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Abstract—This paper studies the integral sliding mode control 

(ISMC) for uncertain impulsive stochastic systems with time 

delays. An ISMC law is proposed by designing a new integral 

sliding surface. Then, by constructing a piecewise time-dependent 

Lyapunov function, the uniformly almost surely exponentially 

stability conditions of the closed-loop system are established. 

Furthermore, an optimal design algorithm of solving control gains 

is formulated based on the established stable conditions and linear 

matrix inequalities (LMIs) theory.  
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I. INTRODUCTION  

The impulse system is used to describe the phenomenon of 
abrupt variation of state that occurs in many practical fields, 
such as orbital transfer of satellite, sampled-data control systems 
(Benford, 2008; Naghshtabrizi, Hespanha, & Teel, 2008; 
Pfeiffer & Foerg, 2005), etc. Thus, the control design of the 
impulsive systems becomes an important and challenging task 
in recent years and has attracted widespread attention in control 
field, for example see Briat (2013), Briat and Seuret (2012a, 
2012b), Chen, Ruan, and Zheng (2017), Chen, Zhang and Lu 
(2021), Chen and Zheng (2009) and Li, Peng, and Cao (2020). 
Among them, sufficient stability conditions were established in 
Briat and Seuret (2012a, 2012b) for linear impulsive systems by 
utilizing a class of looped-functional Lyapunov functions, while 
the authors in Briat (2013) investigated the stability analysis 
problem of linear aperiodic impulsive systems through the use 
of time-varying discontinuous Lyapunov functions. The 
Lyapunov stability for impulsive systems is investigated in Li et 
al. (2020) by using event-triggered impulsive control. The 
authors in Chen and Zheng (2009) studied the problems of 

robust stability and 𝐻∞-control for uncertain impulsive systems 

with time delay and (Chen et al., 2017; Chen, Zhang et al., 2021) 
investigated the 𝐿2-gain or 𝐿2 × 𝑙2-gain control design problems 
for linear impulsive time-delay systems. 

II. SYSTEM DESCRIPTION AND PRELIMINARIES 

Consider the linear uncertain impulsive stochastic systems 
with time delay: 
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where  
( ) mu t R

 is the control input, 
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.

( )iA t
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( )diA t
 and 

( )iD t
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( )diD t
 are the 

parameter uncertainties and uncertainties of stochastic 

perturbation, respectively. 0 0 1{ } ( , )v vt   
 is the impulse 

time sequence, 
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is a one-dimensional Wiener motion on the 

complete probability space
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Assumption 2 []. There are known constants 1 , 2  such 
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where 
1 2
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following inequality holds 
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for any matrix 
q pG R   satisfying 

1G 
. 

The control objective in this study is to construct a SMC 
strategy to guarantee that the uncertain stochastic linear 
impulsive system with time delay (1) is uniformly mean-square 
exponentially stable. 

III.  INTEGRAL SLIDING MODE CONTROL DESIGN 

A. Sliding Mode Surface Design 

It is follows from the ISMC theory that the ISMC law is 
chosen the following form  

 1 2( ) ( ) ( )u t u t u t= +
 (4) 

where the role of 1( )u t
 is stabilizing the dynamic and 1( )u t

 
is designed to reject the disturbance and maintains the dynamic. 
To design the sliding mode surface, a continuous sliding mode 
function which depend on the impulse information is proposed 

at first. Then, 1( )u t
 and 2 ( )u t

 is designed to assure the 
reachability of the sliding mode surface. 

Inspired by [] and [], we design an integral sliding surface 
for system (1) as: 
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where 
Q

 is designed to satisfy that 
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 is nonsingular and 
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  Because the states 
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 is discontinuous at 
t , it can be 

seeming from the continuous of 
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t  that the sliding 

surface 
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so, 
( )s t

 is continuous on 
[0, )

.  

To guarantee the reachability of the designed sliding surface 

( ) 0s t =
, the SMC law 2 ( )u t

 is designed in Theorem 1. 

Theorem 1: Consider the system (1) under Assumptions -, if 
we adopt the sliding mode function () and the SMC law: 
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with 0 0 
 being a scalar, then the reachability of the 

sliding mode surface 
( ) 0s t =

 can be ensured. 
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, the time derivation of 
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Substituting (10) into (11), we get 
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Choosing the Lyapunov function 
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B. Stability of sliding motion 
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To exploit the impulsive structure of system (15), the 
piecewise time-dependent Lyapunov function candidate is 
introduced 

 

( )
2 ( , ( )) ( ) ( ) ( ) ( )+ ( ) ( )

t
T r t s T

t
V t x t t x t P t x t e x s Rx s ds


 − − −

−
= 

 (15) 

In (), 
( )( ) tt  =

, 

1

0

( ) ( ) ( )

N

i i

i

P t P t t
−

=

=
, 

1

0

( ) ( )i ji i j

j

P t t P +

=

=
, it 

, 
0

i
P 

, 0,i N , 
( )i t

 is the 

characteristic function. It is obviously that 
( )V t

 is continuous 

in each impulse time intervals 1( , )t t  + , 0 
. 

Based on the fact that 
0 ( ) 1t 

,there is a number 

0 ( ) [0,1]t 
 such that 

 

1
1

0

( ) ( ) l
l

l

t t u  −

=

=
 (16) 

where 1 0( ) 1 ( )t t = −
. 

  Theorem 2: Consider the sliding mode dynamics (15), for 
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,then system (15) is uniformly mean-square exponentially 
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