of implementation, and ability to achieve optimal convergence in non-convex optimization. PAGE
alternates between a full gradient update with probability ¢; and a low-cost gradient adjustment with
probability 1 — ¢;. Bernoulli-LoRA-PAGE is a new method based on PAGE within our Bernoulli-LoRA
framework.

Bernoulli-LoORA-MVR. VR methods outperform SGD in reaching first-order critical points but
often require finely tuned learning rates and large batch sizes to be effective. To overcome these
challenges, Momentum Variance Reduction (MVR) (Cutkosky & Orabona, 2019) was introduced for
server-only stochastic non-convex optimization. MVR uses a modified momentum technique to reduce
variance without relying on large batch sizes. Several works employ this powerful approach (Tyurin &
Richtarik, 2023; Karagulyan et al., 2024). We propose Bernoulli-LoRA-MVR, where the base estimator
G? is updated using the MVR rule: a combination of the current stochastic gradient and a momentum
term that incorporates the difference between past estimators and gradients.

G EXTENSIONS FOR FEDERATED LEARNING

Sun et al. (2024) identified instability in LoRA, arising from the mismatch between local clients simul-
taneously optimizing two low-rank matrices and the central server aggregating them independently.
Factors such as data heterogeneity, multi-step local updates, and the amplification of additive noise
applied to gradients for ensuring differential privacy (DP) significantly impact the process. Addition-
ally, the final performance is highly sensitive to hyperparameter choices. Their proposed solution
centers on keeping the randomly initialized non-zero matrices fixed while exclusively fine-tuning
the zero-initialized ones. Based on this asymmetric approach, Malinovsky et al. (2024) proposed a
distributed method Fed-RAC-LoRA.

We develop the theory further by incorporating compression, VR and EF techniques into FL. methods
for LoRA within the novel Bernoulli-LoRA framework.

The effectiveness of a distributed training method is primarily measured by its communication
complexity, defined as the product of the required communication rounds and the communication
volume per round. Following common practice, we assume client-to-server communication is the
main bottleneck and exclude server-to-client communication from our analysis.

Fed-Bernoulli-LoRA-QGD. A key challenge for distributed methods lies in the high communica-
tion cost of gradient updates. Lossy compression techniques, such as QSGD (Alistarh et al., 2017),
address this by enabling clients to send quantized gradients. We design Fed-Bernoulli-LoRA-QGD
based on QSGD. The clients send compressed versions of their gradients. The base estimator G is
formed by averaging the compressed local gradients received from all clients.
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Fed-Bernoulli-LoORA-MARINA. MARINA (Gorbunov et al., 2021) is a communication-efficient
method for non-convex distributed learning on heterogeneous datasets that uses a novel gradient
difference compression strategy. Its biased gradient estimator underpins its strong theoretical and
practical performance, with proven communication complexity bounds surpassing all prior first-order
methods. We propose Fed-Bernoulli-LoRA-MARINA, where each client’s local estimator G} is updated
either with a full local gradient (with probability ¢) or by adding a compressed gradient difference to
its previous estimator. The server’s base estimator G is the average of these local estimators.

Fed-Bernoulli-LoRA-EF21. Error Feedback (EF) (Seide et al., 2014; Stich et al., 2018; Alistarh
et al.,, 2018; Richtarik et al., 2021) is a widely adopted technique for stabilizing training with
contractive compressors. We propose Fed-Bernoulli-LoRA-EF21, based on the modern EF21. Here,
each client updates its local estimator G by adding a compressed version of the difference between
the current local gradient and the previous local estimator. The server’s base estimator G* is again
the average of the clients’ estimators.
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H PROOFS FOR CORE ALGORITHMIC VARIANTS

H.1 ANALYSIS OF BERNOULLI-LORA-GD

Algorithm 2 Bernoulli-LoRA-GD

1: Parameters: pre-trained model WO € R™*" rank r < min{m,n}, scaling factor o > 0,
stepsize -y, chain length T', sketch distribution DE or D4, Bernoulli probability p

2: fort=0,1,..., 7 —1do

3:  Sample ¢! ~ Be(p) Bernoulli random variable

4: if ¢ =1 then

5: Sample By ~ DE Left sketch
N T

6 A=y ((BY)" BY) (BY) VIV

7. WHl=W!4 2BLA

8: else

9: Sample AL ~ D& Right sketch
. T

10: Bl = VW) (a%)" (A% (a)")

11: Wi = Wt + 2 BtAY

12:  end if

13: end for

The following lemma establishes that the Bernoulli-LoRA update can be reformulated as a standard
projected gradient descent step, providing a crucial foundation for our subsequent convergence
analysis.

Lemma 10. Consider the updates At and Bt from Algorithm 2 computed as solutions to the following
optimization problems:

A = argmin { FOV) + & (VA(W), BEAY, + HBSAH }
A
2
Hto_ ; ty . & t t t 12
B' = arg;nm{f(W )+?<Vf(W )’BAS>F+W HBASHF}' (25)
Then the Left and Right sketch updates can be expressed as a gradient descent step:
W =Wt — 4Gt (26)

where Gt is defined by
ot — HEV f(W?), with probability p o7
-\ VFA(WYHHY, with probability 1 — p
with projection matrices HYy and H'; given by:
T Y T t T
— ()" (A5 (4%)") Al and Hp = B ((BY) BY) (BY) (28)

where t denotes the Moore-Penrose pseudoinverse.

Proof. Following Algorithm 2, at each iteration we randomly select either the Left sketch (with
probability p) or the Right sketch (with probability 1 — p). We analyze both cases separately and then
combine them into a unified update rule.

Left Sketch Analysis. When the Left sketch is selected, the update takes the form:
Wt = wt 4 SpLA, (29)
r
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Minimizing the right-hand side with respect to At yields:

2
L (B9 VY + 25 (BY) T BEAT = 0,
(B5) " BLA" =~ (BY) VIV
A= ()" By () vRV). G0

This leads to the Left sketch update:
WL = W S

= s ((85) 7 BE) (85T Vrv)

= W'—aHpVfWY), (31)
where HY, := B ((Bg)—r Bg)Jr (B"g)—r is a projection matrix.
Right Sketch Analysis. For the Right sketch, we follow a similar approach. The update rule is:

Wil — Wt %BtAg. (32)

First, observe that:

HBng

), (s o)) o

For the linear term from (25):

o ty Pt gt _ t\\ | Pt gt

~ (VR BUAS) = 2T (VW) BUAY), (34)
with gradient V f(W?) (AtS)T with respect to B'. Using the matrix calculus identity Vx || X||7 =
2X, the gradient of the quadratic term is:

2
Q7 At (At T
WB A (A%) . (35)
Setting the total gradient to zero and solving for Bt
- r T T
Bt = — vt (a5)" (45 (45) ) (36)
which yields the Right sketch update:
Wit = Wty SRA
T

;
= W'V (A5) " (4 (45) ) A
= W'—AVf(W"H}, 37)
:
where HY, := (AtS)T (Ag (Ag)—r) AL is a projection matrix.

Combined Update Rule. Combining equations (31) and (37), we obtain the unified update:
W = W' — G (38)
where G takes the form given in the lemma statement, completing the proof. O

With these assumptions in place, we can now state our main convergence result for RAC-LoRA with
Gradient Descent updates.

H.1.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 1. Let Assumptions [, 3, and 2 hold, and let the stepsize satisfy 0 < v < % Then the
iterates of Bernoulli-LoRA-GD (Algorithm 2), with matrices At and B! computed according to Lemma

10, satisfy Q(f(WO) B f*)

rY)‘fninT , (39)

s[Josmf] <
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where . = p)\gﬁl +(1-p) )\gﬁl and W7 is drawn uniformly at random from the iterate sequence

(WO, wt, ... wi-1y,

Proof. From Lemma 10, we know that Bernoulli-LoRA updates can be expressed as
Wi = Wt — 4Gt (40)
where G takes the form
ot — {HfBVf(Wt), with probability p
V(W' HY, with probability 1 — p
with projection matrices H'y and HY as defined in the lemma.

(41)

To analyze the convergence, we first compute the conditional expectation and second moment of G*:
E[G'|W'H'] = pHRVW')+ (1~ )Vf(Wt)H,%,

El6 e W] = p|HEVAVO |+ =) [V, @)
where we defined H' := {HY,, HS}.
We begin by establishing several key auxiliary bounds. For the Left sketch term:
L?
0 (VHW), Hy V(W) + =0-p | HEV LV}

= (VW) HEVFWY)), + L—p (HLVFW), HEY F(W)),
= (VFOV), B FW0), + Lo (v, (1) HET S0

= (= OV, 9507, + B (9 v, 19 £07),

YUYy

< —op(VIWY), HEV W) (43)
For any projection matrix HY,, we have:
(VIWOHY, VFWOEY), = Te((HY) T (9FW) O W H})
= T () v E, () )
= T (VW) " VY
= (VW) VFWH}), . (44)
Therefore: a2
—y(1=p) (VFW), VFWHY ) + =0 (1= p) [ VAW HY
2
= (1= p) (VSO VAW L) + (1= ) (VF(W)HY, VW) Y )
2
= (1= p) (VIO VAW HY)  + 0= (1= p) (VFO), VW) HY)
y<L

—5 (L= p) (VI (W), V(W) HY )., (45)
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Using the Lipschitz gradient condition and the above bounds:
E [f(Wt+1) | Wt,Ht] S f(Wt) +E |:<Vf(Wt)7Wt+1 _ Wt>F | Wt,Ht:I

I £E [HWtH _ WtH2 W Ht}

V) = (TRWE G W + S [l W]

= fw ) YV (W), HpV f(W')), —~(1 = p) (VF(W*), VF(W)H} ),
v B |+ EEa e rovt s

(43),(45)

S FW) = 2 (p(VFW), HEV W) + (L= p) (VFW), VW HY ) )

(46)
For the first term:

—(VS(W').E[HE] V(W)

—Tr((Vf( )" E[Hj ]Vf(Wt))

< —hin (B [H]) T ((VAOV) " V()
= NIV “7)
Similarly, for the second term:
—(VIWVFWOE[HL]), = =T (/W) O (WHE [H])
= =T (B [H4] (VA1) T V)
< A v (48)

Therefore:
E [f(Wt+1) | Wt]

E [E [f(Wt-‘rl) | Wt,Ht] ‘ Wt}
fovty -2 5 (P(VFW).E[HR] V(W) + (1= p)(VIW'), VF(WE [H)])y)

Fv) =2 (pMit + (=N ) [V O0)

min

IN

IN

Ml

Fwt) - W IV F W h)]I5

2 min

(49)

where AP .= pAHP 1 (1 — p)\Ha  Further,
E[E [f(W) | W HT W = £ < W0 = £ = S0, [VFr) ;- (50)
Taking the sum over t = 0,...,T — 1 and using the tower property of expectation:
T—1
x 2
BV =) < 0V = 1= 3 S E[IVA0VI] (51)
=0
By rearranging terms, we get:
v t 0
QAﬁunZ]EMVfW Ig] < rov) = . (52)
Finally, dividing both sides by g)‘ﬁnn yields:
= 7] - 200(V°) — )
E H w7’ H <2 53
vsam|;] < 2052 53)
where W7 is chosen uniformly at random from {W° W1 ... WT=1} completing the proof.
O

35



Under review as a conference paper at ICLR 2026

H.1.2 CONVERGENCE UNDER POLYAK-LOJASIEWICZ CONDITION

Theorem 9. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy 0 < v < % Then
the iterates of Bernoulli-LoRA-GD (Algorithm 2), with matrices At and Bt computed according to
Lemma 10, satisfy
* T *
E[f(WT) = ] < (1= X))’ (FWO) = £),

Hp

where AP . = PAmin + (1= p)Agﬂr

Proof. We begin our analysis from a key inequality derived in the proof of Theorem 1:
2
E[f(W) [ W' < FW1) = IX, [V V)5 (54)
By invoking the Polyak-Eojasiewicz condition (Assumption 6), which states that 1 ||V f(W) ||§ >
w(f(W) — f*), we can further bound the right-hand side of the inequality (54):

E[f(W) [ W] < FOV) = 9\ (1 (FOVY) = 7)) -
Subtracting the optimal function value f* from both sides, we get a recursive relationship for the
expected suboptimality gap:

E[f(WSED) = £ [ W] < (FWV) = [7) = 9Ny (FW) = )
= (1= ypXi) (FOVY) = 1)
By taking the full expectation over all randomness up to iteration ¢ and applying the tower property,
we obtain:
E[fWH) = f] < (1 =y ) E[F(W) = £
Unrolling this recursion from ¢t = 7" — 1 down to ¢ = 0 yields the final linear convergence result:
E [f(WT) = £7] < (L= yuNp)" (FW°) = 7).
This completes the proof. O

H.1.3 CONVERGENCE FOR NON-SMOOTH CONVEX FUNCTIONS

Algorithm 3 Bernoulli-LoRA-GD (Non-smooth setting)

1: Parameters: pre-trained model WO € R™*" rank r < min{m,n}, scaling factor « > 0,
stepsize y; chain length 7', sketch distribution DE or Dﬁ, Bernoulli probability p

2: fort=0,1,...,7T —1do

3:  Sample ¢! ~ Be(p) Bernoulli random variable
4:  if ¢! =1 then

5: Sample By ~ DE Left sketch
6 At=argming {f(W)+ 2 (0f (W), BsA)y + 520 | B AIIR }

7: Wt = Wt 4+ ¢ BLA!

8: else

9: Sample A% ~ D4 Right sketch
10: B =argming { (W) + 2 (9 (W), BAY) + 520 | BA| }

1 W =W+ 2BrAL

12:  endif
13: end for

Our analysis relies on the following standard assumptions that are widely used in non-smooth
optimization theory:

Assumption 7. The function f has at least one minimizer, denoted by W*.
Assumption 8. The function f is convex.

Assumption 9 (Lipschitz continuity). The function f is Lg-Lipschitz continuous. That is, there exists
Lo > 0 such that
lfW) = f(VI < Lo [W = Vg, VW,V eR™" (55)

The combination of convexity and Lipschitz continuity represents a standard framework in non-
smooth optimization (Vorontsova et al., 2021; Nesterov, 2013; Bubeck, 2015; Beck, 2017; Duchi,
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2018; Lan, 2020; Drusvyatskiy, 2020). Notably, the Lg-Lipschitz continuity implies uniformly
bounded subgradients (Beck, 2017), a property that plays a crucial role in our analysis:

10f(W)|lg < Lo, YW € R™*™ (56)
This boundedness of subgradients ensures the stability of our optimization process and enables us to
establish rigorous convergence guarantees.

The following lemma establishes that the Bernoulli-LoRA update in the non-smooth case can also be
reformulated as a subgradient descent step, which plays a central role in our convergence analysis for
non-smooth objectives.

Lemma 11. Consider the updates At and B from Algorithm 3 computed as solutions to the following
optimization problems:

2
it . : ty, & t t o t A112
A = argjnm {f(W )+ p (of (W) ,BSA>F + prowes ||BSAHF} ,
B = argmin {f<wt> + % (of (W) BAL) + 2o | BAY2 } 6D
B r
Then the Left and Right sketch updates can be expressed as a subgradlent descent step:
W =W — 5,6, (58)

where G is defined by
ot — HEOf (W),  with probability p
of (Wt HY, with probability 1 — p
with projection matrices HYy and HY given by:
T T\ T f T
— ()" (A5 (a%) ") Al and Hp = By ((BY) BY) (BY) (60)

where T denotes the Moore-Penrose pseudoinverse.

(59)

Proof. The proof follows a similar structure to that of Lemma 10, with subgradients replacing
gradients throughout the analysis. We examine both sketch types separately before combining them
into a unified update rule.

Left Sketch Analysis. When the Left sketch is selected, the update takes the form:

W = wt + SpLAL. 61)
T
The matrix A’ is defined as the solution to the optimization problem:
i . ! o? 2
Al .= arg min {f(Wt) +={(0f (W) ,BgA>F + By HBngHF} . (62)
A r VT
By computing the gradient of the objective with respect to A and setting it to zero, we obtain:
2
o T o T p
—(Bs) of (') + powe (Bs) BLA' = 0

N T
A= 2T ((BY)" BS) (BY) of (W) 63)
Substituting this expression back into the update equation yields the Left sketch update:
Wi = Wy SBLA
s oS
t t T pt\ (peyT t
= W' =By ((Bs) Bs) (Bs) of (W)
= W'~ HLOf (W), (64)

Right Sketch Analysis. For the Right sketch, we follow an analogous approach. The update rule
takes the form:

Wi = wt 4+ LA, (65)
T
Applying similar optimization steps but now with respect to matrix B, we obtain:

Bt = —of (W) (45)" (45 (AtS)T)T : (66)
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which leads to the Right sketch update:

Wit = Wty CBal
” s
T 1
= W' —0f (W) (45)" (A5 (45) ") 4b
= W'—~0f (W' HY. (67)
Combined Update Rule. By combining equations (64) and (67), we arrive at the unified update rule:
Wit =w' — 4,G?, (68)
where G* takes the form specified in the lemma statement, thus completing the proof. O

Assumption 10. Consider a projection matrix H generated through either Left Sketch (Definition 5)
or Right Sketch (Definition 6). For the sampling distributions DE and Dé, the expected projection
matrix H satisfies

E[H] = al, (69)
where a constant o > Q.

Theorem 10. Let Assumptions 1, 7, 8, 9, and 10 hold. Let us define the following quantities:
WT = % tT;()l Wt as the averaged iterate, Rg = ||VVO — W*H; as the initial distance to
optimum. Consider the sequence {W*'} produced by Bernoulli-LoRA (Algorithm 3) with updates of

At and Bt computed according to Lemma 1.

1. (Constant stepsize). If the stepsize is constant, i.e., vy ==y > 0, then

— < 70
E V)~ V)] < g T (70)
Moreover, with the optimal stepsize v, = ;IZOL)i , we obtain:
0
—T . RL
E|S7) — f0v)] < O 1)
2. (Polyak stepsize). If the stepsize is chosen adaptively as
Wty — f(W*
= GOV = 1077, -
10F W)k
then o
=T N R°L
E|S7) -~ f0v)] < O (73)

Proof. From Lemma 11, we know that Bernoulli-LoRA updates in the non-smooth setting can be
expressed as
W =W — 4,6, (74)
where G* takes the form
ot — {H LOf(W?), with probability p
df (WY HY,, with probability 1 — p
with projection matrices H', and H% as defined in the lemma.

(75)

To analyze the convergence, we first compute the conditional expectation and second moment of G*:
E[G W' H] = pHpof(W') + (1 - p)of(W)H}, (76)
2 2 2
E(Gt Iz 1w 1| = p|HEOFW)[5+ (1= p) |05 W) HA |, (77)
where we defined H' := {H',, H5}.
By the definition of subgradient, we have:
V) = fWH+@f(WH, W™ = W)y, (78)

which implies:

t t * t *
QFWH, W =W > f(W) = f(W™). (79)
Let us establish key auxiliary bounds. First, for the inner product terms:
2 E [(GL W W) | WEHT D 2yp (HEOF(WH, W — W),

—27(1 —p) (Of (W' H}y, Wh = W*). (80)

F-
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For projection matrices, we have the following properties:
2
losWhHL, = (9F (W) HY,Of (W HY)y

Y (CANCIUSITUSYN

= T (Vi) vt ()"

= T ((arwh) T arwhy)

= (Of(W"),0f(W"H})p (81)

and similarly, one can show that
|Hpof (W) ||z = (f (W), HEof(W*)),, - (82)

This allows us to express the second moment term as:

)=

FE[G G I a | D el RSOV 20— p) l0s (W) HA
PR e (05 (W), HBOF (W) + 77 (1 = p) (DF (W), Of (W HY ).
(83)
Combining these bounds, we can analyze the distance to the optimal solution:
E |:||Wt+1 _ W*Hi ‘ Wt,Ht] _ E |:Hwt o ,Yth . W*le: | Wt’Hti|
= W Wl 2 E (G W W) | W H

+7E [[|G[g | W, ]

COLD Wt — W2 — 2v,p (HEOF (W, WE— W),
~2%(1 = p) (OF W) HY, W = W*) [ +22p (Of (W), HRd f (W),
+57 (1= p) (OF (W), 0f (W) HYy ). (84)
For the expected projection matrices (see Assumption 10), we have:

(OfW),E[HE 0f (W), = T ((0rWh) " E[HE]ofW"))

= aT((orWh) arwh)
= allorwh|. (85)
and similarly,
@F W), 0f(WOE[HA))e = alaf (V)] (86)
Taking expectation of both sides of (84) again, we get
E[|w e —wi i iw] = E[E[jw v iwt a1 v 87)
= W' =W - 2vp (E [HE] 0f (W), W' = W™, (88)
(1 —p) (0f (W) E[H4] W' — W),

+yip(0f (W) .E [Hp] 0f (W')), +17(1—p) (0f (W') ,0f (W')E [HA]),
U W= WL = 2vpa (OF (W) W - W7, (89)
~2%(1 = p)a(df (W), W' = W*)_+~ialdf (W
= W' =W} = 2ma(0f (W), W' = W)+ iallof (W

ol

S W =W = 2va (FOY) — FW)) 4 i |of (W5 (90)
By Assumption 9, subgradients are uniformly bounded (see (Beck, 2017)):
10f(W)|lg < Lo YW € R™*™ 1)

Now we analyze both stepsize strategies separately.
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1. (Constant stepsize). Let us first consider using a fixed stepsize y; := v > 0. Taking expectation
of both sides of (87) again, applying tower property (1 1) and using the bound (91), we obtain:

E [Hwt“ W i} <E [Hwt W |§} — 29aE [f(W) — F(W")] + 12l (92)

Rearranging terms in (92):

29aE [f(W) = fW)] <E[[WE =W |2] —E [[W —we|T] +9%aLd. ©3)
Summing inequality (93) fort =0,..., 7 — 1:
T-1 T-1
290 3 E[fV) = V] < 3 (B[] B[t - we )
t=0 t=0
—|—T’yQaL(2)

= E[[W°—w|3] —E[|WT - wr 2] + T12aL?
< WO - W5 + TH2alLd, (94)

where the last inequality follows from the non-negativity of HWT - W* i

1 T—1

T 2 oi—o W', by convexity of f we have:

For the averaged iterate WT =
T—1

B[y -] < %ZE [FWY) — F7™)]
t=0

O L F

- 2vaT 2
(B)? A3

= — 95
iy (95)

where we denoted (R%)? := ||[W° — W*Hi

To optimize this bound, we minimize it with respect to . The optimal stepsize v, solves:

_ L ((RO? AL
e = i (gor+ 7
(RY)?
Tal? (96)
Substituting ~y, back into (95), we obtain the optimal convergence rate:
—T ROLO
E[fW") - s < . 97
FWVT) = f(W7) ot ©7)

2. (Polyak stepsize). For this strategy, we choose the stepsize adaptively based on the current
function value:

= argmin {[|[W = W[5 = 290 (V) = W) + % [lar (W)]|5 }
v>0
_ wr) - f(VQV*)). (98)
[0f(WH)llg
Substituting this stepsize into inequality (87):
Eflws—wiwt] = BB [jwet e wt ] pw]
< W= W = 2 (FOVY) = FW) +A2a|of (W) 5
W e e = LUV = SOV
: 187 (W)l
91 ty _ *))?
(i) HWt_W*Hi_ a(f(W )L%f(W ) . (99)
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Taking expectation of both sides of (99) again and applying the tower property
w12
i a1 OE|GV = )]
E (Wt w2 <E[|we-we] - % (100)
Since f is convex, by Jensen’s inequality (14) and the Cauchy-Bunyakovsky-Schwarz inequality (12)
with X := f(W?') — f(W*)and Y := 1, we have

B[ - rov] < B

;ZﬂwwﬂWﬂ

IN

&R e[ - vy

0
Lo (101)

which matches the optimal rate achieved by the constant stepsize strategy with optimal tuning. [
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H.2 ANALYSIS OF BERNOULLI-LORA-SGD

Algorithm 4 Bernoulli-LoRA-SGD

1: Parameters: pre-trained model W9 € R™*" rank r < min{m,n}, scaling factor v > 0, chain
length 7', sketch distribution D or Dg, Bernoulli probability p

2: fort=0,1,...,7 —1do

3:  Sample ¢! ~ Be(p) Bernoulli random variable

4:  if ¢! =1 then

5: Sample By ~ DE Left sketch
. T f T

6 At=—n((BY)"BL) (BY W)

7: Wt = Wt 4+ ¢ BLA!

8: else

9: Sample A% ~ D4 Right sketch
A T T T

0 B = (W) (AY) (A5 (4%)")

1 W =W+ 2BrAL

12:  endif

13: end for

Earlier findings were derived utilizing full gradient computations. Nonetheless, this method proves
impractical in deep learning applications, where obtaining full gradients is rarely feasible. Our
focus moves to a framework that employs Stochastic Gradient Descent (SGD) while incorporating a
more flexible and generalized data sampling strategy, enabling greater adaptability in the selection
and utilization of data throughout the training process. General sampling techniques for strongly
convex functions have been thoroughly examined in (Gower et al., 2019). For broader convex
optimization problems, Khaled et al. (2023) provide a comprehensive study of how SGD performs
under different sampling strategies. In non-convex scenarios, the works of Khaled & Richtdrik (2023)
and (Demidovich et al., 2023b) investigate the effects of generalized sampling methods on SGD
’s convergence and efficiency, offering valuable insights into its adaptability for diverse machine
learning applications. In this section we focus on Bernoulli-LoRA-SGD, a method, designed in the
scope of Bernoulli-LoRA framework, based on the classical SGD algorithm.

For convergence analysis, we notice the gradient step in Algorithm 4 is equivalent to the following
update

HLG?Y,  with probability p
G'H',, with probability 1 —p
where G = g(W*) is an unbiased stochastic gradient, which satisfies Assumption 4.

Wl = W' —~Gt,  where étz{ . (102

H.2.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 11. Let Assumptions 2, 3, and 4 hold, and stepsize satisfy

0 <y <min ! 1 <>\fnax> 1
7 N V 1-1141)\rpi(1axcr7 LBl )‘fnin .
Then iterates generated by Bernoulli-LoRA-SGD (Algorithm 4) satisfy
= 2] - 6 W) — f*)
3] < 0L
{ AR F| — NPT

min

)‘%)nax
+~yLCy SV

min

where AP = pAHB (1 — py\Ha e pAHB 4 (1 — p)AEA | and W7 is Fhosen at
random from {WO, wl, ..., WT’l} with probabilities { T }tT:_Ol, where wy = w1

w (14+~2 LA M ax)’
T—1 _
Wr_1 =3 ,_y w andw™* > 0.
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Proof. We start with smoothness of function f:

f(Wt+1) < f(Wt) + <Vf(Wt),Wt+l Wt HWt+1

I

W) — (v v, 6 + L HGtHF- (103)

Taking a conditional expectation by W, we bound the second and the third terms from inequality
(103):

E[(Vrwh),ehw] = (ViWhE[GW!])
Cp(VEW)E[HEGHW]) + (1 - p(VF (W), E [GHY W)
W (VW) E [HE| W' E [GW*]) + (1 - p)(VF (W), E [G'|W*] E [HYW'])
= (VS Wt>,E[HB\Wt] VEWH) + (1= p)(VF(W*), VF(WHE [HYW])
> (pAnin(E [HE]) + (1= p)Auin(E [HA])) || VAW
=P
= M VL, (104)

where in () we used that Hj, HY, and G" are independent. Now we bound the third term:
2
A (102) 2 2
E [ HF |Wt] © R [||Hth \Wt} +(1-pE [||GtHg||F |W1
E [(G*, HRG")|W'] + (1 — p)E [(G',G*H,)|W']

[
where in (xx) we used property of projection matrices H'%, H'. By the independence of H, HY,, G,
we obtain

E [HGtHi |Wt} = pE[(GYE [HEW GHIW!] + (1 - p)E [(G*, G'E [HY W) W]

= pE[(HRG' HRG)W'| + (1 - p)E [(G'H}y, G'H}y)|W']
()

IA

P (E [HHIWE [[|G*[[7 W] + (1 = p)Amax & [HAWE [[[6*2 W]
= (PAwax (B [HEIW']) + (1 = p)Auax (B [HA W) B [[|6* 2 1W*]
=Ahax

= Mo |67 7] (105)
Plugging (104) and (105) into (103), we obtain

E[fWHW] < f(W') —9E [<Vf(Wf),Gt>|Wt]+”22LE[Gt

2)\p
< SO =, IV + e ot 2 ]
By Assumption 4,
2
E[fWH) = W < (W) =8 [<Vf<Wt),Gt>|W1+7fE[Gt ilwt]
< P~ = [V
’72AfnaxL t * t 2
+ 5 (04, (V) - 1)+ B[SOV 2+ )
LB\
< (U ML) (FOV) = f7) = Mf’mn( - max) 1V 7w [
V2 Max LC1
—
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-1
P
Taking mathematical expectation and selecting a stepsize as 0 < v < 5~ B (Ama") , we get

Amin
E[fWF) =] < (1+7°MaaxLA)E [f(Wt) - f]
)‘ i mdeC
- Lmeg[|vew|p] + 71. (106)
Defining 6* := E[f(W?) — f*], 7' :==FE {HVf(Wt)H;} for every ¢ > 0, we have
AP LC
5t+1 S (1 + ’y2)‘1rjnaxLA1) 51& o Y ;m Tt + In;x 1
Fixing w~! > 0 and defining w; = m forall t > 0, we have
1
A’ < (L4 N LA 6 — 5t+1 + vLCMmax
0
16t sttt 1
= s - o 77L01 )‘max t-
. gl gl
Summing over ¢ from 0 to 7" — 1, we have
2w_ 150 2’U)T 15T AP [t
t max
D 7 i U P DL
Defining Wr_1 = ZtT:)l wt, we acquire
2w_ 1(50 AP
R LC max .
tZO WT o= manT 1 e )\ﬁnn
Using the next chain of inequalities
Tw,l
W -1 = > T = T 1=
1= w o W =TWry = sy AT
we have
T-1
Wt 2(1 + ’VQAfxlaxLAl)T 0 max
2 S (FOV0) = ) LG .
t=0 min min
. 1 : 2 T 2
Selecting 0 < v < oo and using (1++?A2 . LA1)T < exp (VM2 LAIT) <exp (1) <
3, we obtain
T—1 0
Wi t 6(5 Amdx
< - LC, .
2o = o RO
O
Next we show convergence of Bernoulli-LoRA-SGD under additional Assumption 6.
H.2.2 CONVERGENCE UNDER POLYAK-LOJASIEWICZ CONDITION
Theorem 12. Let Assumptions 2, 3, 4, and 6 hold, and stepsize satisfy
P P -1
0 <~ <min {Z.L‘Z‘l“)‘\i;}7 ;Mi’”’ L+31 (%) } Then iterates generated by Bernoulli-LoRA-SGD
(Algorithm 4) satisfy
T
* 1 E3 ’YLOl A?Il X
B0V = 7] < (1= gt ) (FOV0) - 57) 4 5 e,

where X := pAHB 4 (1 — p)A\Ha \p

min min min’ max

= pAIE + (1 —p)AHa

max max*

Proof. We start our proof with inequality 106. Using PL-inequality (see Assumption 6), we have

E [f(Wt+1) _ f*] < (1 +72>\€ﬂaxLA1) E [f(Wt) _ f*} ’Y)\mmE [va Wt) } g )‘m;x CVl
2
< (1 - ,ylu’)‘mln 2)‘glaxl’Al) E [f(Wt) - f*] + +M
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. . . uAb 2 .
Taking the stepsize as 0 < v < min { WAL o oW obtain

2
E[fWT) —r] < (1 - ;wki’mn) E[f(W') - 7] + %

1 t+1 72/\1, LC, t 1 t—7
< 1 — Z~uP. E 0y _ p*  Amax ™1 1= S
< ( R mm) [FWO) = f7] + —3 ;:0:( 5 mm>
1 s AL P A LC & 1 i
< (1 - 27M§m) E[f(W) = f7] + =22y (1 - zwAfnin>
7=0
1 i A2NP LCY
= (1= Sy, E[fW) — f*] + e
( 27” mln) [f( ) f ] - Vﬂ)\fnin ’
where in the last equation we use the formula of the sum of geometric progression. O
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H.3 ANALYSIS OF BERNOULLI-LORA-MVR

Algorithm 5 Bernoulli-LoRA-MVR

1: Parameters: pre-trained model W° € R™*" G% € R™*" rank r < min{m,n}, scaling
factor & > 0, chain length T, sketch distribution DE or Dg‘, Bernoulli probability p, momentum
parameter b € [0,1]

2: fort=0,1,..., 7T —1do

3:  Sample ¢! ~ Be(p) Bernoulli random variable

4: ifct =1 then

5: Sample B, ~ DE Left sketch
N T

6 A=y (Y BY) (BY ¢

7: Wil = Wt 4 e BL At

8: else

9: Sample A% ~ D4 Right sketch
A T T T

10: B =Gt (ag)" (A% (ay)")

11: Wil = Wt + 2 BtAY

12 endif

13:  Sample &1 ~ D
14: Gt = Vf§t+1 (Wt+1) +(1-10) (Gt — Vf§t+1 (Wt))
15: end for

Recently, there has been a significant surge of interest in variance-reduced methods for addressing
finite-sum problems (J Reddi et al., 2015; Shang et al., 2018; Malinovsky et al., 2022; Richtarik
et al., 2024). It has gained prominence as a formidable alternative to stochastic gradient descent
(SGD) in tackling non-convex optimization problems. Notably, it has been pivotal in introducing the
first algorithms capable of surpassing SGD ’s convergence rate for locating first-order critical points.
Despite these advancements, variance reduction methods often come with challenges, including
the necessity for meticulously tuned learning rates and the reliance on overly large batch sizes to
realize their benefits. To address some of these limitations, Momentum Variance Reduction (MVR)
was proposed specifically for server-only stochastic non-convex optimization (Cutkosky & Orabona,
2019). This approach leverages a modified form of momentum to achieve variance reduction while
eliminating the dependence on large batch sizes. A proof on MVR technique with better dependence
on momentum parameter was obtained by Tyurin & Richtarik (2023). In the context of Federated
Learning, Karagulyan et al. (2024) proposed the SPAM method. On the server side, MVR is utilized
to enhance optimization efficiency, while the client side incorporates the Stochastic Proximal Point
Method updates. This section is devoted to Bernoulli-LoRA-MVR, a method, designed in the scope of
Bernoulli-LoRA framework, based on the MVR technique.

To show convergence guarantees for Bernoulli-LoRA-MVR, the iterates of the method can be rewritten
in following way

. . + t . J
W = W' AGt where (f = {H LG, with probability p

G'HY,, with probability 1 —p
G = Ve (W + (1 -0) (G = V feert (W) (108)

First of all, we reprove descent lemma from the paper of Li et al. (2021) for generic gradient step
(107).

(107)

Lemma 12. Let Assumptions I, 3 hold. Then, iterates defined as (107) satisfy
* * ’y/\rp;ﬁn 2
E[fWSH) =AW < fW') —f*— — (VW5
1 L

7A€nax 2 2
P 6t v - (5 - 5 )R [Iwe - W v
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Proof. By Assumption 3, we have

FOVEY < W) + (VAW WL — Wy HW+1 w2

= fW") —A(VfW )Gf>p+ HWHl |z (109)

To continue our proof, we need to bound the second term from (109). Taking conditional expectation
by H*, W?, we obtain

B [(Vr ). & |1 W] D p(T W), HGYp + (- p) (VSOV), G ) e
= p(HLVF(WY, HEGY r + (1 — p)(VA(WHHY, G HY) ¢
= Ll sov I + G~ 56! — VSOV )

]_ _
+ 2 (Vs qué |G~ |G S ~ VW H)

v

1 2
(p||HBVf (Wt ||F —p) ||Vf(Wt)H§,y|§) +2E[ G! . |Ht,Wt}

~5 (PI1H5G — HpV V) [+ (=) 61 — V£V HY )

Taking conditional expectation by W, we have

E[(Vf(Wt),Gt)p \Wt] > (pE [HHBVf I |W] [Hw NHY| |W‘]) +%E[ At i |Wt}
—3 (e [llHbG" — HEV V)2 IWt] + (1= pE [||[c 1l — v Hb [ W)
2§ en(® [HAD) + (L= i B [HAD) V50V + 3 | 197

47>\P
"~ “min

— 5 (P (E [H15]) + (1= D) (B [HA]) [|G* = V7OV 2

—\P
‘=Amax

. p
D e g+ 5 [ W (110)

where in (*) we used the following inequalities for any matrix V' € R™*"

!IHBVHF = E[(H5V,H5V)p] = E[H5] V.V)r > Amin (E [HE]) V5,

E
E(IHEVIE] < A (B [H]) IVIE.
E

2 )‘Zrilax
2 1w - 2 ot - v 2.

{HVH:;H?‘} = E RVHth VH,t4>F] = <V]E [Hi] 7V>F > Amin (E [H,td) ||V||§"

E||[VHSE] < Amax (B[HS]) V]G
Plugging in (110) into (109), we get

E [f(WtJrl) | Wt] < f(Wt) mm va Wt

2 _1g {HW”l —wt|?
2y

1= Iz 1v7]

+L’;’m ||Gt VIOV [+ FE I - we we].

Lemma 13. Let Assumptions 3, 5 hold. Then, iterates generated by Bernoulli-LoRA-MVR (Algo-
rithm 5) satisfy

E[[lGH = VAW ] < 1-0)%E [[|6" = VI W)|[2]+20-0)2L2E |[wr - w7 ] 2202
(1in
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Proof. Taking conditional expectation by Fi+! = {W!*! G'}, we obtain
E [HGt+1 . vf(WtJrl)Hi ‘]_-Hl] (108) E U|vf€t+l(wt+1) . vf(WtJrl) T (1-b) (Gt . Vf5t+1(Wt))H12: |]_-t+1]

= a-pe - v
HE [[[ 9 fers (W) = TFWH) 4 (1= ) (TFW) = T fern (W) |2 | 7]

< =02 G = VIV g+ 2B [[[V e (W) = VW12 17
+2(1-b)* [vagm ) = Ve (W = VAW 4 (W) 2 \ft“]
< =02 G = VWY g 4 2B [[[V e (W) = V(W12 17
21 -1 [llwgm (W) = ¥ fern (W12 1]
< A-b?’ |G =VIW y|F+2(1—b 2L W — W2+ 20702,
where in the last inequality we used smoothness of f¢ and bounded variance assumption. Taking
math expectation, we conclude the proof. O

H.3.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 13. Let Assumptions [, 2, 3, and 5 hold, and let the stepsize satisfy 0 < vy <
1 . . B . c .
L<1+\/2xﬂmxb<17b>2> . Then the iterates of Bernoulli-LoRA-MVR (Algorithm 5) satisfy

2] 2 20 = 1) NG VAV A 2007 2

E Hv WT H < F . m‘lX max’ 112

ora] < 2 s T e s

where NP = p\HB (1 —p)AFa Ap = pAHB (1 — p)AHa WT is drawn uniformly at
random from the iterate sequence {W° Wt ... WT-11

Proof. Denote Lyapunov function ®, as follows
* Amax
@u= [V = f* + 5ot |G = VAV as)

By Lemma 12 and Lemma 13, we have
D 1 L 2

Bloal < B0 - - Lome[esorol] - (£ - &) e [we - we
’YA&ax t t\ |2 7(1 B b)2)‘€nax t t\ |2

+ 100 [ Gt - v v|[;] + e E et =[]

YA

2
maxba

2-0

7(1 - b) L /\max t+1 12
R [HW -W ||p} +

N
Bla] - Cam [|]vsov|;] +

1 L (11— b)QLQ)‘fnax t+1 )12
<272 2b(2 — b) EMW *W”F}'
Selecting 0 < v < L
(H

AL

2
maxba

2—-0

IN

(1-b)2
b(2—b) Aax

) , we obtain

AP AP bo?
B[] < E[®]- mng [|vyov|;] + et
Summing over ¢ from 0 to 7" — 1, we get
7)‘§1in = 2 ’y)‘{”)naxbo-z
Ty E IV whe] < Ef@o) - Eer] + Speclr,

Finally, dividing both sides by 2Xpin yields

—~ |2 20 2b0% NP
T < 0 max
E {HW(W )M S NAT T2 A

min
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where W7 is drawn uniformly at random from the iterate sequence {W° W1 ... WT-1}, O

Next we show convergence guarantee for Bernoulli-LoRA-MVR, supposing additionally Assumption 6
holds.

H.3.2 CONVERGENCE UNDER POLYAK-LOJASIEWICZ CONDITION

Theorem 14. Let Assumptions 1, 2, 3, 5, and 6 hold, and let the stepsize satisfy

1 b
0 <~v <min
= 2(1—b)? 2uXP
L (1 BRVATCED) AZfimx) Fmin
Then the iterates of Bernoulli-LoRA-MVR (Algorithm 5) satisfy
* T b02 Arpnax
E [f(WT) —f ] < (1 =ypAby,)” ®o+ m V. (114)

where N = pA\HB 4 ( p)AHA - \p

min min min’ max

3 162~ w10V

= pMis + (1 —p)MNIa “and g = F(WO) — f* +

max max’

Proof. Denote Lyapunov function ®, as follows

@, = f(W) — f* + ZAW |6t — v w2 (115)
By Lemma 12 and Lemma 13, we have
E@] < E[07)] -5 - Zome[|vior] - (5 - £) e[ - wef)
+V%MEM@Vﬂwmm+”ﬂmfﬁmEMavﬂwmm
y(1 ;(b)_Lb)Amax]E{HWm th MS“T‘Z
< max {1 —pAl. 1 g} E[®] + %
_ (217 B g 1 ;(Z;)Q_LZ))\{;M) B {Hwt-&-l _ Wt”;} 7

where in the last inequality we used Assumption 6. Selecting positive stepsize vy satisfying the upper
bound assumed in the theorem statement, we obtain

A axbo?
El@m] < (1= Ny, E[@] + 150
t+1 )‘maxba
< (1= ) T E (@] + oo Z (1= X"
7=0
t+1 YAB ax b0 P \T
< (I—=ApXP. )T E[®o] + o Z (1= 0 i)
=0
VM a0

= XYV R (@) 4 e
( ,LL Inln) [ 0]+ (271))7#)\[?;1”]’

where, in the last equation, we used the formula for the sum of a geometric progression.
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H.4 ANALYSIS OF BERNOULLI-LORA-PAGE

Algorithm 6 Bernoulli-LoRA-PAGE

1: Parameters: pre-trained model W0 € R™*", a vector G® €€ R™*", rank r < min{m,n},
scaling factor @ > 0, chain length 7', sketch distribution DE or DS, Bernoulli probability p,

probability ¢

2: fort=0,1,...,T — 1do

3:  Sample ¢! ~ Be(p) Bernoulli random variable

4: if ¢! =1 then

5 Sample By ~ D¥ Left sketch
A~ T T T

6:  At=— ((Bt ) Bg) (BY)" Gt

7 Wt = Wt 4+ ¢ BLA!

8 else

9: Sample AL ~ D4 Right sketch
R T

10: B = —ng(Wh) (A%) " (4h(4%)") A

1 Wi = Wt + 2 BtAY

12 endif

13:  Sample ;1 uniformly at random from [n]

4 ot — VWit with probability ¢

’ G+ (Vi W) = Vi, (W), with probability 1 — ¢

15: end for

There exist several optimal methods for solving a general non-convex optimization problem, e.g.
SPIDER (Fang et al., 2018) and SARAH (Pham et al., 2020). However, the known lower bound used
to establish their optimality works only in the small data regime. ProbAbilistic Gradient Estimator
(PAGE) (Li et al., 2021) is a very simple and easy to implement algorithm, known for achieving
optimal convergence results in non-convex optimization. PAGE uses the full gradient update with
probability g;, or reuses the previous gradient with a small adjustment (at a low computational
cost) with probability 1 — ¢;. A general version of PAGE on Riemannian manifolds is considered
in (Demidovich et al., 2024a). In this section we present Bernoulli-LoRA-PAGE, a new method within
Bernoulli-LoRA framework, based on PAGE algorithm.

Notice, that the iterates of Bernoulli-LoRA-PAGE (Algorithm 6) can be rewritten in the following
simple way

A A HYLG?,  with probability p
1 _ t At h ¢ _ JHBG, 11
W Wi=1G, where G {GtHg, with probability 1 — p (116)
Gt _ VWi, with probability ¢ (117)
G+ (Vi WY — Y f, (W), with probability 1 — ¢
t+1 t+1

Lemma 14. Let Assumption 3 hold. Then, iterates generated by Bernoulli-LoRA-PAGE
E[[G! = VAW ] < (1 - o [[[6" - vrv) 2] + (1 - 9 L2E ||+ - w|l2] .
(118)
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Proof. Taking the full mathematical expectation, we obtain
E “|Gt+1 . Vf(WtH)Hi} (L7 (1-qE [ |Gt _ vf(Wt+1) + (mel(WtH) B vfit+1(Wt)) Hﬂ

C-gE[|ct - vrw;]
(1= OB [[[(Vfirs W) = Vi (W) = (VAW = V5 W) 1]
(1 -9 [lo* v rv)|2]

IN

(1= QF [ [V fivs W) = ¥ fiy, (W]

< (- [[6t - Vi [g] + (1 - r2E [wet - we]

where in the last inequality we used smoothness of each f;.

H.4.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS

Theorem 15. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy
1

L(1+\/ qA%’nax).
Then the iterates of PAGE-Bernoulli-LoRA (Algorithm 6) satisfy
1LY I L0 K 0 B Al 2 ALLA)
E H WT H < F . max ,
s, < T T X,

min

where NP i=pAHE 4 (1 — p)AHa \p = pXHB 4 (1 — p)NHa W7 is drawn uniformly at

min * min min’ “'max max max’

random from the iterate sequence {W° Wt ... WT-1}

0<y<

(119)

Proof. Denote Lyapunov function ®; as follows
O, = f(WH — f* +7 max || Gt f(W)[2 (120)

By Lemma 12 and Lemma 14, we have

Bl < EU@Wﬂ—f*—f%mEMVﬂwwW}

(£ - L) e e —w] « e o - vsv]

2y
YN (1 — ¢ 21 | M1 — ) L? 2
L0 e g 2] + Pl =0 g s ]
YN o 1 L ~y1—qL*X,,, 2
< Efe] - 22K [V - (27 -5 2q) E[wt —we].

1
L(1+, /%,\ﬁm) ’
AP
@] < E[@)- Zmeg [|lvior|].
Summing over ¢ from 0 to T — 1, we get

Selecting 0 < v < we obtain

Lgﬂmim[nw(wt)uﬂ < E[®) - E[®r].

Finally, dividing both sides by 7’\§““ yields

2 Q(I)O
E Hv wT H <
where W7 is drawn uniformly at random from the iterate sequence {W° W1t ... WT—1}, O
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H.4.2 CONVERGENCE UNDER POLYAK-LOJASIEWICZ CONDITION
Theorem 16. Let Assumptions I, 2, 3, and 6 hold, and let the stepsize satisfy

1 q

L (1 +2 /1q%q)\;fnax) 2:“’)‘mm

Then the iterates of Bernoulli-LoRA-PAGE (Algorithm 6) satisfy

0 <vy <min

E[fWT) = f*] < (1 —ypXl, )T, (121)
where Ao = pAIE 4 (1 p)AIA, and @ = f(WO) — f* 4 Phas || G0 — v (W) |7

Proof. Denote Lyapunov function ®, as follows
B = F0) — f* + s gt v (2. 122)

By Lemma 12 and Lemma 14, we have
1 L

Bo.] < E[f(wtﬂ—f*—“?“E[HVf(Wf>||i}—(27—) [Iwess —we]

Y. L— )M
+ P [t - v v + 2D e - vs0v0 ]

Jr’Y(l - qg]L A [HWtJrl Wt}ﬂ
< QB L) - £+ (1- ) PR |6 - vy ]
_ <217 B é (1= q;LQ/\fnax> E [HWtJrl _ Wt“p} ’
where in the last inequality we used Assumption 6.  Selecting 0 < ~y <
min { (e ﬁ%v’m 3’ spar— (- We obtain

E [q)tﬁ*l} S (1 - fy/j’)\fnnl)E [(I)t] .
Unrolling the recursion, we obtain
E[®r] < (1—7ypAhs)" o
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I PROOFS FOR FEDERATED LEARNING EXTENSIONS

In recent years, distributed optimization problems and algorithms have become a focal point in the
Machine Learning (ML) community. This surge in interest is driven by the need to train modern deep
neural networks, which often involve billions of parameters and massive datasets (Brown et al., 2020;
Kolesnikov et al., 2020). To achieve practical training times (Li, 2020), parallelizing computations,
such as stochastic gradient evaluations, has emerged as a natural solution, leading to the widespread
adoption of distributed training algorithms (Goyal et al., 2017; You et al., 2019; Le Scao et al., 2023).
Additionally, distributed methods are crucial when data is inherently distributed across multiple
devices or clients, often accompanied by privacy constraints—a common scenario in Federated
Learning (FL) (Konec¢ny et al., 2016; McMahan et al., 2016; Kairouz et al., 2019; Demidovich et al.,
2024b; Sadiev et al., 2024; Yi et al., 2024).

We develop several FL. methods within the Bernoulli-LoRA framework and provide a convergence
analysis for them.

I.1 ANALYSIS OF FED-BERNOULLI-LORA-QGD

Algorithm 7 Fed-Bernoulli-LoRA-QGD

1: Parameters: pre-trained model W° € R™*", rank r < min{m,n}, scaling factor o > 0, chain
length T, sketch distribution Dg or Dg, Bernoulli probabilities p and ¢

2: fort=0,1,...,7T —1do

3:  for any client ! € [M] in parallel do

4: Compute gradient V f; (W) and send compressed version G! = Q! (V fi(W'*)) to the
server
end for
t 1 = t
6: G = Wi l; Gl
7:  Sample ¢! ~ Be(p) Bernoulli random variable
8: if ¢’ =1 then
9: Sample BY ~ DE Left sketch
N T
10: A= (B B) (BY' ¢
11: Wit = Wt 4 e BL At
12:  else
13: Sample AL ~ D4 Right sketch
A T T T
4 Bl = -Gt (AL)" (A% (a)")
15: Wi = Wt 4 2 BtAY
16:  end if
17:  Broadcast W**+! to each client | € [M]
18: end for

Parallel implementations of SGD have become a prominent area of study due to their impressive
scalability. However, one of the primary challenges in parallelizing SGD lies in the substantial
communication overhead required to exchange gradient updates across nodes. To address this,
numerous lossy compression techniques have been developed, enabling nodes to transmit quantized
gradients instead of full gradients. While these methods often work well in practice, they are not
universally reliable and may fail to ensure convergence.

To overcome these limitations, Quantized SGD (QSGD) by Alistarh et al. (2017) introduces a family
of compression techniques that provide both theoretical convergence guarantees and strong empirical
performance. QSGD offers a flexible mechanism for balancing communication bandwidth and
convergence speed. By adjusting the number of bits transmitted per iteration, nodes can reduce
bandwidth usage, albeit at the potential cost of increased variance in the gradient estimates. Different
variants of QSGD were considered by Horvath et al. (2022); Wen et al. (2017); Panferov et al. (2024).
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We consider the following distributed optimization problem

min E
W EeRmxn M fw

where M represents the number of clients. In Federated Learning, a primary bottleneck is the
communication overhead between clients and the central server. A common approach to mitigate this
issue is communication compression.

Definition 2. A randomized operator Q : R™*" — R™*"™ s called an unbiased compression
operator (or compressor) if there exists a constant w > 0 such that, for any matrix W € R"™*"™ | the
following conditions hold:

E[QUV) =W, and E[|QW)- W3] <w|W]}. (123)

To analyze the optimization process, we introduce the following assumption regarding function
dissimilarity:

Assumption 11. Ler f* := infy f(W) and f := infw f; for each | € [M). In the non-convex
case, the difference at the optimum is defined as:

1 M
*:: * *> .
AT = f M;fl >0 (124)

This assumption quantifies the discrepancy between the global optimal function value and the average
of the local optimal function values between the clients.

To start convergence analysis, we rewrite the updates for W* and G* generated by Fed-Bernoulli-
LoRA-QGD (Algorithm 7) as follows

M
1
¢ = LS ot wam). 129
I=1
. A HLGt, with probability p
t+1 t_ O h t_ B> > 126
w Wi—9G, where G {GtHfA, with probability 1 — p (126)

To establish the convergence guarantee for Fed-Bernoulli-LoRA-QGD (Algorithm 7), we first demon-
strate that the gradient estimator G satisfies Assumption 4. Once this is verified, the convergence
rate follows directly using the same reasoning as in the proof of Theorem 2.

Lemma 15. Let Assumptions 2, 3, and 11 hold. Then, G* defined in Algorithm 7 (see (125)) satisfies
Assumption 4 with the following constants:
Lw LwA*
Ai=—, Bi=1, C;=2 .
1 M 9 1 9 1 M

Proof. First, we show G* is an unbiased estimator of V f(W*):
M
1

M
E (W] = 2 S B [0 (VAWY) W 2 L Z VAW = VW),

=1
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Now we establish that G* satisfies Assumption 4. Taking the conditional expectation with respect to
Wt we have

M 2
EflcEm] = B (|5 >0 (VAWY) - Vi + vior| W
L =1 F
(13 _ 1 & : 2
= B35 22 (VAWY) = VW W+ VAV
=1 F

M
L SB[l (VAWY) - VAW W] + [V
=1

=
N5
E

M
S IVAW [+ IV FV
=1

() 2Lw & N ¢
< 3 2 (RO = )+ 950
- 2%(f(wt>—f*)+|lvf< ||F+2* (f —Zfz>

=A*
where in (*) we used smoothness of each f; Thus, we have shown that G satisfies Assumption 4
with following constants

Lw LwA*
Al=—, B1=1, (1 =2 .
1 M 9 1 9 1 M
O
I.1.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS
Theorem 17. Let Assumptions | 2, and 3 hold, and stepsize satisfy
1 1\
0 <~ < min ,( I;,ldx>
L/ N £\ Arin
Then iterates generated by Fed-Bernoulli-LoRA-QGD (Algorithm 7) satisfy
—~ 2 6(f(WO) — f*)  2yLwA* NP
E H WT H < motx7
s | < 805 2 S
where P = p\IB 4 (1 —p)AEa N = pAE (1 — p))\ﬂg‘x, and W1 is chosen at

random from {W°, W1, . WT L'} with probabilities {3, ok }t o » Where w;, = L

(1472 L2 Aax/M)’
Wr_1 = Zz:ol wy, and w™t > 0.
Proof. By Lemma 15, and Theorem 2, we directly obtain the statement of the theorem. O

1.1.2 CONVERGENCE UNDER POLYAK-LOJASIEWICZ CONDITION

Theorem 18. Let Assumptions 1, 2, 3, and 6 hold, and stepsize satisfy

0cmcmind P (Pha)T 2 1A\
’y B 2L2W/M Afmn I’I‘Amln ’ )\ﬁlln .

Then iterates generated by Fed—BernouIIi—LoRA QGD (Algorithm 7) satisfy

r L2 w AP
E WT ek 1-—= Y WO o = max
VT = 1] < (1 i) (FO7) = )+ B e
where Xb = pAlE 4 (1 — )Ag;;, Miax = PARE + (1= p)ATA.
Proof. By Lemma 15, and Theorem 12, we directly obtain the statement of the theorem. O
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1.2 ANALYSIS OF FED-BERNOULLI-LORA-MARINA

Algorithm 8 Fed-Bernoulli-LoRA-MARINA

1: Parameters: pre-trained model W% € R™*", {G{};cp) € R™*" rank r < min{m,n},
scaling factor a > 0, chain length T, sketch distribution Dg or Dé, Bernoulli probabilities p

and ¢

2: fort=0,1,...,7T —1do

3:  Sample ¢! ~ Be(p) Bernoulli random variable
4: if ¢! =1 then

5: Sample By ~ DE Left sketch

N T

6 A'=-n(By BY) (BY ¢

7: Wt = Wt 4+ ¢ BLA?

8: else

9: Sample AL ~ D4 Right sketch

. T

10: Bl= Gt (a%)" (a5 (a%)")

1 W =W 4 2BrAL

12:  endif

13:  Broadcast W'*! to each client | € [M]

14:  Sample st ~ Be(q)

15:  for any client ! € [M] in parallel do

16: Compute gradient V f;(W+1)

. Gt _ V(Wi with probability ¢

' LG+ QFH (VAW =V f(WY)), with probability 1 — ¢
18: Send Gf“ to the server
19:  end for
1 1 s

20 G =47 l; G,
21: end for

MARINA (Gorbunov et al., 2021) is an advanced method that significantly enhances communication
efficiency in non-convex distributed learning across heterogeneous datasets. Its core innovation lies
in a communication reduction mechanism that compresses the differences between gradients. The
communication complexity bounds for MARINA are known to be better than those of all previous
first-order methods. Non-smooth convex analysis of MARINA with different stepsize strategies can
be found in (Sokolov & Richtarik, 2024). This section is devoted to Fed-Bernoulli-LoRA-MARINA
(Algorithm 8), a method within the Bernoulli-LoRA framework, based on MARINA algorithm.

In order to start convergence analysis, we rewrite the updates W*, G! generated by Fed-Bernoulli-
LoRA-MARINA (Algorithm 8):

N A HLGt,  with probability p
t+1 t t h t_ B~ 127
W Wi=1G, where & {GtHg, with probability 1 — p (127
Gt V(Wi with probability ¢ (128)
! G+ Q! (VAW — V f(W?)), with probability 1 — ¢
M
o+t o= L > oGt (129)
= = tHL
=1

Lemma 16. Let Assumption 3 hold. Then iterates generated by Fed-Bernoulli-LoRA-MARINA satisfy

e [llat - v |2] < a-gE |6 - Vi ]+ 0 - SE [t - we ]
(130)
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Proof. Taking the conditional expectation with respect to W*+! and defining Df“ = V(Wi —
Vi(Wh), D = L Zf\il DI, we obtain

M 2
1
Ee =i nw ] = Q=B |6 = VW) + 12 3 0 (VAW = VA(WY) W“l]
=1 F
) LM 2
(g) (1 _ q) HGt f ”F 1 _ q)E M Z ta (Dlt+1) _ Dt+1 | Wt+1
=1 F
M 5
= (-0 6" = v+ qu Z E [HQz (D) = D [ w7
(123) . e (1
< a-g e - v+ )= VAW
1 L?
< a-g e - v D e e
where in the last inequality we used that the gradient of each f; is Lipschitz continuous. O
I.2.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS
Theorem 19. Let Assumptions 1, 2, 3, and hold, and let the stepsize satisfy
1
0<y< .
L(l“v‘\/)\max %)
Then the iterates of Fed-Bernoulli-LoRA-MARINA (Algorzthm 8) satisfy
P < 2 (f(W°> ) e = vrvl X
E H WT H < F . max7 131
Where )\ﬁnn = p)\gﬁl + ( ))\gﬁl’ )‘max = p)‘gan + ( )AII;{QX’ and WT is drawn I/t}’llfOley
at random from the iterate sequence {W° Wt ... WT=1}
Proof. Denote Lyapunov function ®, as follows
B FOVY) - o+ T 6t - v 132)
By Lemma 12 and Lemma 16, we have
t « ain NE 1 L t+1 t]|2
B[] < E[f(W)] - - Lning [||Vf<w Me] = (555 ) & (I = wIig]
PY)‘:anax 2 ’Y(l — Q))‘Zr)nax 2
+2mxg [ Gt - v W|f5] + T [||Gt - vEWY]
V(1 = @) LPwAb t+1 t)2
P R [t W]
VA fnin NIK 1 L (1= q)LPw)b,, t+1 t)|2
< Efo]- Zhmg [vrovol] - (5 - 5 - 0D ) E e - we).

Selecting 0 < v < we obtain

1
L1\ Mo 50 57)

E@] < B@] - Cmng|vsor)?].

Summing over, we get
T—1 )
Do S g (V)] < Efee]—Eled].
t=0
Finally, we derive

2 Q(I)O
E Hv wT H <
where W7 is drawn uniformly at random from the iterate sequence {W° W1t ... WT—1}, O
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1.2.2 CONVERGENCE UNDER POLYAK-LOJASIEWICZ CONDITION

Theorem 20. Let Assumptions 1, 2, 3, and 6 hold, and let the stepsize satisfy
1 q

L(1+ /252 ) 2N

Then the iterates of Fed-Bernoulli-LoRA-MARINA (Algorithm 8) satisfy
E[f(WT) = ] < (1= qudl)" @, (133)

0 <y <min

where Aﬁnn = P + (- PI Ao Aax = PAIE + (1= p)ATa and @o = fF(WO) — f* +
AP
I ax _ VW) ||F

Proof. Denote Lyapunov function ®; as follows
b= f(WH) —f+ 7 Mo |Gt = Vw5 (134)
By Lemma 12 and Lemma 14, we have

E[@.] < E[mY -5 -2

AL,
+20m [ Gt - v |f] +

y(1—q)L2X2,. w 2
n ( ) ) ME [Hwt—&-l _ WtH }

mmmvmwn}(;—L)UMlewﬂ

7(1 - q)/\fnax t (|2
1= Do [ g0 ]

q
AP
< -y B LAV = £+ (1= 3) w6t - v ir]
_<21'y_§_%1_q)qL)\ ]\L‘;)E[Hwt-ﬂ_thF}’
where in the last inequality we used Assumption 6. Selecting 0 < v <

1

q
) g
L<1+ /200 ,\gm) 20 A in

E[@i1] < (1 —ypX)E[®].

min

, we obtain

Taking recursion, we have
E [®r]

IA

(1- 'yuAmln)TCI)o.
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1.3 ANALYSIS OF FED-BERNOULLI-LORA-EF21

Algorithm 9 Fed-Bernoulli-LoRA-EF21

1: Parameters: pre-trained model W% € R™ ", {G{};cp) € R™*" rank r < min{m,n},
scaling factor v > 0, chain length 7', sketch distribution DE or Dg, Bernoulli probability p

2: fort=0,1,...,7T —1do

3:  Sample ¢! ~ Be(p) Bernoulli random variable

4: if ¢! =1 then

5: Sample By ~ DE Left sketch

6

7

8

9

N T

At = ((BY" BY) (BY &'

Wi =Wt + 2 LAt

else

Sample A% ~ D4 Right sketch

A T T T
10: B =Gt (al)" (A% (ay)")
1 W =W+ 2BrAL
12:  endif
13:  Broadcast Wt to each client | € [M]
14:  for any client [ € [M] in parallel do

15: Compute gradient V f;(WiT1)
16: Gitt =Gt +Cf (VA(WHY) — GY)
17: Send Gf“ to the server
18:  end for
t+1 L &
19: G =M l; Gl
20: end for

Error Feedback (EF) (Seide et al., 2014; Stich et al., 2018; Alistarh et al., 2018; Richtarik et al.,
2021; Fatkhullin et al., 2021; Richtarik et al., 2022; Khirirat et al., 2024), often referred to as error
compensation, is an exceptionally influential mechanism for stabilizing convergence in distributed
training of supervised machine learning models, particularly when contractive communication
compression techniques are employed. We design Fed-Bernoulli-LoRA-EF21 within the Bernoulli-
LoRA framework, based on EF-21 method. Our theoretical analysis, built on standard assumptions,
applies to distributed training in heterogeneous data settings and achieves the best known convergence
rates.

Compared to Fed-Bernoulli-LoRA-MARINA, in this section we work with the wider class of compres-
sion operators called contractive.

Definition 3. A randomized operator C : R™*™ — R™*" s called a contractive compression
operator (compressor) if it satisfies the following condition: there exists a constant 0 < 3 < 1 such
that

E[lcw)-wi] <a-g) Wik, vwerm (135)
The iterates of Fed-Bernoulli-LoRA-EF21 can be rewritten as follows
B g e G [ Yy
Gt = Gi+C (VAW =Gh), Vie[M] (137)
t+1 _ 1 < t+1
Gt o= o ; Gt (138)

Lemma 17. Let Assumption 3 hold. Then for the iterates generated by Fed-Bernoulli-LoRA-EF21
(Algorithm 9)satisfy

t 2 t ]2 (1-p)L? ¢ 2
E [HGf“ ~- V(W “)Hp} <v1-fE “\Gz - VAW )HF]JFﬁE [HW tew HF}
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Proof. Foreach | € [M] we have
B [lor - vamreh 2] CE B[ o VAV - 61) - (TAOV) - Gl 2 6w

< a-mE (|6t - Va2

< 1-pO+OE |6 - VAW

+(1—5)<1+> [le (W) — sz(Wt)Hﬂ,

where in the last inequality we used ||U + V|2 < (1 4 6) ||U||7 + (1+3) ||[V||Z for any constant
6 > 0, and matrices U,V € R™*™, Taking 6 = ﬁ 1, we acquire

t41 t+14()2 t NIE 1-p t41 NI
e [ll6i - AW E] < VISBE[|GE - VAWOIIE] + 1= =3B [IVAV) = VA ]
1—-pB)L? 2
< VI-BE|[|Gf - VAW (7]E[ W - wr ]
< BE |||G] SIVO5 +1_ -3 I g
where in the last inequality we used that the gradient of each f; is Lipschitz continuous. Summing
over [ from 1 to M, we finish the proof. O
[.3.1 CONVERGENCE FOR SMOOTH NON-CONVEX FUNCTIONS
Theorem 21. Let Assumptions 1, 2, and 3 hold, and let the stepsize satisfy
1
0<y<
I (1 4+ Ve (5)
1—Vi-5
Then the iterates of Fed-Bernoulli-LoRA-EF21 (Algorithm 9) satisfy
|2 2(f(W°) — /") 90 M
E||vsw? H < o 139
where X := pXEB (1 —p)AFA “qna o= pXHB 4 (1 )/\{;{;X, WT is drawn uniformly at

random from the iterate sequence {W°, W', ... W=} and G° := ; Elj\il |Gy =V fi(W?) HF

Proof. Denote Lyapunov function ®, as follows

_ ty _ p* ’y)‘fnax . i < t NI
Oy =fW)~f +—2(1*\/W) M;HGZ VAW (140)
By Lemma 12 and Lemma 17, we have
NP 1
E[(bt+1] S E [f(Wt)] _ f* Y mlnE |:va Wt)H ( HWt-i-l _ Wt“i:|

AP

o5y ] « 20 LS ot - v

2E

’y)‘maxL ( ﬁ) 1 2
pie T (L —WtHF]
N3 1 L oy L2(1—
< mivd - L Ivs ] - (5 - 5 - FEetr ) B e - wik).

1

Aax(1-8)
1—/1-38

Selecting 0 < v < , we obtain
11+ )

E@] < B[] - Cmng|vsor)?].

Summing over ¢ from 0 to 1" — 1, we get

%&miE[HW(W%Hi] < E[®)] - E[®7].
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Finally, dividing both sides by win yields

o] =

’YAIHIH
where W7 is drawn uniformly at random from the iterate sequence { W%, W1

L WTL)

O
1.3.2 CONVERGENCE UNDER POLYAK-LOJASIEWICZ CONDITION

Theorem 22. Let Assumptions I, 2, 3, and 6 hold, and let the stepsize satisfy

. 1 1+/1-p
0 <~y <min )
L <1 + V 2Am1X(1 B)) 2/’L>\nr11n

-V1-8
Then the iterates of Fed-Bernoulli-LoRA-EF21 (Algorithm 9) satisfy
E[f(WT) = f] < (1= yuXpn) " @,
where AP = pAHD (1~ ))\H“ AP

min n’llIl’ max = p)‘ggx + (1 - ))\II;{QX’ and ¢0 = f(WO)
Aax 0 0
1— \/ *MZl 1HG Vle)

(141)
— f* +

Proof. Denote Lyapunov function ®; as follows

)‘{Jnax
= W) ="+ = T MZIIGt VAWY|.
By Lemma 12 and Lemma 17, we have

(142)
E[®+1] <

] - 5 - P [w g 2] - (217 - L) e —we ]
e el wrov] « TS el wson ]
+7(/\1€njx(11__66))1422 [HWt+1 _ Wf”;}

IA

P — M
(1= AL, B [f 1) — g 4 D L VIZ ) 1

L t_ ty]|2
2(1— V1= B) M;E[HGl VAW
1 L M. (1-8)L? 2

( w0 DY e e -]

inequality we used Assumption 6

. Selecting 0 < ~ <
1+VI=3 -
<1+ /72/\“%(1 B >, 2N , we obtain

2y 2 (1
where in the last i

min

E[@i1] < (1 —ypA, ) E[R].
Taking the recursion, we have

E [®7]

IN

(1 - /L)\mm)T(bo.
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complete it was that from new reps

J EXPERIMENTS: MISSING DETAILS
In this section, we provide additional details regarding the experimental setting from Section 7.

J.1 LINEAR REGRESSION WITH NON-CONVEX REGULARIZATION

Full gradient setting. We begin by evaluating these methods in a standard optimization setting where
full gradients are computed at each iteration. In this regime, we compare Bernoulli-LoRA-GD and
RAC-LoRA-GD.

103 ﬂ\ﬂ —<4 RAC-LoRA-GD(A) 10° ﬂ\ﬂ —< RAC-LoRA-GD(A)

100 ™ —A— RAC-LoRA-GD(B) 100 T~ —A— RAC-LoRA-GD(B)
EEp B> Bernoulli-LoRA-GD(p=0.2) | =o_ 10-3 > Bernoulli-LoRA-GD(p=0.2)
% . B Bernoulli-LoRA-GD(p=0.6) | % ] O Bernoulli-LoRA-GD(p=0.6)
= 107 ~® Bemoull-LoRA-GD(p=08) | [ 107 ~@ Bernoulli-LoRA-GD(p=0.8)
=107 \ikﬂ\ =107 \g\

10712 . 10712 \g\
107" ﬂ\q 107" ﬂ\q

0 500 1000 1500 2000 2500 3000 0 250 500 750 1000 1250 1500
[terations [terations
(a) Rank r = 1. (b) Rank r = 2.

Figure 2: Comparison of RAC-LoRA-GD and Bernoulli-LoRA-GD on linear regression fine-tuning.
Curves with p = 0.01,0.2, . . . indicate Bernoulli-LoRA-GD sampling parameters. RAC-LoRA-GD(A)
trains B after resampling A, while RAC-LoRA-GD(B) does the reverse. All methods use v = ¢/i with
¢ € {1,2} tuned individually.

Figure 2 shows that, across all tested probabilities, Bernoulli-LoRA-GD and both variants of RAC-
LoRA-GD exhibit similar convergence on the linear regression task. This numerical stability suggests
that the ratio of updates between A and B has little effect on the performance for this problem. We
also observe that higher ranks r produce faster convergence, which aligns with the theoretical 7/n
factor in our analysis.

Hardware and Software. All algorithms were implemented in Python 3.10 and executed on three
different CPU cluster node types:

1. AMD EPYC 7702 64-Core,

2. Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz,

3. Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

Implementation Details. For each method, we set the stepsize to v = ¢/ I:, where ¢ is a constant
multiplier tuned individually for every algorithm. Convergence was monitored by computing the
squared norm of the full gradient at each iteration. The algorithms terminated when either a maximum

iteration limit was reached or the criterion ||V f (xt)Hg < 5 x 10716 was satisfied. To ensure
reliability, each method was run 20 times using different random seeds, and all figures show the
median performance over these trials.

Datasets. The synthetic pre-training dataset (5,3) was generated using
sklearn.datasets.make_regression

with moderate noise and a controlled rank structure:
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wt_D, wt_b = make_regression (n_samples=90000, n_features=4096,
n_informative=4096, noise=20.0,
bias=0.0, tail_strength=0.8,
effective_rank=64, random_state=42)

followed by standard scaling. The fine-tuning dataset (15, l;) was produced similarly:

h_ D, h_b = make_regression(n_samples=10000, n_features=4096,
n_informative=4096//2, noise=50.0,
bias=10.0, tail_strength=0.9,
effective_rank=32, random_state=84)

and subsequently adjusted with a biased scaling (mean 1, standard deviation 2).
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