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ABSTRACT

Integrating information from multiple modalities is arguably one of the essential
prerequisites for grounding artificial intelligence systems with an understanding of
the real world. Recent advances in video transformers that jointly learn from vi-
sion, text, and sound over time have made some progress toward this goal, but the
degree to which these models integrate information from the input modalities still
remains unclear. In this work, we present a promising approach for probing a mul-
timodal video transformer model by leveraging neuroscientific evidence of multi-
modal information processing in the brain. We use the brain recordings of subjects
watching a popular TV show to interpret the integration of multiple modalities in
a video transformer, before and after it is trained to perform a question-answering
task that requires vision and language information. For the early and middle lay-
ers, we show that fine-tuning on the vision-language task does not improve the
alignment in brain regions that are thought to support the integration of multi-
modal information over their pre-trained counterparts. We further show that the
top layers of the fine-tuned model align substantially less with the brain represen-
tations, and yield better task performances than other layers, which indicates that
the task may require additional information from the one available in the brain
recordings.

1 INTRODUCTION

The advent of transformers has facilitated the development of video models that are capable of rep-
resenting videos over time through multiple modalities such as language, sound, and vision (Selva
et al., 2022). While empirical results show that these models seem to learn strong multimodal rep-
resentations(Xu et al., 2021; Zellers et al., 2022), it remains unclear how they integrate information
across modalities to perform a particular task. To investigate this question, we contrast two ver-
sions of the same multimodal model – one that was only pre-trained to predict masked audio or text
sequences by self-supervision, and a second one that was further fine-tuned to perform a vision-
language question-answering task. We expect that the fine-tuned model would further learn how to
integrate visual and language information, which is required by the task, and the comparisons with
the pre-trained version would be revealing about the integration in the multimodal transformer.

Most of the work probing internal multimodal representations has been devoted to vision-language
transformers trained on static images and text (Frank et al., 2021; Salin et al., 2022; Hendricks &
Nematzadeh, 2021), with significantly less work focusing on the multimodal ability of a video trans-
former. This is in part due to the difficulty of analyzing exactly how a model integrates multimodal
information over time. We thereby propose to look at the brain – the only processing system capable
of understanding video stimuli that contains complex events and situations that evolve over time. We
can use fMRI (functional Magnetic Resonance Imaging) recordings to trace how the brain represents
video stimuli, and then relate them with models’ representations. With the alignment between the
brain and models, the processing of multimodal information in the brain can be seen as a proxy for
probing these representations.

In this work, we focus on MERLOT Reserve (Zellers et al., 2022), a state-of-the-art multimodal
transformer that learns script knowledge of videos over time, jointly through vision, language, and
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sound. We use three complementary probing techniques to interpret the contrasts between pre-
trained and fine-tuned MERLOT Reserve that are further trained on TVQA dataset (Lei et al., 2018),
namely behavior measures (i.e. task accuracy), representational similarity measures (i.e. centered
kernel alignment (CKA) (Kornblith et al., 2019)) and brain alignment of model representations with
fMRI recordings of 5 participants watching the Friends TV show (Boyle et al., 2020). Further details
on CKA and task accuracy are provided in Appendix A.2.

We make the following contributions:

• We present an approach for interpreting the internal representation of multimodal video
transformers using multimodal brain activity; this relies on the relations between the prop-
erties of multimodal video stimuli and brain responses.

• We observe that the middle layers of a multimodal video transformer are better at predicting
multimodal brain activity than other layers, indicating that the middle layers encode the
most brain-related properties of the video stimuli.

• We show that the early and middle layers of a multimodal transformer that is fine-tuned
on a vision-language task are similar to their pre-trained counterparts when predicting the
activity in brain regions that are thought to integrate multimodal information. This suggests
that fine-tuning for a vision-language task may not necessarily lead to additional integration
of modalities. We further show that the top layers of the fine-tuned model have the worst
alignment with brain activity but obtain the best vision-language task accuracies. This
suggests that performing the vision-language task requires at least some information that is
different from the one available in the brain recordings.

Background. Our work relates to previous work that uses brain recordings to interpret the rep-
resentations derived from neural networks (Toneva & Wehbe, 2019; Aw & Toneva, 2022). Brain
recordings capture a meaningful and observable spatio-temporal structure of how a natural stimu-
lus is processed, which current highly-distributed deep learning systems fail to provide (Toneva &
Wehbe, 2019; Kar et al., 2022). When the activity of a brain region is significantly predicted by the
model’s representations given the same stimulus, then the brain-related properties of that stimulus
are thought to be encoded in the model’s representations. The responses from different brain re-
gions can therefore decompose a model’s representations into interpretable brain-related properties.
Because this approach requires no intervention in models and provides a human-like reference for
representing stimuli, it is a promising framework for probing multimodal video transformers’ ability
to encode multimodal and temporal information.

Related work. Previous efforts exploring model-brain alignment have been centered around the
models trained on unimodal data, such as text (Caucheteux et al., 2021; Gauthier & Levy, 2019),
audio (Vaidya et al., 2022; Millet et al., 2022), or images (He et al., 2016; Schrimpf et al., 2018).
Recent work has begun to align representations of vision-language models with brain recordings of
subjects viewing static real images and comparing them to representations from vision-only models
(Wang et al., 2022; Reddy Oota et al., 2022). These works show that the information learned from
one modality can greatly enhance brain alignment in unimodal regions that support the other modal-
ity. In contrast with these previous works that use unimodal brain recordings, we investigate brain
alignment of model representations with fMRI recordings in a fully multimodal task setting, namely
watching videos.

2 METHODS

Model. We use a pre-trained MERLOT Reserve model provided by Zellers et al. (2022) that con-
sists of 12 joint encoder layers, and its fine-tuned equivalent on the TVQA dataset Lei et al. (2018).
Pre-trained MERLOT Reserve is trained on 20 million YouTube videos, through a learning objec-
tive by choosing the correct snippet of text (and audio) based on a contextualized representation
of a video. Fine-tuned MERLOT Reserve is further trained on the TVQA dataset, which consists
of 152,545 QA pairs (with 5 options) from 21,793 video clips of the TV show. At each layer, we
extract representations from the joint encoder (for all modalities and timestamps) of the pre-trained
and fine-tuned MERLOT Reserve when answering 400 questions from the TVQA dataset. These
questions were selected such that they appear in the first two seasons of the Friends TV show, which
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Figure 1: Mean Pearson correlation brain alignment over the significantly predicted voxels in the
whole brain between pre-trained and fine-tuned MERLOT Reserve (Left); Mean Pearson correlation
brain alignment over the significantly predicted voxels in bilateral anterior temporal lobes (ATL)
region between pre-trained and fine-tuned MERLOT Reserve (Right). See Appendix A.2 for similar
plots for mean Pearson correlation in other language processing regions (Fedorenko et al., 2010).

correspond to the stimulus of the brain recordings (see below). To extract the representation corre-
sponding to each question video clip, we feed each model a 35-second video centered around the
time region for each question The models then contextualize video frames with ten sequences that
contain a question, one of five multiple-choice answers, and a masked text (or audio) token followed
by subtitles (or audio). For each model, we thereby concatenate the representations of 10 masked
tokens across the 12-layer joint encoder with a hidden size of 768. Hence, the model representation
of 400 questions for each layer is a matrix of dh = 768 ∗ 4000.

Brain data. We use the fMRI recordings of 5 subjects watching the first two seasons of the Friends
TV show. The recordings are sampled at a repetition time (TR) of 1.49 seconds for one session, and
at every TR, the activity level of each voxel in a subject’s brain is recorded. For each of the 400
questions, we only select the brain representations at the TR at which the question-related contents
are presented. We then concatenate the brain’s representation of 400 questions and obtain a matrix
Y ∈ R400∗V , where V is the number of voxels. One of the 5 participants has 382 data points, instead
of 400, due to missing brain data.

Model-brain alignment. Following the prior work that learns model-brain alignment Toneva &
Wehbe (2019); Reddy Oota et al. (2022); Aw & Toneva (2022), we construct an encoding model
from the models’ representations when answering a question, and then predict the brain matrix
of a participant viewing a video clip related to the same question. Each voxel value in the brain
matrix is estimated from the inputs using a linear function regularized by the ridge penalty. We
then train the encoding model through four-fold cross-validation. The parameters are selected with
nested cross-validation. We perform a permutation test on fMRI predictions, where the elements in
fMRI predictions are randomly shuffled and then formulate 1000 permuted sets. For each voxel, we
calculate the chance of the Pearson correlation score of permuted sets as or more extreme (at the
rate of 0.05) than unpermuted fMRI predictions. For the evaluation, we calculate the mean Pearson
correlation over the voxels that are significantly predicted across 5 participants.

3 RESULTS

We first investigate the brain alignment of the pre-trained MERLOT Reserve model across its inter-
mediate layers. We present the average brain alignment across the significantly predicted voxels in
the whole brain in Figure 1(Left, blue). We observe that the brain alignment peaks in the middle
intermediate layers of the model, suggesting that the middle layers of these models encode the most
brain-related properties of video stimuli. This finding is consistent with the results of brain align-
ment in large language models, such as BERT (Toneva & Wehbe, 2019) and GPT-2 (Caucheteux &
King, 2022).

We then focus on comparing the brain alignment of MERLOT Reserve when pre-trained versus
when fine-tuned on the TVQA task that involves vision-language information. We present this
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Figure 2: CKA similarity scores of two representations across different layers from pre-trained and
fine-tuned MERLOT Reserve (Left); TVQA Task accuracy when feeding the representation from an
intermediate layer to the prediction layer of pre-trained and fine-tuned MERLOT Reserve (Right)

contrast for the significantly predicted voxels in the whole brain in Figure 1(Left, blue vs. orange).
We observe that the early and middle layers of the fine-tuned model lead to better alignment with
brain representations compared to the top layers of the fine-tuned model. These layers of fine-
tuned models also lead to similar brain alignment as their pre-trained counterparts. Comparing the
alignment of the pre-trained and fine-tuned models across language processing regions (Fedorenko
et al., 2010), we find that their early and middle layers exhibit similar alignment in the regions that
are thought to support the integration of multimodal information. For instance in Figure 1 (Right),
we show that no significant differences are observed between the early and middle layers of pre-
trained and fine-tuned models in the bilateral anterior temporal lobes (ATL) region, which is thought
to be a hub for multimodal integration (Farahibozorg et al., 2022). The results suggest that fine-
tuning the video transformer for the vision-language question-answering task may not necessarily
lead to better integration of multimodal information in these layers over pre-trained models.

To better understand why the later layers of the fine-tuned model drastically decrease their brain
alignment, we further investigate the similarity of its representations to those of the pre-trained
model using CKA (Kornblith et al., 2019). We present the results in Figure 2 (Left), which show
that the later layers of the fine-tuned model are dissimilar to both the early and later layers of the
pre-trained model. In contrast, the early layers of the fine-tuned model are not only approximately
similar to the early layers but even to the later layers of the pre-trained model. One hypothesis for
why the early layers of the fine-tuned model are similar to all layers of the pre-trained model is that
the fine-tuning may be acting to “compress” some of the information from the pre-trained model in
order to increase the capacity for encoding more task-specific information in the later layers. This
hypothesis may be further explored by future work.

Furthermore, while the later layers of the fine-tuned model show a significant decrease in predicting
brain activity compared to the pre-trained model, as seen in Figure 1 (Left), we observe that these
later layers of the fine-tuned model also show a sharp increase in accuracy on the question-answering
task (see Figure 2 (Right)). In contrast, the earlier layers of the fine-tuned model and all layers of the
pre-trained model perform at chance accuracy (0.20). This result, combined with previous findings
that later layers appear to encode more task-specific information (Merchant et al., 2020; Zhou &
Srikumar, 2021; Durrani et al., 2021; Mosbach et al., 2020), suggests that not all features encoded
in brain representation are task-relevant. One possible reason could be that the brain activity was
recorded while the participants were simply watching the show, rather than answering questions
about it.

4 FUTURE WORK

This work expands the exciting line of work that aligns brain activity with neural networks to a fully
multimodal setting. We hope to further understand the precise role of brain regions when engaging in
complex multimodal reasoning, such as video question answering. One next step that follows from
this work is to investigate the alignment between the models and brains when the human participants
engage in an active task that requires multimodal information, rather than passive viewing.
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A APPENDIX

A.1 INTERPRETING METRICS

Task Accuracy. We evaluate the task accuracy of pre-trained and fine-tuned MERLOT Reserve
when answering TVQA questions following the initial design by Zellers et al. (2022). The model
scores the representations for each masked token in 10 sequences through a linear projection layer
and selects the option with the highest probability. We refer to the selected option as the model’s
prediction and compare it against the gold label.

CKA. We use CKA score (Kornblith et al., 2019) to compare the learned representations of two
layers within or across pre-trained and fine-tuned models. Given two representations X ∈ RN1∗d

and Y ∈ RN2∗d, where N1 or N2 is the number of examples and d is the dimension of a repre-
sentation, CKA score will be between 0 (dissimilar) and 1 (similar). CKA score has been widely
used in measuring and analyzing layer-wise differences in models’ representations (Wu et al., 2020;
Kornblith et al., 2019; Nguyen et al., 2022).

A.2 MEAN PEARSON CROSS ACROSS LANGUAGE PROCESSING REGIONS

Figure 3: Mean Pearson correlation brain alignment over the significantly predicted voxels in bi-
lateral anterior temporal lobes (ATL) region between pre-trained and fine-tuned MERLOT Reserve
(Right); Mean Pearson correlation brain alignment over the significantly predicted voxels in middle
frontal gyrus (MFG) region between pre-trained and fine-tuned MERLOT Reserve (Right)
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Figure 4: Mean Pearson correlation brain alignment over the significantly predicted voxels in poste-
rior cingulated (pCingulate) region between pre-trained and fine-tuned MERLOT Reserve (Right);
Mean Pearson correlation brain alignment over the significantly predicted voxels in dorsomedial
prefrontal cortex (dmpfc) region between pre-trained and fine-tuned MERLOT Reserve (Right)

Figure 5: Mean Pearson correlation brain alignment over the significantly predicted voxels in
posterolateral temporal (PostTemp) region between pre-trained and fine-tuned MERLOT Reserve
(Right); Mean Pearson correlation brain alignment over the significantly predicted voxels in angular
gyrus (AG) region between pre-trained and fine-tuned MERLOT Reserve (Right)
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Figure 6: Mean Pearson correlation brain alignment over the significantly predicted voxels in infe-
rior frontal gyrus (IFG) region between pre-trained and fine-tuned MERLOT Reserve (Right); Mean
Pearson correlation brain alignment over the significantly predicted voxels in inferior frontal gyrus
pars orbitalis (Right) between pre-trained and fine-tuned MERLOT Reserve (Right)
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