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Abstract

We propose VALSE (Vision And Language001
Structured Evaluation), a novel benchmark de-002
signed for testing general-purpose pretrained003
vision and language (V&L) models for spe-004
cific visio-linguistic grounding capabilities.005
Currently, V&L models are evaluated on tasks006
such as visual question answering or visual rea-007
soning, which do not address their fine-grained008
linguistic capabilities. VALSE addresses this009
gap by offering a suite of six tests targeting010
specific linguistic phenomena. Solving these011
tests requires models to ground these phenom-012
ena in the visual modality, allowing more fine-013
grained evaluations than hitherto possible. We014
build VALSE using methods that support the015
construction of reliable foils, and report re-016
sults from evaluating five widely-used V&L017
models. Our experiments suggest that current018
models have considerable difficulty addressing019
most phenomena. Hence, we expect VALSE020
to serve as an important benchmark to mea-021
sure future progress of pretrained V&L models022
from a linguistic perspective, complementing023
the canonical task-centred V&L evaluations.024

1 Introduction025

Recently, general-purpose pretrained vision and026

language (V&L) models have gained notable per-027

formance on all V&L tasks they are finetuned on,028

e.g. visual question answering (VQA), visual com-029

monsense reasoning, phrase grounding or image030

retrieval (Lu et al., 2019; Tan and Bansal, 2019;031

Li et al., 2019; Chen et al., 2020; Li et al., 2020a;032

Su et al., 2020). As a result, the focus of V&L re-033

search has broadened beyond neural architectures034

designed for specific tasks, to large V&L models035

that are fine-tuned on several V&L tasks.036

Current benchmarks give a good perspective on037

model performance on a wide range of V&L tasks038

(Cao et al., 2020; Lourie et al., 2021; Li et al.,039

2021), but the field is only starting to assess why040

models perform so well and whether models learn041

specific capabilities that span multiple V&L tasks. 042

In particular, we currently lack understanding of 043

the extent to which such models are able to ground 044

specific linguistic phenomena—at the level of mor- 045

phosyntax and semantics—in the visual modality 046

(Bernardi and Pezzelle, 2021). 047

In this paper, we address this gap with VALSE 048

(Vision And Language Structured Evaluation): a 049

benchmark for V&L model evaluation made up 050

of six different tasks, or ‘pieces’. Each piece has 051

the same structure: Given a visual input, a V&L 052

model is required to distinguish real captions from 053

foils, where a foil is constructed from a caption by 054

altering a word or phrase corresponding to a spe- 055

cific linguistic phenomenon, for example semantic 056

number in noun phrases; verb argument structure; 057

discourse-level coreference, etc. VALSE uses a 058

resource-lean diagnostic setup that does not require 059

large-scale annotation (e.g., of bounding boxes), 060

and builds on existing high-quality image caption- 061

ing and VQA data. VALSE is designed to lever- 062

age the existing prediction heads in pretrained (or 063

finetuned) V&L models; for that reason, our bench- 064

mark does not include any re-training and can be 065

interpreted as a zero-shot evaluation. We build test 066

data for each piece so as to safeguard against the 067

possibility of models exploiting artefacts or statis- 068

tical biases in the data, a well-known issue with 069

highly parameterised neural models pretrained on 070

large amounts of data (Goyal et al., 2017; Mad- 071

hyastha et al., 2018; Kafle et al., 2019). With this 072

in view, we propose novel methods to guard against 073

the emergence of artefacts during foiling. 074

Our main contributions are: 075

i) We introduce VALSE, a novel benchmark 076

aimed at testing the multimodal capacities of 077

pre-trained V&L models by gauging their sen- 078

sitivity to foiled instances. 079

ii) We cover a wide spectrum of basic linguistic 080

phenomena affecting the linguistic and visual 081
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modalities: existence, plurality, counting, spa-082

tial relations, actions, and entity coreference.083

iii) We investigate novel strategies to build valid084

and reliable foils that include automatic and085

human validation. We balance the word fre-086

quency distributions between caption and foil087

data, and test against the capabilities of pre-088

trained models to solve the benchmark uni-089

modally. We make use of masked language090

modeling (MLM) predictions in foil creation091

and semantic inference predictions for validat-092

ing foils, and finally collect human annota-093

tions for the entire benchmark.094

iv) We establish initial experimental results using095

a variety of publicly available pretrained V&L096

models with diverse architectures. The overall097

weak performance of V&L models on VALSE098

indicates that time is ripe for a more detailed099

and reliable foiling dataset targeted at the vi-100

sual grounding capabilities of V&L models101

through the lens of linguistic constructs.1102

2 Background and Related work103

Pretrained V&L models learn to combine vision104

and language through self-supervised multitask105

learning. Tasks include multimodal masked model-106

ing—where words in the text and object labels or re-107

gions in the image are masked out, then predicted—108

and image-sentence alignment, whereby a model109

learns to predict whether an image and a text corre-110

spond to each other. Major architectures are single-111

and dual-stream multimodal transformers: single-112

stream models concatenate word and image fea-113

tures, and encode the resulting sequence with a114

single transformer stack; dual-stream models use115

distinct transformer stacks to handle visual and tex-116

tual inputs, and additional layers (e.g. co-attention)117

to fuse these into multimodal features.118

Benchmarking V&L models V&L models (Li119

et al., 2019; Lu et al., 2019; Tan and Bansal, 2019;120

Lu et al., 2020; Li et al., 2020b; Kim et al., 2021)121

are commonly evaluated on V&L tasks such as122

VQA (Goyal et al., 2017), visual reasoning (Suhr123

et al., 2019), or image retrieval (Lin et al., 2014;124

Plummer et al., 2015).125

Given how well transformer-based models per-126

form across unimodal and multimodal tasks, re-127

search efforts have recently started to address what128

makes them so effective, and to what extent they129

1We release our dataset and code upon acceptance.

learn generalisable representations. Techniques 130

to address these questions in unimodal and multi- 131

modal V&L contexts include: adversarial examples 132

(Jia and Liang, 2017; Jia et al., 2019); investigation 133

of the impact of bias, be it linguistic (Gururan- 134

gan et al., 2018), visual semantic (Agarwal et al., 135

2020), or socio-economic (Garg et al., 2019); and 136

the use of linguistically-informed counterfactual 137

and minimally-edited examples (Levesque et al., 138

2012; Gardner et al., 2020). A trend within the 139

latter research line that is specific to V&L mod- 140

els is vision-and-language foiling (Shekhar et al., 141

2017b; Gokhale et al., 2020; Bitton et al., 2021; 142

Parcalabescu et al., 2021; Rosenberg et al., 2021), 143

where the idea is to create counterfactual (i.e., 144

foiled) and/or minimally edited examples by per- 145

forming data augmentation on captions (Shekhar 146

et al., 2017b,a) or images (Rosenberg et al., 2021). 147

Since most V&L models are pretrained on some 148

version of the image-text alignment task, it is pos- 149

sible to test their ability to distinguish correct from 150

foiled captions (in relation to an image) in a zero- 151

shot setting. The construction of foils can serve 152

many investigation purposes. With VALSE, we 153

target the linguistic grounding capabilities of V&L 154

models, focusing on complex phenomena that en- 155

compass multiple tokens (i.e., coreference chains, 156

verb-argument structure, or full noun phrases with 157

diverse reference properties such as plurality, ex- 158

istence or counting). At the same time, we ensure 159

that our data is robust to known perturbations and 160

artifacts by i) controlling for word frequency biases 161

between captions and foils, and ii) testing against 162

unimodal collapse, thereby preventing models to 163

solve the task by concentrating on a single input 164

modality. This is especially important as it has 165

been shown that V&L models are prone to such 166

problems (Goyal et al., 2017; Madhyastha et al., 167

2018). The issue of neural models exploiting data 168

artefacts is well-known (Gururangan et al., 2018; 169

Jia et al., 2019; Wang et al., 2020b; He et al., 2021) 170

and methods have been proposed to uncover such 171

effects, including gradient-based, adversarial per- 172

turbations or input reduction techniques (cf. Wal- 173

lace et al., 2020). Yet, these methods are still not 174

fully understood (He et al., 2021) and can be unre- 175

liable (Wang et al., 2020b). 176

Our work is related to Gardner et al. (2020), 177

who construct task-specific contrast sets for NLU. 178

However, our focus is on modelling linguistic phe- 179

nomena instead of tasks, and we construct carefully 180
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pieces existence plurality counting relations actions coreference

instruments existential
quantifiers

semantic number balanced, adver-
sarial, small numbers

prepositions replacement,
actant swap

standard, clean

#examples† 505 851 2, 459 535 1, 633 812

foil
generation

method

nothing ↔
something

NP replacement
(sg2pl; pl2sg) &
quantifier insertion

numeral re-
placement

SpanBERT pre-
diction

action replace-
ment, actant
swap

yes ↔ no

MLM 7 7 7 3 3 7
GRUEN 7 3 7 3 7 7

NLI 7 3 7 3 7 7
src. dataset Visual7W MSCOCO Visual7W MSCOCO SWiG VisDial v1.0
image src. MSCOCO MSCOCO MSCOCO MSCOCO SituNet MSCOCO

E
xa

m
pl

e
da

ta

caption
(blue) / foil

(orange)

There are
no animals
/ animals
shown.

A small copper vase
with some flowers /
exactly one flower in
it.

There are four / six ze-
bras.

A cat plays with
a pocket knife on
/ underneath a
table.

A man / woman
shouts at a
woman / man.

Buffalos walk
along grass.
Are they in a
zoo? No / Yes.

image

Table 1: Overview of pieces and instruments in VALSE, with number of examples per piece; the foil generation
method used; whether masked language modelling (MLM), GRUEN, and NLI filtering are used; dataset and image
sources; and image-caption-foil examples. †The number of examples is the sum of the examples available for each
instrument in the piece. In Table 4 (in the Appendix) we list the number of examples in each individual instrument.

curated, balanced, single foils from valid instances181

that we select from multiple multimodal datasets.182

3 Constructing the VALSE benchmark183

We resort to a musical analogy to describe VALSE:184

Vision And Language Structured Evaluation is185

composed of 6 pieces, each corresponding to a186

specific linguistic phenomenon (see Table 1 for an187

overview). Each piece consists of one or more in-188

struments designed to evaluate a model’s ability to189

ground that specific linguistic phenomenon.190

All instruments are built by applying foiling func-191

tions (FFs) specific to the linguistic phenomenon192

under study. FFs take a correct caption as input and193

change a specific part of it to produce a foiled cap-194

tion (or foil). We design FFs such that the sentences195

they produce fail to describe the image, while still196

being grammatical and otherwise valid sentences.197

Of course, a foiled caption may be less likely198

than the original caption from which it was pro-199

duced, and such unwarranted biases can be eas-200

ily picked up by overparameterised V&L models.201

Moreover, an automatic FF may fail to produce a202

foil that contradicts the image, for example by alter-203

ing the original caption to yield a near-synonymous204

one, or one that is entailed by the original caption.205

For phenomena that make it difficult to control206

these crucial properties of foils, we apply addi-207

tional filters: i) some FFs make use of strong LMs208

to propose changes to captions, so that the gener-209

ated foils are still high-probability sentences; ii) 210

we use state-of-the-art natural language inference 211

(NLI) methods to detect cases where there is an 212

entailment between caption and foil, and filter out 213

such foils from the dataset (see §4 for discussion). 214

As a final measure, we employ human annotators 215

to validate all generated testing data in VALSE. 216

We build VALSE by sourcing data from existing 217

V&L datasets. Below, we describe each piece and 218

its instruments, and the corresponding task setup in 219

VALSE. For each instrument, we follow the same 220

procedure: i) we identify captions that contain in- 221

stances of the targeted linguistic phenomenon; ii) 222

we apply a FF that automatically replaces the ex- 223

pression with a variant that contradicts the original 224

expression’s visual content, thereby constructing 225

one or more foils from each target instance in the 226

original caption; as discussed in §4; we then iii) 227

subject the obtained foils to various filters, with the 228

aim of distilling a subset of valid and reliable foils 229

that cannot be easily tricked by a new generation 230

of highly parameterised pretrained V&L models. 231

3.1 Existence 232

The existence piece has a single instrument and tar- 233

gets instances with existential quantifiers. Mod- 234

els need to differentiate between examples i) where 235

there is no entity of a certain type or ii) where one 236

or more of these entities are visible in an image. 237

We use the Visual7W visual question answering 238

3



dataset (Zhu et al., 2016) and source its ‘how many’239

examples, building a pool of those whose answers240

are numerals (0, 1, 2, etc.). We use templates to241

transform question and answer fields into a declara-242

tive statement that correctly describes what can be243

seen in the image, e.g. ‘Q: How many animals are244

shown? A: 0’→ ‘There are 0 animals shown’. We245

then transform these statements into an existential246

statement. In the example above, we replace the nu-247

meral by the word ‘no’ to create a correct caption248

(‘There are no animals shown’) and remove the249

numeral altogether to create a foil (‘There are ani-250

mals shown’). The existence piece has 505 image–251

caption–foil tuples after manual validation out of252

534 candidates (cf. §4), and captions/foils are bal-253

anced: 50% of the (correct) captions originally254

have answer 0, and the remaining have answer 1 or255

greater. Full details are provided in A.1.256

3.2 Plurality257

The plurality piece has a single instrument, con-258

cerned with semantic number. It is intended to259

test whether a model is able to distinguish between260

noun phrases denoting a single entity in an im-261

age (‘exactly one flower’), versus multiple entities262

(‘some flowers’). The dataset consists of 851 in-263

stances from 1000 generated candidates (cf. §4),264

evenly divided between cases where the caption265

contains a plural NP, foiled by replacing it with a266

singular (pl2sg: ‘some flowers’→ ‘exactly one267

flower’), or conversely, the caption contains a sin-268

gular which is foiled by replacing it with a plural269

(sg2pl). Foil candidates were generated from the270

COCO 2017 validation set (Chen et al., 2015). Full271

details are provided in A.2.272

3.3 Counting273

The counting piece has three instruments: bal-274

anced, adversarial and small numbers. All in-275

stances are statements about the number of entities276

visible in an image. The model needs to differenti-277

ate between examples where the specific number of278

entities in the associated image is correct or incor-279

rect, given the statement. Similarly to the existence280

piece, we use the Visual7W VQA dataset (Zhu281

et al., 2016) and source its ‘how many’ examples282

whose answers are numerals (0, 1, 2, etc.). We use283

templates to transform question and answer fields284

into a declarative statement describing the image285

and create foils by replacing the numeral in the286

correct statement by another numeral.287

All three instruments are designed to show288

whether models learn strategies that generalize be- 289

yond the training distribution, and to what extent 290

a model exploits class frequency bias.2 In count- 291

ing balanced we cap the number of examples to 292

a maximum per class and make sure correct/foil 293

classes are balanced, so that models that exploit 294

class frequency bias are penalized. In counting 295

adversarial we make sure that all foils take class 296

n ∈ {0, 1, 2, 3}, whereas all correct captions take 297

class n ∈ {n |n ≥ 4}. Biased models are expected 298

to favour more frequent classes. Since small num- 299

bers are naturally the most frequent, models that 300

resort to such biases should perform poorly on this 301

adversarially built test. Counting small numbers 302

is a sanity check where all correct captions and 303

foils have class n ∈ {0, 1, 2, 3}, and caption/foil 304

classes are balanced. Since models likely have 305

been exposed to many examples in this class set 306

and all such classes are high-frequency, with this in- 307

strument we disentangle model performance from 308

class exposure. Counting balanced, adversarial, 309

and small numbers have 868 (1000), 691 (756), 310

and 900 (1000) instances after (before) manual val- 311

idation, respectively (cf. §4). For details, see A.3. 312

3.4 Spatial relations 313

The relations piece has a single instrument and 314

focuses on the ability of models to distinguish be- 315

tween different spatial relations. Foils differ from 316

the original caption only by the replacement of a 317

spatial preposition. As for plurals, the data was 318

sourced from the COCO 2017 validation split. To 319

create foils, we first identified all preposition se- 320

quences in captions (e.g., ‘in’, ‘out of’). Foils 321

were created by masking the prepositions and using 322

SpanBERT (Joshi et al., 2020) to generate replace- 323

ments of between 1–3 words in length. We keep 324

SpanBERT candidates which differ from the orig- 325

inal preposition sequence, but exist in the dataset. 326

There are 535 instances after manual validation out 327

of 614 proposed instances (cf. §4), and we ensure 328

that prepositions are similarly distributed among 329

captions and foils. Full details are provided in A.4. 330

3.5 Actions 331

The actions piece has two instruments: i) action 332

replacement and ii) actant swap. They test a 333

V&L model’s capability to i) identify whether an 334

action mentioned in the text matches the action 335

2We take the original answer in Visual7W as the example
class: e.g., in ‘There are 0 animals shown’, the class is 0.
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seen in the image (e.g., ‘a man shouts / smiles at a336

woman’), and ii) correctly identify the participants337

of an action and the roles they play (e.g., is it the338

man who is shouting or is it the woman, given the339

picture in Table 1?).340

The SWiG dataset (Pratt et al., 2020) contains341

504 action verbs, and we generate captions and342

foils from SWiG annotations of semantic roles and343

their fillers. For the action replacement piece, we344

exchange action verbs with other verbs from SWiG345

that fit the context as suggested by BERT. For the346

actant swap, we swap role fillers in the role anno-347

tations, hence generating action descriptions with348

inverted roles. Action replacement and actant swap349

have 648 (779) and 949 (1042) instances after (be-350

fore) manual validation, respectively (cf. §4). See351

A.5 for full details.352

3.6 Coreference353

The coreference piece aims to uncover whether354

V&L models are able to perform pronominal coref-355

erence resolution. It encompasses cases where i)356

the pronoun has a noun (phrase) antecedent and357

pronoun and (noun) phrase are both grounded in358

the visual modality (‘A woman is driving a motor-359

cycle. Is she wearing a helmet?’), and cases where360

ii) the pronoun refers to a region in the image or361

even to the entire image (‘Is this outside?’).362

We create foils based on VisDial v1.0 (Das et al.,363

2017) with images from MSCOCO (Lin et al.,364

2014). VisDial captions and dialogues are Q&A se-365

quences. We select image descriptions of the form366

[Caption. Question? Yes/No.] where the ques-367

tion contains at least one pronoun. When foiling,368

we exchange the answer from yes to no and vice-369

versa (see Table 1). We ensure a 50-50% balance370

between yes / no answers.371

The coreference piece consists of two instru-372

ments: coreference standard originating from the373

VisDial train set and a small coreference clean set374

from the validation set, containing 708 (916) and375

104 (141) examples after (before) manual valida-376

tion, respectively (cf. §4).3 See A.6 for full details.377

4 Constructing valid and reliable foils378

In the context of VALSE, instances consisting of379

image-caption-foil triples are valid if: foils min-380

imally differ from the original caption; foils do381

not accurately describe the image; and independent382

judges agree that the captions, but not the foils, are383

3VisDial annotations are not available for the test set.

accurate descriptions of the image. As for relia- 384

bility, a foiling method is more reliable the more 385

it ensures that generated foils do not substantially 386

differ from human captions regarding distributional 387

and plausibility bias, and cannot be easily solved 388

unimodally. 389

In this section, we discuss automatic and man- 390

ual means to ascertain validity and reliability. Two 391

types of bias are especially worthy of note when 392

constructing a foiling benchmark: distributional 393

bias (see §4.1) and plausibility bias (see §4.2). 394

In §4.3 we discuss how we apply a natural lan- 395

guage inference model to filter examples in our data 396

pipeline, and in §4.4 we discuss how we manually 397

validate all the examples used in our benchmark. 398

4.1 Mitigating distributional bias 399

A first form of bias is related to distributional imbal- 400

ance between captions and foils (e.g., certain words 401

or phrases having a high probability only in foils). 402

Previous foiling datasets exhibit such imbalance, 403

enabling models to solve the task disregarding the 404

image (Madhyastha et al., 2019). To mitigate this 405

problem, for each phenomenon and throughout our 406

data creation process, we ensure that the token fre- 407

quency distributions in correct and foiled captions 408

are approximately the same (cf. App. A and E). 409

4.2 Countering plausibility bias 410

A second form of bias may arise from automatic 411

foil construction procedures yielding foils that are 412

implausible or unnatural, and thereby can act as sig- 413

nals that facilitate their detection. Often, VALSE 414

pieces can be safely foiled by simple rules (e.g., 415

switching from existence to non-existence, or from 416

singular to plural or vice versa). However, with spa- 417

tial relations and actions, a foil could be deemed 418

unlikely given only the textual modality and inde- 419

pendently of the image, e.g., ‘a man stands under 420

/ on a chair’. Such plausibility biases may be 421

detected by large language models that incorpo- 422

rate commonsense knowledge (Petroni et al., 2019; 423

Wang et al., 2020a), and we expect future V&L 424

models to exhibit similar capabilities. 425

To ensure that foiled captions are deemed as 426

plausible as correct captions by LMs, we use lan- 427

guage models such as BERT (Devlin et al., 2019) 428

and SpanBERT (Joshi et al., 2020) to suggest plau- 429

sible replacements in our foiling functions. Ad- 430

ditionally, in the case of spatial relations and plu- 431

rals, we also apply a grammaticality filter using 432

GRUEN (Zhu and Bhat, 2020). GRUEN was orig- 433
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inally proposed as a method to assign automati-434

cally generated sentences a composite score which435

reflects discourse-level and grammatical proper-436

ties. We use only the grammaticality component437

of GRUEN, and retain only foil candidates with a438

grammaticality score ≥ 0.8.439

Furthermore, we evaluate unimodal, language-440

only models on VALSE to verify whether our441

benchmark could be solved by a multimodal model442

with strong linguistic capacities in unimodal col-443

lapse, whereby a model silently relies on a single444

modality within which biases are easier to exploit445

(Goyal et al., 2017; Shekhar et al., 2019a). By eval-446

uating VALSE with unimodal models, we establish447

a baseline that V&L models should exceed if we448

are to expect true multimodal integration.449

4.3 Filtering foils with NL Inference450

When constructing foils, we need to ensure that451

they fail to describe the image. To test this au-452

tomatically, we apply natural language inference453

(NLI) with the following rationale: We consider an454

image and its caption as a premise and its entailed455

hypothesis, respectively (a similar rationale is ap-456

plied in the visual entailment task; Xie et al., 2019).457

In addition, we consider the caption as premise and458

the foil as its hypothesis. If a NLI model predicts459

the foil to be entailed (E) by the caption, it cannot460

be a good foil since by transitivity it will give a461

truthful description of the image. By contrast, if462

the foil is predicted to contradict (C) or to be neu-463

tral (N) with respect to the caption, we take this as464

an indicator of a good (C) or a plausible (N) foil.4465

We use the NLI model ALBERT (Lan et al.,466

2020) finetuned on the task (see Appendix C for467

details). Filtering with NLI was initially applied468

to relations, plurals and actions, on the grounds469

that foils in these pieces may induce substantive470

changes to lexical content.5 Following automatic471

labelling of caption-foil pairs, we manually vali-472

dated a sample labelled as E, C or N. For relations473

(N = 30), labels were found to be near 100% accu-474

rate with only 2 (0.06%) errors overall. For plurals475

4See the following examples from action replacement:
P: A mother scolds her son.
H1: A mother encourages her son. (C; good foil);
H2: A mother camps with her son. (N; needs image control);
H3: A mother talks to her son. (E; not a suitable foil)

If the NLI prediction is N, we still need to check the image,
since the description might happen to fit the image content.

5By contrast, existence and counting foils involve a more
straightforward swap (e.g., between numerical quantities);
similarly, coreference foils simply involve the replacement of
a positive with a negative answer.

(N = 60, 50% sg2pl and 50% pl2sg), the er- 476

ror rate was also low, with 0 errors for C, 33% 477

errors for E and 11% errors for N. Here, a number 478

of entailment errors were due to odd formulations 479

arising from the automatic foiling process, whereas 480

no such oddities were observed for C. We therefore 481

include only foils labelled C in the final relations 482

and plurals pieces. For actions, the model labelled 483

contradictions very accurately (0% error) but was 484

erroneous up to 97.1% for E, meaning that a large 485

number of valid foils would be spuriously excluded. 486

To avoid reducing the dataset too much, we did not 487

use NLI filtering for actions, but relied on human 488

annotation as a final validity check. 489

4.4 Manual evaluation of generated foils 490

Each instance in VALSE comprises an image, its 491

caption and a foiled caption (cf. Table 1). As shown 492

above, we take various automatic measures to en- 493

sure the quality of foils in each piece. As a final 494

step, the entire data for each instrument was sub- 495

mitted to a manual validation, which took the fol- 496

lowing form: for each instance, annotators were 497

shown the image, the caption and the foil. Cap- 498

tion and foil were numbered and displayed above 499

each other to make differences more apparent, with 500

differing elements highlighted in boldface (Fig. 4, 501

E). Annotators were not informed which text was 502

the caption and which was the foil, and captions 503

appeared first (numbered 1) 50% of the time. The 504

task was to determine which of the two texts accu- 505

rately described what could be seen in the image. 506

In each case, annotators had a forced choice be- 507

tween five options: a) the first, but not the second; 508

b) the second, but not the first; c) both of them; d) 509

neither of the two; and e) I cannot tell. 510

Each item was annotated by three individuals. 511

The validation was conducted on Amazon Mechan- 512

ical Turk with a fixed set of annotators who had 513

qualified for the task. For details see Appendix E. 514

We consider an instance to have passed the vali- 515

dation test if at least two out of three annotators 516

identified the caption, but not the foil, as the text 517

which accurately describes the image. Across all 518

instruments, 87.7% of the instances satisfied this 519

criterion (min 77.3%; max 94.6%; full details in 520

Appendix E), with 73.6% of instances overall hav- 521

ing a unanimous (3/3) decision that the caption, 522

but not the foil, was an accurate description. We 523

consider these figures high, suggesting that the au- 524

tomatic construction and filtering procedures yield 525

6



foils which are likely to be valid, in the sense dis-526

cussed in §4 above.527

5 Benchmarking with VALSE528

We propose VALSE as a task-independent, zero-529

shot benchmark to assess the extent to which mod-530

els learn to ground specific linguistic phenomena as531

a consequence of their pretraining (or fine-tuning).532

VALSE is built in the spirit of approaches such533

as Checklist (Ribeiro et al., 2020), including pairs534

consisting of captions and minimally edited foils.535

The only requirement to evaluate a model on536

our benchmark is: i) to have a binary classification537

head to predict whether an image-sentence pair is538

foiled, or ii) to predict an image-sentence matching539

score between the image and the caption vs. the foil,540

returning the pair with the highest score. Systems541

reporting results on VALSE are expected to report542

any data used in model training prior to testing on543

VALSE, for comparability.544

5.1 Benchmark Metrics545

We employ four metrics6 for evaluation: overall546

accuracy (acc) on all classes (foil and correct);547

precision (pc) measuring how well models iden-548

tify the correct examples; foil precision (pf ) mea-549

suring how well foiled cases are identified; and550

pairwise ranking accuracy (accr), which mea-551

sures whether the image-sentence alignment score552

is greater for a correct image-text pair than for its553

foiled pair. accr is more permissive than acc be-554

cause it accepts model predictions if the score for a555

foil is lower than the caption’s score. Our main met-556

ric is accr, which gives results for a pair <image,557

caption> and <image, foil> and is better suited to558

evaluate minimally-edited pairs as it does not need559

a classification threshold. Since all instruments are560

implemented as a binary classification, the random561

baseline is always 50%.562

5.2 V&L models563

We benchmark five V&L models on VALSE: CLIP564

(Radford et al., 2021), LXMERT (Tan and Bansal,565

2019), ViLBERT (Lu et al., 2019), ViLBERT 12-566

in-1 (Lu et al., 2020), and VisualBERT (Li et al.,567

2019). These models have different architectures,568

are pretrained on a variety of tasks and using differ-569

ent training data. We also benchmark two unimodal570

text-only models, GPT1 (Radford et al., 2018) and571

GPT2 (Radford et al., 2019), discussed below. See572

6All metrics are defined in Appendix B.

Appendix D for details about all unimodal and 573

V&L models we use in our evaluation. 574

Unimodal models GPT1 and GPT2 are autore- 575

gressive language models pretrained on English 576

text. We test whether VALSE is solvable by these 577

unimodal models by computing the perplexity of 578

the correct and foiled caption and predicting the 579

entry with the lowest perplexity. If the perplexity 580

is higher for the foil, we take this as an indication 581

that the foiled caption may suffer from plausibility 582

bias or other linguistic biases (cf. §4.2). 583

5.3 Experiments and Results 584

We test V&L and unimodal models on VALSE in a 585

zero-shot setting, and also evaluate on a number of 586

correct captions and foils from the FOIL it! dataset 587

(Shekhar et al., 2017b) (cf. App. A.7 for details). 588

All results are listed in Table 2. 589

Unimodal results For most instruments, uni- 590

modal results are close to random and hence do 591

not signal strong linguistic or plausibility biases. 592

One exception is the original FOIL it! dataset, in 593

line with Madhyastha et al. (2019)’s findings. Spa- 594

tial relations (77.2%), action replacement (66.8%) 595

and actant swap (76.9%) instruments also suggest 596

plausibility biases in the foils. Such biases are hard 597

to avoid in automatic foil generation for actions 598

due to the verb arguments’ selectional restrictions, 599

which are easily violated when flipping role fillers, 600

or exchanging the verb. Similar considerations hold 601

for relations: though SpanBERT proposals are in- 602

tended to aid selection of likely replacements for 603

prepositions, plausibility issues arise with relatively 604

rare argument-preposition combinations. 605

While these might be the first instruments in 606

VALSE to be solved in the future, current V&L 607

models struggle to detect even blatant mismatches 608

of actant swap, e.g., ‘A ball throws a tennis player.’ 609

For VALSE, the unimodal scores will serve as a 610

baseline for the pairwise accuracy of V&L models. 611

Multimodal results The best zero-shot results 612

are achieved by ViLBERT 12-in-1 with the high- 613

est scores across the board, followed by ViLBERT, 614

LXMERT, CLIP,7 and finally VisualBERT. The 615

high pf values for the latter indicate that the model 616

is accurate at predicting foils, but far less so at pre- 617

dicting correct captions. We hypothesise that this is 618

due to the way image-sentence alignment is framed 619

7CLIP works in a contrastive fashion, therefore we report
only accr (cf. Appendix D for details).
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Metric Model Existence Plurality Counting Sp.rel.‡ Action Coreference Foil-it! Avg.quantifiers number balanced sns.† adv.† relations repl.† actant swap standard clean

Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

accr

GPT1∗ 61.8 53.1 51.2 48.7 69.5 77.2 65.4 72.2 45.6 45.2 77.5 60.7
GPT2∗ 58.0 51.9 51.6 49.8 45.3 75.0 66.8 76.9 54.5 50.0 80.7 60.1

CLIP 66.9 56.2 62.1 62.5 57.5 64.3 75.6 68.6 52.1 49.7 88.8 64.0
LXMERT 78.6 64.4 62.2 69.2 42.6 60.2 54.8 45.8 46.8 44.2 87.1 59.6
ViLBERT 65.5 61.2 58.6 62.9 73.7 57.2 70.7 68.3 47.2 48.1 86.9 63.7

12-in-1 95.6 72.4 76.7 80.2 77.3 67.7 65.9 58.9 75.7 69.2 86.9 75.1
VisualBERT 39.7 45.7 48.2 48.2 50.0 39.7 49.2 44.4 49.5 47.6 48.5 46.4

acc

LXMERT 55.8 55.1 52.0 55.4 49.9 50.8 51.1 48.5 49.8 49.0 70.8 53.5
ViLBERT 2.4 50.3 50.7 50.6 51.8 49.9 52.6 50.4 50.0 50.0 55.9 51.3

12-in-1 89.0 62.0 64.9 69.2 66.7 53.4 57.3 52.2 54.4 54.3 71.5 63.2
VisualBERT 49.3 46.5 48.3 47.8 50.0 49.3 48.8 49.7 50.0 50.0 46.6 48.8

pc

LXMERT 41.6 68.0 50.9 50.0 61.5 73.1 35.8 36.8 81.2 80.8 72.3 59.3
ViLBERT 56.8 98.5 77.0 76.6 86.1 98.3 93.2 93.7 98.7 98.1 98.8 88.7

12-in-1 85.0 90.7 64.3 76.7 59.5 93.5 66.7 66.8 92.9 95.2 94.3 80.5
VisualBERT 1.3 0.3 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.2 0.3

pf

LXMERT 70.1 42.2 53.0 60.8 37.3 28.4 66.4 60.2 18.4 17.3 69.3 47.6
ViLBERT 47.9 2.1 24.4 24.7 17.5 1.5 11.9 7.1 1.3 1.9 12.9 13.9

12-in-1 93.1 33.4 65.6 61.7 74.0 13.3 47.8 37.6 15.8 13.5 48.8 45.9
VisualBERT 97.3 92.8 96.7 95.7 100.0 97.3 97.6 99.4 100.0 100.0 93.0 97.3

Table 2: Performance of unimodal and multimodal models on the VALSE benchmark according to different metrics.
We bold-face the best overall result per metric, and underscore all results below (or at) the random baseline. accr is
a pairwise ranking accuracy where a prediction is considered correct if p(caption, img) > p(foil, img). Precision
pc and foil precision pf are competing metrics where naïvely increasing one can decrease the other: therefore
looking at the smaller number among the two gives a good intuition of how informed is a model prediction. †sns.
Counting small numbers. adv. Counting adversarial. repl. Action replacement. ‡ Sp.rel. Spatial relations.
∗Unimodal text-only models that do not use images as input. CLIP is only tested in pairwise ranking mode (fn. 6).

in VisualBERT’s pretraining: the model expects620

an image and a (correct) sentence c1, and predicts621

whether a second sentence c2 is correct or a foil.622

During pretraining c1 and c2 are likely to differ in623

many ways, whereas in our setting, they are nearly624

identical, modulo a word or phrase replaced by the625

foiling procedure. This may bias the model against626

predicting foils, which would raise the value pf .627

Instruments centered on individual objects like628

existence and the FOIL it! dataset are almost solved629

by ViLBERT 12-in-1, highlighting that models are630

capable of identifying named objects and their pres-631

ence in images. However, none of the remaining632

pieces can be reliably solved in our adversarial foil-633

ing settings: i) distinguishing references to single634

vs. multiple objects of a given type or counting635

them in an image; ii) correctly classifying a named636

spatial relation between objects in an image; iv)637

distinguishing actions and reliably identifying their638

participants, even if supported by preference biases;639

or, v) tracing references to the same object in an640

image through the use of pronouns.641

Correct and foil precision pc and pf show that642

V&L models struggle to solve the phenomena in643

VALSE. When a model achieves high precision644

on correct captions pc this is often at the expense645

of very low precision on foiled captions pf (e.g.,646

ViLBERT), or vice-versa (e.g., VisualBERT). This647

suggests that such models are insensitive to the 648

inputs in VALSE: models that almost always pre- 649

dict a match will inflate pf at the expense of pc. 650

Considering min(pc, pf ) reveals that VisualBERT 651

and ViLBERT perform poorly and below the ran- 652

dom baseline, and LXMERT close to or below it. 653

ViLBERT 12-in-1 performs strongly on existence, 654

well on counting, but struggles on plurality, spatial 655

relations, coreference, actions. These tendencies 656

we see reflected in our main pairwise metric, accr. 657

6 Conclusions and Future Work 658

We present the VALSE benchmark to help the com- 659

munity improve V&L models by hard-testing their 660

visual grounding capabiltiies through the lens of 661

linguistic constructs. Our experiments show that 662

V&L models identify named objects and their pres- 663

ence in images well, but struggle to ground objects, 664

their interdependence and relationships in visual 665

scenes when forced to respect refined linguistic 666

indicators. We encourage the community to use 667

VALSE for measuring the progress towards V&L 668

models capable of true language grounding. 669

VALSE is designed as a living benchmark. As 670

future work we plan to extend it to further linguistic 671

phenomena, and to source data from diverse V&L 672

datasets to cover more linguistic variability and 673

image distributions. 674
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A Benchmark creation1058

A.1 Existence1059

The existence piece has a single instrument and tar-1060

gets instances with existential quantifiers. Mod-1061

els need to differentiate between examples i) where1062

there is no entity of a certain type or ii) where there1063

is one or more of these entities visible in an image.1064

Data sources We use the Visual7W visual ques-1065

tion answering dataset (Zhu et al., 2016) to source1066

examples, starting with the ‘how many’ questions1067

in Visual7W and building a pool of those whose1068

answers are numerals (e.g., 0, 1, 2, etc.). We use1069

the templates from Parcalabescu et al. (2021) to1070

transform question and answer fields into a declara-1071

tive statement that correctly describes what can be1072

seen in the image, e.g., ‘Q: How many animals are1073

shown? A: 0’→ ‘There are 0 animals shown’.1074

Foiling method Let us use x = ‘There are N1075

animals shown’ as a running example for a cor-1076

rect caption, where N is a number. If N > 0, we1077

simply remove N from the sentence, effectively1078

creating the statement ∃x or ‘There are animals1079

shown’. If N = 0, we replace N by ‘no’, creating1080

the statement ¬∃x or ‘There are no animals shown’.1081

If necessary, we fix singular–plural agreement. To1082

create data with balanced correct and foil classes,1083

we select 50% of our examples from those where1084

the correct answer is originally 0, and the remain-1085

ing 50% from those where the correct answer is1086

any other number (e.g., 1, 2, etc.). To create foils,1087

we then simply convert the statement from ∃x to1088

¬∃x, and vice-versa.1089

A.2 Plurality1090

The plurality piece has a single instrument, con-1091

cerned with semantic number, that is, the distinc-1092

tion between single entities in an image (‘exactly1093

one flower’) and multiple instances of the same1094

type (‘some flowers’). In this piece, foil candidates1095

are created either by converting a singular NP and1096

its coreferents to a plural, or vice versa.1097

Data sources The data was sourced from the val-1098

idation split of the COCO 2017 dataset (Chen et al.,1099

2015). Captions are only foiled if their length after1100

tokenization with the pretrained BERT tokenizer81101

is of 80 tokens or less. This is done to minimise1102

the risk that captions and foils need to be truncated1103

8We use the bert-large-cased pretrained tokenizer
distributed as part of the transformers python library.

to accommodate the input specifications of current 1104

pretrained V&L models. 1105

Foiling method Foiling is done in two directions: 1106

singular-to-plural (sg2pl) or plural-to-singular 1107

(pl2sg). Given a caption, NP chunking is applied 1108

to identify all non-pronominal NPs. In the sg2pl 1109

case, a foiled version of a caption containing a sin- 1110

gular NP is created by pluralising the head noun. 1111

We automatically identify anaphoric expressions 1112

coreferring to the singular NP within the caption 1113

and pluralise them in the same way. For NPs which 1114

are subjects of copular VPs or VPs with an auxil- 1115

iary requiring subject-verb number agreement (e.g. 1116

‘N is V’), we also pluralise the verb. Note that 1117

this procedure creates a potential foil for every sin- 1118

gular NP in the caption; thus, more than one foil 1119

candidate can be created for each instance in the 1120

source dataset. 9 In the pl2sg case, the same 1121

procedure is carried out, but turning a plural NP, as 1122

well as its coreferents, into a singular. We generate 1123

all foil candidates using the Checklist framework 1124

(Ribeiro et al., 2020), within which we implement 1125

our procedures for data perturbation. 1126

An important consideration, especially in the 1127

pl2sg case, is that singularising an NP in a foil 1128

can still be truth-preserving. Specifically, a caption 1129

with a plural NP, such as ‘A small copper vase with 1130

some flowers in it’, arguably still entails the ver- 1131

sion with the singular ‘(. . . ) a flower’. As a result, 1132

the singular version may still correctly be judged 1133

to match the image. One way around this problem 1134

is to insert a quantifier in the singular NP which 1135

makes it explicit that exactly one instance and no 1136

more is intended (e.g. ‘exactly one flower’). This 1137

may however result in a biased dataset, with such 1138

singular quantifiers acting as signals for singular 1139

foils and enabling models to solve the task with 1140

no grounding in the visual information. We avoid 1141

this by adopting a uniform strategy for both sg2pl 1142

and pl2sg. We determine two singular quantifiers 1143

(‘exactly one N’ and ‘a single N’) and two plural 1144

quantifiers (‘some N’, ‘a number of N’). When a 1145

foil candidate is generated, we alter the original NP 1146

by inserting one of the two quantifiers matching 1147

its semantic number, and generate a foil with one 1148

9NP chunking is performed using the Spacy v.3 pipeline
for English using the en_core_web_md pretrained mod-
els. Coreference chains are detected using the pretrained En-
glish model for Coreferee (github.com/msg-systems/
coreferee). Pluralisation of head nouns is carried
out using the inflect engine (github.com/jaraco/
inflect/).
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of the two quantifiers for the other number. In the1149

foregoing example, we end up with ‘A small copper1150

vase with some flowers / exactly one flower in it.’1151

After generating all candidate foils, in both direc-1152

tions, we use the GRUEN pretrained model (Zhu1153

and Bhat, 2020) to score the foils for grammat-1154

icality. We only keep foils with a score ≥ 0.8,1155

and run each foil-caption pair through the NLI1156

model described in Section 4.3, keeping only pairs1157

whose predicted label is contradiction, for an ini-1158

tial candidate set of 1000 cases (500 sg2pl and1159

500 pl2sg), of which 851 (85.1%) are considered1160

valid following manual validation (see §4.4. Fig-1161

ure 3 shows the distribution of nouns in captions1162

and foils, before and after the validation. Note that1163

the validation process does not result in significant1164

change to the distributions.1165

A.3 Counting1166

The counting piece comes in three instruments:1167

balanced, adversarial and small numbers. All1168

three instruments include instances with statements1169

about the number of entities visible in an image.1170

The model needs to differentiate between exam-1171

ples where the specific number of entities in the1172

associated image is correct or incorrect, given the1173

statement.1174

All three instruments are designed to show1175

whether models learn strategies that generalize be-1176

yond the training distribution, and to what extent1177

a model exploits class frequency bias.10 In count-1178

ing balanced we cap the number of examples to1179

a maximum per class and make sure correct/foil1180

classes are balanced, so that models that exploit1181

class frequency bias are penalized. In counting1182

adversarial we make sure that all foils take class1183

n ∈ {0, 1, 2, 3}, whereas all correct captions take1184

class n ∈ {n | n ≥ 4}. Biased models are ex-1185

pected to favour more frequent classes and these1186

correspond to smaller numbers, therefore models1187

that resort to such biases should perform poorly on1188

this adversarially built test. Instrument counting1189

small numbers is a sanity check where all correct1190

captions and foils have class n ∈ {0, 1, 2, 3}, and1191

caption/foil classes are balanced. Models likely1192

have been exposed to many examples in this class1193

set, so with this instrument we assess model per-1194

formance certain it does not suffer from (class)1195

exposure bias.1196

10We take the original answer in Visual7W as the example
class. E.g., in There are four zebras, the class is 4.

Data sources We use the Visual7W visual ques- 1197

tion answering dataset (Zhu et al., 2016) and source 1198

its ‘how many’ examples, building a pool of those 1199

whose answers are numerals (e.g., 0, 1, 2, etc.). We 1200

use the templates from Parcalabescu et al. (2021) to 1201

transform question and answer fields into a declara- 1202

tive statement that correctly describes what can be 1203

seen in the image. 1204

Foiling method We create foils by directly re- 1205

placing the numeral in the correct caption by an- 1206

other numeral. When creating foils we make sure 1207

that the class distribution for correct and foiled cap- 1208

tions are approximately the same, i.e., there are a 1209

similar number of correct and foiled examples in 1210

each class in each instrument. The only exception 1211

is the counting adversarial instrument, where the 1212

classes used in correct and foiled captions are dis- 1213

joint, i.e., n ∈ {0, 1, 2, 3} and n ∈ {n | n ≥ 4}, 1214

respectively. See Figure 2 for a visualisation of 1215

these distributions. 1216

A.4 Spatial relations 1217

The relations piece has one instrument and focuses 1218

on the ability of models to distinguish between dif- 1219

ferent spatial relations, as expressed by preposi- 1220

tions. Foils therefore consist of captions identical 1221

to the original except for the replacement of a spa- 1222

tial preposition. 1223

Data sources Data was sourced from the COCO 1224

2017 validation split (Chen et al., 2015). To gen- 1225

erate foil candidates, we first extracted from the 1226

original COCO captions all the sequences consist- 1227

ing of one or more consecutive prepositions (e.g., 1228

‘on’ or ‘out of’). Foils are generated by detecting 1229

these preposition spans, and replacing them with 1230

another preposition span attested in the list. 1231

Foiling method To generate foils, we mask the 1232

preposition span in an original caption, and use 1233

SpanBERT (Joshi et al., 2020), a pretraining 1234

method based on BERT (Devlin et al., 2019).11 1235

The advantage of SpanBERT over BERT is that in 1236

a masked language modelling context, with masks 1237

spanning more than a single word, SpanBERT pre- 1238

dicts sequences and takes into account their joint 1239

probability, whereas BERT trained with standard 1240

Masked Language Modelling can only predict sin- 1241

gle tokens independently. With SpanBERT, we 1242

11We use SpanBERT with the pretrained
bert-large-cased model distributed as part of
the transformers Python library.
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generate replacements of between 1 and 3 tokens1243

in length, in each case retaining only the best pre-1244

diction out of the top k which matches one of the1245

preposition sequences in the pre-extracted list.1246

After all candidates are generated, we apply1247

GRUEN (Zhu and Bhat, 2020) to score the foils for1248

grammaticality, and further apply the NLI model1249

descibed in Section 4.3 to label the entailment rela-1250

tionship between caption and foil pairs. From the1251

resulting data, we sample as follows: i) we keep1252

only caption-foil pairs labelled as contradiction,1253

where the GRUEN grammaticality score is ≥ 0.8;1254

ii) for every caption-foil pair sampled where p is1255

replaced with q, we search for another caption-foil1256

pair where q is replaced with p, if present. This1257

strategy yields a roughly balanced dataset, where1258

no single preposition or preposition sequence is1259

over-represented in captions or foils.1260

These processes result in an initial set of 6141261

cases, of which 535 (87.1%) are selected following1262

manual validation described in §4.4.1263

Figure 2 shows proportions in captions and foils1264

of the prepositions. E.g.: ‘A cat plays with a pocket1265

knife on / underneath a table.’1266

As with plurals, we implement procedures1267

for foil candidate generation by extending the1268

perturb functionality in Checklist (Ribeiro et al.,1269

2020).1270

A.5 Actions1271

The action piece consists of two instruments: i) ac-1272

tion replacement and ii) actant swap. They are1273

testing a V&L model’s capability of i) identifying1274

whether an action mentioned in the textual modal-1275

ity matches the action seen in the image or not1276

(e.g. ‘a man shouts / smiles at a woman’) and ii)1277

correctly identifying the participants of an action1278

and the roles they are playing in it (e.g., given the1279

picture in Table 1: is it the man or the woman who1280

shouts?).1281

Data source For creating interesting foils with di-1282

verse actions, we focus on the SWiG dataset (Pratt1283

et al., 2020) that comprises 504 action verbs anno-1284

tated with semantic roles and their fillers, which are1285

grounded in images of the imSitu dataset (Yatskar1286

et al., 2016). We generate English captions for1287

the images using SimpleNLG (Gatt and Reiter,1288

2009)12. For generation we use the specified ac-1289

12SimpleNLG is a surface realization engine that – given
some content and crucial syntactic specifications – performs
surface generation including morphological adjustments.

tion verb, the realized FrameNet semantic roles 1290

and their annotated filler categories (see Table 1 1291

for shout: AGENT: man, ADDRESSEE: woman), 1292

and generate short captions, with realization of two 1293

roles in active form. We apply various filters to 1294

ensure high quality of the generated captions using 1295

diverse metrics13 and manual checks through AMT 1296

crowdsourcing. 1297

Foiling method When creating the action re- 1298

placement instrument, we need to make sure that 1299

the action replacement suits the context. We pro- 1300

pose action replacements with BERT (Devlin et al., 1301

2019) that need to satisfy three conditions: 1) the 1302

proposed action verbs originate from the SWiG 1303

dataset – otherwise new verbs are introduced on 1304

the foil side only, which may induce biases; 2) the 1305

frequency distribution of action verbs on the cap- 1306

tion and on the foil side is approximately the same 1307

(cf. Figure 3); 3) we constrain the replacement 1308

verbs to be either antonyms of the original verb 1309

or at least not synonyms, hyponyms or hypernyms 1310

to the original, according to WordNet (Fellbaum, 1311

1998) in order to avoid situations where replace- 1312

ments are almost synonymous to the original action. 1313

The actant swap instrument is based on the origi- 1314

nal image annotations, but swaps the two role fillers 1315

(e.g., ‘A woman shouts at the man.’ for the image 1316

in Table 1). To avoid agreement mistakes, we gen- 1317

erate these foils using the inverted role fillers as 1318

input. 1319

The frequency distributions of words in which 1320

captions and foils differ, are plotted in Figure 3 for 1321

action replacement. The actant swap instrument is 1322

not visualised: By construction, actant swap cannot 1323

suffer from distributional bias since caption and foil 1324

contain the same words up to a permutation. 1325

A.6 Coreference 1326

The coreference piece consists of two pieces: 1327

coreference standard and coreference clean. It 1328

aims to uncover whether V&L models are able to 1329

perform pronoun coreference resolution. The coref- 1330

erence phenomenon encompasses both cases where 1331

i) the pronoun refers to a noun (phrase) and both 1332

the pronoun and the (noun) phrase are grounded 1333

13We use the GRUEN metric (Zhu and Bhat, 2020) that
scores grammaticality, naturalness and coherence of genera-
tions and compute perplexity with GPT-2 to rank alternative
outputs. We determined appropriate thresholds based on man-
ual judgements of acceptability and chose the highest-ranked
candidates. The final data quality is controlled by crowd-
sourced annotation with AMT.
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in the visual modality (e.g. ‘A woman is driving a1334

motorcycle. Is she wearing a helmet?’), and cases1335

where ii) the pronoun refers directly to a region in1336

the image or even to the whole image (e.g. ‘A man1337

is sitting on a bench. Is this outside?’).1338

Data source We source the data from VisDial1339

v1.0 (Das et al., 2017), which contains images1340

from MSCOCO (Lin et al., 2014), their captions1341

and dialogues about the images in form of Q&A1342

sequences. To ensure that the coreference phe-1343

nomenon is present in the [Caption. Question?1344

Yes/No.] formulations, we check whether pronouns1345

are present in the question. The list of pronouns1346

and their frequencies in our train-val-test splits are1347

represented in Figure 1.1348

The coreference standard instrument contains1349

916 data samples (708 are valid14) from the Vis-1350

Dial’s training set. The data of coreference clean1351

instrument consisting of 141 samples (104 are1352

valid), originates from VisDial’s validation set.1353

With models that have been trained on VisDial,1354

we would be in the situation where models are1355

tested on their training data. Therefore we also1356

have the coreference clean instrument based on1357

the validation set of VisDial to test models safely.1358

Unfortunately, we cannot use VisDial’s test set be-1359

cause the required question-answers annotations1360

necessary for foiling are withheld.1361

Foiling method When foiling, we take the im-1362

age description of the form [Caption. Question?1363

Yes/No.] and exchange the answer: yes →no and1364

vice-versa (see example in Table 1). This way, we1365

keep the full textual description including pronoun1366

and noun (phrase) intact, hence ensuring that the1367

coreference phenomenon is present and valid in the1368

foil too, and rely on the model to interpret affir-1369

mation and negation correctly. Note that we rely1370

on the capability of models to correctly interpret1371

negation also in the existence piece (cf. §3.1).1372

Arguably, coreference is the most difficult phe-1373

nomenon to foil in VALSE. Especially in cases1374

where pronouns refer to a noun (phrase) (e.g.,1375

‘A woman is driving a motorcycle. Is she wear-1376

ing a helmet? Yes.’), exchanging the pronoun with1377

another pronoun would generate incoherent and un-1378

likely sequences15 (e.g., ‘A woman is driving a mo-1379

14The majority of manual annotators validated that the cap-
tion describes the image but the foil does not.

15Even more, the possibilities of exchanging pronouns with
pronouns in grammatical ways are very limited: she – he but
not she – they / her / their.

Figure 1: Normalized pronoun frequencies in the coref-
erence subset.

torcycle. Is he wearing a helmet?’), and exchanging 1380

it with a noun phrase would furthermore break the 1381

pronoun coreference phenomenon because there 1382

would be no pronoun anymore (e.g., ‘A woman is 1383

driving a motorcycle. Is the man wearing a hel- 1384

met?’). Therefore when foiling the coreference 1385

piece, we aim to keep the original description in- 1386

tact for ensuring the preservation of the coreference 1387

phenomenon. Hence we rely on the answers con- 1388

taining yes or no16 and exchange affirmative to 1389

negative answers and vice-versa. 1390

A.7 FOIL it! data 1391

We include an additional piece in VALSE consist- 1392

ing of 1000 randomly sampled entries from the 1393

FOIL it! dataset (Shekhar et al., 2017b). Each 1394

entry in FOIL it! consists of an MSCOCO (Lin 1395

et al., 2014) image and a foiled caption where a 1396

noun phrase depicting an object visible in the im- 1397

age was replaced by a semantically related noun 1398

phrase. Since examples in the FOIL it! dataset are 1399

linked to MSCOCO, we use these links to retrieve 1400

one correct caption from the five captions available 1401

for the image, and create an image–caption–foil 1402

triple. From the original 1000 entries, 943 have 1403

been validated by our manual annotation proce- 1404

dure (in Appendix E). Please refer to Shekhar et al. 1405

(2017b) for more details. 1406

B Evaluation metrics 1407

We evaluate pretrained V&L models on VALSE 1408

using accuracy (acc), the overall accuracy on all 1409

classes; precision or positive predictive value (pc), 1410

which measures the proportion of correctly identi- 1411

fied correct captions; and foil precision or negative 1412

predictive value (pf ), which measures the propor- 1413

tion of correctly identified foiled examples. 1414

The pairwise ranking accuracy accr is com- 1415

puted using the image-sentence alignment score φ 1416

that the model assigns to correct and foiled image- 1417

16If the answer is longer than just yes/no (e.g., ‘Yes, she is’)
we shorten it to yes/no.
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CLIP LXMERT ViLBERT ViLBERT 12-in-1 VisualBERT
(Radford et al., 2021) (Tan and Bansal, 2019) (Lu et al., 2019) (Lu et al., 2020) (Li et al., 2019)

model type separate image and
text encoders dual stream dual stream dual stream single stream

pretraining
data

400M image-text
pairs MSCOCO Conceptual Captions Conceptual Captions MSCOCO

pretraining
tasks ISA ISA, MLM, MOP, VQA ISA, MLM, MOP ISA, MLM, MOP ISA, MLM, MOP

finetuning – VQA – 12 V&L tasks –

Table 3: V&L models evaluated with VALSE in our experiments. ISA: image-sentence alignment; MLM: masked
language modelling; MOP: masked object prediction; VQA: visual question answering.

text pairs. A prediction is considered successful, if1418

given an image (i) paired with a correct (c) versus1419

a foil (f ) text, the score of the positive/correct pair1420

is greater than that of the foiled pair.1421

accr =

∑
(i,c)∈C

∑
f∈F s(i, c, f)

|C|+ |F |
,

s(i, c, f) =

{
1, if φ(i, f) ≤ φ(i, c),
0, otherwise,

1422

where C is the set of correct image-caption pairs1423

(i, c), and F is the set of foils for the pair (i, c).1424

The pairwise accuracy accr is important for1425

two reasons: First, it enables V&L models to be1426

evaluated on VALSE without a binary classification1427

head for classifying image-sentence pairs as correct1428

or foiled. For example, CLIP (Radford et al., 2021)1429

is a model that computes a score given an image-1430

sentence pair. This score can be used to compare1431

the scores of a correct image-sentence pair and the1432

corresponding foiled pair. By contrast, a model1433

like LXMERT (Tan and Bansal, 2019) has a binary1434

image-sentence classification head and can predict1435

a correct pair independently of the foiled pair (and1436

vice-versa). Second, accr enables the evaluation of1437

unimodal models on VALSE, as motivated in §4.2.1438

C Filtering methods1439

NLI filtering For NLI filtering we make use of1440

the HuggingFace (Wolf et al., 2020) implementa-1441

tion of ALBERT (xxlarge-v2) that was already fine-1442

tuned on the concatenation of SNLI (Bowman et al.,1443

2015), MultiNLI (Williams et al., 2018), FEVER-1444

NLI (Nie et al., 2019) and ANLI datasets (Nie1445

et al., 2020). The model is the best performing on1446

the ANLI benchmark leaderboard17 and it achieves1447

90% accuracy on MultiNLI devset.1448

17github.com/facebookresearch/anli

D Vision & Language and Unimodal 1449

Models 1450

In Table 3 we summarise the five V&L models used 1451

in our experiments, their architecture, pretraining 1452

tasks and data, and finetuning tasks (if any). 1453

CLIP CLIP (Radford et al., 2021) is composed 1454

of two transformer-based text and an image en- 1455

coders. These are jointly trained on 400M image- 1456

text pairs through contrastive learning for predict- 1457

ing high scores for paired image-text examples and 1458

low scores when image-text samples are not paired 1459

in the dataset. CLIP has shown zero-shot capa- 1460

bilities in e.g. object classification, OCR, activity 1461

recognition (Radford et al., 2021). Goh et al. (2021) 1462

have shown the existence of multimodal neurons 1463

in CLIP, responding to the same topic regardless of 1464

whether it is represented in an image, drawing or 1465

handwritten text. We use CLIP’s image-text align- 1466

ment scores for benchmarking on VALSE: Given 1467

an image, we compare whether CLIP18 predicts 1468

higher image-text similarity for the correct or for 1469

the foiled caption. 1470

LXMERT LXMERT (Tan and Bansal, 2019) is 1471

a dual-stream transformer model combining V&L 1472

through cross-modal layers. It is pretrained on 1473

MSCOCO (Lin et al., 2014) and on multiple VQA 1474

datasets for (i) multimodal masked word and object 1475

prediction, (ii) image-sentence alignment, i.e., de- 1476

termining whether a text corresponds to an image 1477

or not, and (iii) question-answering. For bench- 1478

marking on VALSE, we use LXMERT’s19 image- 1479

sentence alignment head. 1480

ViLBERT and ViLBERT 12-in-1 ViLBERT 1481

(Lu et al., 2019) is a BERT-based transformer archi- 1482

tecture that combines V&L on two separate streams 1483

18github.com/openai/CLIP
19github.com/huggingface/transformers

17

github.com/facebookresearch/anli
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Piece Instrument #Instances #Valid (%) #Unanimous (%) #Lexical Items JS-div JS-div valid

Existence Existential quantifiers 534 505 (94.6) 410 (76.8) 25 0.628 0.629

Plurality Semantic Number 1000 851 (85.1) 617 (61.7) 704 0.742 0.766

Counting
Balanced 1000 868 (86.8) 598 (59.8) 25 0.070 0.082
Small numbers 1000 900 (90.0) 637 (63.7) 4 0.059 0.071
Adversarial 756 691 (91.4) 522 (69.0) 27 1.000 1.000

Relations Prepositions 614 535 (87.1) 321 (52.3) 38 0.083 0.114

Actions Replacement 779 648 (83.2) 428 (54.9) 262 0.437 0.471
Actant swap 1042 949 (91.1) 756 (72.6) 467 0.000 0.000

Coreference standard: VisDial train 916 708 (77.3) 499 (54.5) 2 0.053 0.084
clean: VisDial val 141 104 (73.8) 69 (48.9) 2 0.126 0.081

Foil-It! noun replacement 1000 943 (94.3) 811 (81.1) 73 0.426 0.425

Overall 8782 7702 (87.7) 5668 (73.6)

Table 4: Manual validation results for each piece in VALSE, as well as for the Foil-it dataset. Valid: number
(percent) of cases for which at least 2 out of 3 annotators chose the caption; Unanimous: number (percent) of cases
for which all annotators chose the caption; Lexical Items: number of phrases or lexical items in the vocabulary that
differs between foils and captions; JS-div: Jensen-Shannon divergence between foil-caption distributions for the
whole instrument; JS-div valid: Jensen-Shannon divergence between foil-caption distribution for the valid subset
of the instrument, after sub-sampling.

by co-attention layers. It is pretrained on Google1484

Conceptual Captions (Sharma et al., 2018) on (i)1485

multimodal masked word and object prediction;1486

and (ii) image-sentence alignment. ViLBERT 12-1487

in-1 (Lu et al., 2020) further finetuned a ViLBERT1488

model checkpoint on 12 different tasks including1489

VQA, image retrieval, phrase grounding and oth-1490

ers.20 We use the image-sentence alignment head1491

of the publicly available model checkpoints for1492

ViLBERT21 and ViLBERT 12-in-122.1493

VisualBERT VisualBERT (Li et al., 2019) is1494

also a BERT-based transformer. Its single-stream1495

architecture encodes image regions and linguis-1496

tic features via a transformer stack, using self-1497

attention to discover the alignments between the1498

two modalities. VisualBERT is pretrained on1499

MSCOCO captions (Chen et al., 2015) on two1500

tasks: (i) masked language modelling, and (ii)1501

sentence-image prediction. The latter is framed1502

as an extension of the next sentence prediction task1503

used with BERT. Inputs consist of an image and1504

a caption, with a second caption which has a 50%1505

probability of being random. The goal is to deter-1506

mine if the second caption is also aligned to the1507

image. In our experiments, we use the publicly1508

20github.com/facebookresearch/
vilbert-multi-task

21https://dl.fbaipublicfiles.com/
vilbert-multi-task/pretrained_model.bin

22https://dl.fbaipublicfiles.com/
vilbert-multi-task/multi_task_model.bin

available implementation of VisualBERT23. 1509

GPT-1 and GPT-2 – Unimodal models GPT1 1510

(Radford et al., 2018) and GPT2 (Radford et al., 1511

2019) are transformer-based autoregressive lan- 1512

guage models pretrained on English data through 1513

self-supervision. We test whether our benchmark is 1514

solvable by these unimodal models by computing 1515

the perplexity of the correct sentence and compare 1516

it to the perplexity of the foiled sentence. In case 1517

the computed perplexity is higher for the foil than 1518

for the correct sentence, we assume that the cor- 1519

rectly detected foiled caption may possibly suffer 1520

from a plausibility bias (as described in section 1521

4.2) or from other biases (e.g. a model’s preference 1522

towards affirmative or negative sentences). 1523

E Mechanical Turk Annotation and 1524

Evaluation 1525

Setup The validation study was conducted on all 1526

the data for each instrument in VALSE, as well 1527

as for the FOIL it! data (Shekhar et al., 2019b). 1528

Each instance consisted of an image, a caption and 1529

a foiled version of the caption, as shown in Fig- 1530

ure 4. Annotators received the following general 1531

instructions: 1532

You will see a series of images, each 1533

accompanied by two short texts. Your 1534

task is to judge which of the two texts 1535

accurately describes what can be seen in 1536

the image. 1537

23github.com/uclanlp/visualbert
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Each instance was accompanied by the caption1538

and the foil, with the ordering balanced so that the1539

caption appeared first 50% of the time. In each1540

instance, the caption and foil were placed above1541

each other, with the differing parts highlighted in1542

bold. Annotators were asked to determine which1543

of the two sentences accurately describes what can1544

be seen in the image? In each case, they had to1545

choose between five options: (a) the first, but not1546

the second; (b) the second, but not the first; (c) both1547

of them; (d) neither of the two; and (e) I cannot tell.1548

We collected three annotations for each instance,1549

from three independent workers.1550

Annotator selection We recruited annotators1551

who had an approval rating of 90% or higher on1552

Amazon Mechanical Turk. We ran an initial, pre-1553

selection study with 10 batches of 100 instances1554

each, in order to identify annotators who under-1555

stood the instructions and performed the task ade-1556

quately. The pre-selection batches were first man-1557

ually annotated by the authors, and we identified1558

‘good’ annotators based on the criterion that they1559

preferred the caption to the foil at least 70% of1560

the time. Based on this, we selected a total of 631561

annotators. Annotators were paid $0.05 per item1562

(i.e. per HIT on Mechanical Turk).1563

Results Table 4 shows, for each instrument, the1564

number of instances in total, as well as the pro-1565

portion of instances which we consider valid, that1566

is, those for which at least two out of three anno-1567

tators chose the caption, but not the foil, as the1568

text which accurately describes the image. We also1569

show the number of instances for which annotators1570

unanimously (3/3) chose the caption.1571

Bias check While measures were taken to con-1572

trol for distributional bias between captions and1573

foils in the different pieces of VALSE (cf. §4.1), it1574

is possible that sub-sampling after manual valida-1575

tion could reintroduce such biases. To check that1576

this is not the case, we compare the word frequency1577

distributions between captions and foils in the orig-1578

inal pieces, and the word frequency distribution of1579

the manually validated set. We report the Jensen-1580

Shannon divergence and the number of words that1581

differ between caption and foil in Table 4. The1582

foil-caption word frequency distributions can be1583

inspected in Figures 2 and 3. The Jensen-Shannon1584

(JS) divergence is defined as:1585

JS(f ‖ c) =
√
KL(f ‖ m) +KL(c ‖ m)

2

where f is the normalized word frequency for foils, 1586

c the normalized word frequency for captions, m 1587

is the point-wise mean of f and c, and KL is the 1588

Kullback-Leibler divergence. 1589

As Table 4 shows, the JS-divergence between 1590

caption and foil distributions remains the same, or 1591

changes only marginally (compare columns JS-div 1592

and Js-div valid, where #Lexical Items indicates the 1593

number of lexical/phrasal categories in the relevant 1594

distributions). This indicates that no significant 1595

bias was introduced as a result of subsampling after 1596

manual validation. 1597
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Figure 2: Word frequency distributions for captions and foils before and after the manual validation for existence,
counting and relations.
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Figure 3: Word frequency distributions for captions and foils before and after the manual validation for plurality,
action replacement and FOIL it. The actant swap instrument is not visualized here: By construction, actant swap
cannot suffer from distributional bias since caption and foil contain the same words up to a permutation.
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Figure 4: Example of an instance from the validation study. The example is from the Counting piece, adversarial
instrument (see Section 3.3).
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