
Under review as a conference paper at ICLR 2023

REACH THE REMOTE NEIGHBORS: DUAL-ENCODING
TRANSFORMER FOR GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent successes in natural language processing and computer vision,
Transformer suffers from the scalability problem when dealing with graphs. Com-
puting node-to-node attentions is infeasible on complicated graphs, e.g., knowledge
graphs. One solution is to consider only the near neighbors, which, however, will
lose the key merit of Transformer that attends to the elements at any distance.
In this paper, we propose a new Transformer architecture, named dual-encoding
Transformer (DET), which has a structural encoder to aggregate information from
near neighbors and a semantic encoder to focus on useful semantically close neigh-
bors. The two encoders can be incorporated to boost each other’s performance. Our
experiments demonstrate that DET achieves superior performance compared to
the respective state-of-the-art attention-based methods in dealing with molecules,
networks and knowledge graphs.

1 INTRODUCTION

Transformer has become one of the most prevalent neural models for natural language processing
(NLP) (Vaswani et al., 2017; Devlin et al., 2019). The self-attention mechanism leveraged by
Transformer has already been extended to graph neural networks (GNNs), e.g., GAT (Velickovic
et al., 2018) and its variants (Wu et al., 2019; Vashishth et al., 2020; Chen et al., 2021b; Kim & Oh,
2021). Nevertheless, these models only consider the near (usually one-hop) neighbors, which may
violate the original intention of Transformer that attends to the elements at distant positions.

Recently, Graphormer (Ying et al., 2021) starts to leverage the standard Transformer architecture for
graph representation learning and has achieved superior performance on many benchmarks. However,
in its scenarios of graph property prediction, the datasets are small graphs (e.g., small molecules).
The full node-to-node attention leveraged by Graphormer makes it inapplicable to large graphs with
millions of nodes, such as knowledge graphs (KGs) or social networks. The same problem also
appears in the computer vision (CV) area, yet has recently been tackled by patching pixels to patches
and then to windows in a hierarchical fashion (Dosovitskiy et al., 2021; Liu et al., 2021b). These
works inspire us to explore the possibility of using one universal Transformer architecture as the
general backbone to model graphs of different sizes.

In addition to many self-attention-based methods considering only one-hop neighbors (Schlichtkrull
et al., 2018; Wu et al., 2019; Ye et al., 2019; Chen et al., 2021b; Kim & Oh, 2021), some existing
works introduce multi-hop (usually 2- or 3-hop) neighbors (Abu-El-Haija et al., 2019; Sun et al.,
2020). However, they still concentrate on the local information and fail to obtain useful information
from the remote nodes. Capturing the remote correlations is one of the most important characteristics
of Transformer, because the rich context not only boosts the performance but also avoids over-fitting
for local information. For example, attending to the distant nodes may be helpful even on a highly
homophilic graph, considering the existence of enormous missing links (Ciotti et al., 2016).

In this paper, we propose a dual-encoding Transformer (DET). In DET, we consider two types
of neighbors, i.e., structural neighbors and semantic neighbors. Structural neighbors are the near
neighbors leveraged by most existing GNNs (Vashishth et al., 2020; Chen et al., 2021b; Kim & Oh,
2021). By contrast, Semantic neighbors, i.e., the remote neighbors, are the semantically close nodes
but may be remote from the node of interest in structure.

1

Under review as a conference paper at ICLR 2023

node of interest

se
m

an
tic

 n
ei

gh
bo

rs

feed to the structural encoder

structural neighbor

⊖

no
de

 o
f i

nt
er

es
t

feed to the semantic encoder

combine
the output

structural encoder

semantic encoder
output node
embeddings

semantic embeddings

structural embeddings

Figure 1: Overview of DET. Structural neighbors are local neighbors connected with the node of
interest on the graph, while semantic neighbors are remote nodes with similar semantics to the node
of interest. The two encoders focus on encoding different aspects of neighboring information, and
thus are capable of complementing each other.

Figure 1 shows the basic idea of DET. For structural encoding, we use the standard self-attention
layer to encode the structural neighbors. For semantic encoding, we use a modified linear attention
layer to encode the semantic neighbors. The dual encoding ensures both local aggregation and global
connection, and also enables them to benefit from each other through back propagation.

The idea of reaching remote neighbors is inspired by MSA Transformer (Rao et al., 2021) and
AlphaFold 2 (Jumper et al., 2021). They query the genetic database to fetch the similar sequences
(i.e., proteins) as “family members”. The difference is that the family members in DET (i.e., semantic
neighbors) are obtained by self-supervised learning rather than asking for external resources. Briefly,
we convert this problem to a learning task to find the distant nodes that are as important as local
neighbors. We then view local neighbors as positive examples and randomly sampled distant nodes
as negative examples, constructing a standard contrastive learning. Furthermore, we propose to use
the semantic operator 	 to estimate the score between the node of interest and others. It is a learnable
function to compel the encoder to value the semantically close nodes.

The proposed DET is capable of achieving superior performance on various graph learning tasks.
(1) For graph property prediction, DET outperforms the best-performing methods on the PCQM4M-
LSCv1 (Nakata & Shimazaki, 2017) and ZINC (Dwivedi et al., 2020) datasets; (2) For node classifi-
cation, DET obtains competitive or better performance compared with the state-of-the-art attention-
based methods, on several prevalent benchmarks (e.g., Cora, PPI, and ogbn-arxiv) (Yang et al.,
2016; Nakata & Shimazaki, 2017; Zitnik & Leskovec, 2017); (3) For KG completion (a.k.a., entity
prediction), DET achieves the state-of-the-art performance on both FB15K-237 (Toutanova & Chen,
2015) and WN18RR (Dettmers et al., 2018).

2 RELATED WORKS

We split the related literature into three parts: non-local GNNs, self-attention, and position embedding.

Non-local GNNs Some methods also investigate how to capture the relationships among discon-
nected nodes (Pei et al., 2020; Yao et al., 2020; Liu et al., 2021a; Min et al., 2022). Specifically,
Geom-GCN (Pei et al., 2020) learns the aggregation purely based on embedding distance, while
Non-local-GNNs (Liu et al., 2021a) uses the attention scores from a virtual node to other nodes as
a sorting metric to find non-local neighbors. However, they only focus on modeling networks and
are evaluated on multi-classification tasks with a few classes. They also do not distinguish between
remote nodes and direct neighbors. (Yao et al., 2020; Min et al., 2022) leverage hand-crafted features
to find the useful remote nodes, which are less relevant to our work.

Self-attention Self-attention-based neural models, such as Transformer, have recently become the
de facto choice in NLP, ranging from language modeling and machine translation (Devlin et al.,
2019; Vaswani et al., 2017) to question answering (Yang et al., 2019; Yavuz et al., 2022) and
sentiment analysis (Cheng et al., 2021; Xu et al., 2019a). Transformer has significant advantages over
conventional sequential models like recurrent neural networks (RNNs) (Williams & Zipser, 1989;
Hochreiter & Schmidhuber, 1997) in both scalability and efficiency.

2

Under review as a conference paper at ICLR 2023

Position Embedding Position embedding is one of the most important modules of Transformer.
Transformer variants in different fields typically customize different designs in this module. For
example, ViT and its followers (Dosovitskiy et al., 2021; Fan et al., 2021; Han et al., 2021) sequentially
index the patches and encode the indices as 1D position embeddings. SwinTransformer (Liu et al.,
2021b;c) proposes the 2D-aware relative position biases, which employs a learnable matrix to record
pairwise patch position information in the window.

In addition to the position information, other prior knowledge can also be injected as attention
biases or position embeddings into Transformer, which becomes the key to applying Transformer
on graphs (Ahn et al., 2021; Chen et al., 2021a;b; Dwivedi & Bresson, 2021; Kreuzer et al., 2021;
Ying et al., 2021). For example, GT (Dwivedi & Bresson, 2021) replaces the sinusoidal positional
embeddings by the Laplacian eigenvectors. Graphformer (Ying et al., 2021) encodes centrality and
shortest path distance into embeddings, and then incorporates them as position embeddings into
Transformer. HittER (Chen et al., 2021b) adds the edge type (i.e., relation) information of KGs when
encoding entity embeddings.

3 METHODOLOGY

In this section, we present the details of DET. We start from the preliminaries and then introduce the
dual-encoding process. Finally, we illustrate how to train a DET model.

3.1 PRELIMINARIES

We first introduce the terminologies and notations that will be used in the following sections.

Graph We define a graph as G = (V, E), where V = {v1, v2, ..., vn} is the node set, and E =
{e1, e2, ..., em} is the edge set. n and m denote the number of nodes and edges, respectively. In
practice, different tasks often have more complicated graph structures. For example, molecular graphs
and KGs have edge types (i.e., chemical bonds and relations). We do not discuss the details and
follow the general setting to process these specific features (Chen et al., 2021b; Ying et al., 2021).

GNN and Self-attention Without loss of generality, we define a GNN as a neural network that
learns a group of weights to aggregate the embeddings of the one-hop or multi-hop neighbors for the
node of interest. In this sense, self-attention can be naturally treated as a GNN model. Let Q ∈ Rn×h,
K ∈ Rn×h, V ∈ Rn×h denote the query, key, and value matrices, respectively. In this paper, they
are the same node embedding matrix. h denotes the hidden layer size. Self-attention calculates the
attention scores as follows:

A = Softmax(
QK>√

h
), (1)

where A ∈ Rn×n records the node-to-node attention scores. We then aggregate the node embeddings
with the following equation:

H = AV , (2)

where H ∈ Rn×h is the output embedding matrix, with each row denoting the embedding of a node.

Linear Attention The computational complexity of the above dot-product implementation is Ω(n2)
(without considering the hidden layer size). As the number of nodes increases, the cost becomes
unacceptable. GAT (Velickovic et al., 2018) proposes a linear self-attention implementation to
mitigate this problem by only considering the one-hop neighbors:

Bij = σ
(
b>(Wvi ‖Wvj)

)
, (3)

where Bij denotes the attention score from the node of interest vi to a neighbor vj . vi, vj ∈ Rh are
the embeddings of vi and vj , respectively. b ∈ Rh and W ∈ Rh×h are weight vector and matrix,
respectively. σ is the activation function and ‖ denotes the concatenation operation. The linear
attention does not consider the correlations within neighbors, and thus its computational complexity
is cut down from Ω(n2) to Ω(m). Note that, it is not necessary to use one-hop neighbors as keys in
linear attention. Some existing works also consider multi-hop neighbors (Sun et al., 2020).

3

Under review as a conference paper at ICLR 2023

Table 1: The occurrence frequency of entities in
FB15K-237 and WN18RR, in term of hops.

Dataset 1-hop 2-hop 3-hop 5-hop

WN18RR 2.7 8.9 30.5 483.8
FB15K-237 20.3 1781.4 64,774.9 -

Semantic neighborsMSA

Results

Query travel

move
turn

intercommunicate
change

Figure 2: A comparison between MSA and se-
mantic neighbors. The left figure is sliced from
Jumper et al. (2021). The right figure is an exam-
ple from WordNet (Miller, 1995).

Algorithm 1 Dual-encoding Transformer

1: Input: graph G = (V, E), the main predic-
tion loss Lmain, the structural encoderMst,
and semantic encoderMse;

2: Initialize all parameters;
3: repeat
4: Update the semantic neighbors;
5: for each batch data (Xst,Xse,Y) do
6: Hst ←Mst(Xst) (Equation (4));
7: Hse ←Mse(Xse) (Equation (6));
8: H ← Hst ⊕Hse;
9: Compute Lsn (Equation (7));

10: L ← Lmain(H,Y) + Lsn;
11: Update the parameters according to L;
12: end for
13: until the performance on the validation set

converges;

3.2 STRUCTURAL ENCODING

The standard dot-product attention can be easily extended on the small graphs. We add a virtual
node vc (Devlin et al., 2019) as the context node connected with all nodes in G. Then, the output
representation for vc can be regarded as an embedding of G. For the large graphs like KGs or
networks, we perform self-attention on the local subgraph Gi given the node of interest vi. Therefore,
the output embedding for node vi is

hst
i =

∑
vj∈{vi}∪N (vi)

Acjvj , (4)

where hst
i denotes the output of the structural encoder for vi. Acj denotes the attention score from

the context node c to the neighbor vj . N (vi) denotes the set of local neighbors (one-hop neighbors in
our implementation) for vi. Follow the existing works (Chen et al., 2021b; Ying et al., 2021), we
accordingly add the centrality, relation type, or shortest distance path information as special position
embeddings to the encoder. The details can be found in Appendix A.

3.3 SEMANTIC ENCODING

The structural features sometimes are unreliable for identifying a neighbor. For example, if the
node of interest has a large amount of neighbors, many of them inevitably have similar or identical
structural features (e.g., shortest path distance to vi). This problem is even more serious when they
are all one- or two-hop neighbors. However, if we directly aggregate more-hop nodes, the sheer
quantity of available information will overwhelm the neural network.

Table 1 summarizes the average frequency of entities appearing as others’ neighbors in different hops.
We can find that the two- or more-hop neighbors of a node are shared by many others, which is why
current GNNs rarely consider multi-hop neighbors. This phenomenon also reveals the over-smoothing
problem to some extent. To make the node of interest more distinguishable to the classifier, weighting
its one-hop neighbors is usually reasonable due to the less redundancy. Therefore, we make the
following hypothesis:

Hypothesis 1 The one-hop neighbors are the most informative features to identify and represent the
node of interest.

Recent successes (Rao et al., 2021; Jumper et al., 2021) in biological science demonstrate that using
the information provided by the family members can help protein structure prediction. Specifically,
they leverage multiple sequence alignment (MSA) (the results of biological sequence alignment) to
make use of the information within an evolutionary family. The protein sequences in a family are
assumed to have a common ancestor or an evolutionary relationship. Therefore, they may also share
some important sub-structures in protein folding.

4

Under review as a conference paper at ICLR 2023

If we view the embedding of a node as a kind of sequence, then the remote neighbors used in semantic
encoding should have similar embeddings to the node of interest. We illustrate this idea in Figure 2,
our basic idea is to view node embeddings as protein amino acid sequences with a fixed length. Then,
we can make use of the insight from the well-known MSA Transformer and AlphaFold 2. To this end,
we need to find the family members (that share similar evolutional characteristics and relationships)
of our “protein”. In their original implementation, this step is done by querying an external gene
database. In our case, we propose the semantic encoder to find such family members. Therefore, we
make the second hypothesis:

Hypothesis 2 The distant nodes that have a high embedding similarity with the node of interest are
important features for this node.

In this paper, we estimate the similarity score by a learnable neural function fs : Rh × Rh → R:

fs(vi,vj) = vi 	 vj

= 1− σ
(
(vi − vj)Ws + bs

)
, (5)

where	 is the semantic difference operator. In fact, the choice of	 is flexible as long as it can reflect
the similarity between vi and vj . We use the weighted difference as 	, which can be easily extended
to matrix operation. Ws ∈ Rh×1 and bs ∈ R are the weight and bias, respectively. We use Sigmoid
as activation to normalize the difference to (0, 1) and then convert it to a similarity score. Therefore,
the output embedding for semantic encoding is written as follows:

hse
i =

∑
vj∈N se(vi)

Bijvj

=
∑

vj∈N se(vi)

fs(vi,vj)vj , (6)

where B ∈ Rn×n records the node-to-node semantic attention scores estimated by fs in Equation (5).
N se(vi) is the semantic neighbor set. In our implementation, it is sampled from the top candidates
(top 10% in our setting) during training.

We then define the semantic neighbor fetching loss to learn fs:

Lsn(vi) = − 1

|N (vi)|
∑

vj∈N (vi)

ln
(
fs(vi,vj)

)
+

1

|N−(vi)|
∑

vk∈N−(vi)

ln
(
fs(vi,vk)

)
, (7)

where N (vi) is the positive example set that includes the local neighbors (Hypothesis 1) of vi, and
N−(vi) is the negative example set in which the negative examples are randomly-sampled distant
nodes (Hypothesis 2) of vi. Therefore, the learning process of fs is self-supervised and can be jointly
optimized with the main task loss.

3.4 DUAL-ENCODING TRANSFORMER

Algorithm We illustrate the implementation of DET in Algorithm 1 and summarize the overall
training process as follows: We first initialize the input embeddings and all parameters of DET. For
each epoch (or every few epochs), we first draw semantic neighbors from the top 10% candidates
(according to Equation (5) for each node. In each batch, we feed the structural encoder with the
structural neighbors of the input nodes, and the semantic encoder with the semantic neighbors. We
combine the output embeddings of two encoders by weighted addition and jointly minimize the main
task loss and semantic neighbor fetching loss.

Computational Cost We find the total training time does not increase too much compared with
the baselines. The design of the semantic operator 	 in the semantic encoder is simpler than the
linear attention, which only increases a small number of parameters. Although fetching the semantic
neighbors needs to iterate all nodes (yields a time complexity of n2), we do not compute them on the
fly. Instead, we update semantic neighbors of each node every few epochs, improving both efficiency
and robustness. Hence, the overall training time remains at the same level (see Appendix B for the
detailed statistics).

5

Under review as a conference paper at ICLR 2023

Table 2: Graph property prediction results on the
PCQM4M-LSCv1 dataset.

Model #param. train MAE validate MAE

GCN 2.0M 0.1318 0.1691
DeeperGCN 25.5M 0.1059 0.1398
GraphSage - - -
GIN 3.8M 0.1203 0.1537

GT 83.2M 0.0955 0.1408
Graphormer 47.1M 0.0582 0.1234

DET 47.1M 0.0546 0.1212

Table 3: Graph property prediction re-
sults on the ZINC dataset.

Model #param. test MAE

GCN 505,079 0.367
GraphSage 505,341 0.398
GIN 509,549 0.526
GatedGCN-LSPE - 0.090

GAT 531,345 0.384
GT 588,929 0.226
Graphormer 489,321 0.122

DET 489,562 0.113

4 EXPERIMENT

We conducted experiments on a variety of benchmarks to verify the effectiveness of DET. We
uploaded the source code and reported the dataset statistics and parameter settings in Appendix C.

4.1 GRAPH PROPERTY PREDICTION

Datasets We evaluated DET on the graph property prediction benchmarks PCQM4M-LSCv1 (Hu
et al., 2021) and ZINC (Dwivedi et al., 2020). The former is used in the recent Open Graph
Benchmark Large-Scale Challenge, while the latter is a popular dataset used to evaluate molecular
graph representation learning methods. Considering that the number of nodes in each graph is very
small (usually less than 50), we directly perform attention operations on the whole graph. Therefore,
we removed the semantic neighbor fetching loss in this experiment.

Baselines We compared DET with the state-of-the-art methods: the attention-based GAT (Velick-
ovic et al., 2018), GT (Dwivedi & Bresson, 2021) and Graphormer (Ying et al., 2021); and other
recently developed GCN (Kipf & Welling, 2017), GraphSage (Hamilton et al., 2017), GIN (Xu et al.,
2019b), DeeperGCN (Gilmer et al., 2017), and GatedGCN-LSPE (Dwivedi et al., 2022).

Results Table 2 and Table 3 summarize the experimental results measured by mean average error
(MAE) on the two datasets. Due to the inaccessibility of the testing data on PCQM4M-LSCv1, we
alternatively report the MAE results on the training and validation sets.

Overall, DET outperformed all the baseline methods on PCQM4M-LSCv1. Compared with
Graphormer that only considers encoding structural information with Transformer, DET signifi-
cantly improved the performance, with 6.2% and 7.4% MAE decline on PCQM4M-LSCv1 and ZINC,
respectively. Furthermore, the number of model parameters still maintained the same level to that of
baselines. We also observed that DET had more significant advantages over other Transformer-based
methods on ZINC. Although GatedGCN-LSPE had a better result, we argue that it is feasible to use
it as our structural encoder to obtain better performance.

4.2 NODE CLASSIFICATION

Datasets We evaluated DET on five benchmarks that are generally used for node representation
learning. Specifically, Cora, CiteSeer, and PubMed (Yang et al., 2016) are three citation network
datasets commonly used in the transductive setting, while PPI (Zitnik & Leskovec, 2017) is a well-
used protein-protein interaction dataset in the inductive setting. ogbn-arxiv (Nakata & Shimazaki,
2017) is a large citation network dataset. Most experiment settings follow (Kim & Oh, 2021), and
we repeated experiments 100 times on Cora, CiteSeer, and PubMed with random seeds, and 30 times
on PPI and ogbn-arxiv, to produce reliable results and ensure a fair comparison.

Baselines We selected the attention-base methods GAT (Velickovic et al., 2018), CGAT (Wang et al.,
2019a), Graph-Bert (Zhang et al., 2020) and SuperGATSD (Kim & Oh, 2021) as baseline methods. In
addition, other GNN-based methods like GCN (Kipf & Welling, 2017), GraphSage (Hamilton et al.,
2017) and GCN+NS (Zheng et al., 2020) were also added for comparison.

6

Under review as a conference paper at ICLR 2023

Table 4: Node classification results on five benchmarks (accuracy for Cora, CiteSeer, PubMed, and
ogbn-arxiv; F1-score for PPI). The results of Graph-Bert are from (Zhang et al., 2020).

Model Cora CiteSeer PubMed PPI ogbn-arxiv

GCN 81.5 70.3 79.0 61.5±0.4 33.3±1.2
GraphSage 82.1±0.6 71.9±0.9 78.0±0.7 59.0±1.2 54.6±0.3
GCN+NS 83.7±1.4 74.1±1.4 - - -

GAT 83.0±0.7 72.5±0.7 79.0±0.4 72.2±0.6 54.1±0.5
CGAT 81.4±1.1 70.1±0.9 78.1±1.0 68.3±1.7 -
Graph-Bert 84.3±1.3 71.2±0.8 79.3±1.3 - -
SuperGATSD 82.7±0.6 72.5±0.8 81.3±0.5 74.4±0.4 54.5±0.3

DET 84.6±0.4 72.8±0.5 81.8±0.3 74.1±0.3 55.7±0.3

Table 5: KG completion (entity prediction) results on FB15K-237 and WN18RR.

Model FB15K-237 WN18RR

MRR MR Hits@1 Hits@10 MRR MR Hits@1 Hits@10

TransE .310 199 .218 .495 .232 5,249 .061 .522
RotatE .338 177 .241 .533 .476 3,340 .428 .571
TuckER .358 - .266 .544 .470 - .443 .526

CoKE .364 - .272 .549 .484 - .450 .553
CompGCN .355 197 .264 .535 .479 3,533 .443 .546
HittER .373 158 .279 .558 .503 2,268 .462 .584

DET .376 150 .281 .560 .507 2,255 .465 .585

Results The results are shown in Table 4, from which we can observe that DET outperformed the
attention-based methods on most datasets except PPI. Although SuperGATSD had better performance
on this dataset, we argue that it is no contradiction to incorporate SuperGATSD as structural encoder
into DET to obtain a stronger model.

Interestingly, the attention-based methods unanimously performed worse than the GCN-based method
GCN+NS on CiteSeer. SuperGATSD and CGAT even had the same or worse results compared with the
original GAT. Nevertheless, we observed an improvement from GAT to DET. This result empirically
demonstrates the strength of leveraging semantic neighbors.

4.3 KG COMPLETION

Datasets We conducted experiments on the KG completion (a.k.a., entity prediction) task. The
main target is to predict the subject entity (or object entity) given an incomplete triple. We evaluated
DET on two benchmark datasets FB15K-237 (Toutanova & Chen, 2015) and WN18RR (Dettmers
et al., 2018), which are sampled from the real-world KGs Freebase (Bollacker et al., 2008) and
WordNet (Miller, 1995), respectively.

Baselines We chose the best-performing entity prediction methods as our baselines: the TransE-
family methods TransE (Bordes et al., 2013), RotatE (Sun et al., 2019), and TuckER (Balazevic et al.,
2019), and the attention-based methods CoKE (Wang et al., 2019b), CompGCN (Vashishth et al.,
2020), and HittER (Chen et al., 2021b). Specifically, CoKE and HittER also leverage Transformer to
encode the structural information.

Results We report the main results on Table 5. It is clear that DET surpassed all the baselines across
all datasets and metrics. The improvement on MR (mean rank) is most significant, which implies that
DET learned better embeddings for all entities, not only for the top ones favored by Hits@1.

Overall, DET achieved competitive performance on all three types of tasks, which demonstrates its
effectiveness and generality in modeling graphs.

7

Under review as a conference paper at ICLR 2023

Table 6: Ablation study results on different datasets (↑: higher is better; ↓: lower is better. ×:
unavailable entry). St. and Se. are the abbreviations of Structural and Semantic.

St. encoder Se. encoder Fetching loss ZINC Cora CiteSeer PubMed FB15K-237 WN18RR
MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Mean Rank↓ Mean Rank↓

√ √ √
× 84.6 72.8 81.8 150 2,255√ √

0.113 82.6 72.7 78.1 151 2,305√
0.122 84.0 71.6 80.9 158 2,268√ √
× 84.1 72.5 81.5 × ×√

0.515 83.1 72.6 77.7 × ×

83.6
83.8
84.0
84.2
84.4
84.6
84.8

(a) Cora

0.45
0.47
0.49
0.51
0.53
0.55
0.57
0.59

(b) CoraFull

40.0

40.5

41.0

41.5

42.0

(c) Chameleon

A
cc

ur
ac

y

Figure 3: Accuracy on three datasets with different homophily (Cora (Yang et al., 2016): 0.83,
CoraFull (Bojchevski & Günnemann, 2018): 0.59, Chameleon (Rozemberczki et al., 2019): 0.21),
w.r.t. hyper-parameter τ (average of 7 runs). The homophily statistics are from (Zhu et al., 2020).

5 FURTHER ANALYSIS

To better understand DET, we design three experiments to explore and evaluate DET in depth.

5.1 IS EVERY MODULE IN DET USEFUL?

We conducted ablation studies to verify the effectiveness of each module in DET. We used six datasets
in different tasks and present the results in Table 6. We removed the modules from DET step-by-step
while keeping identical hyper-parameter settings throughout the experiments.

Semantic Neighbor Fetching The semantic neighbor fetching loss is undoubtedly important to
DET. No matter if combining two encoders or only using the semantic encoder, integrating with the
semantic fetching module had better performance in most cases. The improvement was most notable
on PubMed, where it yielded 3.7% and 3.8% of accuracy increases, respectively. The mean rank
results on WN18RR also got worse without the fetching loss.

Semantic Encoder If we do not consider the semantic neighbor fetching loss, is the semantic
encoder itself still useful to DET? Unfortunately, we find the answer ambiguous. For Cora, PubMed,
and WN18RR, when we did not employ the fetching loss, DET with the semantic encoder performed
much worse than DET without the semantic encoder. But we observe that the situation was reversed
on CiteSeer and FB15K-237. In fact, when we only consider one-hop neighbors, the semantic encoder
without fetching loss is just a “minus” attention layer. It may have its pros and cons compared with
the standard dot-product attention layer on different datasets. In this sense, the semantic fetching loss
is who endows the semantic encoder with the characteristic.

On the ZINC dataset, where the model can apply attention operations on the whole graph, the
semantic encoder was capable of estimating the semantic similarity of remote neighbors to the node
of interest without the help of the fetching loss. Therefore, we can see that the dual-encoding version
of DET greatly outperformed the structural encoder only version. Overall, the effectiveness of the
semantic encoder is conditioned: it must get in touch with the remote nodes.

Structural Encoder The structural encoder also has merits. From the results of the 3-rd and 5-th
rows in Table 6, we find that it had better performance than the semantic encoder on all datasets
except CiteSeer. We also noticed that only using the semantic encoder had the worst MAE on the
ZINC dataset, due to the absence of all structural information.

8

Under review as a conference paper at ICLR 2023

travel proceed (0.36)

precede (0.32)

accompany (0.37)

walk (0.65)

movement (0.47)

move (0.64)intercommunicate (0.60)

move into (0.58)

turn (0.56)

change (0.59)

(b) WN18RR(a) FB15K-237

Nintendo

Shigeru Miyamoto (0.71)

USA (0.46)

English Language (0.53)

Video game industry (0.97)
Customer service (0.62)

Sony Computer Entertainment(0.88)

From Software (0.86)

Ubisoft (0.87)

Atlus (0.83)

Mattel (0.86)

structural neighbors

node of interest

semantic neighbors

unnormalized
semantic score

(·)

Figure 4: Examples of the semantic attention scores to different types of neighbors.

5.2 THE CORRELATION BETWEEN SEMANTIC ENCODING AND GRAPH HOMOPHILY

In the Introduction section, we mention that the semantic encoding is helpful even on graphs with high
homophily. Therefore, we conducted experiment to verify the correlations between the effectiveness
of the semantic encoder and the homophily of datasets.

We set a hyper-parameter τ to control the combination of the structural encoder and the semantic
encoder, which can be written in the following equation:

h = τhst + (1− τ)hse, (8)

where h, hst, hse denote the combined output, structural output, and semantic output, respectively.
By assigning different τ , we can control the importance of each encoder in the combination.

The experimental results are shown in Figure 3, from which we can see that the performance gap for
different τ existed in all three datasets, but the trends and peaks were different. On highly homophilic
dataset Cora, the accuracy first increased from τ = 0 to τ = 0.15, and peaked around τ = 0.2,
then dropped until τ = 95. On CoraFull and Chameleon with median and low homophily, we
observe that the performance peaked around [0, 0.05] and maintained steady in the interval [0.05, 0.2].
When τ ≥ 0.5, the performance rapidly dropped to minima. Therefore, we may make the following
conclusions: (1) the semantic encoder has better effects when the datasets have low homophily. The
larger proportion the semantic encoding occupied, the better performance the model achieved; (2)
even on the highly homophilic dataset, engaging the semantic encoder with a proper τ has significant
advantages over using only structural encoder; (3) in any cases, properly combining the output of two
encoders (i.e., DET) is the best choice.

5.3 HOW DOES THE SEMANTIC ENCODER HELP THE STRUCTURAL ENCODER?

It is worth exploring how the semantic encoder affects the structural encoder. In Figure 4, we illustrate
two examples on FB15K-237 and WN18RR, respectively. We find that the semantic scores for the
structural neighbors are also in line with human intuition. In the left figure, the entity USA has a low
score although it is directly connected to Nintendo by relation service_location. The verb precede
and accompany obtain relatively low scores in the right figure. These neighbors are not very related
to the entities of interest from the human perspective. By contrast, some one-hop neighbors get high
semantic scores, e.g., the well-known director Shigeru Miyamo of Nintendo in FB15K-237 and the
verb walk in WN18. They are the more informative entities. For the semantic neighbors, we can see
that the exploited remote neighbors are closely related to the entity of interest, as well as the structural
neighbors with high semantic scores. For example, Atlus is an important game developer to Nintendo.
Aggregating such information may be helpful when the model is asked to predict the games related to
Nintendo. For the verb travel in WN18RR, move also shares many key features with it.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a new Transformer architecture DET to deal with graphs of different types
and sizes. In DET, the structural encoder aggregates information from local nodes while the semantic
encoder seeks the remote nodes with useful semantics. The experimental results demonstrate the
strong performance of DET on three prevalent GNN tasks across 9 benchmarks. We hope DET can
bring more insights and inspirations in developing unified Transformer architectures. In future, we
plan to adapt DET to the NLP and CV areas.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In ICML, volume 97 of Proceedings of Machine
Learning Research, pp. 21–29, 2019.

Sungsoo Ahn, Binghong Chen, Tianzhe Wang, and Le Song. Spanning tree-based graph generation
for molecules. In ICLR, 2021.

Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Tucker: Tensor factorization for knowledge
graph completion. In EMNLP-IJCNLP, pp. 5184–5193, 2019.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In ICLR, 2018.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A
collaboratively created graph database for structuring human knowledge. In SIGMOD, pp. 1247–
1250, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, pp. 2787–2795, 2013.

Jianwen Chen, Shuangjia Zheng, Ying Song, Jiahua Rao, and Yuedong Yang. Learning attributed
graph representations with communicative message passing transformer. In IJCAI, 2021a.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng Ji. Hitter:
Hierarchical transformers for knowledge graph embeddings. In EMNLP, pp. 10395–10407, 2021b.

Junyan Cheng, Iordanis Fostiropoulos, Barry Boehm, and Mohammad Soleymani. Multimodal
phased transformer for sentiment analysis. In EMNLP, pp. 2447–2458, 2021.

Valerio Ciotti, Moreno Bonaventura, Vincenzo Nicosia, Pietro Panzarasa, and Vito Latora. Homophily
and missing links in citation networks. EPJ Data Science, 5:1–14, 2016.

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell, Kamal Nigam, and
Seán Slattery. Learning to extract symbolic knowledge from the world wide web. In AAAI, pp.
509–516, 1998.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2D
knowledge graph embeddings. In AAAI, pp. 1811–1818, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020. URL https:
//arxiv.org/abs/2003.00982.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph
neural networks with learnable structural and positional representations. In ICLR, 2022. URL
https://openreview.net/forum?id=wTTjnvGphYj.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In ICCV, pp. 6824–6835, 2021.

10

https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982
https://openreview.net/forum?id=wTTjnvGphYj

Under review as a conference paper at ICLR 2023

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pp. 1263–1272, 2017.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pp. 1024–1034, 2017.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. NeurIPS, 34, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:
1735–1780, 1997.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A A Kohl, Andrew J Ballard, Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen
Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian
Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli,
and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold. Nature, 596
(7873):583–589, 2021.

Dongkwan Kim and Alice H. Oh. How to find your friendly neighborhood: Graph attention
design with self-supervision. In ICLR, 2021. URL https://openreview.net/forum?
id=Wi5KUNlqWty.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017. URL https://openreview.net/forum?id=SJU4ayYgl.

Devin Kreuzer, Dominique Beaini, William Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. arXiv preprint arXiv:2106.03893, 2021.

Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, pp.
10012–10022, 2021b.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin
transformer. arXiv preprint arXiv:2106.13230, 2021c.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

George A. Miller. WordNet: An electronic lexical database. Communications of the ACM, 38, 1995.

Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Peilin Zhao, Junzhou Huang, Da Luo, Kangyi
Lin, and Sophia Ananiadou. Masked transformer for neighhourhood-aware click-through rate
prediction. arXiv preprint arXiv:2201.13311, 2022.

Maho Nakata and Tomomi Shimazaki. Pubchemqc project: a large-scale first-principles electronic
structure database for data-driven chemistry. Journal of chemical information and modeling, 57(6):
1300–1308, 2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In ICLR. OpenReview.net, 2020. URL https://openreview.
net/forum?id=S1e2agrFvS.

Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F. Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. bioRxiv, 2021. URL https://www.biorxiv.org/
content/10.1101/2021.02.12.430858v1.

11

https://openreview.net/forum?id=Wi5KUNlqWty
https://openreview.net/forum?id=Wi5KUNlqWty
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://www.biorxiv.org/content/10.1101/2021.02.12.430858v1
https://www.biorxiv.org/content/10.1101/2021.02.12.430858v1

Under review as a conference paper at ICLR 2023

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. arXiv
preprint arXiv:1909.13021, 2019.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In ESWC, pp. 593–607,
2018.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, and Yuzhong Qu.
Knowledge graph alignment network with gated multi-hop neighborhood aggregation. In AAAI,
pp. 222–229, 2020.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. In ICLR, 2019. URL https://openreview.net/
forum?id=HkgEQnRqYQ.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In CVSC, pp. 57–66, 2015.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar. Composition-based multi-
relational graph convolutional networks. In ICLR, 2020. URL https://openreview.net/
forum?id=BylA_C4tPr.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018. URL https://openreview.net/
forum?id=rJXMpikCZ.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Improving graph attention networks
with large margin-based constraints. CoRR, abs/1910.11945, 2019a.

Quan Wang, Pingping Huang, Haifeng Wang, Songtai Dai, Wenbin Jiang, Jing Liu, Yajuan Lyu,
Yong Zhu, and Hua Wu. Coke: Contextualized knowledge graph embedding. arXiv preprint
arXiv:1911.02168, 2019b.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1:243–248, 1989.

Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Rui Yan, and Dongyan Zhao. Relation-aware
entity alignment for heterogeneous knowledge graphs. In IJCAI, pp. 5278–5284, 2019.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. BERT post-training for review reading comprehension
and aspect-based sentiment analysis. In NAACL-HLT, pp. 2324–2335, 2019a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019b. URL https://openreview.net/forum?id=ryGs6iA5Km.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin.
End-to-end open-domain question answering with bertserini. In NAACL-HLT, pp. 72–77, 2019.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
graph embeddings. In ICML, volume 48, pp. 40–48, 2016.

Shaowei Yao, Tianming Wang, and Xiaojun Wan. Heterogeneous graph transformer for graph-to-
sequence learning. In ACL, pp. 7145–7154, 2020.

Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, Nitish Shirish Keskar, and Caiming Xiong. Model-
ing multi-hop question answering as single sequence prediction. In ACL, pp. 974–990, 2022.

Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. A vectorized relational graph
convolutional network for multi-relational network alignment. In IJCAI, pp. 4135–4141, 2019.

12

https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2023

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=OeWooOxFwDa.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen, and
Wei Wang. Robust graph representation learning via neural sparsification. In ICML, volume 119,
pp. 11458–11468, 2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In NeurIPS, 2020.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinform., 33(14):i190–i198, 2017.

13

https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=OeWooOxFwDa

Under review as a conference paper at ICLR 2023

Table 7: The average training time of DET in comparison with respective baselines, on a 32GB V100.

PCQM4M-LSCv1 ZINC Cora CiteSeer FB15K-237 WN18RR

Graphormer 66h 30h - - - -
SuperGAT - - 4m 6m - -
HittER - - - - 27h 14h
DET 78h 41h 4m 6m 36h 14h

Table 8: The dataset statistics. R and C denote the regression and classification tasks, respectively.

PCQM4M-LSCv1 ZINC Cora CiteSeer PubMed PPI ogbn-arxiv FB15K-237 WN18RR

Graphs 3,803,453 12,000 1 1 1 24 1 1 1
Nodes 53,814,542 277,920 2,708 3,327 19,717 56,944 169,343 14,951 40,943
Edges 55,399,880 597,960 5,429 4,732 44,338 818,716 1,166,243 310,116 93,003
Edge-type - - - - - - - 237 11
Task R R C C C C C C C
Classes - - 7 6 3 121 40 14,951 40,943

A POSITION EMBEDDING

There are many important graph features that can be used to identify different nodes. Thanks to
learnable position embedding, these discrete features now can be encoding into embeddings and
combined with the raw nodes embedding vectors.

Specifically, for graph property prediction task, we use the method proposed by Graphormer (Ying
et al., 2021) to encode degree centrality of an arbitrary node vi as follows:

ci = fc(deg(vi)), (9)

where deg(vi) denotes the degree of the node vi, and fc : R → Rh is the mapping function that
converts the node degree to a learnable embedding. We also consider encoding the distances from the
node of interest vi to different neighbors by the following equation:

dvi,vj = fd(spd(vi, vj)), (10)

where spd(vi, vj) denotes the shortest path distance from vi to vj , and fd : R → Rh is a similar
function that converts the distance to a learnable embedding.

For KG representation learning task, we follow (Chen et al., 2021b) to encode the edge types into node
embeddings, which is implemented by an additional atom triple TransformerMA. Specifically, for a
given triple (vi, rij , vj) for the node of interest vi, where rij denote the edge type (i.e., relationship)
between vi and vj . The edge type information can be encoded by the following equation:

eij =MA([cA,vi, rij ,vj]), (11)

where [cA,vi, rij ,vj] is the input embedding sequence. cA is the virtual node for the atom Trans-
former, whose output represents the edge encoding embedding.

B COMPUTATIONAL COST

We used one 32GB V100 GPU to train all the methods for estimation and show the average training
time in Table 7. Clearly, incorporating the semantic encoder did not significantly increase the
computational cost, especially on the node classification datasets.

C EXPERIMENT DETAILS

C.1 DATASET SETTINGS

We present the overall dataset statistics in Table 8.

14

Under review as a conference paper at ICLR 2023

Table 9: The hyper-parameter settings on the datasets in the main experiments.

PCQM4M-LSCv1 ZINC Cora CiteSeer PubMed PPI ogbn-arxiv FB15K-237 WN18RR

Learning-rate 0.0002 0.0002 0.005 0.005 0.01 0.005 0.05 0.01 0.008
Batch-size 256 256 128 128 128 128 128 512 512
Layer 12 12 2 2 2 2 2 6 6
Multi-heads 32 8 8 8 8 8 8 8 8
τ increasing increasing 0.15 0.15 0.15 0.15 0.15 0.5 0.5
Semantic neighbors - - 16 16 16 16 16 50 50
Negative samples - - 64 64 64 64 64 50 50

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

 M
A

E

Step

Structural + Semantic

Strctural

(a) ZINC

0.1

0.12

0.14

0.16

0.18

0.2

Va
lid

 M
A

E

Step

Structural + Semantic

Strctural

(b) PCQM4M-LSCv1

Figure 5: The validate MAE on ZINC and PCQM4M-LSCv1, w.r.t., training step.

Graph Property Prediction For PCQM4M-LSCv1, the model is asked to predict the DFT (density
functional theory)-calculated HOMO-LUMO energy gap of given molecules. It contains more than
3.8M 2D molecular graphs as input, which is especially appropriate to evaluate the performance of
model in large scale scenarios. On other hand, ZINC is a relative small datasets, where the main
target is to predict the graph property regression for constrained solubility. It is one of the most
popular real-world molecular datasets for graph representation learning.

Node Classfication Cora, CiteSeer and PubMed are three citation network datasets proposed
by (Yang et al., 2016). They are typically used for transductive node classification task. PPI on the
other hand is used for inductive evaluation. It consists of 24 graphs, with 20 graphs for training,
and 2 for validation and 2 for testing. All four datasets are the prevalent benchmarks used for node
classification.

KG Completion FB15K-237 is the revised version of the original FB15K dataset (Bordes et al.,
2013) that was used as entity prediction benchmark in last ten years. However, recent stud-
ies (Dettmers et al., 2018; Toutanova & Chen, 2015) find that the original FB15K contains a large
proportion of redundant data, some of which may incur testing data leakage, the same to another
well-used dataset WN18. Therefore, most latest studies only use the revised datasets FB15K-237
and WN18RR for evaluation. FB15K-237 has more different relationships, while WN18RR is more
sparse and has more different entities.

C.2 PARAMETER SETTINGS

We summarize the main hyper-parameter settings on different datasets in Table 9. The more specific
settings can be found in the source code. For the graph property prediction tasks, we directly let
the semantic encoder access all neighbors, and thus the semantic neighbor fetching loss is not used.
Alternatively, we adapt an increasing strategy to gradually improve the weight of the output of
semantic encoder during training.

15

Under review as a conference paper at ICLR 2023

Table 10: Accuracy on 8 popular node classification datasets.

Model CS Physics Cora-ML Cora-Full DBLP Chameleon Four-Univ Wiki-CS

GCN 91.5±0.2 92.5±0.2 85.0±0.4 59.5±0.2 77.8±0.5 33.1±0.9 74.8±0.6 74.0±1.0

GraphSAGE 90.0±0.1 92.2±0.1 83.7±0.4 59.2±0.2 78.7±0.6 41.0±0.9 74.4±0.6 77.5±0.5

GAT 89.5±0.2 91.2±0.6 83.2±0.6 58.7±0.3 78.2±1.5 40.8±0.7 74.2±0.7 77.6±0.6

SuperGATSD 88.8±0.4 91.6±0.5 84.5±0.4 55.8±0.6 79.4±0.8 41.6±0.7 76.2±0.8 77.9±0.7

DET 89.9±0.1 92.0±0.4 84.5±0.4 59.9±0.2 80.1±0.4 41.8±0.7 76.4±1.0 78.5±0.4

Table 11: A result comparison of different fs.

Methods Cora CiteSeer PubMed

The proposed 84.6 72.8 81.8
Linear 83.3 72.3 80.2

D ADDITIONAL EXPERIMENTS

D.1 ANALYSIS ON THE TRAINING PROCESS

We conducted experiments to compare the performance of structural encoder with and without the
semantic encoder, in term of training steps.

We depict the valid MAE results on ZINC in Figure 5a. At the beginning of the training, we find that
the two methods do not have a visible performance gap. The curves are tightly overlapped during
step 0 to 74, 000.

As the performance starts to be converged, i.e., step 74, 000 to 148, 000, only using structural encoder
is better than combining the two encoders. However, as the valid MAE tends to be stable, the
dual-encoding DET gradually outperforms the single structural encoder.

It is worth-noting that the turning point appears at the performance starts to be converged, where
the input embeddings also approach the ideal positions. Therefore, the semantic similarity among
embeddings can be estimated more precisely, and contribute to a better semantic encoder. Therefore,
DET can obtain a lower MAE than the single strctural encoder. We present the result on PCQM4M-
LSCv1 in Figure 5b, which supports the same conclusion.

D.2 RESULTS ON OTHER NODE CLASSIFICATION DATASETS

We also provide the results on additional 8 real-world datasets for node classification. They are: CS
and Physics (Shchur et al., 2018); Cora-ML, Cora-Full and DBLP (Bojchevski & Günnemann, 2018);
Chameleon (Rozemberczki et al., 2019); Four-Univ (Craven et al., 1998); and Wiki-CS (Mernyei &
Cangea, 2020). We report the accuracy on Table 10. It is clear that DET consistently and significantly
outperformed the attention-based methods on these datasets.

D.3 CHOICES OF fs

In this section, we conducted experiments to verify the effectiveness of proposed fs, in comparison
with a linear attention implementation. The results are shown in Table 11.we can observe that our
proposed attention outperformed linear attention, and the results of using linear attention were similar
to those of SuperGAT and the original GAT. SuperGAT also leverages a self-supervised contrastive
loss to predict the existence of edges in the original graph. If we use linear attention to replace our
proposed attention, our method is more like a SuperGAT with two separated linear attentions to cope
with node classification and edge prediction, respectively.

16

	Introduction
	Related Works
	Methodology
	Preliminaries
	Structural Encoding
	Semantic Encoding
	Dual-encoding Transformer

	Experiment
	Graph Property Prediction
	Node Classification
	KG Completion

	Further Analysis
	Is Every Module in DET Useful?
	The Correlation between Semantic Encoding and Graph Homophily
	How does the Semantic Encoder Help the Structural Encoder?

	Conclusion and Future Work
	Position Embedding
	Computational Cost
	Experiment Details
	Dataset Settings
	Parameter Settings

	Additional Experiments
	Analysis on the Training Process
	Results on Other Node Classification Datasets
	Choices of fs

