
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RMFLOW: REFINED MEAN FLOW BY A NOISE-
INJECTION STEP FOR MULTIMODAL GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Mean flow (MeanFlow) enables efficient, high-fidelity image generation, yet its
single-function evaluation (1-NFE) generation often cannot yield compelling re-
sults. We address this issue by introducing RMFlow, an efficient multimodal gen-
erative model that integrates a coarse 1-NFE MeanFlow transport with a subse-
quent tailored noise-injection refinement step. RMFlow approximates the average
velocity of the flow path using a neural network trained with a new loss function
that balances minimizing the Wasserstein distance between probability paths and
maximizing sample likelihood. RMFlow achieves near state-of-the-art results on
text-to-image, context-to-molecule, and time-series generation using only 1-NFE,
at a computational cost comparable to the baseline MeanFlows.

1 INTRODUCTION

Flow matching (FM), closely related to diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2020), has emerged as a flexible framework for generative modeling, offer-
ing a principled way to learn transport between two distributions (cf. Lipman et al. (2023); Liu et al.
(2023a); Albergo & Vanden-Eijnden (2023)). By approximating the instantaneous velocity field of
this transport with a neural network, FM enables high-fidelity multimodal generation by solving
the ordinary differential equation (ODE) with the neural network-approximated vector field as its
forcing term (Esser et al., 2024; Ma et al., 2024; Polyak et al., 2024; Jing et al., 2024; Campbell
et al., 2024). Nevertheless, this high-fidelity generation requires multiple expensive neural network
evaluations, counted by the number of function evaluations (NFEs) (Chen et al., 2018).

Single-step DiffusionMean Flow Transport

Sample Data

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

1-NFE MeanFlow 8-NFE MeanFlow

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

32-NFE MeanFlow 1-NFE RMFlow (ours)

Figure 1: Contrasting MeanFlow with RMFlow
for mixture Gaussian sampling; see Section 5.1
for experimental details and more results.

Several approaches aim to accelerate diffusion-
and flow-based models for high-fidelity gener-
ation with only a few NFEs. Among these,
consistency models (CMs) Song et al. (2023);
Geng et al. (2024); Song & Dhariwal (2023);
Lu & Song (2025) achieve remarkable perfor-
mance and efficiency. Distillation is a notice-
able idea; for instance, local FM (Xu et al.,
2024a) breaks the flow into local sub-flows, en-
abling smaller models and easier distillation.

Recently, flow maps (Boffi et al., 2024; 2025)
and mean flows (MeanFlows) (Geng et al.
(2023); cf. Section 2) have been proposed to en-
able aggressive 1-NFE generation, and a promi-
nent advantage of flow maps and MeanFlows
is that they require no pre-training, distillation,
or curriculum learning. Empirically, Mean-
Flows achieve high-quality image generation
with fewer transport steps than FM models.
However, preserving this quality typically re-
quires multiple evaluations of the mean veloc-
ity field, as collapsing the process to 1-NFE of-
ten causes significant performance degradation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We showcase this issue by sampling a mixture Gaussian distribution using MeanFlow; see Sec-
tion 5.1 for experimental details. Figure 1 shows the significant gap between exact (data) and sam-
pled distributions when using 1-NFE MeanFlow, and this gap reduces as NFE increases.

1-NFE MFM 1-NFE RMFlow (ours)

Figure 2: Contrasting MeanFlow with RMFlow, under the
same context, for QM9 molecule generation.

We further showcase the signif-
icant generation error of 1-NFE
MeanFlow for the benchmark QM9
molecule generation (Ramakrishnan
et al., 2014); see Section 5.2 for ex-
perimental details and additional re-
sults. Figure 2 illustrates that 1-
NFE MeanFlow produces an invalid
structure, where the molecule is frag-
mented into multiple disconnected
pieces. Indeed, in our experiments,
we consistently observed that 1-NFE
MeanFlow frequently generates in-
valid structures. Additional quantita-
tive results in Section 5.2 further con-
firm the significant errors associated

with 1-NFE MeanFlow generation.

The above numerical results motivate us to study the following problem:

Can we improve the performance of 1-NFE MeanFlows for multimodal generation?

Noise InjectionMean Flow Transport

Sample

Data

Figure 3: Schematic of our proposed RMFlow: it first applies 1-NFE MeanFlow transport, then re-
fines the result by a subsequent noise-injection step; see Section 3. The average velocity û0,1(x0; θ)
of RMFlow is trained by incorporating the maximum likelihood objective into the MeanFlow frame-
work, as in equation 12.

1.1 OUR CONTRIBUTIONS

We propose RMFlow—an improved 1-NFE MeanFlow model for multimodal generation. RM-
Flow leverages 1-NFE MeanFlow for coarse transport, accompanied by a subsequent tailored noise-
injection step to refine the generation; Fig. 3 depicts the idea of RMFlow. The results in Figs 1 and
2 demonstrate that RMFlow achieves a substantial improvement in generation quality over 1-NFE
MeanFlow. In particular, it effectively mitigates invalid structures, producing coherent and valid
molecular graphs. Our key contributions are:

• We propose RMFlow to enable 1-NFE high-fidelity multimodal generation by integrating the guid-
ance encoding with a tailored noise-injection refinement strategy; see Section 3.

• We design a theoretically principled training objective for RMFlow that balances minimizing the
Wasserstein distance between probability paths and maximizing the likelihood of the learned target
distribution; see Section 4.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We show the compelling, often (near) state-of-the-art, results of RMFlow for benchmark text-to-
image, text-to-structure, and time series generation (see Section 5).

1.2 ADDITIONAL RELATED WORKS

To our knowledge, this work is the first to improve MeanFlows by introducing a noise-injection
refinement for 1-NFE generation. This differs from existing couplings of flow and diffusion models,
such as Diff2Flow (Schusterbauer et al., 2025), which transfers knowledge from pretrained diffu-
sion models to flow matching models, and generator matching (Patel et al., 2024), which connects
diffusion and flow matching under Markov generative processes.

Another line of work studies error control in FM. Prior analyses of probability flow ODEs and FM
(Song et al., 2021; Lu et al., 2022; Lai et al., 2023; Albergo et al., 2023) show that FM alone can-
not guarantee likelihood maximization or KL divergence minimization between target and learned
distributions.

1.3 ORGANIZATION

We organize the rest of this paper as follows: We provide necessary background materials in Sec-
tion 2. We present our proposed 1-NFE RMFlow in Section 3. We present our training loss function
for RMFlow in Section 4. Our numerical results for RMFlow in Section 5. Technical proofs and
additional experimental details and results are provided in the appendix.

2 BACKGROUND

In this section, we provide a brief review of flow-based generative models, especially MeanFlows.
For a detailed exploration of FM, we refer the reader to (Lipman et al., 2023; Liu et al., 2023a;
Fukumizu et al., 2024). For a given data x1 = xdata ∼ p and a prior sample x0 ∼ q (e.g., standard
Gaussian N (0, I)), a (conditional) flow path—connecting the two samples—can be constructed as
xt = atx1 + btx0 with at and bt being predefined schedules. A common choice is at = 1− t and
bt = t, which corresponds to rectified flow (Liu et al., 2023a). This interpolation can be equivalently
expressed as the solution to the ODE ẋt = ut(xt|z), where z = (x0,x1) denotes the coupling of
start and end points, and ut(xt|z) = ȧtx1 + ḃtx0 is the conditional vector field. FM learns an
unconditional vector field ut(x) := Ez [ut(x|z)|xt = x], which does not require knowledge of the
pair z = (x0,x1). This is achieved by training a neural network ût(x; θ) to minimize the objective:

LCFM(θ) := Et,z

[
∥ût(xt; θ)− ut(xt|z)∥2

]
. (1)

After training, we generate data by integrating dxt

dt = ût(xt; θ) from t = 0 to 1, with x0 ∼ q.

Although FM is conceptually simple, sample generation requires multiple evaluations of ût(xt; θ),
which can be computationally intensive. To address this inefficiency issue, MeanFlow learns an
averaged velocity field based on the instantaneous velocity field ut(xt), defined as:

ut,r(xt) :=
xr − xt

r − t
=

1

r − t

∫ r

t

us(xs)ds. (2)

This allows data generation by transporting xt to xr using the approximate average velocity field
ût,r:

xr = xt + (r − t)ût,r(xt; θ). (3)

In particular, 1-NFE generation corresponds to x1 = x0 + û0,1(x0; θ). For Multi-NFE generation,
ût,r(x; θ) is evaluated sequentially on a chosen grid 0 = τ0 < · · · < τn = 1 and is applied between
consecutive grid points to transport samples. This approach achieves high-fidelity generation with
significantly fewer NFEs compared to FM models that rely on the instantaneous velocity field ut(x).

In MeanFlows, the mean velocity field ut,r(x) is approximated by a neural network ût,r(x; θ), with
the weights θ being calibrated by minimizing the following conditional mean flow matching LCMFM

loss function:
LCMFM(θ) := Et,r,z

[
∥ût,r(x; θ)− sg

(
utgt
t,r (x; θ)

)
∥2
]
, (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where 0 ≤ t ≤ r ≤ 1 are uniform samples from the interval [0, 1] and utgt
t,r is the target defined as:

utgt
t,r (x; θ) := ut(x|z) + (r − t)

[
∇ût,r(x; θ) · ut(x|z) + ∂tût,r(x; θ)

]
,

with sg denoting a stop-gradient operation. This stop-gradient approach prevents higher-order opti-
mization while ensuring that zero loss guarantees dynamical consistency. The target velocity utgt

t,r is
efficiently computed using Jacobian-vector products (jvp) in autodiff libraries such as PyTorch
(Paszke et al., 2019) or JAX (Bradbury et al., 2018).

3 THE DESIGN OF RMFLOW

In this section, we describe the design of 1-NFE RMFlow for high-fidelity generation, with or with-
out multimodal guidance.

3.1 MOTIVATION

In practice, the true data distribution xdata is unavailable due to its complexity and the limited nature
of observed data. Following the standard practice in the field, as established in works such as (Ho
et al., 2020; Song et al., 2021; Lu et al., 2022; Lipman et al., 2023), we approximate it with a noisy,
smoothed version xtgt = xdata + σminϵ ∼ ptgt, where ϵ ∼ N (0, I) and σmin is small (e.g., 10−3).
This approach ensures stability and robust learning of the data distribution.

MeanFlows learn a neural network, by minimizing LCMFM in equation 4, to transport a prior sample
x0 directly to the noisy target, i.e., x1 = xtgt. Boffi et al. (2024; 2025) showed that this approach
reduces the Wasserstein distance between the target distribution ptgt and the learned distribution pθ:

Theorem 3.1. [Boffi et al. (2025)] There exists a constant M > 0 such that:
M · LCMFM(θ) ≥ W 2

2 (ptgt, pθ) := inf
γ∈Π(ptgt,pθ)

E(x,y)∼γ

[
∥x− y∥2

]
, (5)

where M is a constant, W 2
2 (ptgt, pθ) denotes the Wasserstein distance between ptgt and pθ, and

Π(ptgt, pθ) is the set of all joint distributions with marginals ptgt and pθ.

While controlling the Wasserstein distance provides a meaningful measure of distributional align-
ment, empirical evidence indicates that FM enforces additional constraints, such as KL divergence
(Lu et al., 2022), often achieves superior generative performance over the FM baseline. With this in
mind, we aim to enhance the fidelity of 1-NFE MeanFlows, pushing beyond current limitations in a
manner analogous to improvements seen in FMs.

3.2 NOISE INJECTION REFINEMENT

We decompose the generation process into two stages. In the first stage, a 1-NFE MeanFlow trans-
ports the prior x0 to an intermediate noisy state

x1 = xdata + σϵ1, with ϵ1 ∼ N (0, I) and σ < σmin. (6)
In the second stage, a single noise injection step is applied:

xtgt = x1 +
√
σ2
min − σ2 · ϵ2, ϵ2 ∼ N (0, I), (7)

to generate the final sample. This additional noise injection aligns with the designs of VAEs (Kingma
& Welling, 2013), allowing principled likelihood maximization via a loss term derived from the
evidence lower bound (ELBO) (Wainwright et al., 2008) to optimize the MeanFlow parameters. We
will prove in Theorem 4.1 that this formulation enables control over the KL divergence between the
target distribution ptgt and the learned distribution pθ.

In summary, our data generation process is defined as

x̂tgt = x0 + û0,1(x0; θ) +
√

σ2
min − σ2 · ϵ2, ϵ2 ∼ N (0, I), (8)

where û0,1(x0; θ) denotes the learned average velocity field. Although RMFlow is conceptually
a two-stage framework, equation 8 demonstrates that generation is performed in a single step: the
learned flow is evaluated once (1-NFE), and a noise term is added in parallel to produce the output.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 MULTIMODALITY

To support cross-modality generation, we incorporate an encoder ϕω(c) that embeds conditioning
signals (e.g., text prompts). The prior samples for both guided (potentially multimodal) and un-
guided generation are defined as

x0 =

{
ϕω(c) + σcϵ, for guided generation,

ϵ, for unguided generation,

where ϵ ∼ N (0, I). This design allows the flow to incorporate multimodal guidance if available,
while defaulting to unconditional generation otherwise. Here, ϕω(·) is an encoder chosen following
common practice (see Section 5), and σc ≪ 1 (e.g., 10−3) is pre-chosen to control perturbations.

Specifically, for a given data pair (xdata, c), we train the MeanFlow to transport the prior sample
x0 = ϕω(c) + σcϵ to the intermediate target x1 = xdata + σϵ1, where ϵ1 ∼ N (0, I). The encoder
and MeanFlow are optimized jointly, and we will discuss the training objective in Section 4.
Remark 1. Our proposed RMFlow differs from MeanFlow in two aspects: (1) We apply a tailored
encoder to the guidance, (2) we add a noise injection step to refine the generation result.

4 THE TRAINING OF RMFLOW

In this section, we present the training procedure for RMFlow. We first establish the theoretical
foundation of noise-injection refinement, showing that it enables likelihood maximization of the
learned distribution with respect to the target distribution. Building on this, we introduce a joint
training objective that combines LCMFM (for Wasserstein control) with likelihood maximization
and optional guidance regularization, ensuring both fidelity and flexibility in guided generation.
Finally, we adopt parameter-efficient fine-tuning (PEFT; cf. (Hu et al., 2022; Dettmers et al., 2023))
to implement RMFlow for large-scale tasks.

4.1 LIKELIHOOD MAXIMIZATION

In this section, we show that the noise-injection step in equation 8 enables likelihood maximiza-
tion during RMFlow training. Specifically, for a given prior sample x0, the intermediate sample
generated by the MeanFlow is

x1 = x0 + û0,1(x0; θ).

By equation 8, the conditional distribution of the final generated sample given the prior is

x̂tgt | x0 ∼ N
(
x0 + û0,1(x0; θ), (σ

2
min − σ2)I

)
.

This specifies a parametric conditional distribution. Given an observed target xtgt, the correspond-
ing conditional log-likelihood is

log pθ(xtgt | x0) = − 1

2((σ2
min − σ2))

∥∥xtgt −
(
x0 + û0,1(x0; θ)

)∥∥2 + C, (9)

where C = −d
2 log(2π(σ

2
min − σ2)) and d is the dimensionality of the data. Notice that equation 6

and equation 7 indicate the observed target xtgt = xdata + σminϵ, where ϵ ∼ N (0, I).

Therefore, we define the following loss term to maximize the likelihood:

LNLL := Ex0,xdata,ϵ

[∥∥(xdata + σminϵ)− (x0 + û0,1(x0; θ))
∥∥2]. (10)

The following theorem formalizes the theoretical guarantee of the noise-injection refinement. In
particular, it demonstrates that minimizing the loss LNLL maximizes the expected log-likelihood,
thereby reducing the KL divergence between the target and learned distributions.
Theorem 4.1. The negative log-likelihood loss LNLL provides a lower bound on the expected log-
likelihood of the target distribution:

−A · LNLL + C ≤ Extgt [log pθ(xtgt)] = −H(ptgt)−DKL(ptgt ∥ pθ), (11)

where H(ptgt) := −Extgt [log ptgt] is the entropy of ptgt, DKL(ptgt||pθ) := Extgt [log
ptgt

pθ
] denotes

the KL divergence between the target and the learned distributions, and A,B > 0 are constants.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1.1 JOINT TRAINING OBJECTIVE

RMFlow is trained by jointly optimizing the original MeanFlow loss (Wasserstein control) and like-
lihood maximization, resulting in the following objective function:

LRMFlow(θ, ω) = LCMFM︸ ︷︷ ︸
I

+λ1LNLL︸ ︷︷ ︸
II

+λ2E(xdata,c)[∥ϕω(c)∥2]︸ ︷︷ ︸
III

,
(12)

where λ1, λ2 ≥ 0 are two hyperparameters. We remark that Term I controls the gap between the
probability flows of the exact and approximated mean velocities in intermediate states, Term II for
likelihood maximization, and Term III is designed for guided generation and is set to 0 for unguided
generation. Here, the expectation in III is taken over all data-guidance pairs (xdata, c).

Remark 2. Term III in equation 12 can be considered as a regularization on the prior distribution,
and a similar term is used in training VAE (Kingma & Welling, 2013). Empirically, we observe that
term III can be very large, resulting in substantial performance degradation.

4.2 MEMORY-EFFICIENT FINE-TUNING

For relatively small-scale tasks, we train our RMFlow by directly minimizing LRMFlow. Compared
to LCMFM, our new objective LRMFlow introduces additional gradient pathways, increasing memory
footprint. To balance efficiency and performance for large-scale tasks, we first train the MeanFlow
model by minimizing LCMFM, and then fine-tune it using PEFT (Hu et al., 2022; Dettmers et al.,
2023), with LRMFlow as a supervised objective in our large-scale experiments on text-to-image and
molecule generation tasks. During fine-tuning, we further strengthen training by integrating 1-NFE
sampling with a policy-gradient objective that incorporates physical feedback on sample quality for
molecule generation tasks, as described in Zhou et al. (2025).

5 NUMERICAL EXPERIMENTS

In this section, we validate the efficacy and efficiency of RMFlow for both guided and unguided
sample generation. We consider two synthetic tasks: sampling a 1D mixture Gaussian distribution
and a 2D checkerboard density (Section 5.1). We also consider several benchmark tasks, including
context-to-molecular structure generation (Section 5.2), sampling trajectories of dynamical systems
(time series; Section 5.3), and text-to-image generation (Section 5.4).

Software and Equipment. We implement synthetic tasks, context-to-molecule generation, and text-
to-image generation using PyTorch. We implement the time series generation task using JAX.
Additionally, we use Torch DDP and torch.compile to optimize the model execution for
context-to-molecule and text-to-image generation. All the experiments are carried out on multiple
NVIDIA RTX 3090/4090 GPUs.

Training Setups. See Appendix B for the details of training setups.

Evaluation Metrics: For synthetic tasks and time-series generation, we evaluate performance using
the estimated KL divergence and total variation (TV) distance between the generated samples and
the ground-truth. Both KL and TV are computed from densities obtained via histogram-based esti-
mation of the sample and ground-truth distributions. For molecule generation, we predict bond types
from pairwise interatomic distances and atom types, and then compute atom and molecule stability,
following Hoogeboom et al. (2022). For the image generation task, we assess sample quality using
the Fréchet Inception Distance (FID) (Heusel et al., 2017).

We use NFE to measure generation efficiency following (Geng et al., 2025). Notice that the Gaussian
noise injection step takes negligible time compared to the neural network function evaluation.

5.1 SYNTHETIC TASKS

In this experiment, we train a simple ResNet-based model under both MeanFlow and RMFlow
frameworks for 105 iterations using a batch size of 256 to sample (1) 1D Gaussian mixture
pdata = 0.35N (1.5, 0.04)+0.25N (0.5, 0.04)+0.4N (−1.5, 0.04), and (2) 2D checkerboard where
the probability density resembles a checkerboard pattern. We consider 1/8/32-NFE MeanFlow and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1-NFE MeanFlow 8-NFE MeanFlow 32-NFE MeanFlow 1-NFE RMFlow (ours)

TV 1.4422 0.7977 0.6737 0.7567
KL 0.8074 0.4074 0.1017 0.2332

Table 1: Contrasting 1-NFE RMFlow with 1/8/32-NFE MeanFlow for mixture Gaussian sampling.
1-NFE RMFlow outperforms both 1- and 8-NFE MeanFlows, while slightly worse than 32-NFE
MeanFlow.

1-NFE MeanFlow 8-NFE MeanFlow 32-NFE MeanFlow 1-NFE RMFlow (ours)

TV 0.238 0.167 0.155 0.173
KL 0.311 0.139 0.118 0.163

Table 2: Contrasting 1-NFE RMFlow with 1/8/32-NFE MeanFlow for checkerboard density sam-
pling. 1-NFE RMFlow significantly outperforms 1-NFE MeanFlow, closing the performance gap to
multi-NFE MeanFlow.

1-NFE RMFlow for sample generation. Tables 1 and 2 show that 1-NFE RMFlow significantly
outperforms 1-NFE MeanFlow, closing the performance gap to multi-NFE MeanFlow.

5.2 CONTEXT-TO-MOLECULE: QM9 GENERATION

We train MeanFlow and RMFlow for context-to-molecule generation on the QM9 dataset Ramakr-
ishnan et al. (2014), a benchmark containing atomic coordinates and quantum-chemical properties
for 130k small molecules with up to 9 heavy atoms (up to 29 atoms including hydrogens). Fol-
lowing Hoogeboom et al. (2022), we perform condition generation on seven molecular properties:
(1) number of atoms, (2) HOMO, (3) LUMO, (4) α (isotropic polarizability), (5) gap, (6) µ (dipole
moment), and (7) Cv (heat capacity). These properties are concatenated into a context vector and
mapped to the data space using ϕω(c), parameterized by a single EGNN block Garcia Satorras et al.
(2021).

Our model backbone follows the EGNN architecture in (Garcia Satorras et al., 2021; Hoogeboom
et al., 2022), augmented with a time-embedding module for the additional scalar time variable r. In
addition, molecule stability is used as the reward within the RL framework, following the approach
of Zhou et al. (2025), to provide feedback during training (see Section 4.2 and Appendix B.8).
We adopt the train/val/test splits of Anderson et al. (2019), comprising 100k/18k/13k molecules,
respectively. Table 3 shows that 1-NFE RMFlow attains state-of-the-art performance, whereas com-
peting SOTA methods require n-NFE with n ≫ 1. Figure 4 depicts a few randomly generated
molecules and the corresponding contexts.

Metrics No Tuncation Error Atomic Stab. (↑) Mol Stab. (↑) NFE(↓)
(Discretization)

ENF ✗ 85±0.1% 4.9±0.2% ≫ 1
E-DM Hoogeboom et al. (2022) ✗ 98.73±0.1% 82.11±0.4% ≫ 1
Bridge Wu et al. (2022) ✗ 98.7±0.1% 81.8±0.2% ≫ 1
Bridge + Force Wu et al. (2022) ✗ 98.8±0.1% 84.6±0.3% ≫ 1
GeoLDM Xu et al. (2023) ✗ 98.73% 89.40±0.5% ≫ 1
GeoBFN Song et al. (2024) ✗ 99.0% 93.9% ≫ 1
E-DM + RLPF Zhou et al. (2025) ✗ 99.1% 93.4% ≫ 1
MeanFlow w/o contexts ✓ 98.2±0.07% 79.3±0.8% 1
MeanFlow w/ contexts ✓ 98.4±0.05% 84.3±0.5% 1
RMFlow w/o contexts (ours) ✓ 98.8±0.05% 90.1±0.5% 1
RMFlow w/ contexts (ours) ✓ 98.9±0.05% 93.2±0.4% 1
RMFlow w/ contexts + RLPF (ours) ✓ 98.9±0.05% 93.5±0.3% 1
Data – 99% 95.2% –

Table 3: Contrasting the performance of different models for QM9 molecule generation. We run
RMFlow with contexts by randomly selecting 104 contexts in the test dataset of QM9 five times.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)
Contexts:
(1) N atom: 21 — homo: -6.34 — lumo: 1.82 — alpha: 77.77 — gap: 8.16 — mu: 1.55 — Cv: -27.27
(2) N atom: 18 — homo: -6.62 — lumo: -0.85 — alpha: 74.21 — gap: 5.77 — mu: 3.27 — Cv: -19.37
(3) N atom: 22 — homo: -6.44 — lumo: 1.99 — alpha: 83.22 — gap: 8.43 — mu: 1.52 — Cv: -29.10
(4) N atom: 22 — homo: -6.56 — lumo: 2.01 — alpha: 81.16 — gap: 8.57 — mu: 0.31 — Cv: -30.52
(5) N atom: 18 — homo: -5.79 — lumo: -0.02 — alpha: 77.48 — gap: 5.77 — mu: 2.00 — Cv: -23.75
(6) N atom: 20 — homo: -5.30 — lumo: 0.34 — alpha: 91.41 — gap: 5.64 — mu: 1.54 — Cv: -24.78
(7) N atom: 16 — homo: -7.05 — lumo: -1.20 — alpha: 68.35 — gap: 5.84 — mu: 1.37 — Cv: -18.86
(8) N atom: 20 — homo: -6.94 — lumo: 0.94 — alpha: 78.01 — gap: 7.88 — mu: 2.36 — Cv: -25.09
(9) N atom: 16 — homo: -6.74 — lumo: 0.60 — alpha: 58.89 — gap: 7.34 — mu: 4.43 — Cv: -18.93
(10) N atom: 18 — homo: -6.76 — lumo: 0.77 — alpha: 73.96 — gap: 7.53 — mu: 1.95 — Cv: -24.84
(11) N atom: 16 — homo: -6.09 — lumo: -0.10 — alpha: 74.33 — gap: 5.98 — mu: 3.87 — Cv: -22.98
(12) N atom: 20 — homo: -6.82 — lumo: 0.53 — alpha: 76.55 — gap: 7.36 — mu: 1.12 — Cv: -26.04

Figure 4: A few randomly selected RMFlow-generated molecules, together with the corresponding
contexts.

5.3 TIME SERIES: DYNAMICAL SYSTEM

Sampling trajectories in dynamical systems under event guidance is a key challenge for predicting
and understanding complex phenomena such as climate and extreme events (Perkins & Alexander,
2013; Mosavi et al., 2018). Recent works (Finzi et al., 2023) and (Huang et al., 2025) have intro-
duced diffusion and FM models specifically designed for event-guided sampling.

In this experiment, we perform dynamical system trajectory forecasting with MeanFlow and RM-
Flow, formulating it as a time series problem by discretizing the time variable t into uniform in-
tervals. Each trajectory (either from a dataset or sampled) is a discrete time series of vectors con-
catenated into xdata = [x(τm)]Mm=1 ∈ RMd, where M is the total number of time steps, d is the
dimension of the system, and x(τm) ∈ Rd denotes the discretized trajectory at time τm. Our goal is
to generate xdata = [x(τm)]Mm=1 ∈ RMd with 1-NFE using MeanFlow and RMFlow.

We train our models on the Lorenz and FitzHugh–Nagumo dynamical systems (see (Huang et al.,
2025, Appendix B.1) for a brief review of these two models); using a U-Net backbone. For event
guidance, where events are defined by a constraint function E = {xdata |C(xdata) > 0}, we adopt
a simple but effective design: the event-guidance vector and the first three states x(τ1),x(τ2),x(τ3)
are embedded through an MLP ϕω into the target data space RMd. This avoids reliance on Tweedie’s
formula as used in (Finzi et al., 2023; Huang et al., 2025). Tables 4 and 5 show that RMFlow
yields significantly better 1-NFE generation than MeanFlow, while achieving accuracy comparable
to multi-NFE methods.

5.4 TEXT-TO-IMAGE

In this experiment, we train MeanFlow and RMFlow for text-to-image generation on the COCO
dataset Chen et al. (2015). Following Stable Diffusion Rombach et al. (2022), all operations are
performed in the latent space R4×32×32. The mapping ϕω(c) converts the text conditions into initial
latent states. Concretely, we fine-tune the pretrained text-embedding model e5-base (Wang et al.,
2022) and attach an MLP to project the embeddings into the latent space. Additionally, we fine-
tune the Stable Diffusion VAE decoder on COCO using PEFT (Hu et al., 2022; Dettmers et al.,
2023) so that it can decode the final latent state into images. Both MeanFlow and RMFlow use a
480M-parameter U-Net as the latent-space backbone.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Lorenz FitzHugh-Nagumo

Model w/o E (↓) w/ E (↓) w/o E (↓) w/ E (↓) NFE (↓)

Diffusion Huang et al. (2025) 0.0314 0.1001 0.0277 0.1192 128
FM Huang et al. (2025) 0.0348 0.0972 0.0314 0.2164 128
FDM Huang et al. (2025) 0.0306 0.0914 0.0266 0.1168 128

MeanFlow 0.0469 0.1250 0.0398 0.2268 1
MeanFlow 0.0366 0.1011 0.0345 0.1988 8
MeanFlow 0.0351 0.0991 0.0302 0.1723 32
RMFlow (ours) 0.0332 0.0956 0.0289 0.1543 1

Table 4: TV distance between the generated (by different models) and test trajectory distributions,
estimated from histogram-based density approximations, with/without conditioning on the event.

Lorenz FitzHugh-Nagumo

Model w/o E (↓) w/ E (↓) w/o E (↓) w/ E (↓) NFE (↓)

Diffusion Huang et al. (2025) 0.0056 0.2774 0.0260 0.3011 128
FM Huang et al. (2025) 0.0081 0.2560 0.0280 0.3468 128
FDM Huang et al. (2025) 0.0049 0.3045 0.0280 0.2084 128

MeanFlow 0.0109 0.3887 0.0347 0.3921 1
MeanFlow 0.0091 0.3163 0.0297 0.2422 8
MeanFlow 0.0054 0.2722 0.0281 0.2490 32
RMFlow (ours) 0.0059 0.2866 0.0287 0.2499 1

Table 5: KL divergence between the generated (by different models) and test trajectory distributions,
estimated from histogram-based density approximations, with/without conditioning on the event.

We adopt the Karpathy split (Karpathy & Fei-Fei, 2015) for training and validation, and evaluation
is performed with COCO FID-30K following Rombach et al. (2022); He et al. (2025) (details in
Appendix B.4). As shown in Table 6, RMFlow attains FID comparable to the best single-step
generators on COCO, such as Distilled Stable Diffusion (Liu et al., 2023b), StyleGAN-T (Sauer
et al., 2023). Importantly, RMFlow (and MeanFlow) is orthogonal to the other methods listed in
Table 6, as it does not rely on auxiliary models for training. In contrast, GAN-based approaches
require a discriminator, and distilled models depend on a pretrained teacher. Moreover, our models
are trained under limited computational resources (e.g., RTX 3090/4090 GPUs with 24 GB memory)
using mixed-precision bf16, whereas most state-of-the-art models listed in Table 6 are trained on
multiple A100 80 GB GPUs with full-precision fp16. These results indicate that RMFlow has strong
potential for further improvement if trained with larger computational budgets. We also report the
performance on CLIP score, see Appendix B.7.

(1) The dining table near the kitchen has a ...
(2) A woman riding a surfboard on a wave in the ...
(3) A woman sitting on a wooden park bench ...
(4) A stack of old trunks and luggage against ...
(5) Rows of unripe bananas on display in ...
(6) stop sign with spray painted words on it.
(7) A couple of horses that are next to a fence.
(8) A red and white street sign mounted on ...

(1) A man making a sandwich on a lunch truck.
(2) A skateboarder performing a trick on an indoor ramp.
(3) There is a large sign that says a street name on it.
(4) A white plate topped with onion rings and ...
(5) A big zebra and a little zebra standing and looking.
(6) The meal is ready on the tray to be eaten.
(7) A bike and a dog on the sidewalk outside a ...
(8) A cat up on a desk drinking milk from a glass.

Figure 5: COCO dataset samples generated using 1-NFE RMFlow conditioned on different input
prompts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Type params NFE Teacher-free COCO FID-30K (↓) Resolution
(or discriminator-free)

Stable Diffusion v1.5 Rombach et al. (2022) Diff 860M ≫ 1 ✓ 9.62 256 × 256
Stable Diffusion v2.1 Rombach et al. (2022) Diff 860M ≫ 1 ✓ 13.45 256 × 256
FlowTok-XL He et al. (2025) ODE 698M ≫ 1 ✓ 10.1 256 × 256
Show-o Xie et al. (2024) Diff 1.3B ≫ 1 ✓ 9.24 256 × 256
PixArt Chen et al. (2023) ODE 630M ≫ 1 ✓ 7.32 256 × 256
LDM Rombach et al. (2022) Diff 1.4B ≫ 1 ✓ 12.63 256 × 256

VQGAN+T Jahn et al. (2021) GAN 1.1B 1 ✗ 32.76 256 × 256
LAFITE Zhou et al. (2022) GAN 75M 1 ✗ 26.94 256 × 256
StyleGAN-T Sauer et al. (2023) GAN 1B 1 ✗ 13.90 256 × 256
InstaFlow Liu et al. (2023b) ODE 900M 1 ✗ 13.10 512 × 512
UFOGen Xu et al. (2024b) Diff 900M 1 ✗ 12.78 512 × 512
Stable Diffusion + Distill Liu et al. (2023b) Diff 900M 1 ✗ 34.6 256 × 256
Rectified Flow + Distill Liu et al. (2023b) ODE 900M 1 ✗ 20.0 256 × 256

MeanFlow ODE 620M 1 ✓ 27.31 256 × 256
RMFlow (ours) Diff 620M 1 ✓ 18.91 256 × 256

Table 6: FID of the generated images on the benchmark COCO2014 dataset using different models.

6 CONCLUDING REMARKS

In this work, we introduce RMFlow, a refinement of MeanFlow with minimal computational and
memory overhead. The central innovation lies in augmenting the 1-NFE MeanFlow with a subse-
quent noise injection step, which facilitates likelihood maximization. To support this mechanism, we
propose a novel loss function that jointly minimizes the discrepancy between the exact and learned
probability paths while maximizing likelihood. Empirical results demonstrate that 1-NFE RMFlow
achieves strong performance in multimodal generation tasks.

A promising direction for future research is to extend RMFlow to support multiple mean flow trans-
port steps. Specifically, we envision applying a noise-injection step after each transport step, which
would require the design of a corresponding loss function to maintain likelihood maximization. This
extension presents additional challenges compared to the current formulation and opens avenues for
more expressive and accurate generative modeling. Another limitation of RMFlow is that it uses a
fixed parameter

√
σ2
min − σ2 during the noise injection step, which may be suboptimal. As future

work, we plan to explore more adaptive strategies for selecting this parameter, such as making it
learnable or following a dynamic schedule.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

In this paper, we propose a new framework to improve MeanFlow for efficient data generation. The
new model can generate high-fidelity data efficiently. Our work belongs to fundamental research and
is expected to improve existing models for generative modeling. Our work is methodological, and
we validate our proposed approaches on the benchmark datasets. We do not expect to cause negative
societal problems. Furthermore, we do not see any issues with potential conflicts of interest and
sponsorship, discrimination/bias/fairness concerns, privacy and security issues, legal compliance,
and research integrity issues (e.g., IRB, documentation, research ethics.

REPRODUCIBILITY STATEMENT

We are committed to conducting reproducible research. To ensure the integrity and transparency of
our work, we employ a multifaceted approach: First, we meticulously compare the novelty of our
research against existing literature. This involves a thorough examination of the current state of the
field to identify gaps in knowledge and demonstrate the unique contributions of our work. Second,
we provide detailed derivations of our proposed approaches and theoretical results. By carefully
outlining the mathematical underpinnings of our methods, we enhance the understanding of our
work and facilitate its verification by others. Third, we conduct rigorous experiments using widely
recognized benchmark datasets. This allows us to evaluate the performance of our methods against
established standards and provides a solid foundation for comparison with other approaches. Fourth,
we meticulously report experimental details, including the specific datasets used, parameters chosen,
and evaluation metrics employed. Finally, we make all experimental codes, accompanied by com-
prehensive documentation, publicly available. This open-source approach empowers researchers to
inspect our methods, verify our results, and build upon our work. By sharing our code, we foster
collaboration, advance the field, and contribute to the overall reproducibility of scientific research.

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=li7qeBbCR1t.

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. Flow map matching. arXiv preprint
arXiv:2406.07507, 2024.

Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. How to build a consistency model:
Learning flow maps via self-distillation. arXiv preprint arXiv:2505.18825, 2025.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for photore-
alistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

11

https://openreview.net/forum?id=li7qeBbCR1t

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325, 2015.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv. org/abs/2305.14314, 2, 2023.

Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Marc Anton Finzi, Anudhyan Boral, Andrew Gordon Wilson, Fei Sha, and Leonardo Zepeda-Núñez.
User-defined event sampling and uncertainty quantification in diffusion models for physical dy-
namical systems. In International Conference on Machine Learning, pp. 10136–10152. PMLR,
2023.

Kenji Fukumizu, Taiji Suzuki, Noboru Isobe, Kazusato Oko, and Masanori Koyama. Flow matching
achieves almost minimax optimal convergence. arXiv preprint arXiv:2405.20879, 2024.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E (n)
equivariant normalizing flows. Advances in Neural Information Processing Systems, 34:4181–
4192, 2021.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep equi-
librium models. Advances in Neural Information Processing Systems, 36:41914–41931, 2023.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. arXiv preprint arXiv:2406.14548, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Ju He, Qihang Yu, Qihao Liu, and Liang-Chieh Chen. Flowtok: Flowing seamlessly across text and
image tokens. arXiv preprint arXiv:2503.10772, 2025.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems, volume 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d. In International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Yuhao Huang, Taos Transue, Shih-Hsin Wang, William M Feldman, Hong Zhang, and Bao
Wang. Improving flow matching by aligning flow divergence. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
FeZimuj6SG.

Manuel Jahn, Robin Rombach, and Björn Ommer. High-resolution complex scene synthesis with
transformers. arXiv preprint arXiv:2105.06458, 2021.

Bowen Jing, Bonnie Berger, and Tommi Jaakkola. Alphafold meets flow matching for generating
protein ensembles. arXiv preprint arXiv:2402.04845, 2024.

12

https://openreview.net/forum?id=FeZimuj6SG
https://openreview.net/forum?id=FeZimuj6SG

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
3128–3137, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, and Stefano Er-
mon. Fp-diffusion: Improving score-based diffusion models by enforcing the underlying score
fokker-planck equation. In International Conference on Machine Learning, pp. 18365–18398.
PMLR, 2023.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations, 2023a.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023b.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=LyJi5ugyJx.

Cheng Lu, Kaiwen Zheng, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Maximum likelihood
training for score-based diffusion odes by high order denoising score matching. In International
Conference on Machine Learning, pp. 14429–14460. PMLR, 2022.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pp. 23–40. Springer, 2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14297–14306, 2023.

Amir Mosavi, Pinar Ozturk, and Kwok-wing Chau. Flood prediction using machine learning mod-
els: Literature review. Water, 10(11):1536, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, volume 32, 2019.

Zeeshan Patel, James DeLoye, and Lance Mathias. Exploring diffusion and flow matching under
generator matching. arXiv preprint arXiv:2412.11024, 2024.

Sarah E Perkins and Lisa V Alexander. On the measurement of heat waves. Journal of climate, 26
(13):4500–4517, 2013.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media founda-
tion models. arXiv preprint arXiv:2410.13720, 2024.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

13

https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=LyJi5ugyJx
https://openreview.net/forum?id=LyJi5ugyJx

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegan-t: Unlocking the
power of gans for fast large-scale text-to-image synthesis. In International conference on machine
learning, pp. 30105–30118. PMLR, 2023.

Johannes Schusterbauer, Ming Gui, Frank Fundel, and Björn Ommer. Diff2flow: Training flow
matching models via diffusion model alignment. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 28347–28357, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–
1428, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Yuxuan Song, Jingjing Gong, Yanru Qu, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying
Ma. Unified generative modeling of 3d molecules via bayesian flow networks. arXiv preprint
arXiv:2403.15441, 2024.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges. Advances in neural information processing systems,
35:36533–36545, 2022.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. arXiv preprint arXiv:2408.12528, 2024.

Chen Xu, Xiuyuan Cheng, and Yao Xie. Local flow matching generative models. arXiv preprint
arXiv:2410.02548, 2024a.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
pp. 38592–38610. PMLR, 2023.

Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8196–8206, 2024b.

Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang
Gu, Jinhui Xu, and Tong Sun. Towards language-free training for text-to-image generation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 17907–
17917, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhijian Zhou, Junyi An, Zongkai Liu, Yunfei Shi, Xuan Zhang, Fenglei Cao, Chao Qu, and Yuan
Qi. Guiding diffusion models with reinforcement learning for stable molecule generation. arXiv
preprint arXiv:2508.16521, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A TECHNICAL PROOFS

Theorem 4.1. The negative log-likelihood loss LNLL provides a lower bound on the expected log-
likelihood of the target distribution:

−A · LNLL + C ≤ Extgt
[log pθ(xtgt)] = −H(ptgt)−DKL(ptgt ∥ pθ), (11)

where H(ptgt) := −Extgt [log ptgt] is the entropy of ptgt, DKL(ptgt||pθ) := Extgt [log
ptgt

pθ
] denotes

the KL divergence between the target and the learned distributions, and A,B > 0 are constants.

proof of Theorem 4.1. We begin with the marginal likelihood:

log pθ(xtgt) = logEx0

[
pθ(xtgt|x0))

]
≥ Ex0

[
log pθ(xtgt|x0)

]
,

(13)

where the inequality follows from Jensen’s inequality.

Taking expectation over xtgt gives

Extgt [log pθ(xtgt)] ≥ Ex0,xtgt

[
log pθ(xtgt|x0)

]
. (14)

Now, by substituting the log-likelihood expression equation 9, we obtain

Ex0,xtgt

[
log pθ(xtgt|x0)

]
= Ex0,xtgt

[
− 1

2(σmin − σ)2
∥∥xtgt −

(
x0 + û0,1(x0; θ)

)∥∥2 + C
]

= − 1

2(σmin − σ)2
Ex0,xtgt

[∥∥xtgt −
(
x0 + û0,1(x0; θ)

)∥∥2]+ C

= − 1

2(σmin − σ)2
LNLL + C

(15)

Combining the inequalities, there exist constants A,C > 0 such that

−A · LNLL + C ≤ Extgt [log pθ(xtgt)]. (16)

Finally, recall that
Extgt [log pθ(xtgt)] = −H(ptgt)−DKL(ptgt ∥ pθ), (17)

which establishes the desired relation.

B EXPERIMENT SETUP

Flow map design. For a given pair z = (x0,x1), we choose the conditional velocity field ut(x|z)
following (Albergo & Vanden-Eijnden, 2023), i.e.,

ut(x|z) =
γ̇(t)

γ(t)

(
x− tx1 − (1− t)x0

)
+ (x1 − x0), (18)

where γ(t) = η(1− t) with γ(0) = η, γ(1) = 0, and η = 10−2, 5× 10−2, 10−1.

Training Setup:

Loss Metric: Following Geng et al. (2025), we focus on part I (mean flow loss) of LRMFlow 12,
expressed as L = |∆|2ζ2 , where ∆ denotes the regression error. In practice, we apply a weight

w =
(

1
∥∆∥2

2+1e−3

)m

with m = 1 − ζ. When m = 0.5, this formulation becomes closely related
to the Pseudo-Huber loss introduced in Song & Dhariwal (2023); hence, we adopt m = 0.5 for
all experiments. The hyperparameters λ1 and λ2 in LRMFlow are selected individually for each
experiment, as reported below.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Time sampling and condition: For the part III and II in LRMFlow 12, we only need to sample x0 so
that the time is always zero. Similar one sampling method used in Geng et al. (2025), we sample
(t, r) such that p(t) = 2t and

p(r|t) = q · 10≤r<t

t
+ (1− q)δ(r − t)

so for given sampled t, we sample r from U [0, t) with probability q and set r = t probability 1− q.
q is selected individually for each experiment, as reported below. We use positional embedding for
(r, t), which are then combined and provided as the conditioning of the neural network. As used
in Geng et al. (2025), it is not necessary for the network to directly condition on (r, t), so we have
ut,r(·; θ) := net(·, t, t− r).

B.1 ALATION STUDY

In this task, we focus on how the value of λ1 balances the Wasserstein (part I in equation 12) and
the likelihood (part II in equation 12).

B.1.1 GAUSSIAN MIXTURE

Table 7 shows that the RMFlow has the best performance when λ1 = 1e− 1, 1e− 2.

λ1 0 1e-2 1e-1 1e1 1e2

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

Table 7: Ablation study on the Gaussian mixture task with varying λ1.

B.2 CHECKERBOARD

Table 8 shows that the RMFlow has the best performance when λ1 = 1e− 1.

λ1 0 1e-2 1e-1 1e1 1e2

TV 0.238 0.201 0.173 0.222 0.289
KL 0.311 0.228 0.163 0.237 0.425

Table 8: Ablation study on the 2D Checkerborad synthetic task with varying λ1.

B.3 QM9

Table 9 shows that the RMFlow has the best performance when λ1 = 5e− 2.

λ1 0 1e-2 5e-2 1e-1 1 1e1

Atomic Stab. 98.4 98.8 98.9 98.8 98.0 97.6
Mol Stab. 84.3 92.1 93.2 92.9 87.2 83.9

Table 9: Ablation study on the QM9 molecule generation task with varying λ1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3.1 CONFIGURATION

The Gaussian mixture and checkerboard experiments share the same configuration, differing only in
the model’s input and output dimensions. The configuration is summarized in Table 10.

Model number of layers 6
hidden dim 256
activation SiLU

Train iteration 1e5
batch size 256
optimizer Adam Diederik (2014)

lr schedule polynomial
lr 1e-4

Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision fp32

λ1 [1e-1, 1e-2]

Table 10: Training Setup and Backbone Configuration for MeanFlow and RMFlow on Synthetic Tasks

B.4 TEXT-TO-IMAGE

VAE Decoder: We use the VAE in stabilityai/sd-vae-ft-mse Rombach et al.
(2022) and fine-tune the conv-in, up-blocks (0,-1), conv-out, quant-conv, and
post-quant-conv parts of the VAE decoder to refine the decoded image quality on the tar-
get dataset using the VAE decoder reconstruction loss Kingma & Welling (2013) with the learning
rate 1e− 5.

Text Embedding Model: Following Section 5.4, we optimize solely the MLP parameters ω that map
pretrained e5 embeddings to the latent space under equation 12. Accordingly, ϕω is implemented
as a fixed e5 encoder plus a trainable MLP (i.e., a PEFT setup).

U-Net Backbone and Training Setup We build the latent-space backbone for Mean Flow and RM-
Flow by reusing selected U-Net blocks (∼480M parameters) from pretrained Stable Diffusion Rom-
bach et al. (2022), with an additional time embedding for r. This is effectively transfer learning.
Table 11 shows the U-Net configuration and the training setup.

B.5 CONTEXT-TO-MOLECULE

Context Embedding Model: We implement ϕω as an MLP followed by a single EGNN layer.
The MLP projects the context vector into the data space, and the EGNN layer further refines these
representations. The EGNN configuration matches that used in the Mean Flow/RMFlow backbone.

EGNN Backbone and Training Setup We use the same EGNN Backbone in (Hoogeboom et al.,
2022) augmented with a time-embedding module for the additional scalar time variable r. Table 12
shows the training setup and configuration.

B.6 TIME SERIES: DYNAMIC SYSTEM

Trajectory dataset: we use the same dataset as decribed in (Huang et al., 2025, Appendix B.1).

Models: (1) We implement the guidance embedding function ϕω as an MLP that maps the event-
guidance vector together with the first three states x(τ1),x(τ2),x(τ3) into the prior sample; (2) we
adopt the UNet architecture from Finzi et al. (2023), adding an additional time embedding for r.

Training Setup: see Table 13

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

U-Net block-out-channels [320, 640, 1280, 1280]
down-block types [CrossAttnDownBlock2D, CrossAttnDownBlock2D,

CrossAttnDownBlock2D, DownBlock2D]
layers-per-block 2
attention-head-dim 8
cross-attention-dim 768

Pre-train loss LCMFM

epochs 500
batch size per GPU 16
optimizer Adam
lr schedule polynomial
Warm up epoch 2
lr 1e-4
Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision fp16
trainable param 480M

Post-train loss LRMFlow

epochs 500
batch size per GPU 16
optimizer Adam
lr schedule polynomial
Warm up epoch 10
lr 5e-5
Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision bf16
trainable param 210M
λ1 [5e-2, 1e-2]

Reg for ϕω λ2 1e-4
Time sample p(r ̸= t) 0.25

Table 11: Training Setup and Backbone Configuration for MeanFlow and RMFlow on the COCO Text-to-
Image Dataset

EGNN number of layers 9
acitivation SiLU
hidden dim 256

Pre-train loss LCMFM

epochs 1500
batch size per GPU 64
optimizer Adam
lr schedule polynomial
Warm up epoch 10
lr 1e-4
Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision fp32

Post-train loss LRMFlow

epochs 1500
batch size per GPU 64
optimizer Adam
lr schedule polynomial
Warm up epoch 10
lr 1e-4
Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision fp16
λ1 [1e-2, 5e-2]

Reg for ϕω λ2 1e-4
Time sample p(r ̸= t) 0.5

Table 12: Training Setup and Backbone Configuration for MeanFlow and RMFlow on Context-to-Molecule
Generation on QM9 Dataset

B.7 ADDITIONAL EXPERIMENTS

In this section, we report the comparison of CLIP score of our RMFlow, MeanFlow, and some
models on the COCO dataset (2017 version dataset splitting, with 5000 images, following Liu et al.
(2023b)). See Table 14.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Train iteration 1e5
batch size 500
optimizer Adam

lr 1e-4
weight decay 0.995

λ1 1e-1
λ2 1e-4

Table 13: Training Setup for MeanFlow and RMFlow on Dynamical System Forecasting Tasks

Type params NFE Teacher-free FID-5k Clip (↑)
(or discriminator-free)

Stable Diffusion v1.5 Rombach et al. (2022) Diff 860M ≫ 1 ✓ 20.1 0.315

InstaFlow Liu et al. (2023b) ODE 900M 1 ✗ 23.4 0.304
StyleGAN-T Sauer et al. (2023) GAN 1B 1 ✗ 24.1 0.305
PD-SD Meng et al. (2023) Diff N/A 1 ✗ 37.2 0.275

MeanFlow ODE 620M 1 ✓ 38.5 0.273
RMFlow (ours) Diff 620M 1 ✓ 27.9 0.291

Table 14: CLIP scores of the generated images on the benchmark COCO2017 dataset using different models.

B.8 POLICY GRADIENT WITH PHYSICAL FEEDBACK

We define a reward r(x̂tgt) to quantify the molecule stability of the generated sample x̂tgt on QM9
dataset, then define the policy gradient following Black et al. (2023):

∇θLRL := E
[
∇θ log pθ(xtgt | x0)r(x̂tgt)

]
and the corresponding loss function

LRL := −E
[
log pθ(xtgt | x0)r(x̂tgt)

]
where

log pθ(xtgt | x0) = − 1

2(σ2
min − σ2)

∥∥xtgt −
(
x0 + û0,1(x0; θ)

)∥∥2 + C,

We then perform reinforcement learning fine-tuning by augmenting the RMFlow objective 12:

LRMF+RL(θ, ω) = LRMFlow(θ, ω) + ηLRL(θ)

where η is a hyperparameter.

20

	Introduction
	Our Contributions
	Additional Related Works
	Organization

	Background
	The Design of RMFlow
	Motivation
	Noise Injection Refinement
	Multimodality

	The Training of RMFlow
	Likelihood Maximization
	Joint Training Objective

	Memory-Efficient Fine-Tuning

	Numerical Experiments
	Synthetic Tasks
	Context-to-Molecule: QM9 Generation
	Time Series: Dynamical System
	Text-to-Image

	Concluding Remarks
	Technical Proofs
	Experiment Setup
	Alation study
	Gaussian Mixture

	Checkerboard
	QM9
	Configuration

	Text-to-Image
	Context-to-Molecule
	Time Series: Dynamic System
	Additional Experiments
	Policy Gradient with Physical Feedback

