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Abstract

With the press of global climate change, extreme
weather and sudden weather changes are becom-
ing increasingly common. To maintain a comfort-
able indoor environment and minimize the contri-
bution of the building to climate change as much
as possible, higher requirements are placed on
the operation and control of HVAC systems, e.g.,
more energy-efficient and flexible to response
to the rapid change of weather. This places de-
mands on the rapid modeling and prediction of
zone air temperatures of buildings. Compared to
the traditional simulation-based approach such as
EnergyPlus and DOE2, a hybrid approach com-
bined physics and data-driven is more suitable.
Recently, the availability of high-quality datasets
and algorithmic breakthroughs have driven a con-
siderable amount of work in this field. However,
in the niche of short- and long-term predictions,
there are still some gaps in existing research. This
paper aims to develop a time series forecast model
to predict the zone air temperature in a building
located in America on a 2-week horizon. The
findings could be further improved to support in-
telligent control and operation of HVAC systems
(i.e. demand flexibility) and could also be used as
hybrid building energy modeling.

1. Introduction

In order to address the impacts of extreme weather events
and global climate change. HVAC system plays an im-
portant role in the field of indoor environment control and
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carbon emission reduction. Real-time dynamic control of
the system is a prerequisite for achieving the above two
objectives, which requires fast and accurate predictions of
room temperature, so that the setpoint of the air system and
the water system can be set at a suitable value.

Some simulation tools such as EnergyPlus and DOE2 with
their derivative software could be applied to compute the
zone air temperature in abstract thermodynamic networks.
However, dynamic simulation requires high computing
power and lacks flexibility when some input parameters are
changed (Reinhart & Davila, 2016) (Nutkiewicz et al., 2021).
In contrast, for real-time rapid prediction, data-driven ap-
proaches offer better performance with high computational
efficiency and fast adjustment of the input feature. Recently,
some research has reported the precision and efficiency of
this approach, such as Godinho et al. (Godinho et al., 2021)
and Hu et al. (Hu & You, 2023). However, related works
normally utilize a considerable number of features as input
included exogenous variants, which improve difficulty in ob-
taining reliable datasets and may hinder the understanding
of model predictions.

To address the above issues, hybrid modeling (or gray-box
modeling) is considered a potential solution. Therefore,
it could take advantage of both the simulation-based or
physics-based approaches as well as the data-driven ap-
proach (Nutkiewicz et al., 2018). Typically, the hybrid
model combines statistical techniques to reduce the number
of physical building characteristics that need to be input.
There are several methods to achieve this goal. A number of
work aims to develop a simulation-based tool equipped with
a comprehensive parameter database Based on extensive sta-
tistical data to reduce the required input information, such as
SimStadt (Nouvel et al., 2015), City Energy Analyst (Fon-
seca et al., 2016) and TEASER (Remmen et al., 2018). An-
other common method is to calibrate the Resistor-Capacitor
(RC) model using optimization algorithms to predict indoor
temperature (Wei et al., 2022) (Li et al., 2017), thermal
load (Ogunsola et al., 2014) (Ogunsola & Song, 2015) , and
other factors such as solar heat gain (Omar et al., 2017)
and peak load (Vivian et al., 2017). Furthermore, another
possible implementation method is to apply the simulation
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approach in some zones and a data-driven approach in other
zones(Foucquier et al., 2013). In addition, with the help of
explainable tools, the model based on data-driven approach
could be understood the impact of different input features,
which is not an absolute “black-box” model. This kind of
model could also be considered as a hybrid model because
the explanation is usually based on physics principles (Fan
et al., 2019) (Mouakher et al., 2022).

As mentioned above, a considerable number of research
studies have attempted to explain the relationships between
input features and responses to the building system by post
hoc interpretability (Lipton, 2018) with the help of tools
such as SHapley Additive exPlanations (SHAP) (Lundberg
& Lee, 2017) and Local Interpretable Model-Agnostic Ex-
planations (LIME) (Ribeiro et al., 2016). This can enhance
users’ understanding and trust in the model’s principles.
However, the relationships between the parameters them-
selves may be even more important, as this could simplify
data collection as much as possible, thus reducing the cost of
data sampling and improving the transferability of research
results.

In the above context, this paper aims to develop a time
series forecast model with explainable features for zone air
temperature for intelligent building control such as agent-
based reinforcement learning. The two potential highlights
are as follows:

Long-term time-series auto-regressive prediction: Long-
term prediction with time series auto-regression and ther-
modynamic principles for zone air temperature to optimize
the HVAC system control strategy.

Spatial-temporal prediction for different zones: As the
impacts of features on zone air temperature forecast differ
from one location to another (i.e. perimeter zone vs core
zone), the paper investigates on how to improve the accu-
racy of the prediction model by incorporating such spatial
information.

2. Problem understanding

As mentioned in the Introduction, the goal of the article is to
develop a model in which, given the exogenous validation
information, it can predict the zone air temperature. Fur-
thermore, with this amount of data to model and understand
important building dynamics, it can be used for downstream
tasks such as determining thermal comfort and reducing
energy consumption for the cooling and heating systems of
smart buildings.

Data were collected from a smart building that is equipped
with a typical VAV system(Goldfeder et al., 2025). The main
contents of the data set include the following elements:

1. The observation values and action values of the HVAC

system in this building.
2. The outside whether data.
3. Information about the HVAC system/devices.

4. The floor plan of the building and the distribution of the
devices.

For the contents of 1 and 2, the data include five datasets
from January 2022 to June 2024, e.g., 2022a, 2022b, 2023a,
2023b, 2024a. The data in each single year were divided
into 2 parts, data in the first 6 months will be used as a train
dataset, and the last 6 months will be used as validation
dataset. For the contents of 3, the ids, names, types, and
monitored values of the devices were listed, and for the con-
tents of 4, the floor plans of the building and the distribution
of the devices were used as a two-dimensional matrix to
illustrate the horizontal coordinates. The details are shown
in Table 1. Meanwhile, the floor plan and the device distri-
bution are shown in Figure 1. As shown in the figure, it is a
typical all-air variable air volume (VAV) system consisting
of a chilled and cooling water system, an air handling unit,
and multiple VAV units in each thermal zone.
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Figure 1. Floorplan of the case building

As shown in Table 1, the size of this data set is relatively
large with more than 2GB in total. There are more than
1,000 variables, including outdoor air temperature, power,
etc. Thus, preprocessing the data required domain knowl-
edge to identify several key features as input for the model.
As aresult, we selected the input features that include out-
door air temperature, actual air temperature and flow rate of
the zone, heating and cooling set points of the zone for each
forecast of air temperature of the zone, as shown in Figure 2
below.

For the first phase, we have made the following assumption:
temperature changes in each area corresponding to each
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Table 1. The Content of the Dataset

DATA TYPE DESCRIPTION

OBSERVATION VALUES (ALL
DEVICES)

PERATURE SENSOR
OBSERVATION VALUES (PAR-
TIAL DEVICES)

SUPPLY AIR FLOW RATE SET POINT, SUPPLY AIR FLOW RATE SENSOR, ZONE AIR COOLING
TEMPERATURE SET POINT, ZONE AIR HEATING TEMPERATURE SET POINT, ZONE AIR TEM-

ZONE AIR CO; CONCENTRATION SET POINT, ZONE AIR CO, CONCENTRATION SENSOR, DIS-
CHARGE AIR TEMPERATURE SET POINT, OUTSIDE AIR FLOW RATE SET POINT, OUTSIDE AIR

FLOW RATE SENSOR, DISCHARGE AIR TEMPERATURE SENSOR, MIXED AIR TEMPERATURE
SET POINT, MIXED AIR TEMPERATURE SENSOR, ETC.

ACTION VALUES OF DEVICES
OUTSIDE WEATHER DATA

SUPPLY AIR TEMPERATURE SET POINT, SUPPLY WATER TEMPERATURE SET POINT
OUTSIDE AIR WET BULB TEMPERATURE SENSOR, OUTSIDE AIR TEMPERATURE SENSOR,

OUTSIDE AIR SPECIFIC ENTHALPY SENSOR, OUTSIDE AIR RELATIVE HUMIDITY SENSOR,
OUTSIDE AIR DEW POINT TEMPERATURE SENSOR

DEVICE METADATA

DEVICE ID, DEVICE NAMESPACE, DEVICE TYPE, DATA RECORDED BY THE DEVICE

Input

Outside Temperature

Weather —>
Sensor

Prediction Model
based on Machine
Learning Regression
Algorithm

Output

Prediction of Zone Air
— Temperature in the next
timepoint

v

Figure 2. Input and Output Used for the Model

VAV are independent of each other. Under this assumption,
the model could be trained with the data of only each indi-
vidual VAV. However, for the core and perimeter zones, due
to differences in heat transfer levels between the indoor and
outdoor environment, the impact of outdoor temperatures
on indoor zone air temperatures is undoubtedly different.
Therefore, in order to reflect such differences, in the second
phase, model correction and validation are necessary. In
addition, since the time step in the dataset is 5 minutes, fre-
quent predictions are not necessary as adjustments cannot
achieve ideal control results considering the thermal mass
effects in building envelopes. Therefore, we further down-
sampled the data and developed models with a timestep of
15 minutes and 1 hour, respectively.

Therefore, based on the above analysis using prior/domain
knowledge in the fields of HVAC and building physics,
combined with the characteristics of the dataset, we aim to
develop a time-series forecast model for zone air temper-
ature prediction based on data from each individual VAV
box first. Furthermore, the impact of spatial location on the
prediction results will be verified and corrections will be
established based on the location of the VAV box.

3. Methodology

To develop the model, we split the data into train data and
validation data. For the data in 2022 and 2023, the data in
the first 6 months of the year will be used as train dataset
and in the last 6 months will be used as validation dataset.
To further validate the model’s performance, we used data
from the first half of 2024 as the test set. Meanwhile, in
order to achieve predictions across different time spans, we
sliced the data according to a duration of 2 weeks.

The zone air temperature forecast is developed with a hybrid
data-driven and thermodynamic model. After preprocessing
including feature selection, missing data imputation, and
outlier removal, the input features of the model include
outside air temperature and actual zone air temperature,
actual zone air temperature setpoint, actual supply pressure
setpoint of the last n (i = 1,2,..n) weeks, and the output is
the predicted temperature of the next n weeks (i = 1,2..n).
The forecast model diagram is shown below:

Outside
temperature T;_;
Basic standard: MAPE <5%
‘ Model training ‘ ‘ {(Mean Absolute Percentage Error) ‘
Actual zone - — - —
— Algorithm optimized modelling Predicted zone air
‘ ‘ temperature T5,

Model testing

Actual setpoints

t—i t—i
Tsetpoine Fsetpomnt

Figure 3. Data-driven thermodynamics model

Moreover, for time-series forecast models, a hierarchical pre-
diction module is developed, and the best model is selected
with a model selection algorithm called time-series cross-
validation. As mentioned above, the paper uses various
regression algorithms, including random forecast regression,
Gaussian process regression, Adaboost regression, gradient
boosting regression, and XGBoost regression. All different
regressions are developed with multivariate auto-regressive
approach. In addition, mean absolute error (MAE) and
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root mean square error (RMSE) are used to evaluate the
performance of the forecast models.

4. Post-launch performances

By comparing performance of the different models, a time-
series prediction model based on XGBoost combined with
self-regression is developed to predict the zone air tempera-
ture with a horizon of 2 weeks.

As aresult, the average MAE is 4.20 and the average RMSE
is 4.8, indicating that the air temperature error is approxi-
mately 4°F. Therefore, in the second phase a more accurate
zone air temperature prediction could be achieved. In ad-
dition, we selected 3 VAVs located in different positions to
illustrate the performance of the prediction model. The first
is on the 2nd floor which is named as *VAV RH 2-2-50" with
No. 2620112368775269. The second is located in the north
room on the first floor which is named as VAV RH 1-1-19°
with No. 2622037806906769. The third is located in the
south room on the first floor which is named as *VAV CO
1-1-51" with No. 2758068039436455. The predicted zone
air temperature for the above 3 VAVs in 2 weeks is shown
in Figure 4, Figure 5, Figure 6. As shown in figure, the zone
air temperature has fluctuated between 65°F and 75 °F.

For the above VAV boxes, the performances differ from each
other. This may be due to two potential reasons. Firstly,
since the model is independent of spatial location, this may
affect the impact of solar radiation, which is not an input
parameter of the model. The second reason may be that the
devices have different functions. The above two points are
potential paths for further optimization and improvement of
the model in the future.

2022.07.01 20220703 2022:07.05 2022.07.07 2022.07.09 20220711 20220713 20220715

Figure 4. Post-launch performance of indoor air temperature
changes for the 1st VAV

S. Potential application

For smart building systems, with a long-horizontal time
series forecast model, real-time optimization of the HVAC
system could be achieved for energy and cost savings. Here
is one of the potential applications.

Device - 2-Week Forecast

Figure 5. Post-launch performance of indoor air temperature
changes for the 2nd VAV
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Figure 6. Post-launch performance of indoor air temperature
changes for the 3rd VAV

Even if local policies support hourly flexible tariffs accord-
ing to seasons, there is no response to the dynamic shift of
the peak valley of power for most commercial buildings,
which causes cost and energy waste. Fortunately, due to the
inherent flexibility of the building cooling loads from the
thermal mass characteristics of various building envelopes
(i.e., wall, ceiling, etc.), a more comfortable and energy-
efficient environment could be achieved by energy flexibility
optimization.

The overall energy flexibility optimization case study can be
divided into mainly two parts: zone air temperature forecast,
and temperature & pressure setpoint control. The utility rate
there has flexible tariffs, and the optimized actions can be
transmitted in real time to the machine with an industrial
protocol such as Modbus or BACNet.

With the prediction model, for each timestep, the setpoint
controls are based on the convex optimization model using
the data-driven forecast model and flexible tariffs. The
optimization model has the following formula in figure 7.

The objective function is to minimize both the overall costs
and the deviation between the sequential indoor air tem-
perature to follow the tariff signal as much as possible &
regularize temperature to change slowly. Since it is assumed
that the AHU supply pressure differential setpoint has a
linear correlation with the AHU power following P o< Ap,
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mi"Z(C: = elecp, = up)? ”Z [P Follow the utility signals as well as possible & regularize
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- temperature to avoid steep change
s.t. X, = f(x, x_sety, d, . B .
o1 = 1C e 2 Thermodynamics of the indoor environment
X X=X
= Temperature should be within user-specified range
Up = U= U
Operate within equipment limits

where
x¢ is zone temperature,
x_set, is setpoints,
d, is disturbance, e.g., weather,
u is the control action of AHU/Chiller power,
¢, is overall utiity costs from the HVACs (i.e. AHU, chiller)

Figure 7. Energy flexibility Optimization model

the pressure differential setpoint can be derived from the
AHU power. Moreover, since the AHU supply temperature
setpoint affects the chiller power, it can also be derived from
another control variable of the chiller power. A simplified
calculation formula is used to calculate the change in the
chiller power.

n
Qcool demand = § Mair,i - Cpair * (Tzone,i — Tone selpoim,i)
=1

Qcool supply — mwater * Cp,water * (T}etum - Tsupply)
P Qcool supply
chiller =
COpP

Qcool demand — Qcool supply

where the COP is calculated in real time (Lu, 2023),
(ool demand Tepresents the indoor cooling demand of the
AHU, and Qcool supply denotes the cooling supplied by the
chiller to the AHU. It is assumed that there is only one AHU
unit in the building.

In total, with the forecast model and the optimization model,
data-driven model predictive control is used to continuously
control the setpoints optimally shown in 8. In addition to
1-hour AHU operation according to tariffs and predictions,
predictive control of the 5-minute model with VAV boxes
ensures further energy savings while still maintaining com-
fortable indoor air temperature in the smart building.

6. Conclusion

This paper aims to propose a time-series forecast model
for zone air temperature with long horizon. In addition,
flexibility optimization of HVAC control strategies using
the predicted indoor thermodynamics forecast model and
data-driven model predictive control could be a potential
downstream application. As a result, an ensemble forecast
model for 2-week zone air temperature is developed and will
take into account the location and orientation of each ther-
mal zone in the second phase. Moreover, for the potential
application, there is high scaling potential with cloud solu-
tions for the data-driven model predictive control system
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Figure 8. Data-driven model predictive control diagram

in all commercial and industrial buildings with all related
devices (i.e. batteries, thermal storage, PV panels) in the
demand-supply energy system.
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