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Abstract: In this work, we introduce a novel method to learn everyday-like multi-
stage tasks from a single human demonstration, without requiring any prior object
knowledge. Inspired by the recent Coarse-to-Fine Imitation Learning method, we
model imitation learning as a learned object reaching phase followed by an open-
loop replay of the demonstrator’s actions. We build upon this for multi-stage tasks
where, following the human demonstration, the robot can autonomously collect
image data for the entire multi-stage task, by reaching the next object in the se-
quence and then replaying the demonstration, and then repeating in a loop for all
stages of the task. We evaluate with real-world experiments on a set of everyday-
like multi-stage tasks, which we show that our method can solve from a single
demonstration. Videos and supplementary material can be found at this webpage.
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1 Introduction

Figure 1: An example of a two
stage task: picking up a knife, and
then using it to cut a toy vegetable.

One of the principal, long-term goals of robot learning, is to
enable a robot to learn a new skill from human demonstrations
in a simple and efficient way, without significant effort from
the human, and without them requiring expert knowledge of
the underlying algorithm. Imitation Learning techniques have
been widely adopted in recent years, but these methods often
require a considerable human effort. In Sec. 2, we describe the
shortcomings of techniques like Behavioural Cloning, Meta
Learning, and Reinforcement Learning, that have hindered
their widespread adoptions outside of laboratory settings. Sev-
eral manipulation tasks involve multiple stages, e.g. grasping
and then using a tool (Fig.1), or re-arranging a set of objects.
But generally, the more stages a task involves, the more diffi-
cult it is to learn [1, 2], further exposing the limitations of the
aforementioned techniques.

In this work, we introduce a method that allows a human op-
erator to teach a robot to solve a new, multi-stage manip-
ulation task, with a single demonstration, without the need
for any prior data or knowledge about the object. Our method
is capable of solving a series of everyday-like tasks, and can be effectively used by a non-expert,
given its simplicity and need for minimal human effort. The main assumption is that most everyday
manipulation tasks can be divided into two phases: a coarse, object reaching phase, and a fine and
precise, object interaction phase (Fig. 1, 2). As such, a multi-stage task can be decomposed into
several stages, each of which alternates between these two phases. This decomposition forms the
basis of our method, which allows the robot to collect all the experience it requires autonomously,
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without requiring further human supervision, such as repeated environment resetting. We call our
method Self-Supervised Learning with Actions Replay, or Self-Replay. Self-Replay is inspired by
the Coarse-to-Fine Imitation Learning method [3], which also models tasks with coarse and fine
trajectories, but which can only solve single-stage tasks. Here, we develop a more general method
that can learn a wide variety of multi-stage tasks, whilst still only requiring a single human demon-
stration.

Self-Replay is simple but effective. We evaluated our method on a set of real-world, multi-stage
tasks, inspired by everyday primitive skills such as object grasping, object placing, object pushing,
shape insertion, and food cutting. Our method is able to solve multi-stage combinations of these
skills, whereas in the literature such tasks generally require at least tens of demonstrations, or re-
peated manual environment resets, or engineered laboratory setups [4, 5, 6, 7, 8]. We also provide
a series of ablation studies and comparisons with existing techniques in the literature, to further
understand the contribution of each component of our method. Our method only requires an uncal-
ibrated wrist-mounted camera. While the training should take place in an uncluttered environment,
we demonstrate how our method can tackle visual distractors at test time.

Our contributions are the following: (1) We introduce Self-Replay, a novel self-supervised learn-
ing method to solve everyday, multi-stage manipulation tasks from a single human demonstration,
with no additional human effort, prior knowledge, or engineering needed. (2) As well as extending
it to multi-stage tasks, we extend the data collection method proposed in [3] with a more efficient,
active variant, that we call Active Self-Replay. (3) We designed a novel test-time pipeline that al-
lows the robot to tackle multi-stage tasks, whilst also recovering from external disturbances and
errors, and being robust to visual distractors. (4) We benchmark our method on a varied set of real-
world, everyday-like manipulation tasks, and compare it against other methods from the recent robot
learning literature.

2 Related Work

The recent Imitation Learning [9, 10, 11, 12] literature has proposed a series of techniques to teach a
robot a novel skill, starting from demonstrations, in an efficient way. However, most techniques often
require a considerable amount of work, prior knowledge, or supervision from a human operator.
Behavioural Cloning methods [13, 4, 14, 5, 7, 6, 1, 15, 16] learn a policy network directly from
human demonstrations. While providing demonstrations is conceptually easy, simple tasks may
require tens or even hundreds of them, making the process laborious. When dealing with multi-stage
tasks, the amount of demonstrations often increases considerably [1, 14]. Meta Learning methods
[17, 18, 19, 20, 21] require one or few demonstrations to learn to solve a new task. However, they
need large amounts of data collected before hand on similar tasks, another laborious process, and the
amount of previously collected data also increases when tackling multi-stage tasks [21]. Plus, they
can often only adapt to tasks that are very similar to what was observed during meta-training [17,
18, 19, 20]. Reinforcement Learning methods [2] can use demonstrations to bootstrap the agent’s
policy [22, 23] or shape its reward function [24, 25]. Even if they require a few demonstration, the
autonomous, reinforcement learning phase needs constant human supervision, as the environment
need to be reset after each episode. Additionally, a reward function needs to be shaped and provided
at each time-step to the agent, which may require additional engineering of the setup [2]. To solve
multi-stage tasks, the recent literature has also proposed several methods that combine ideas from
different fields: auto-regressive sequence modelling [26], neural task programming [27], exploiting
spatial symmetries [28], hierarchical decomposition [1], explicit task planning [29], etc., but each
technique requires considerable human effort in terms of either data collection or engineering.

3 Method

3.1 Background on Coarse-to-Fine Imitation Learning

One of the main concepts our method builds upon is shifting the imitation learning problem from
learning a model that emulates the demonstration in its entirety, to learning to align the end-effector
to the pose where the interaction demonstration started, so that it can repeat the exact actions per-
formed by the operator. The end-effector therefore needs to reach the same relative position to the
object that it had at the start of the demonstration. Following this framework, introduced in [3] as
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Figure 2: An example of the training steps for a two-stage task: picking a cup and placing it on a
plate. The human operator brings the robot to the bottleneck pose on top of the cup (1), and records
the object interaction phase by grasping the cup and lifting it (2). The operator then brings the robot
on top of the plate (3), and records the second object interaction phase (4), by bringing down the cup
and releasing it. The operator then resets the environment by placing back the cup. The Self-Replay
phase starts: the robot gathers data to learn how to reach sb,0 exploring the workspace (5). When
the data collection phase ends, the robot moves to sb,0 and replicates the first object interaction by
executing the recorded actions A0 (6). It then repeats these steps for the second stage (7,8). We
suggest to watch the video on our website for a full example.

Coarse-to-Fine Imitation Learning, the human operator provides a demonstration composed of two
phases (Fig. 1, 2): they first bring the robot to a pose close to the object, that is defined as the bottle-
neck pose. The bottleneck pose is the pose of the end-effector at which the interaction phase starts.
Intuitively, we can imagine it as being fixed in the object’s imaginary frame of reference, as it rigidly
moves with it. From there, the operator starts the interaction phase, in which they demonstrate how
to precisely interact with the object, e.g. picking up a tool, inserting a a plug, etc. (Fig. 1). The
assumption, proved effective in [3], is that if the robot can reach the bottleneck pose accurately,
hence being in the same relative pose to the object as it was during the demonstration, then repli-
cating exactly the actions recorded during the demonstration is sufficient to correctly interact with
the object. The goal of the robot hence becomes to learn to reach the bottleneck pose accurately on
novel configurations of the environment, i.e. novel poses of the objects composing the task, without
the need to explicitly learn a policy to model the interaction phase.

The bottleneck pose is not an explicit part of the object or of its frame, but is chosen by the operator
when providing the demonstration based on how they need to interact with the object. How does
the human operator actually choose the bottleneck pose for each stage, separating the reaching
and interaction phases? The bottleneck pose is arbitrary, and several choices are equally possible.
However, as described in [3], during the interaction phase the actions are replicated in an open-loop
manner, and external sources of noise can accumulate an error that is proportional to the length of
the interaction phase. Hence, it is suggested to select a bottleneck pose that is sufficiently close to
the object.

In a multi-stage task, the operator provides several interaction demonstrations, one for each stage
(examples in Fig. 1, 2). Hence, we need to define one bottleneck pose per stage. We denote
each bottleneck pose as sb,N , where N denotes the N -th stage of the task, represented with the
spatial coordinates xb, yb, zb, θb, where θ is the rotation around the vertical, z-axis. We extract
this pose from the robot’s kinematics, effectively being a pose in 3D with rotation around the z
axis, being it the pose where the demonstration of the interaction phase starts. More details are
provided in following sections. We denote s = {x, y, z, θ} as a position and orientation of the
end-effector. We define as o the observation, an RGB image that the robot receives from its wrist-
mounted camera. Using a wrist-mounted camera, the observations are a function only of the relative
pose between the end-effector and the objects. This is a fundamental aspect, as it allows the robot
to autonomously gather data that can generalise to novel situations, as described in later sections.
Each pose s is computed using the kinematics of the robot. At training time we also have the
exact pose of the bottleneck sb,N , extracted from the human demonstration, hence we can always
reach it precisely through inverse kinematics. At test time this information is unknown and must
be deducted from observations. Hence the robot has to learn how to map each RGB observations
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Figure 3: A visual description of the method solving novel configurations of a task at test time. Each
stage is solved by first reaching the bottleneck pose, and then replaying the interaction actions. The
image is passed through all the networks described in 3.2. The video in the Supplementary Material
provides additional examples of this.

ot, where t denotes the current time-step, to action at that moves the end-effector closer to sb,N
in any novel configuration of the task it needs to solve. The actions are the end-effector spatial
velocities, angular velocity around the z-axis, and a binary command to open or close the gripper,
vx, vy, vz, vθ, c. All the actions are given in the end-effector frame.

3.2 Tackling Multi-Stage Tasks: Overall Architecture

In the previous section we described how Coarse-to-Fine Imitation Learning [3] proposes to solve
a novel configuration of a task for which it received a single demonstration: the end-effector must
learn to reach the bottleneck pose, the relative pose it had with the object at the beginning of the
operator demonstration, and then it can replay the actions executed during the demonstration. To
solve a multi-stage task, we need to extend this method to alternate a series of bottleneck reaching
and actions replay phases. To do this, we introduce a novel framework of neural networks and a
novel self-supervised data collection algorithm, Self-Replay.

To solve a multi-stage task at test time, the robot needs to understand in which stage of the task it
is at any time, how to reach the bottleneck of the predicted stage, and if that pose has been reached
with sufficient precision, so it can start the interaction phase. All this information must be extracted
from an observation, ot in the form of an RGB image at each time-step t, as at test time the absolute
pose of the bottleneck is not provided, nor the stage that the robot is currently in.

We designed a framework of three different networks to do so: first, a stage-recognition network,
n(ot) → j ∈ [0, N ], that predicts the stage of the task the robot is currently in, in the form of a
discrete class. This prediction conditions the remaining pipeline, as for each stage the bottleneck
to reach is different. We predict the current stage at each time-step instead of simply starting from
the first and shifting to the next after each interaction phase to be robust to failures and external
disturbances. If, for example, the end-effector drops an object during a stage, it needs to realise that
it must go back to a previous stage to pick it up again. We then use a bottleneck reaching network
π(ot) → at, that given the current RGB image captured from the wrist-mounted camera, predicts
what action to take in the end-effector coordinate frame to reach the bottleneck pose, sb,N . Finally, a
bottleneck classification network, a network that predicts if the bottleneck pose has been reached,
r(ot) → {0, 1}. If the network predicts that sb,j has been reached, i.e. is closer than a threshold,
the robot executes the series of object interaction actions recorded during the demonstration for the
j-th stage. The general pipeline is visually described in Fig. 3. Apart for the stage-recognition
network, we train a different network for each task stage, and use the stage prediction j to select
which one to use. We could have used a single network for each type, adding j to its inputs to
condition its output, but we found training separate networks to result in better performance. In the
following sections, we describe how Self-Replay can autonomously collect all the data needed to
train the aforementioned networks, and hence learn to solve the multi-stage task, starting from a
single demonstration.

Test Time Pipeline In Fig. 3 we visually describe the pipeline at test time, starting from an RGB
observation ot. The networks collaborate to predict (1) in which stage the robot is actually in, hence
understanding what bottleneck pose should be reached (2) how the robot should move to approach
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the bottleneck of the predicted stage (3) if the bottleneck has been reached, and hence it is time to
execute the interaction phase to complete the stage. If the bottleneck is considered non reached, the
actions computed by π(ot) are executed by the robot, and then a new observation is obtained. All
these estimations are computed from the same input observation ot and recomputed independently
at each time-step.

3.3 Providing the Demonstration

The human operator only needs to provide a single demonstration of the task, and then reset the
environment as it was before the demonstration. No additional actions are needed from the operator.
For each stage of the task, the human operator first brings the robot’s end-effector to the object’s
bottleneck pose sb,N through free-space motion. In this phase, only the final bottleneck pose is
recorded. They then demonstrate how to interact with the object moving the robot’s end-effector.
In this phase, all the actions commanded by the operator are recorded as AN = a0:TN ,N , where N
denotes the N -th stage. The operator then repeats these steps for all the stages composing the task.
An example can be seen in Fig. 2.

The human operator then needs to reset the environment only one time as it was at the beginning
of the demonstration, as the object interaction phases may have changed the initial configuration
of the objects. This is in strong contrast with other approaches, like reinforcement learning-based
methods, that require hundreds or thousands of resets [2], or classic behavioural cloning methods, in
which the human operator needs to provide tens of demonstrations [5, 8], resetting the environment
each time.

3.4 Collecting Data via Self-Replay

After providing a single demonstration of the full task and resetting the environment, bringing
the objects to their starting position, all the following data collection and training phases are self-
supervised, hence the human operator can disengage and no more human interventions are needed.

As described in Sec. 3.1, 3.2, the agent needs to collect data to train a the models that will allow
it to accurately reach the bottleneck pose of each stage from any environment configuration and
starting pose. As described before, the use of a wrist-mounted camera makes the RGB observations
a function of the relative, and not absolute, pose between end-effector and objects. Hence, moving
the end-effector is generally equivalent to moving the object to observe it from different poses. To
gather data in a self-supervised fashion we use a method we call Self-Replay.

Random Self-Replay Our algorithm extends the method proposed in [3] by being able to au-
tonomously shift between stages to autonomously gather all the data it needs to solve the multi-stage
task. We also propose a novel active variant in 3.4. The general approach is to sample a random
pose of the end-effector in the workspace, and from there linearly go back to the bottleneck sb,N ,
while recording the observations encountered in the path. The robot explores the area above the
bottleneck, to avoid collisions with the objects, and we assume that area to be free from obstacles.
More precisely, at each time-step the agent stores data in the form (ot, se,t, sb,N , N), where ot is the
image taken from the camera in that pose, se = xe, ye, ze, θe is the pose of the end-effector at the
current time-step, sb,N is the bottleneck pose, and N denotes the stage of the task we’re currently
in as an integer. For each pose we can accurately compute the ground-truth relative displacement
between the current end-effector pose and the bottleneck, and therefore analytically compute what
end-effector movement would bring it closer to the bottleneck. This allows us to then train a model
to predict the optimal movement from an RGB observation. This method of data gathering is defined
Random Self-Replay, as we randomly sample poses in the workspace to explore different relative
poses between end-effector and objects. While randomly sampling poses would be enough, we
propose a more efficient and robust active exploration strategy, called Active Self-Replay, that we
describe in Sec. 3.4. When the data collection of a task stage is completed, the robot needs to shift
to the next stage. To do so, it reaches the bottleneck pose sb,N , and then replicates the recorded
actions AN to interact with the object (e.g. moving an object, grabbing an object, etc.). After this
phase, the algorithm goes to the next task stage N ← N + 1, repeating the aforementioned steps
(Fig. 2), with the next bottleneck pose sb,N+1. By autonomously moving between stages, the robot
can gather all the data it needs for all the stages without any additional human intervention.
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Figure 4: The set of tasks we tested our method on. Additional information can be found in the
Supplementary Material and the video on our website.

Active Self-Replay We additionally propose an active, self-supervised data collection method.
While both methods alternate between collecting data in a self-supervised fashion and then replay-
ing the demonstration’s actions to shift to the next stage, the steps of data collection are different.
The first stage is identical to the Random Self-Replay phase described before. It collects data re-
peating the Random Self-Replay cycle M times, gathering an initial dataset. However, differently
from Random Self-Replay, we then train our models on this data also during the training phase:
after having trained the networks on this initial dataset, the robot will then sample poses from its
workspace that maximise the error of the networks, hence areas that have not been explored enough
and require more training data. This allows the robot to actively collect more informative data, in-
stead of re-sampling already explored areas. We use a gradient-free sampling based optimiser, and
provide more details on the optimisation procedure we implemented in the Supplementary Material.

The data collection and network training steps are repeated until the robot is unable to find a pose in
its workspace where the network’s error is larger than a threshold δerr, or after a maximum number
of steps defined beforehand.

4 Experiments

We evaluated our proposed method on a set of real-world, everyday multi-stage manipulation tasks.
Based on these experiments, we now answer the following questions: (1) Is our method able to solve
a series of common, multi-stage tasks with a single demonstration? (2) Is the Active Self-Replay
algorithm more efficient and robust than the Random variant? (3) How does our method compare
to similar state-of-the-art methods from the literature? (4) Is reproducing the actions executed by
the human operator during object interaction enough to solve the task, or would a learned policy
perform better?

Additional experiments are presented in the Supplementary Material, including a comparison with
Reinforcement Learning from Demonstrations, a more detailed analysis on the time and sample
efficiency of our method compared to other baselines from the literature, a comparison of replaying
the operator’s demonstration against learning it with a policy, and an investigation of the robustness
of our method to distractors. Additional details regarding neural networks and algorithms, and the
code for this work, can be found in the Supplementary Material.

4.1 Experimental Setting and Tasks

Due to the governmental restrictions during the COVID-19 pandemic, we were unable to conduct
experiments in our institution’s laboratory. Therefore, we decided to set up a robotics laboratory
at home, building a smaller, 6-DOF manipulator with a parallel gripper: the TinkerKit Braccio.
Despite the small size of this robot, we were able to conduct all the experiments successfully and
answer the above questions, albeit with a reduced workspace. Nevertheless, the results obtained here
can effortlessly be replicated on a larger robot. We use a wrist-mounted RGB camera, that captures
800 × 600 pixels images, which we resize to 64 × 64. We control the robot using a keyboard. Our
setup is lightweight and easy to reproduce, only requiring a wrist-mounted RGB camera with no
calibration needed. All the networks in this work are convolutional neural networks trained with
supervised learning on a single GPU.

Manipulation Tasks We designed a set of 8 tasks, inspired by the recent imitation learning literature
[3, 13, 4, 5, 7, 8], and by everyday tasks to test our method. We included a variety of common
multi-stage human tasks, like picking-and-placing, cutting food, shape insertion, etc. (Fig. 4).
Detailed information can be found on our website and Supplementary Material. To generate a test
set for the experiments, we instantiate novel configurations of each task by moving the objects in the
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Table 1: Percentage of successes of the variants of our method, Random Self-Replay (R. S-R) and
Active Self-Replay (A. S-R) and a series of baselines on 20 configurations of each tasks. Experi-
ments are repeated over 3 random seeds and show mean and 1-std.

Task
Method Cup Fork Stack Cut Insert Push Pan Ham.

FlowC. 40 ±4.1 24 ±2.3 13 ±9 5 ±4.1 6 ±2.3 13 ±2.3 12 ±2.3 18 ±2.3
SIFT 8 ±2.3 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 3 ±2.3
LMP-1 3 ±2.3 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0
RIL-1 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 3 ±2.3 2 ±2.3 2 ±2.3
LMP-20 62 ±2.3 48 ±6.2 38 ±6.2 23 ±4.7 20 ±4.0 33 ±2.3 50 ±7.0 53 ±10.
RIL-20 60 ±4.0 52 ±4.7 38 ±4.7 17 ±2.3 18 ±2.3 37 ±2.3 48 ±6.2 52 ±2.3
DDPGfD 3± 2.3 0± 0. 0± 0. 0± 0. 0± 0. 0± 0. 0± 0. 7± 2.3
BC-20 30± 6.2 25± 4.0 12± 2.3 7± 4.7 8± 2.3 25± 7.0 28± 2.3 42± 10.
R. S-R 83± 4.7 63± 4.7 58± 2.3 57± 2.3 77± 4.7 63± 4.7 62± 6.2 62± 2.3
A. S-R 88± 2.3 83± 2.3 73± 4.7 73± 4.1 73± 4.7 77± 4.7 73± 4.7 73± 4.7

workspace. Position are sampled inside the 30cm × 20cm workspace, and orientation is sampled
in a 120 degrees range. The end-effector starts 15 cm above the table. In all the tasks, the robot
end-effector can move in 3D space and only rotate around the vertical z-axis. For each task, the
success criteria is judged by the human operator at the end of the last interaction phase. We provided
examples of successes and failures in the Supplementary Material.

4.2 Results

Learning Multi-Stage Tasks from a Single Demonstration We tested our method by providing
a single demonstration of each task. Recording the demonstration takes roughly a minute to the
human operator. A video detailing the experiments can be found on our website . We compared
Active Self-Replay and Random Self-Replay, (Sec. 3.1) (Table 1). Both variants are trained on the
same amount of self-collected data, which is collected autonomously by the robot, following the
methods described in 3. We then used the data to train the networks described in Sec. 3.2, keeping
the architecture, number of parameters and random weights initialisation fixed on both Active and
Random variants. We then set up a test set of 20 random initial configurations of each task by
placing the objects randomly in the environment, testing both methods on this same test set and
averaging the results over 3 random seeds. At test time, the robot behaves following the method
we described in Sec. 3.2 and Fig. 3. In our experiments we observed how, although Random Self-
Replay achieves strong performance, it failed on some particularly challenging configurations of the
harder tasks, e.g. when the difference in orientation of the object with respect to what observed
during the demonstration was large. Indeed, we observe improvements of Active over Random Self-
Replay on the harder tasks, like Cut, that requires precise orientation of the knife, and Insert, which
also requires precise orienting the object above the shape (Table 1).

Comparison with Baselines from the Literature. We also compared Self-Replay to a series of
techniques from the literature, to highlight the improvements of our method. Further details on these
experiments can be found in the Supplementary Material. We divide the baselines we developed and
compared into three categories:

1 - One Demonstration Methods: these methods are the most similar in design to our method, as they
only require a single demonstration from the human operator, and no additional prior or posterior
work. These methods are FlowControl [30], a recent state-of-the-art technique that used a learned
optical-flow model to compute how to align the end-effector, from its current observation, to the
bottleneck pose. We also compared a non learning-based keypoint-detection algorithm, SIFT [31],
to automatically extract matching features from the current observation and the bottleneck pose
observation, used to compute how to align the end-effector to the bottleneck pose.

2 - Multi-Stage Behavioural Cloning: we implemented two state-of-the-art methods from the re-
cent literature to learn multi-stage tasks from demonstrations: Latent Motor Plans (LMP) [14] and
Relay Imitation Learning (RIL) [1]. Both these methods use human demonstrations to learn a goal-
conditioned policy, that can also learn to decompose a longer task into sub-tasks. We also compare
these to classic Behavioural Cloning (BC).
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3 - Reinforcement Learning from Demonstrations: we developed Deep Deterministic Policy Gra-
dient from Demonstrations (DDPGfD) [22, 23], that takes human demonstrations to train a policy,
and then uses autonomous Reinforcement Learning to increase its performance. Although the agent
autonomously explores the environment during the RL phase, human supervision is still needed to
reset the environment after each episode. We use around 30 minutes of exploration, the same time
we spend providing demonstrations to BC methods.

We compare our results on a series of everyday-like tasks in Table 1. We provide 1 and 20 demos to
the Behavioural Cloning methods. We provide 1 demonstration to DDPGfD, as the human operator
also has to spend a considerable amount of time supervising the autonomous exploration phase
and resetting the environment. We show that all the baselines fail when receiving only a single
demonstration. LMP and RIL perform better than BC, while DDPGfD is unable to solve these tasks
consistently. In the Supplementary Material, we also compare the time efficiency of these methods,
as motivated by [32], and their sample efficiency. Here, we show that our method is not only more
time efficient for the human operator, but can also achieve better performance when using the same
number of datapoints than state-of-the-art baselines. Those experiments additionally show that RIL
and LMP require around 40-50 demonstrations to reach the performance we obtain with a single
demonstration, hence being 40x to 50x more time expensive than Self-Replay.

Comparison with Behavioural Cloning on an Increasing Number of Stages

We designed a set of experiments to compare the efficiency and performance of our method
on tasks with an increasing number of stages while still receiving only a single demon-
stration, with respect to Behavioural Cloning (BC), where instead the human operator pro-
vides several demonstrations of the task. In particular, we compare it to Relay Imitation
Learning (RIL) [1], a recent variation that extends Behavioural Cloning to multi-stage tasks.
We designed a stacking task (Fig. 4), where the robot has to stack a varying number of
cubes in the correct order, where we can easily add more stages by using more objects.

Table 2: Percentage of successes of
our method against an end-to-end
Behavioural Cloning method, Re-
lay Imitation Learning, with 10 or
30 demonstrations, over 20 config-
urations of each task.

Stages
Method 1 2 4

Ours 100 90 80
RIL-10 60 40 15
RIL-30 90 75 35

In our method, we only provided a single demonstration, run-
ning Active Self-Replay to autonomously gather data. We
compared it to RIL with 10 and 30 demonstrations. For
RIL, we provided end-to-end demos of the multi-stage task
from 10 or 30 different initial configurations of the environ-
ment, recording RGB observations and actions in the end-
effector frame in the form of {(o0, a0), . . . , (oT , aT )}. We
then trained a policy network fBC with supervised learning
on these demonstrations to map fBC(ot) → at. We used the
same network architecture we use as our bottleneck reaching
network (Sec. 3.2).

In Table 2, 1 stage corresponds to only grasping the first ob-
ject, 2 stages to also placing it on a goal x, y position on the
table, 4 stages to also place the second object on top of the
first. We test the two methods on the same test set of 10 con-
figurations of the task, measuring the number of successes. We show how Behavioural Cloning,
extended to tackle multi-stage tasks with the Relay Imitation Learning method, quickly starts to de-
grade in performance when the number of stages increases, while our method always obtains a large
number of successes.

5 Conclusions

In this work, we presented a novel method to learn to solve multi-stage, everyday-like manipulation
tasks from a single human demonstration. We build on the foundation of [3], which introduced the
concept of Coarse-to-Fine Imitation Learning: we introduce both a novel learning method, Self-
Replay, and a framework of neural networks to tackle multi-stage tasks. We empirically demon-
strated how our method can solve a wide range of tasks, often used in the literature as benchmarks,
while requiring minimal human work, no prior knowledge, engineering, or modelling of the objects
to manipulate.
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