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ABSTRACT

Differentiable neural architecture search (DARTS) is a popular method for neural archi-
tecture search (NAS), which performs cell-search and utilizes continuous relaxation to
improve the search efficiency via gradient-based optimization. The main shortcoming
of DARTS is performance collapse, where the discovered architecture suffers from a pat-
tern of declining quality during search. Performance collapse has become an important
topic of research, with many methods trying to solve the issue through either regulariza-
tion or fundamental changes to DARTS. However, the weight-sharing framework used
for cell-search in DARTS and the convergence of architecture parameters has not been
analyzed yet. In this paper, we provide a thorough and novel theoretical and empirical
analysis on DARTS and its point of convergence. We show that DARTS suffers from a
specific structural flaw due to its weight-sharing framework that limits the convergence
of DARTS to saturation points of the softmax function. This point of convergence gives
an unfair advantage to layers closer to the output in choosing the optimal architecture,
causing performance collapse. We then propose two new regularization terms that aim
to prevent performance collapse by harmonizing operation selection via aligning gra-
dients of layers. Experimental results on six different search spaces and three different
datasets show that our method (Λ-DARTS) does indeed prevent performance collapse,
providing justification for our theoretical analysis and the proposed remedy. We have
published our code at https://github.com/dr-faustus/Lambda-DARTS.

1 INTRODUCTION

With the growth of the popularity of deep learning models, neural architecture design has become one of the
most important challenges of machine learning. Neural architecture search (NAS), a now prominent branch
of AutoML, aims to perform neural architecture design in an automatic way (Elsken et al., 2019; Ren
et al., 2021). Initially, the problem of NAS was addressed through reinforcement learning or evolutionary
algorithms by the seminal works of (Zoph & Le, 2017; Baker et al., 2017; Stanley & Miikkulainen, 2002;
Real et al., 2017). But despite the recent advancements in efficiency (Baker et al., 2018; Liu et al., 2018; Cai
et al., 2018), these methods remain impractical and not widely accessible. One-shot methods aim to address
this impracticality by performing the architecture search in a one-shot and end-to-end manner (Liu et al.,
2019; Guo et al., 2020; Pham et al., 2018; Brock et al., 2018; Bender et al., 2018). Another technique for
increasing the efficiency of search is cell-search (Zoph et al., 2018), which performs NAS for a set of cells
stacked on top of each other according to a pre-defined macro-architecture. Differentiable neural architec-
ture search (DARTS) (Liu et al., 2019) is a one-shot method that performs cell-search using gradient descent
and continuous relaxation. It performs the cell-search using a weight-sharing framework. As a result of
these innovations, DARTS is one of the most efficient methods of architecture search (Elsken et al., 2019).

One of the most severe issues of DARTS is the performance collapse problem (Zela et al., 2020), which
states that the quality of the architecture selected by DARTS gradually degenerates into an architecture
solely consisting of skip-connections. This issue is usually attributed to gradient vanishing (Zhou et al.,
2020) or large Hessians of the loss function (Zela et al., 2020), and mostly addressed by heavily modifying
DARTS (Chu et al., 2021; Wang et al., 2021; Gu et al., 2021; Ye et al., 2022).
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Figure 1: An illustration of the differentiable formulation for NAS by DARTS, and the effects of layer
alignment over the trajectory of the performance of the discovered architectures by DARTS and Λ-DARTS.
The experiments are performed on the NAS-Bench-201 search space, averaged over 4 runs with a 95%
confidence interval.

In this paper, we argue that these theories fail to grasp the main reason behind the performance collapse:
the conditions imposed on the convergence of DARTS by the weight-sharing framework. Specifically,
we first define a measure to show the correlation between the gradient of each layer corresponding to the
architecture parameters - dubbed layer alignment (Λ). Then, following a careful analysis of the convergence
conditions of DARTS and the effects of weight-sharing, we find that:

1. Due to the value of Λ, DARTS can only achieve convergence by reaching the saturation point
of the softmax function, where the normalized architecture parameters become almost one-hot
vectors. This convergence point does not depend directly on the loss function, giving an unfair
advantage to the layers that do not suffer from gradient vanishing.

2. Low value for Λ means that the optimal architecture corresponding to each layer varies wildly,
with layers that are closer to the output - and therefore not suffering from gradient vanishing -
mainly preferring non-parametric operations.

3. The aforementioned issues are direct contributors to the performance collapse problem. Further-
more, increasing the depth of the search model or the number of iterations used for the search
increases the severity of performance collapse.

In Figure-1, we can see an illustration of DARTS and the concept of layer alignment (which we will define
in Section-3.2), and observe a clear correlation between the layer alignment and the performance of the
discovered architecture on the NAS-Bench-201 search space (Dong & Yang, 2020). In this paper, we will
use a combination of analytical and empirical evidence to support the claim that this relationship is in fact
a causal relationship, resulting from the weight-sharing framework used in DARTS.

Following these conclusions, we introduce a regularization term that aims to alleviate the problem of perfor-
mance collapse by increasing the layer alignment. Then, through a comprehensive empirical examination,
we show that our method - dubbed Λ-DARTS - significantly improves the performance of DARTS on
various search spaces and datasets without any modification to the algorithm of DARTS or the structure of
the cells. Specifically, our method achieves an average accuracy of 96.57% and 83.85% on the CIFAR-10
and CIFAR-100 datasets on the DARTS search space, improving upon the current state-of-the-art by 0.06%
and 0.39%, respectively. To the best of our knowledge, our work is the first to investigate DARTS from
the point-of-view of its wight-sharing framework and convergence conditions.

2 RELATED WORK

DARTS (Liu et al., 2019) proposed a continuous and differentiable search space through weighting a
fixed set of operations to make NAS more scalable. It trains a super-graph with gradient descent and
chooses the sub-graph consisted of weightiest operation edges. Its simplicity made it very popular and
many variations emerged to address its theoretical and empirical setbacks:
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Overlooked effects of design decisions in DARTS. (Wang et al., 2021) and (Gu et al., 2021) claim that
DARTS chooses the final architecture with regard to operation weights, whereas these magnitudes do not
necessarily correlate with the performance. (Wang et al., 2021) tries to measure operation impact directly
and DOTS (Gu et al., 2021) tries to decouple topology from operation during search. IDARTS (Xue et al.,
2021) posits that the innate relationship between the architecture’s parameters is ignored by the gradient
descent method used in DARTS and formulates their optimization as a bi-linear problem.

Generalization ability. The differentiable NAS methods are often executed on a smaller dataset of a
certain task to reduce the required computational resources. AdaptNAS (Li et al., 2020), MixSearch (Liu
et al., 2021), P-DARTS (Chen et al., 2021b), and DrNAS (Chen et al., 2021a) show that the discovered
architecture does not always perform as well as on the proxy task on another more challenging dataset.
They solve this issue by providing the network with domain information, making the search network
progressively deeper, and reformulating the search algorithm.

Performance collapse. Zela et al. (2020); Chu et al. (2021) point out the performance collapse problem of
DARTS. They show that DARTS consistently discovers networks with mainly skip-connection operations,
which causes severe performance declination. Zela et al. (2020) monitors the eigenvalues of the Hessian
of the architecture parameters and performs early stopping. Based on their work, SmoothDARTS (Chen
& Hsieh, 2020) performs Hessian regularization to smooth the architecture Hessian. PC-DARTS (Xu et al.,
2020) reduces the number of output channels of each operation, for the sake of lower memory consumption
and a larger batch size during search. iDARTS (Zhang et al., 2021) focuses on improving the optimization of
the architecture parameters by estimating the descent direction more accurately. DARTS- (Chu et al., 2021)
argues that skip-connection operations have a potentially sharp loss curvature that leads to their advantage
during search, and tries to solve it by adding auxiliary skip-connections to cell structure. β-DARTS (Ye
et al., 2022) replaces the ℓ2-regularization on the architecture parameters with a new regularization term
to alleviate the unfair advantage of skip-connections. In this paper, we provide a novel analysis of DARTS
from the point-of-view of its convergence, diagnosing an overlooked issue of its weight-sharing system
that sends convergence down an irrelevant path and may be the root cause of performance collapse. We
propose a solution for the matter without modifying the core formulation of DARTS.

3 AN ANALYSIS ON THE CONVERGENCE OF DARTS

We start with an analysis of the weight-sharing framework used for cell-search in DARTS, and the required
conditions for its convergence. We then empirically investigate whether DARTS can satisfy any of these
conditions, and show that it is only capable of reaching convergence under one of them. Finally, using
these observations, we will show that this type of convergence causes performance collapse, providing
a motivation for Λ-DARTS. For the uninitiated reader, we provide a brief explanation of DARTS and the
weight-sharing framework used by it for cell-search in Appendix-A.1.

3.1 THE CONVERGENCE OF DARTS

Assuming the primary loss function L(.,.) to be differentiable, we can write the necessary and sufficient
condition for optimality of the architecture parameters, (α) as (Boyd & Vandenberghe, 2014):

∇αLval(ω,α∗)=0, (1)

where ω represents the parameters corresponding to the operations, and Lval(.,.) is the loss function
calculated over the validation set. Let p=σ(α) be the softmax normalized architecture parameters, where
σ(.) corresponds to the softmax function. Then we can re-write (1) as:

Jσ(α
∗)∇pL(ω,α∗)=0, (2)

where Jσ(α) = diag(σ(α))−σ(α)σ(α)T corresponds to the Jacobian of the softmax function on all
edges, and diag(.) being the diagonal matrix. Note that given the weight-sharing framework, we can write
∇pL(ω,α∗) = ∂L

∂p (ω,α
∗) as the sum of gradients received by each layer:

Jσ(α
∗)

(
L∑

ℓ=1

∇ℓpL(ω,α∗)

)
=0. (3)

Now note that Jσ(.) is a block-diagonal matrix, with each block corresponding to one of the edges
in the architecture. Therefore, Jσ(.) is a positive semi-definite matrix with its null-space containing
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Figure 2: The exponential average (with decay rate 0.999) of the sum of the gradients of the 3× 3
convolution and skip-connection operations for the first 5 layers and the last 5 layers averaged over all
6 edges of the cell on the NAS-Bench-201 search space, averaged over 4 runs with a 95% confidence
interval. Note that negative values in the gradient mean the value of the parameter corresponding to the
operation will be increasing.

vectors of the following form:

v=
[
vT
1 vT

2 ... vT
|E|

]T
, (4)

where the vector v consists of concatenated vectors vi∈R|E| of the form vT
i ∈{ci·[1 1 ... 1]

T | ci∈
R} (Gao & Pavel, 2017). Considering the diverse set of operations used in DARTS, it is not an unfair
assumption that ∇pL(ω,α) won’t be in the form presented in (4). In fact, we have seen empirical evidence
to support this claim, which will be discussed in Section-3.2. So assuming that ∇pL(ω,α) does not belong
to the null space of Jσ(α), satisfying (1) can only be achieved in two ways:

1. ∇pL(ω,α∗) approaching 0.

2. The Jacobian Jσ(α
∗) approaching 0.

3.2 THE LAYER ALIGNMENT ISSUE

Assuming that ∀ℓ : ∇ℓpL(ω,α∗) ≠ 0, a necessary condition for ∇pL(ω,α∗) to be able to approach
zero is that for each ℓ we have ∃ℓ′≠ℓ : ∇ℓpL(ω,α∗)⊥̸∇ℓ′pL(ω,α∗). Because otherwise, we can write
∇pL(ω,α∗)T∇ℓpL(ω,α∗)= ∥∇ℓpL(ω,α∗)∥22 ≠ 0. Empirically, we noticed that this is not the case in
DARTS. More specifically, we define the function Λ - which we dub layer alignment - as:

Λ(ω,α)=
1(
L
2

)∑
ℓ<ℓ′

∇ℓpL(ω,α)T∇ℓ′pL(ω,α)
∥∇ℓpL(ω,α)∥2∥∇ℓ′pL(ω,α)∥2

. (5)

We noticed that regardless of the search space, the layer alignment is always near zero, i.e. the layer
gradients are almost orthogonal. In Figure 1, we can see the value of Λ(.,.) on the NAS-Bench-201
search space (Dong & Yang, 2020) for both DARTS and Λ-DARTS. In Appendix-A.2, we try to detect
the reason behind the low layer alignment issue.

As a result of this orthogonality, we expect that under the aforementioned assumptions DARTS is incapable
of reaching convergence the first way, since it is likely incapable of satisfying the necessary condition for
it. So we will propose a lower-bound on the value ∥∇αL(ω,α)∥22, which formalizes our claim:

Proposition 1 Let ∇αL(ω,α) be orthogonal to the null space of Jσ(α), and assuming we have L layers
of cells in our search network, we have ∀ℓ≠ℓ′ ∇ℓpL(ω,α)⊥∇ℓ′pL(ω,α). Let λi(α)>0 be the set of
eigenvalues corresponding to Jσ(α). Then the square norm of the gradient ∇αL(ω,α) can be bounded by:

∥∇αL(ω,α)∥22≥ min
i,λi(α)̸=0

λi(α)
2·L·min

ℓ
∥∇ℓpL(ω,α)∥22. (6)
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We provide a proof for this proposition in Appendix-A.10. This proposition shows that for any value
of minℓ∥∇ℓpL(ω,α)∥22, we have a large enough value for L that prevents the right-hand-side of (6) to
become too small. As a result, for a deep enough search network, the only way for α to reach convergence
is through reaching the softmax saturation point, wherein we have near zero eigenvectors corresponding to
Jσ(α), and the normalized architecture parameters become close to one-hot vectors. This phenomenon has
been observed in the literature (Bi et al., 2019; Dong & Yang, 2020), where DARTS usually converges to a
softmax saturation point with all of the edges selecting the skip-connection or none operations, depending
on the search space. In Figure-3, we can see this effect, where the absolute changes in the softmax nor-
malized architecture weights of DARTS during search is rapidly growing, compared to Λ-DARTS which
reaches a plateau during search. Note that converging to a softmax saturation point is not an inherently
bad outcome, because it corresponds to near zero optimality gap when using continuous relaxation (Boyd
& Vandenberghe, 2014). But as we will see, this characteristic gives an advantage to layers closer to the
output in selecting the optimal architecture, contributing to performance collapse (Zela et al., 2020).

3.3 THE PERFORMANCE COLLAPSE

Another issue caused by low layer alignment is that the optimal architectures corresponding to each layer
are going to be vastly different. In Figure 2 we can see the exponential average of the sum of the gradients
for convolution and skip-connection operations in the first 5 layers (furthest from the output of the network)
and the last 5 layers (closest to the output of the network) averaged over all edges in a search cell on
the NAS-Bench-201 search space (Dong & Yang, 2020). As evident, the optimal cell corresponding to
the shallower layers (closer to the input) mostly contains convolution operations, while the optimal cell
corresponding to the deeper layers (closer to the output) mostly contains skip-connection operations. We
attribute this observation to skip-connections having a proclivity towards allowing the gradients to flow fur-
ther into the network, while convolutions provide more complex features for upper layers. Furthermore, due
to gradient vanishing, the gradients corresponding to the skip-connection operations on average have larger
magnitudes, with the magnitude of the layer gradients gradually becoming smaller the deeper we go. As a
result, ∇αL(ω,α) will have much smaller negative values corresponding to the skip-connection operations.
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Figure 3: The ℓ1 norm of changes in
softmax-normalized architecture weights,
averaged over 4 runs with a 95% confi-
dence interval. The search is performed on
CIFAR-10.

Using these observations, we can clearly bridge the analytical
gap between the performance collapse problem and the layer
alignment. Due to the weight-sharing structure, the value of
the function Λ(ω,α) is close to zero. As a result, DARTS
can only achieve convergence in the softmax saturation points.
Furthermore, given the low layer alignment, the optimal ar-
chitecture from the perspective of the layers are going to be
extremely varied, with deeper layers having a strong inclina-
tion towards skip-connections. This gives skip-connections a
clear advantage due to the larger magnitude of their gradients.
So as the search progresses, the architecture parameters cor-
responding to the skip-connection operations become larger
than the convolution operations, eventually resulting in a sat-
uration point that overwhelmingly selects skip-connection
operations (Bi et al., 2019; Chu et al., 2021). As the depth of the search network increases, vanishing
gradient becomes more severe, further exacerbating the issue (He et al., 2016). This is evident when
comparing the results of DARTS on its original search space and the NAS-Bench-201 search space, which
utilizes deeper search networks (Dong & Yang, 2020). Similarly, increasing the number of iterations
used for the search results in further exacerbation of the performance collapse problem (Bi et al., 2019),
which can be attributed to the severity of vanishing gradient increasing as the loss function approaches its
optimal point (He et al., 2016). These observations motivate us to alleviate both of these issues caused
by low layer alignment through increasing the value of Λ(ω,α). In Appendix-A.3 we provide a thorough
analysis that connects our method to some of the prior works.

4 THE PROPOSED METHOD TO MITIGATE PERFORMANCE COLLAPSE

In the previous segment, we saw that the main contributor to the performance collapse problem is low layer
alignment (i.e. Λ(ω,α)≈0). Now we will introduce two regularization terms based on this value to solve
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performance collapse. Furthermore, we will introduce a method to estimate the gradient corresponding
to the regularization terms that grow linearly with the size of the network.

4.1 THE REGULARIZATION TERM

For the sake of simplicity, let’s assume we aim to search for a single cell. To increase the value of
Λ(ω,α), we can directly use the function itself, since it is a differentiable function. So we define our main
regularization term as the function Λ(ω,α), which we aim to maximize.

In our preliminary experiments, we noticed that in case the dimension of α is large, Λ(ω,α) only
concentrates on the operations with relatively larger gradients. This means that while the angle between
the gradients of the layers is reduced, only the gradient of a small portion of the operations will have
the same sign, resulting in lower performance. So given ℓg=∇ℓpL(ω,α) and ℓ′g=∇ℓ′pL(ω,α), we
will also introduce another regularization term that aims to increase the correlation between the signs
of the gradients of each layer:

Λ±(ω,α)=
1(
L
2

)∑
ℓ<ℓ′

ℓgT ℓ′g

|ℓg|T |ℓ′g|
, (7)

where |.| corresponds to the element-wise absolute value function. Note that while the optimal point of
Λ(ω,α) corresponds to ∇ℓpL(ω,α)=c∇ℓ′pL(ω,α), where c is a constant, the optimal point of Λ±(ω,α)

corresponds to sign(∇ℓpL(ω,α))=sign(∇ℓ′pL(ω,α)), where sign(.) is the element-wise signum function.

Given one of the regularization terms above, the bi-level optimization problem of Λ-DARTS will become:

min
α

Lval(ω∗(α),α)

s.t. ω∗(α)=argmin
ω

Ltrain(ω,α)−λΛtrain(ω,α),
(8)

where we insert the regularization term in the inner objective. In Appendix-A.4, we show that optimizing
the regularization term w.r.t. the outer objective performs poorly. Similar to most variants of DARTS,
we use a linear scheduling for λ (Zela et al., 2020; Chen & Hsieh, 2020): i.e. λt=λ× t

T , where t is the
number of current epoch and T is the total number of epochs used for search.

4.2 ESTIMATING THE GRADIENTS OF THE REGULARIZATION TERMS

Assuming the gradients corresponding to the operations are non-zero, both Λ(ω,α) and Λ±(ω,α) are
differentiable. So their gradient with respect to ω can be written as:

∇ωΛ(ω,α)=
1(
L
2

) L∑
ℓ=1

∇2
ω,ℓpL(ω,α)

∑
ℓ′≠ℓ

δℓ,ℓ
′
, (9)

where we have:

δℓ,ℓ
′

Λ =

(
I−

ℓgℓgT

∥ℓg∥22

)
ℓ′g

∥ℓg∥2∥ℓ′g∥2
,

δℓ,ℓ
′

Λ±
=

(
I−

ℓgT ℓ′g

|ℓg|T |ℓ′g|
diag(sign(ℓg))diag(sign(ℓ

′
g))

)
ℓ′g

|ℓg|T |ℓ′g|
,

(10)

with I corresponding to the identity matrix. Note that calculating∇ωΛ(ω,α)will be ofO(L·|ω|·|α|) due to
the existence of second derivative matrices for each layer. So a direct calculation of (9) is out of the question.
But similar to (Liu et al., 2019), we can use finite difference approximation to estimate ∇ωΛ(ω,α).

Let L(ω,P ) be the loss function as a function of ω and P ∈RL×|α|, where:

P =[σ(α) σ(α) ... σ(α)]
T (11)

corresponds to the softmax normalized architecture weights used for each layer in the search network.
Furthermore, let ∆ ∈ RL×|α| be:

∆=
[∑

ℓ′≠1δ
1,ℓ′

∑
ℓ′≠2δ

2,ℓ′ ...
∑

ℓ′≠Lδ
L,ℓ′
]T

. (12)
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Table 1: Comparison with state-of-the-art on the NAS-Bench-201 search space. Mean and standard
deviation of the accuracy were calculated over 4 independent runs. The search is performed on the
CIFAR-10 dataset. The best performance is boldface. (1st): first-order, (2nd): second-order

Method CIFAR-10 CIFAR-100 ImageNet16-120
Valid Test Valid Test Valid Test

DARTS (1st) (Liu et al., 2019) 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS (2nd) (Liu et al., 2019) 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS (Dong & Yang, 2019) 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SNAS (Xie et al., 2019) 90.10±1.04 92.77±0.83 69.69±2.39 69.34±1.98 42.84±1.79 43.16±2.64
DSNAS (Hu et al., 2020) 89.66±0.29 93.08±0.13 30.87±16.40 31.01±16.38 40.61±0.09 41.07±0.09
PC-DARTS (Xu et al., 2020) 89.96±0.15 93.41±0.30 67.12±0.39 67.48±0.89 40.83±0.08 41.31±0.22
iDARTS (Zhang et al., 2021) 89.86±0.60 93.58±0.32 70.57±0.24 70.83±0.48 40.38±0.59 40.89±0.68
DARTS- (Chu et al., 2021) 91.03±0.44 93.80±0.40 71.36±1.51 71.53±1.51 44.87±1.46 45.12±0.82
β-DARTS (Ye et al., 2022) 91.55±0.00 94.36±0.00 73.49±0.00 73.51±0.00 46.37±0.00 46.34±0.00
Λ-DARTS - Λ(ω,α) 91.55±0.00 94.36±0.00 73.49±0.00 73.51±0.00 46.37±0.00 46.34±0.00
Optimal (Dong & Yang, 2020) 91.61 94.37 73.49 73.51 46.77 47.31

Then we can write:

∇ωΛ(ω,α)=
1(
L
2

)[∇ωL(ω,P+ϵ∆)−∇ωL(ω,P−ϵ∆)

2ϵ

]
+O(ϵ2), (13)

where we set ϵ= ϵ0
∥∆∥F . The cost of using this approximation technique is two extra forward-backward

pass, which is of O(|ω|+|α|)=O(|ω|). So we have eliminated the L·|α| factor from the complexity of
Λ-DARTS, which significantly reduces the computational complexity, while completely eliminating the
memory overhead. In Appendix-A.8 we provide the cost of our method in terms of GPU days along with
another approximation technique which can reduce the overhead of Λ-DARTS significantly.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we will show the effectiveness of Λ-DARTS by performing experiments on the NAS-Bench-
201 (Dong & Yang, 2020) and DARTS (Liu et al., 2019) search spaces. We will then demonstrate the
robustness of Λ-DARTS by performing more experiments on the reduced DARTS search spaces proposed
by (Zela et al., 2020) on different datasets. Finally, by performing an ablation study, we will analyze
the effects of the hyper-parameters of Λ-DARTS over the performance of DARTS. For all experiments,
we report the mean and the standard deviation of Λ-DARTS for 4 independent searches with different
random seeds, as well as the result of the best performing architecture, except for the experiments on
the reduced DARTS search spaces, wherein only the best performance is reported. In all experiments,
unless explicitly mentioned otherwise, the search is performed on CIFAR-10. For details of the experiment
settings, we direct the reader to Appendix-A.9. In Appendix-A.11 we provide the architectures discovered
by Λ-DARTS on these search spaces and datasets. For further experiments, we refer the reader to
Appendix-A.5, Appendix-A.6, and Appendix-A.7.

5.1 NAS-BENCH-201 SEARCH SPACE

In order to demonstrate the effectiveness of Λ-DARTS in a reproducible setting, we used the NAS-
Bench-201 search space for our first set of experiments. In Table-1 we can see the results of Λ-DARTS
compared to other DARTS-based methods. We omit from reporting the results of Λ±(ω,α) here, since
it performed similar to Λ(ω,α). As evident, Λ-DARTS performs exceptionally well compared to the
baselines, surpassing all but one of them in terms of the mean and standard deviation of the performance.
Compared to the current state-of-the-art (Ye et al., 2022), Λ-DARTS discovers the same architecture in all
4 experiments. Considering how close to the optimal the performance of Λ-DARTS is, we attribute the
slightly less than optimal performance to the high variance of the CIFAR-10 dataset. Furthermore, we note
that the method proposed in (Ye et al., 2022) converges to its optimal architecture very early in the search
process (the first 10 epochs), which may indicate a premature convergence to a sub-optimal architecture.

In comparison, Λ-DARTS does not reach its optimal performance until late in the search procedure, where
the performance of the search model is close to optimal and the correlation between the gradient of the
layers is very high. In fact, in the DARTS search space we will show further evidence for this claim, where
Λ-DARTS is capable of surpassing the performance of (Ye et al., 2022) on the DARTS search space by
a large margin on two datasets. In Figure-1, we can see a clear correlation between the layer alignment
and the accuracy of the architecture on CIFAR-10, which reaches its optimal point at around the 40th
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Table 2: Comparison with state-of-the-art on the DARTS search space. The first block contains methods
that report the best performing architecture, while the second block contains methods that report the average
of multiple searches (except for results on ImageNet, where always the best performance is reported). Our
reported mean and standard deviation of the accuracy are calculated over 4 independent runs. We perform
the search on the CIFAR-10 dataset. The best performance is boldface on each block. (1st): first-order,
(2nd): second-order, (avg): average performance, (best): best performance.
† Different search space used for ImageNet.

Method CIFAR-10 CIFAR-100 ImageNet
Params (M) Test Acc (%) Params (M) Test Acc (%) Params (M) Test Acc (%)

NASNet-A (Zoph et al., 2018) 3.3 97.35 3.3 83.18 5.3 74.0
DARTS (1st) (Liu et al., 2019) 3.4 97.00±0.14 3.4 82.46 - -
DARTS (2nd) (Liu et al., 2019) 3.3 97.24±0.09 - - 4.7 73.3
SNAS (Xie et al., 2019) 2.8 97.15±0.02 2.8 82.45 4.3 72.7
GDAS (Dong & Yang, 2019) 3.4 97.07 3.4 81.62 5.3 74.0
P-DARTS (Liu et al., 2018) 3.4 97.50 3.6 82.51 5.1 75.3
PC-DARTS (Xu et al., 2020) 3.6 97.43±0.07 3.6 83.10 5.3 75.8
DrNAS (Chen et al., 2021a) 4.0 97.46±0.03 - - 5.2 75.8
R-DARTS (Zela et al., 2020) - 97.05±0.21 - 81.99±0.26 - -
P-DARTS (Liu et al., 2018) 3.3±0.21 97.19±0.14 - - - -
SDARTS-ADV (Chen & Hsieh, 2020) 3.3 97.39±0.02 - - 5.4 74.8
DOTS (Gu et al., 2021) 3.5 97.51±0.06 4.1 83.52±0.13 5.2 75.7
DARTS+PT (Wang et al., 2021) 3.0 97.39±0.08 - - 4.6 74.5
DARTS- (Chu et al., 2021)† 3.5±0.13 97.41±0.08 3.4 82.49±0.25 4.9 76.2
β-DARTS (Ye et al., 2022) 3.8±0.08 97.49±0.07 3.8±0.08 83.48±0.03 5.4 75.8
Λ-DARTS - Λ(ω,α) (avg) 3.5±0.13 97.48±0.11 3.6±0.13 83.47±0.20 - -
Λ-DARTS - Λ(ω,α) (best) 3.5 97.59 3.6 83.64 5.1 75.4
Λ-DARTS - Λ±(ω,α) (avg) 3.6±0.13 97.57±0.05 3.6±0.1 83.85±0.38 - -
Λ-DARTS - Λ±(ω,α) (best) 3.8 97.65 3.8 84.20 5.2 75.7

search epoch. Comparing the results to DARTS, we see that the performance of the discovered architecture
declines consistently, eventually reaching an extremely low point.

5.2 DARTS SEARCH SPACE

In order to show that Λ-DARTS is effective in mitigating the performance collapse problem in a complex
search space, we used the original search space of DARTS proposed in (Liu et al., 2019) for our second
experiment. In Table-2, we can see the results of Λ-DARTS compared to the baselines. Λ-DARTS is
able to achieve state-of-the-art results on the CIFAR-10 and CIFAR-100 datasets, surpassing the baseline
models by a large margin on the more complex dataset of CIFAR-100. Furthermore, Λ-DARTS achieves
comparable results on ImageNet, with about 0.1% difference in accuracy compared to the state-of-the-art
results on the same macro-architecture. Furthermore, compared to (Ye et al., 2022), we see that Λ-DARTS
achieves better performance on two of the three datasets, supporting our claim that β-DARTS may be
converging to sub-optimal architectures due to pre-mature convergence. Interestingly, compared to most
baselines, Λ-DARTS does not select unnecessarily complex architectures, with the number of parameters
averaging around 3.5 on Λ(ω,α) and 3.6 on Λ±(ω,α) on CIFAR-10. This means that the architectures
are much more efficient in terms of performance, further proving the superiority of Λ-DARTS. This is
especially the case on the ImageNet search space, where our model is well within the boundaries of the
mobile setting introduced in (Liu et al., 2019).

Comparing Λ(ω,α) with Λ±(ω,α), we see that the second function achieves a much better performance.
Comparing the discovered cells, we noticed that Λ±(ω,α) usually discovers deeper cells with more
parametric operations, a quality that highly correlates with the performance of the model. This observation
can be attributed to the large dimension of α on this search space.

5.3 REDUCED SEARCH SPACES

In order to show the effectiveness of Λ-DARTS in alleviating the performance collapse problem even
in the most extreme circumstances, we used the reduced search spaces proposed in (Zela et al., 2020)
for further experimentation. In Table-3 we can see the results of Λ-DARTS compared to the baselines.
Out of 12 different experiments performed, Λ-DARTS performs better than the baselines in 10 of them,
with its performance in the other two experiments being comparable to the baselines. Following these
observations, we can claim that our model is robustly stepping out of the performance collapse trap without
any modifications to the original formulation of DARTS.
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Table 3: Comparison with state-of-the-art on the reduced DARTS search spaces. The test error rate (%) of
the best performing architecture from 4 independent runs is reported. The best performance is boldface.

Dataset Search Space DARTS PC-DARTS R-DARTS SDARTS-RS DARTS+PT Λ-DARTS

CIFAR-10

S1 3.84 3.11 2.78 2.78 3.50 2.83
S2 4.85 3.02 3.31 2.75 2.79 2.56
S3 3.34 2.51 2.51 2.53 2.49 2.38
S4 7.20 3.02 3.56 2.93 2.64 2.46

CIFAR-100

S1 29.46 24.69 24.25 23.51 24.48 22.79
S2 26.05 22.48 22.44 22.28 23.16 21.68
S3 28.90 21.69 23.99 21.09 22.03 21.03
S4 22.85 21.50 21.94 21.46 20.80 20.65

SVHN

S1 4.58 2.47 4.79 2.35 2.62 2.39
S2 3.53 2.42 2.51 2.39 2.53 2.37
S3 3.41 2.41 2.48 2.36 2.42 2.31
S4 3.05 2.43 2.50 2.46 2.42 2.34

1e-05 0.0001 0.001 0.01
0

80

82

84

86

88

90

92

94

CI
FA

R-
10

 V
al

id
 A

cc
ur

ac
y 

(%
)

(a) Effects of ϵ0.

0.0625 0.125 0.25 0.580

82

84

86

88

90

92

94

CI
FA

R-
10

 V
al

id
 A

cc
ur

ac
y 

(%
)

(b) Effects of λ.
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(c) Effects of number of epochs.
Figure 4: An analysis of the effects of hyper-parameters on Λ-DARTS. We report the mean and 95%
confidence interval of CIFAR-10 validation accuracy, calculated over 4 runs. (a) Effects of ϵ0 over the
accuracy of the approximation and the performance of discovered architectures. (b) Effects of λ over the
performance of the discovered architectures. (c) Effects of the number of search epochs on the performance
of the discovered architectures. The search is performed on CIFAR-10.

Comparing the baselines, we can see that while DARTS+PT performs better on the S4 search space,
SDARTS performs mostly better on the other search spaces. Furthermore, we see similar inconsistencies
in PC-DARTS and R-DARTS, where they both perform well on S3 but usually not as well on the other
search spaces. On the other hand, Λ-DARTS consistently performs well across all search spaces and
datasets, which further shows the robustness of our method.

5.4 ABLATION STUDY

In order to assess how the hyper-parameters affect Λ-DARTS, we conducted an ablation study on ϵ0 and λ
on the NAS-Bench-201 search space. Furthermore, to show that Λ-DARTS has solved the performance
collapse issue, we perform the search for longer epochs (starting from 50, up to 400 epochs) following (Chu
et al., 2021; Ye et al., 2022). In Figure 4a, we can see the effect of ϵ0 over the performance of the discovered
architecture. We observe that smaller values of ϵ0 correlate positively with the quality of the discovered
architecture. Considering that lower values of ϵ0 correspond to lower approximation error in (13), this is
expected behavior. But we note that due to the problem of round-off error, we expect this trend to reverse
for smaller values of ϵ0 (Shen et al., 2020). In fact, we can see that the variance of the performance is
already starting to increase for the smallest value of ϵ0.

Figure 4b shows the effect of λ over the performance of the discovered architecture. Clearly, the model is
not very sensitive to the value of λ, with the best performing value and the worst performing value having
a difference of about 2% in their mean accuracy. Furthermore, the best performing value at λ=0.125
corresponds to an average length normalized dot-product of about 0.7, while the worst performing value at
λ=0.5 is around 0.9. So we are well within the realm of diminishing returns for larger λs, and as a result
of increased emphasis on the regularization term in the Pareto-optimal point, we observe negative effects
from the main objective being sidetracked in the form of lower quality architectures.

We can see the performance of Λ-DARTS for different numbers of search epochs in Figure-4c. Unlike
other methods that try to address the issue of performance collapse for larger number of epochs (Bi
et al., 2019; Chu et al., 2021), we see a negligible drop in performance (about 0.4%) when comparing
the best performing and the worst performing setting. This is a clear indication that the models have
achieved convergence at around 100 epochs, reaching a local-minima that corresponds to near-optimal
architectures. In fact, we can observe further proof for the convergence of Λ-DARTS in Figure-3, where
clearly the absolute changes in the softmax normalized architecture weights has reached a plateau in 50
epochs of search, resulting in a concave curvature.
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6 CONCLUSION

In this paper, we use a set of analytical and empirical tools to show that the main reason behind performance
collapse in DARTS is the lack of correlation between the gradient of its layers, caused by the multi-layer
structure and the use of weight-sharing for cell-search. Based on the aforementioned analysis, we propose
Λ-DARTS which manages to achieve better or comparable performance when compared to state-of-the-art
baselines. Here, we focused our discussion and experiments on DARTS, however the analysis and ideas are
extendable to any other type of differentiable NAS model that performs cell search using weight sharing,
which we plan to study in future works. Furthermore, we point out to the cost of estimating the gradient
of the regularization terms proposed here as another potential subject for further research.
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A APPENDIX

A.1 REVIEW ON DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH (DARTS)

A.1.1 CONTINUOUS RELAXATION

For simplicity, let’s assume we are searching for a single cell. Let the vector α ∈ R|E|·|O| be the set
of parameters corresponding to the architecture, where E is the set of all the possible edges in the
computational graph of the cell, and O is a set of pre-defined operations. The goal is to find the optimal
topology and operations in the continuous space using gradient-descent, and then transfer it from the
continuous space to the discrete space using the argmax operator to get a near-optimal architecture.

13

https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=BJlS634tPr
https://doi.org/10.1109/ICCV48922.2021.00120
https://doi.org/10.1109/ICCV48922.2021.00120
https://doi.org/10.48550/arXiv.2203.01665
https://openreview.net/forum?id=H1gDNyrKDS
http://proceedings.mlr.press/v139/zhang21s.html
https://proceedings.neurips.cc/paper/2020/hash/5e1b18c4c6a6d31695acbae3fd70ecc6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5e1b18c4c6a6d31695acbae3fd70ecc6-Abstract.html
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html


Published as a conference paper at ICLR 2023

Specifically, let xj be the output of the jth node in the computational graph; We can write xj as:

xj=
∑
i<j

∑
o∈O

p(i,j)o o(xi), (14)

where p(i,j)o is the softmax normalized architecture weights: p(i,j)o =
exp(α(i,j)

o )∑
o′∈Oexp(α

(i,j)

o′ )
. DARTS then solves

the following bi-level optimization problem to find the optimal value for α:

min
α

Lval(ω∗(α),α)

s.t. ω∗(α)=argmin
ω

Ltrain(ω,α),
(15)

where Ltrain(.,.) and Lval(.,.) correspond to the loss function calculated on the train and validation set, and
ω is the set of parameters corresponding to the operations. There are two methods proposed by the original
paper to solve the problem above using gradient descent. The first method - dubbed first-order - performs
gradient descent on α and ω in an interleaved fashion, while the second method - dubbed second-order
- considers the dependency between ω∗(α) and α when calculating the descent direction corresponding
to α. In this paper, we focus on the first-order method since it is more widely used (Elsken et al., 2019).
For further information, we direct the reader to the original paper (Liu et al., 2019).

A.1.2 WEIGHT-SHARING FOR CELL-SEARCH

In order to perform cell-search, DARTS utilizes a weight-sharing framework. Specifically, in a cell-search
scheme, L layers of the same cell are stacked on top of each other according to a pre-defined macro
architecture. These cells share the same α - i.e. share the same architecture parameter - but have different
parameters corresponding to the operations. So they have the same structure, but different operation
weights. As a result, we can write the gradient corresponding to the architecture parameter as the sum
of the gradients received by each layer.

In order to define this weight-sharing framework concretely, let ℓxj correspond to the output of the jth

node of the architecture graph produced by the ℓth layer. Then we can write the gradient received by
p
(i,j)
o from the ℓth layer as:

∂L
∂ℓp

(i,j)
o

=
∂L
∂ℓxj

·o(ℓxi). (16)

In other words, the gradient received by p
(i,j)
o from the ℓth layer corresponds to the dot product of the

output of the ith node in ℓth layer and the gradient of the jth node in ℓth layer. Since we have L

layers in the macro-architecture, we can write the gradient corresponding to p
(i,j)
o as the sum of the

gradients received by each layer:

∂L
∂p

(i,j)
o

=

L∑
ℓ=1

∂L
∂ℓp

(i,j)
o

. (17)

Now, by writing the gradient for all edges and operations for p in vector form, we have:

∇pL(ω,α)=
L∑

ℓ=1

∇ℓpL(ω,α). (18)

A.2 THE ROOT CAUSE OF LOW LAYER ALIGNMENT

An important matter to consider is the root cause of low layer alignment, which can help us further
understand the reason behind the performance collapse, and the superior performance of Λ-DARTS. Here,
we will consider two likely candidates that may have caused this issue:

• High level of approximation in the formulation of first-order DARTS (Zhang et al., 2021).
• Learning unrolled iterative estimates in the ResNet family of networks (Greff et al., 2017).

In the following, we will further investigate these candidates and their effects over performance collapse.
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A.2.1 HIGH LEVEL OF APPROXIMATION IN FIRST-ORDER DARTS

In (15), the optimality of ω∗(α) w.r.t. the train loss is added to the formulation of the optimization problem
of DARTS in the form of a constraint. Using the implicit function theorem, we can write the gradient
corresponding to the outer optimization problem as (Zhang et al., 2021):

∇αLval(ω∗(α),α)=∇αLval(ω,α)−∇2
α,ωLtrain(ω,α)

(
∇2

ωLtrain(ω,α)
)−1∇ωLval(ω,α), (19)

where ω=ω∗(α) and
(
∇2

ωLtrain(ω,α)
)−1

is the inverse of the Hessian w.r.t. ω. In second-order DARTS,
the inverse Hessian is estimated using the identity matrix, while in iDARTS the inverse Hessian is estimated
using Neumann series. Note that it is entirely plausible for these approximations to be the cause of low layer
alignment, and by extention, the performance collapse problem. So it may be the case that by eliminating
at least one of these approximations in DARTS, the layer alignment may get improved.

In order to investigate this claim, we apply the layer alignment function Λ(ω,α) over the layer gradients
with the approximations removed:

∇ℓpLval(ω∗(p),α)=∇ℓpLval(ω,α)−∇2
ℓp,ωL

train(ω,α)
(
∇2

ωLtrain(ω,α)
)−1∇ωLval(ω,α), (20)

where we can equivalently see ω∗(α) as a function of ω∗(p) with the softmax function removed from
the abstraction. Since we need to calculate (20) for each layer, we estimate the inverse Hessian with
the identity function similar to second-order DARTS. Note that estimating (20) with this simplification
can be performed similar to estimating the gradient corresponding Λ(ω,α), by using finite difference
approximation and perturbing the value of p for each layer separately.
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Figure 5: The average layer alignment
for the first and second-order estimation
of gradients of the layers, compared to Λ-
DARTS.

Comparing the average value for layer alignment for first-
order and second-order estimation, we did not notice any
meaningful differences. In both cases, the value of Λ(ω,α)
would vary between 0.06 to 0.08 on the NAS-Bench-201
search space, as can be observed in Figure-5, with the varia-
tion resembling the noise caused by mini-batching. Consid-
ering the performance of Λ-DARTS doesn’t improve signif-
icantly until the layer alignment reaches a value larger than
0.2 (as observed in Figure-1), we can confidently assert that
the low layer alignment is not caused by the approximation
of the gradient corresponding to architecture parameters.

A.2.2 THE ITERATIVE ESTIMATION THEORY

An interesting observation to note is that the value of layer
alignment is much lower for parametric operations compared to non-parametric operations. So it is
completely plausible that the low layer alignment problem is somehow caused by the parametric operations
(specifically, convolution operations) and their dynamic with the network in some way. Here, we will show
that at according to the iterative estimation theory in ResNets (Greff et al., 2017), this is indeed the case.

According to (16), we can write the gradient corresponding to each operation on each edge for each
layer as the dot product between the gradient of the node receiving the edge in that layer and the value
of the operation itself. So we can write the correlation between the gradients of the layers ℓ and ℓ′ for
operation o on edge (i, j) as:

∂L
∂ℓp

(i,j)
o

· ∂L
∂ℓ′p

(i,j)
o

=
∂L
∂ℓxj

T

o(ℓxi)·
∂L
∂ℓ′xj

T

o(ℓ
′
xi)=o(ℓxi)

T

[
∂L
∂ℓxj

∂L
∂ℓ′xj

T
]
o(ℓ

′
xi), (21)

which implicitly assumes the two layers work on the same number of height, width, and channels. Assuming
∂L
∂ℓxj

and ∂L
∂ℓ′xj

are very similar (an assumption we will confirm empirically), then their outer product is
very close to a positive semi-definite matrix. As a result, the correlation between layer gradients mainly
depends on whether the value of the operations o(ℓxi) and o(ℓ

′
xi) highly correlate or not.

Interestingly, the iterative estimation theory provides a framework for us to answer this question. According
to this theory, the layers of a ResNet model try to iteratively refine an estimate of an ideal output that
will ultimately result in an accurate prediction at the classification level (Greff et al., 2017; Jastrzebski
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et al., 2018). As a result, we can see the output of each ResNet block as a representation in the same
vector-space, with each block trying to move this representation in a direction that better estimates the
ideal representation using its corresponding convolution operations.

Note that in this case, an optimal iterative estimation would correspond to a set of orthogonal updates, since
undoing the work of previous blocks in undesirable. Furthermore, since most of the search spaces used
for DARTS (and generally, NAS) are from the family of ResNets, we can apply these findings to DARTS
as well. Therefore, under the iterative estimation theory, we can claim that the reason behind low layer
alignment in convolution operations is the orthogonality of their output. This is inline with the motivation
behind DARTS-PT in (Wang et al., 2021), which showed a direct connection between performance collapse
and the iterative estimation theory. In this paper, we provide further evidence for this claim, but also provide
a solution to the problem that does not require significant changes to the DARTS framework.
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Figure 6: The cosine similarity between (a) the convolution operations, (b) gradients received by each node,
averaged over each pair of layers and each edge. We report the mean and the 95% confidence interval for
four experiments on the NAS-Bench-201 search space and the CIFAR-10 dataset.

In order to confirm our assumptions and provide empirical evidence for our analysis, here we will provide
a visualization of the cosine similarity between ∂L

∂ℓxj
and ∂L

∂ℓ′xj
, and the convolution operation outputs

o(ℓxi) and o(ℓ
′
xi), averaged over each pair of layers on the NAS-Bench-201 search space. Since DARTS

works in three stages with respect to input scale, we will provide the aforementioned values for the three
stages separately. You can observe the results in Figure-6.

The first thing to note is the large correlation between node gradients, which increases in higher stages.
On the otherhand, we can see that the correlation between the output of the convolution operations is
incredibly low. This observation confirms our assumption that the main reason behind low layer alignment
is low correlation between the output of the convolution operation, which can be attributed to the iterative
estimation theory. Furthermore, we can observe that in order to increase the value of layer alignment,
Λ-DARTS focuses on increasing the correlation between the output of convolutions, and does not have
a noticeable impact on the correlation between node gradients.

Given the analytical and empirical evidence provided here, we can confidently assert that as pointed
in (Wang et al., 2021), one of the main reasons behind performance collapse is the residual connections
and the ResNet-like structure of most DARTS search spaces. But unlike (Wang et al., 2021), we attribute
performance collapse to the discrepancies caused by the residual connections on the optimal architecture
from the perspective of each layer, and the resulting problem in the convergence point of DARTS. The
superior performance of Λ-DARTS compared to DARTS-PT confirms the validity of this claim, and we
hope these findings can provide new directions for further research.

A.3 RELATIONSHIP TO PRIOR WORKS

In this section, we will provide an analysis on the relationship between our work and some of the prior works
that aim to solve the performance collapse problem. More specifically, we will show that most of the papers
that reduce the severity of performance collapse to some degree can be explained through our analytical
framework, suggesting that they may be alleviating the symptoms of low layer alignment indirectly.
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Table 4: The test performance of architectures discovered by PC-DARTS with batch size of 256 (PC-
DARTS-256) and 64 (PC-DARTS-64) on NAS-Bench-201.

Method CIFAR-10 Acc (%) CIFAR-100 Acc (%) ImageNet Acc (%)
PC-DARTS-256 93.41±0.30 67.48±0.89 41.30±0.22
PC-DARTS-64 93.76±0.00 71.11±0.00 41.44±0.00

A.3.1 THE CONVERGENCE OF DARTS AND ITS RELATION TO ℓ2 REGULARIZATION

In (Ye et al., 2022), it has been suggested that one of the possible solutions to performance collapse is ℓ2 reg-
ularization performed on the log-sum-exp of the architecture values: Lβ(α)=log(

∑
i<j,o∈Oexp(α

(i,j)
o )).

The regularization term is then added to the loss function corresponding to the outter optimization problem,
changing it to: minα L(ω∗(α),α)+γLβ(α), where γ is scheduled linearly, starting from 0 and increased
to a very large value (usually around 25 to 100).

Note that in the case of ℓ2 regularization, the optimality condition in 1 can be re-written as:

∇αLval(ω,α∗)=−γ∇αLβ(α), (22)

where we have ∇αLβ(α)=σ(α)=p. Given that p is normalized over each edge, we have ∥σ(α)∥1= |E|.
So we can given a lower-bound on the ℓ2 norm of ∇αLβ(α) using the Cauchy-Schwarz inequality:

∥∇αLβ(α)∥2≥
∥∇αLβ(α)∥1√

|E|·|O|
=

|E|√
|E|·|O|

=

√
|E|
|O|

. (23)

Since the number of edges and operations are usually comparable in most search spaces (for example,
in DARTS it is equal to 14 and 7, and in NAS-Bench-201 it is 6 and 5, respectively), the lower-bound
proposed above is very close to 1. Therefore, as γ increases to a very large value, the convergence point
of β-DARTS no longer correspond to the stationary point of the primary loss function. Moreover, in our
experiments we noticed that ∥∇αLval(ω,α)∥2 usually has a very small value (in the order of O(10−1)).
This means that the convergence point doesn’t happen on the saturation point of the softmax function,
but instead, becomes dominated by the regularization term, which corresponds to the current value of p.
So similar to the case of DARTS, the convergence point does not directly depend on the loss function,
but is directed by the current value of α which is based on previous information from the gradient of
the loss, which may be inaccurate at the current point.

This analysis is supported by the experiment results provided by (Ye et al., 2022) in its Figure-4c, where at
the convergence point the value of α increases monotonically and linearly, while the value of p does not
change at all, and indeed does not correspond to the saturation point of softmax. Note that a similar analysis
can be done on implicit gradient and second-order methods of DARTS as well, where the convergence
point no longer corresponds to a stationary point of the explicit gradient of the architecture parameters

A.3.2 VANISHING GRADIENT AND THE LOW LAYER ALIGNMENT ISSUE

In (Zhou et al., 2020) it has been observed that the rate of the convergence of the search model with
respect to the operation parameters is directly impacted by the architecture weights corresponding to the
skip-connection operations. This observation is then used an incentive to propose auxiliary skip-connections
by (Chu et al., 2021) - dubbed DARTS-, where the effect of auxiliary connections is gradually reduced
by a linearly scheduling their magnitude to approach zero. Independently, in order to reduce the memory
consumption of the search model, PC-DARTS proposes performing the candidate operations on a subset of
the channels of the input, thereby implicitly providing an auxiliary skip-connection on a subset of the input
channels (Xu et al., 2020). Here, we will argue that both of these methods are implicitly trying to solve a
symptom of the lower layer alignment issue by up-weighting the gradients corresponding to the lower layers.

Firstly, in order to show that the increased batch size doesn’t benefit PC-DARTS greatly, we performed
the search using PC-DARTS on a batch size of 64 and compared the results to performing the search
with a batch size of 256 on the NAS-Bench-201 search space in Table-4. Clearly, we can claim that
the batch size is not the main contributer to the better performance of PC-DARTS, and instead, it is the
partial-channeling that appears to be alleviating performance collapse.

Note that according to (16), we can write the gradient received by each architecture weight as the dot
product of the gradient of the receiving node and the corresponding operation. While gradient vanishing
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(a) DARTS- (b) PC-DARTS

Figure 7: The exponential average of the gradient of the first five layers and the last five layers for DARTS-
and PC-DARTS, similar to Figure-2.

does not affect the operation, it does have an impact over the gradient of the loss w.r.t. the receiving node.
We can see this effect in Figure-2, wherein the gradients corresponding to the first 5 layers generally
have smaller magnitudes. Therefore, one way of alleviating the symptoms of low layer alignment can
be reducing the effects of gradient vanishing by providing stronger skip-connections. This is effectively
what is done by the auxiliary skip-connection proposed by DARTS- and the partial-channel structure of
PC-DARTS, which causes limited improvements in the performance of DARTS.

In order to make our argument stronger, we also provide the gradients corresponding to the first five
layers and the last five layers similar to Figure-2 for both DARTS- and PC-DARTS, which you can see in
Figure-7. The first thing to notice is the striking similarity between the two figures, where the gradients
corresponding to layers closer to the output have been extremely down-weighted compared to the gradients
corresponding to layers closer to the input. This observation proves the validity of our claim that auxiliary
skip-connection and partial-channeling significantly up-weights the gradients corresponding to the layers
closer to the input. Since these layers prefer parametric operations, we observe better performance by these
models. But note that despite the improvements, these methods are merely circumventing the problem of
low layer alignment, which is the reason behind their poor performance compared to Λ-DARTS.

A.3.3 HIGH LAYER ALIGNMENT AS A PRIOR BY ELIMINATING WEIGHT-SHARING IN
SAMPLE-BASED NAS

One of the popular methods of cell-based NAS is the use of sampling candidate architectures from a
pre-determined distribution, wherein the sufficient statistics of the distribution are optimized according
to the performance of the sampled architecture. Among these methods, we can mention DrNAS which
utilizes a Dirichlet distribution for the search (Chen et al., 2021a), and SNAS which utilizes a concrete
distribution (Xie et al., 2019). In both of these cases, the sufficient statistics are optimized according to
a gradient estimation technique that approximates the gradient corresponding to the sufficient statistics
based on the gradients received by the sampled operations.

We argue that the mere act of using sample-based NAS is a way to circumvent the problem of low layer
alignment. Firstly, because such a formulation of the NAS problem completely eliminates the issue of
convergence at softmax saturation points, thus preventing the optimal architecture to be completely dictated
by the layers closer to the input. Secondly, because the sampled architecture in a cell-based NAS method is
used on all of the cells, sampling itself comes with an implicit prior that the optimal architecture according
to each layer must be the same. Therefore, sample-based NAS can be also viewed as a way to enforce
high layer alignment in an a priori fashion. Therefore, we can see sampled-based differentiable NAS as
a way of solving the problem of performance collapse. But we should note that since in these methods
only a subset of the supernet is optimized, they usually come with the caveat of low sample efficiency
and longer search time (Ren et al., 2021).

A.4 REGULARIZATION OF THE OUTER OBJECTIVE

An interesting point to consider is whether we can apply the regularization term of Λ-DARTS over the
outer objective, which will directly optimize the architecture parameters α. Here, we will first investigate
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Table 5: The test performance of architectures discovered by Λ-DARTS with the regularization term
applied to the inner objective (inner), and the regularization term applied to the outer objective (outer). The
search is performed on CIFAR-10 and the NAS-Bench-201, and the mean and standard deviation of three
runs is reported.

Model CIFAR-10 Acc (%) CIFAR-100 Acc (%) ImageNet Acc (%)
Λ-DARTS (inner) 93.95±0.15 72.75±0.42 45.49±0.08
Λ-DARTS (outer) 91.37±1.59 67.87±1.57 41.6±2.11

Table 6: The test performance of P-DARTS, P-DARTS- (P-DARTS with auxiliary connections), and
P-DARTS with the proposed regularization term. In all experiments, the prior assumptions of P-DARTS
are removed. The search is performed on CIFAR-10 and the DARTS search space, and the mean and
standard deviation of three runs is reported.

Model CIFAR-10 Acc (%)
P-DARTS (w/o priors) (Chen et al., 2021b) 96.48±0.55
P-DARTS- (w/o priors) (Chen et al., 2021b) 97.28±0.04
Λ-P-DARTS (w/o prios) 97.34±0.06

this matter from a theoretical standpoint, and provide two points that shows the sub-optimality of such
approach. Then provide empirical results to confirm our analytical findings.

The first problem with regularizing the outer objective has to do with the fact that the gradient of p(i,j)o

does not directly depend on p
(i,j)
o itself, but the output of the corresponding operation o(.) and the gradient

of the receiving node xj, as observed in (16). Therefore, increasing the layer alignment must be done
by changing the composition of the operations of the layers in the higher layers to adjust ∂L

∂ℓxj
, while

changing the composition of the operations in the lower layers to adjust o(ℓxi). Considering the small
size of α, and the weight-sharing framework, this may be an impossible task that may result in overfitting
on the regularization term as well.

Another issue we need to take note of is the connection between the problem of low layer alignment and
the iterative estimation theory, as noted in Appendix-A.2. Assuming the problem of low layer alignment
is caused by the orthogonality of the output of convolution operations in each layer, then resolving this
problem is only possible through regularizing the convolution operations themselves. While it may be
possible to resolve the issue through adjusting the input, we note that as pointed in the previous paragraph,
this adjustment may lead to overfitting due to the low complexity of the model with respect to α.

In order to provide empirical evidence for our analysis, we tried to perform the regularization on the outer
objective. You can see the results of 50 epochs of search in Table-5, where we compared Λ-DARTS
with inner objective regularized with Λ-DARTS with outer objective regularized. Clearly, we observe
that regularizing the outer objective performs poorly compared to the case where we regularized the
inner objective. This observation further supports our analytical reasoning, and shows that performing the
regularization on ω yields more superior and robust performances compared to regularizing α.

A.5 COMBINATION WITH ORTHOGONAL VARIANTS OF DARTS

In this section, we will empirically demonstrate that our method can be extended to orthogonal variants
of DARTS to yield better and more robust results. Specifically, we will discuss two popular variants of
DARTS, P-DARTS and SDARTS, and how Λ-DARTS can eliminate the need for strong prior assumptions
or costly regularization in these methods.

A.5.1 PROGRESSIVE-DARTS AND THE PROBLEM OF STRONG PRIOR ASSUMPTIONS

Progressive-DARTS (P-DARTS) is a low-cost variant of DARTS that is based on performing the search in
a progressive manner. P-DARTS performs the search in three stages, with each stage eliminating some of
the candidate operations while also making the search model deeper and more similar to the evaluation
architecture (Chen et al., 2021b). One of the issues with PC-DARTS is its reliance on two very strong priors
in the search process: 1) limiting the number of skip-connections to two, which severely reduces the size of
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Table 7: The test performance of SDARTS-RS, SDARTS-ADV, and SDARTS-RS with the proposed
regularization term. The search and evaluation is performed on CIFAR-10 and the DARTS search space,
and the mean and standard deviation of three runs is reported. The search cost is reported based on GPU
days on a 1080 Ti.

Model Test Acc Search Cost
(%) (GPU days)

SDARTS-RS (Chen & Hsieh, 2020) 97.33±0.03 0.4
SDARTS-ADV (Chen et al., 2021b) 97.39±0.02 1.3
Λ-SDARTS-RS 97.42±0.04 0.8

the search space, 2) using dropout on skip-connections to limit their utility during search. Following (Chu
et al., 2021), here we will show that Λ-DARTS can eliminate the need for both of these strong priors, which
further validates the effectiveness of our method. You can see the results in Table-6.

We can see that our method successfully removes any need for strong prior assumptions or auxiliary
connections in the progressive search format, achieving superior performance to both cases. We note that
these results are attained without any adjustment to the hyperparameters of Λ-DARTS, which is likely going
to further benefit the results, considering that the progressive framework changes the macro-architecture
and the search space significantly in each stage.

A.5.2 SDARTS AND THE PROBLEM OF COSTLY REGULARIZATION

SDARTS is a variant of DARTS that aims to improve generalization by regularizing the Hessian of the
loss function corresponding to the architecture parameters (Chen & Hsieh, 2020). The regularization is
done through additive noise to the architecture parameters during the optimization of operation parameters
(ω). There are tow methods proposed by (Chen & Hsieh, 2020) based on this idea: 1) SDARTS-RS and 2)
SDARTS-ADV. SDARTS-RS is based on random perturbations sampled from a uniform distribution, while
SDARTS-ADV utilizes the costly method of projected gradient descent to produce adversarial perturbations.
One of the issues with SDARTS-RS is that it is not as effective as the costly method of SDARTS-ADV,
which needs more than four forward-backward propagations to estimate an effective perturbation. Here,
we will show that by combining our proposed method with SDARTS-RS, we will achieve better results
than both SDARTS-RS and SDARTS-ADV, at the cost of only two forward-backward propagations.

In Table-7, you can see the performance of SDARTS with and without adversarial perturbations, and
compare them to that of Λ-SDARTS-RS, which utilizes our proposed regularization term along with
the random perturbation regularization of SDARTS-RS. Clearly, our proposed regularization completely
eliminates the need for costly adversarial training, reducing the cost to almost half of what SDARTS-
ADV requires. This observation further proves the importance of increasing the layer alignment in
DARTS, regardless of the type of DARTS variant used during search. We note that these results are
attained without any adjustment to the hyperparameters of Λ-DARTS, which is likely going to further
benefit the results, considering that the Hessian regularization is likely to change the optimal ϵ0 due
to changes in the loss landscape.

A.6 PERFORMANCE COLLAPSE WITH MORE EPOCHS

Recently, it has been shown that performance collapse happens more consistently and frequently the longer
the search process is performed (Bi et al., 2019). This observation is inline with our analysis, which shows
the negative impacts of low layer alignment becomes more pronounced with longer epochs of search,
which is attributed to the softmax saturation point and vanishing gradients. In order to show that Λ-DARTS
has successfully alleviated this problem even in the most complex search spaces, we performed the search
on the DARTS search space for 200 epochs following (Bi et al., 2019). You can see the results in Table-8.

Clearly, our method successfully mitigates performance collapse even in the most complex search spaces.
Among the baselines, the only method with comparable performance to Λ-DARTS is Amended-DARTS,
which performs the search at 50% more search cost due to its second-order nature. Furthermore, comparing
the number of parametric operations, we can see that our method is much better at discovering efficient
architecture that are not unnecessarily over-parameterized. On the otherhand, Amended-DARTS perform
poorly despite the fact that it has two more parametric operations. Furthermore, we can see that the

20



Published as a conference paper at ICLR 2023

Table 8: The test performance of Random Search, DARTS (first and second order), P-DARTS, PC-DARTS,
Amended-DARTS, and Λ-DARTS after 200 epochs of search on CIFAR-10. All results, except for
Λ-DARTS, are borrowed from (Chen et al., 2021b). The search cost is reported based on GPU days on a
1080 Ti, and inferred from reported costs for the baselines. Note that here, (#P) corresponds to the number
of parametric operations in the normal cell.

Model Test Acc (%) #P Search Cost
(%) (GPU days)

Random Search (Bi et al., 2019) 96.71 - -
DARTS (1st) (Liu et al., 2019) 93.82 0 1.6
DARTS (2nd) (Liu et al., 2019) 94.85 0 4.0
P-DARTS (Chen et al., 2021b) 94.62 0 1.2
PC-DARTS (Xu et al., 2020) 96.85 3 0.4
Amended-DARTS (Bi et al., 2019) 97.29 7 4.8
Λ-DARTS 97.34 5 3.2

Table 9: The test performance of Λ-DARTS, compared with baselines, with the search and evaluation
performed on ImageNet and the DARTS search space.

Model ImageNet Top-1 Acc ImageNet Top-5 Acc
(%) (%)

NASNet-A (Zoph et al., 2018) 74.0 91.6
DARTS (2nd) (Liu et al., 2019) 73.3 91.3
SNAS (Xie et al., 2019) 72.7 90.8
GDAS (Dong & Yang, 2019) 74.0 91.5
P-DARTS (Chen et al., 2021b) 75.3 92.5
PC-DARTS (Xu et al., 2020) 75.8 92.7
DrNAS (Chen et al., 2021a) 75.8 92.7
SDARTS-ADV (Chen & Hsieh, 2020) 74.8 92.2
DOTS (Gu et al., 2021) 75.7 92.6
DARTS+PT (Wang et al., 2021) 74.5 92.0
β-DARTS (Ye et al., 2022) 75.8 92.9
Λ-DARTS-Λ(ω,α) 75.9 93.0

only models performing better than random baseline are PC-DARTS, Amended-DARTS, and Λ-DARTS.
Considering the connection between Λ-DARTS and PC-DARTS, as pointed out at Appendix-A.3, this
observation further proves the role of vanishing gradient and low layer alignment in performance collapse.

A.7 SEARCH RESULTS ON IMAGENET

In this section, we provide the search and evaluation results for the ImageNet dataset. The search was
performed on the setting proposed by PC-DARTS (Xu et al., 2020), on a search model with 8 layers (6
normal and 2 reduction cells) and 16 initial channels. Following PC-DARTS we randomly sampled 10%
and 2.5% of the ImageNet dataset for optimizing ω and α, respectively. We used a batch size of 384 and a
learning rate of 0.5 which is linearly decayed to 0.0. The evaluation was performed with a similar setting,
for 250 epochs with a model with 14 layers and 48 initial channels. You can see the results in Table-9.

We can see that our proposed method improves upon all baselines both in terms of top-1 and top-5 accuracy.
We improve upon the performance of DARTS by 2.5% in terms of top-1 accuracy and 1.7% in terms of
top-5 accuracy. Furthermore, we beat the best-performing baseline, namely β-DARTS, by a margin of
0.1% in terms of top-1 accuracy and 0.1% in terms of top-5 accuracy. We also note that DrNAS utilizes
a slightly different setting for search, which performs the search on a search model with 14 layers and
48 initial channels, similar to the evaluation model. Despite this advantage, our proposed method beats
the performance of DrNAS by a margin of 0.1% on top-1 accuracy and 0.3% on top-5 accuracy. The
discovered architectures can be seen in Figure-22.
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Table 10: The test performance of architectures discovered by Λ-DARTS with central finite difference
approximation (ctr) and forward/backward finite difference approximation (f/b) for 50 epochs of search on
CIFAR-10.

Method CIFAR-10 Acc (%) CIFAR-100 Acc (%) ImageNet Acc (%)
Λ-DARTS (ctr) 94.04±0.03 72.75±0.42 45.49±0.08
Λ-DARTS (f/b) 93.95±0.15 72.33±0.71 44.98±0.90

A.8 SEARCH COST

One of the important factors in NAS is the cost of performing the search on a large-scale dataset, which is
usually measured in terms of GPU hours or GPU days on the DARTS search space and the CIFAR-10
dataset (Elsken et al., 2019). Since Λ-DARTS requires two extra forward-backward passes to estimate
the gradients of the regularization term, it costs twice as much as DARTS to perform the search on the
same dataset. Therefore, the cost of our method in terms of GPU days is 0.8 days on a GTX 1080
Ti GPU on the DARTS search space and CIFAR-10 dataset, which is 20% less than the second-order
DARTS (at 1.0 GPU days) and about 40% less than SDARTS-ADV (at about 1.3 GPU days), both of
which perform inferior to our model.

In order to reduce the search cost and make our method comparable to most baselines, we can per-
form forward or backward finite difference approximation instead of a central difference approxima-
tion (Shen et al., 2020):

∇fwd
ω Λ(ω,α)=

1(
L
2

)[∇ωL(ω,P+ϵ∆)−∇ωL(ω,P )

ϵ

]
+O(ϵ), (24)

∇bwd
ω Λ(ω,α)=

1(
L
2

)[∇ωL(ω,P )−∇ωL(ω,P−ϵ∆)

ϵ

]
+O(ϵ). (25)

Note that since ∇fwd
ω Λ(ω,α) and ∇bwd

ω Λ(ω,α) are biased estimations, we can use them in an interleaved
fashion, where we perform forward estimation for one mini-batch, and a backward estimation in the
next. This will reduce the cost by 25%, putting our method at around 0.6 GPU days, which is only 50%
more than the original first-order DARTS (at 0.4 GPU days), and comparable to DrNAS with progressive
search. You can see a thorough comparison with state-of-the-art NAS models in terms of performance
on CIFAR-10 and search cost in Table-11.

In order to show the reduction in the accuracy of the estimation does not reduce the effectiveness of
Λ-DARTS, we have provided the results of discovered architectures by this low-cost method compared to
the central method for 50 epochs on the NAS-Bench-201 search space on CIFAR-10 in Table-10. We can
see that in all three datasets, the drop in average performance is negligible (less than 0.1% in CIFAR-10
and less than 0.5% in CIFAR-100 and ImageNet). Therefore, it is clear that using forward/backward finite
difference approximation can be a good technique to reduce the cost of searching on large datasets, which
makes our method comparable to DrNAS in terms of cost for large scale applications.

A.9 EXPERIMENT SETTINGS

A.9.1 NAS-BENCH-201 SEARCH SPACE

NAS-Bench-201 provides a DARTS-like cell-search framework, where we search for a single cell containing
3 nodes and 5 operations. The performance of the discovered architecture on CIFAR-10, CIFAR-100,
and ImageNet16-120 datasets can be attained by querrying the database provided by (Dong & Yang,
2020). We used the implementation of (Dong & Yang, 2020) for our search. The operation parameters
(ω) are optimized using stochastic gradient descent with Nestrov momentum. The learning rate is set
to 0.025, gradually reduced to 0.001 using cosine scheduling. The weight decay and momentum are
set to 0.0005 and 0.9, respectively.

For architecture parameters (α), we use Adam with the learning rate set to 10−4 and the weight decay
rate set to 0.001. The momentum values β1 and β2 are set to 0.5 and 0.999, respectively. We perform the
search on CIFAR-10 for 100 epochs, and we set ϵ0=0.0001 and λ=0.125 for this experiment.
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Table 11: Comparison with state-of-the-art NAS models on the CIFAR-10 dataset. We provide the search
cost based on GPU days on a 1080 Ti.

Method Test Acc Params Search Cost
(%) (M) (GPU days)

NASNet-A (Zoph et al., 2018) 97.35 3.3 2000
ENAS (Pham et al., 2018) 97.11 4.6 0.5
DARTS (1st) (Liu et al., 2019) 97.00±0.14 3.4 0.4
DARTS (2nd) (Liu et al., 2019) 97.24±0.09 3.3 1.0
SNAS (Xie et al., 2019) 97.15±0.02 2.8 1.5
GDAS (Dong & Yang, 2019) 97.07 3.4 0.3
P-DARTS (Liu et al., 2018) 97.50 3.4 0.3
R-DARTS (Zela et al., 2020) 97.05±0.21 - 1.6
PC-DARTS (Xu et al., 2020) 97.43±0.07 3.6 0.1
DrNAS (Chen et al., 2021a) 97.46±0.03 4.0 0.4
SDARTS-ADV (Chen & Hsieh, 2020) 97.39±0.02 3.3 1.3
DARTS- (Chu et al., 2021) 97.41±0.08 3.5 0.4
DARTS+PT (Wang et al., 2021) 97.39±0.08 3.0 0.8
Λ-DARTS - Λ(ω,α) 97.48±0.11 3.5 0.8
Λ-DARTS - Λ±(ω,α) 97.57±0.05 3.6 0.8

A.9.2 DARTS SEARCH SPACE

The search space of DARTS contains two types of cells: Normal and Reduction, corresponding to layers
with stride of 1 and 2, respectively. Each cell has 4 intermediate nodes and 7 operations. Here, we only
apply the regularization term to the normal cell, since the performance collapse is not usually associated
with the reduction cell (Zela et al., 2020). We used the implementation provided by (Wang et al., 2021;
Chen & Hsieh, 2020). The operation parameters (ω) are optimized using stochastic gradient descent with
momentum. The learning rate is set to 0.025, gradually reduced to 0.001 using cosine scheduling. The
weight decay and momentum are set to 0.0003 and 0.9, respectively.

For architecture parameters (α), we use Adam with the learning rate set to 3×10−4 and the weight decay
rate set to 0.001. The momentum values β1 and β2 are set to 0.5 and 0.999, respectively. We perform
the search on CIFAR-10 for 50 epochs, and we set the value for λ to 0.25 for Λ(ω,α) and 0.125 for
Λ±(ω,α). In both cases, we set the value of ϵ0 to 0.0001.

A.9.3 REDUCED SEARCH SPACES

The four search spaces proposed by (Zela et al., 2020) contain some subset of the operations used in the
DARTS search space, except for the fourth search space which contains convolutions and random noise
as operations. Otherwise, the cells have the same structure as in the DARTS search space.

We perform the search and evaluation on three different datasets: CIFAR-10, CIFAR-100, and SVHN.
For CIFAR-10, the search setting is the same as in Section-5.2. For SVHN and CIFAR-100, we increase
the batch size and the value of ϵ0 to 96 and 0.001, respectively. The evaluation setting for these datasets
is the same as in (Zela et al., 2020). For all experiments, we only report the results of Λ(ω,α), since
both methods perform similarly.

A.9.4 ABLATION STUDY

For this experiment, we used the exact same setting as in Section-5.1, except for the architecture learning
rate. For the experiments on ϵ0 and λ, the architecture learning rate is set to 3×10−4. For the experiments
on the number of epochs, the architecture learning rate is set to 3×10−4 when performing the search for
50 epochs, and reduced to 10−4 when performing the search for more than 50 epochs.

For experiments corresponding to ϵ0, we set λ=0.125, while for experiments corresponding to λ, we set
ϵ0=0.0001, and for experiments corresponding to the number of epochs, we set ϵ0=0.0001 and λ=0.125.
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A.10 PROOF OF PROPOSITION 1

Proof: Using simple linear algebra, we can re-write the squared norm of the gradient ∇αL(ω,α) as:

∥∇αL(ω,α)∥22=∥Jσ(α)∇pL(ω,α)∥22=∇pL(ω,α)TJσ(α)
TJσ(α)∇pL(ω,α). (26)

Now using the assumption that ∇pL(ω,α) is the sum of vectors orthogonal to the null-space of the
Jacobian matrix and the fact that Jσ(α)

TJσ(α) is a positive semi-definite matrix, we can give the
following lower-bound for this term (Meyer, 2000):

∇pL(ω,α)TJσ(α)
TJσ(α)∇pL(ω,α)≥ min

i,λi(α)̸=0
λ2i ·∥∇pL(ω,α)∥22. (27)

Since we assume the gradient ∇pL(ω,α) can be written as the sum of orthogonal layer gradients, its norm
can be lower bounded by the smallest gradient (Meyer, 2000):

∥∇pL(ω,α)∥22=∥
L∑

ℓ=1

∇ℓpL(ω,α)∥22 (28)

=

L∑
ℓ=1

∥∇ℓpL(ω,α)∥22 (29)

≥L·min
ℓ
∥∇ℓpL(ω,α)∥22, (30)

where 29 follows from the orthogonality. So using (27) and (30), we can get:

∥∇αL(ω,α)∥22≥ min
i,λi(α)̸=0

λ2i ·L·min
ℓ
∥∇ℓpL(ω,α)∥22. (31)

A.11 DISCOVERED ARCHITECTURES
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Figure 8: Best normal and reduction cells discovered by Λ(ω,α) on DARTS search space and CIFAR-10
dataset.
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Figure 9: Best normal and reduction cells discovered by Λ±(ω,α) on DARTS search space and CIFAR-10
dataset.
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Figure 10: Best normal and reduction cells discovered by Λ(ω,α) on S1 and CIFAR-10 dataset.
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Figure 11: Best normal and reduction cells discovered by Λ(ω,α) on S2 and CIFAR-10 dataset.
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Figure 12: Best normal and reduction cells discovered by Λ(ω,α) on S3 and CIFAR-10 dataset.
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Figure 13: Best normal and reduction cells discovered by Λ(ω,α) on S4 and CIFAR-10 dataset.
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Figure 14: Best normal and reduction cells discovered by Λ(ω,α) on S1 and CIFAR-100 dataset.
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Figure 15: Best normal and reduction cells discovered by Λ(ω,α) on S2 and CIFAR-100 dataset.
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Figure 16: Best normal and reduction cells discovered by Λ(ω,α) on S3 and CIFAR-100 dataset.
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Figure 17: Best normal and reduction cells discovered by Λ(ω,α) on S4 and CIFAR-100 dataset.
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Figure 18: Best normal and reduction cells discovered by Λ(ω,α) on S1 and SVHN dataset.

26



Published as a conference paper at ICLR 2023

c_{k-2}

0

sep_conv_3x3
2

sep_conv_3x3

c_{k-1}

skip_connect

1
sep_conv_3x3

sep_conv_3x3

3sep_conv_3x3

sep_conv_3x3 c_{k}

sep_conv_3x3

(a) Normal Cell

c_{k-2}

0

skip_connect
2skip_connect

c_{k-1}
skip_connect

1skip_connect

skip_connect

sep_conv_3x3

3sep_conv_3x3
c_{k}

sep_conv_3x3

(b) Reduction Cell

Figure 19: Best normal and reduction cells discovered by Λ(ω,α) on S2 and SVHN dataset.
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Figure 20: Best normal and reduction cells discovered by Λ(ω,α) on S3 and SVHN dataset.
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Figure 21: Best normal and reduction cells discovered by Λ(ω,α) on S4 and SVHN dataset.
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Figure 22: Best normal and reduction cells discovered by Λ(ω,α) on DARTS search space and the
ImageNet dataset.
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