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ABSTRACT

Mean flow (MeanFlow) enables efficient, high-fidelity image generation, yet its
single-function evaluation (1-NFE) generation often cannot yield compelling re-
sults. We address this issue by introducing RMFlow, an efficient multimodal gen-
erative model that integrates a coarse 1-NFE MeanFlow transport with a subse-
quent tailored noise-injection refinement step. RMFlow approximates the average
velocity of the flow path using a neural network trained with a new loss function
that balances minimizing the Wasserstein distance between probability paths and
maximizing sample likelihood. RMFlow achieves near state-of-the-art results on
text-to-image, context-to-molecule, and time-series generation using only 1-NFE,
at a computational cost comparable to the baseline MeanFlows.

1 INTRODUCTION

Flow matching (FM), closely related to diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2020), has emerged as a flexible framework for generative modeling, offer-
ing a principled way to learn transport between two distributions (cf. Lipman et al. (2023); Liu et al.
(2023a); Albergo & Vanden-Eijnden (2023)). By approximating the instantaneous velocity field of
this transport with a neural network, FM enables high-fidelity multimodal generation by solving
the ordinary differential equation (ODE) with the neural network-approximated vector field as its
forcing term (Esser et al., 2024; Ma et al., 2024; Polyak et al., 2024; Jing et al., 2024; Campbell
et al., 2024). Nevertheless, this high-fidelity generation requires multiple expensive neural network
evaluations, counted by the number of function evaluations (NFEs) (Chen et al., 2018).

Single-step DiffusionMean Flow Transport 

Sample Data 

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

1-NFE MeanFlow 8-NFE MeanFlow

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

32-NFE MeanFlow 1-NFE RMFlow (ours)

Figure 1: Contrasting MeanFlow with RMFlow
for mixture Gaussian sampling; see Section 5.1
for experimental details and more results.

Several approaches aim to accelerate diffusion- and
flow-based models for high-fidelity generation with
only a few NFEs. Among these, consistency models
(CMs) Song et al. (2023); Geng et al. (2024); Song &
Dhariwal (2023); Lu & Song (2025) achieve remark-
able performance and efficiency. Distillation is a no-
ticeable idea; for instance, local FM (Xu et al., 2024a)
breaks the flow into local sub-flows, enabling smaller
models and easier distillation.

Recently, flow maps (Boffi et al., 2024; 2025) and
mean flows (MeanFlows) (Geng et al. (2023); cf. Sec-
tion 2) have been proposed to enable aggressive 1-
NFE generation, and a prominent advantage of flow
maps and MeanFlows is that they require no pre-
training, distillation, or curriculum learning. Empiri-
cally, MeanFlows achieve high-quality image genera-
tion with fewer transport steps than FM models. How-
ever, preserving this quality typically requires multi-
ple evaluations of the mean velocity field, as collaps-
ing the process to 1-NFE often causes significant performance degradation. We showcase this issue
by sampling a mixture Gaussian distribution using MeanFlow; see Section 5.1 for experimental de-
tails. Figure 1 shows the significant gap between exact (data) and sampled distributions when using
1-NFE MeanFlow, and this gap reduces as NFE increases.
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1-NFE MFM 1-NFE RMFlow (ours)

Figure 2: Contrasting MeanFlow with RMFlow, under
the same context, for QM9 molecule generation.

We further showcase the significant genera-
tion error of 1-NFE MeanFlow for the bench-
mark QM9 molecule generation (Ramakrish-
nan et al., 2014); see Section 5.2 for experi-
mental details and additional results. Figure 2
illustrates that 1-NFE MeanFlow produces an
invalid structure, where the molecule is frag-
mented into multiple disconnected pieces. In-
deed, in our experiments, we consistently ob-
served that 1-NFE MeanFlow frequently gener-
ates invalid structures. Additional quantitative
results in Section 5.2 further confirm the signif-

icant errors associated with 1-NFE MeanFlow generation.

The above numerical results motivate us to study the following problem:

Can we improve the performance of 1-NFE MeanFlows for multimodal generation?

Noise InjectionMean Flow Transport 

Sample

Data 

Figure 3: Schematic of our proposed RMFlow: it first applies 1-NFE MeanFlow transport, then refines the
result by a subsequent noise-injection step; see Section 3. The average velocity û0,1(x0; θ) of RMFlow is
trained by incorporating the maximum likelihood objective into the MeanFlow framework, as in equation 10.

1.1 OUR CONTRIBUTIONS

We propose RMFlow—an improved 1-NFE MeanFlow model for multimodal generation. RM-
Flow leverages 1-NFE MeanFlow for coarse transport, accompanied by a subsequent tailored noise-
injection step to refine the generation; Fig. 3 depicts the idea of RMFlow. The results in Figs 1 and
2 demonstrate that RMFlow achieves a substantial improvement in generation quality over 1-NFE
MeanFlow. In particular, it effectively mitigates invalid structures, producing coherent and valid
molecular graphs. Our key contributions are:

• We propose RMFlow to enable 1-NFE high-fidelity multimodal generation by integrating the guid-
ance encoding with a tailored noise-injection refinement strategy; see Section 3.

• We design a theoretically principled training objective for RMFlow that balances minimizing the
Wasserstein distance between probability paths and maximizing the likelihood of the learned target
distribution; see Section 4.

• We show the compelling, often (near) state-of-the-art, results of RMFlow for benchmark text-to-
image, text-to-structure, and time series generation (see Section 5).

1.2 ADDITIONAL RELATED WORKS

To our knowledge, this work is the first to improve MeanFlows by introducing a noise-injection
refinement for 1-NFE generation. This differs from existing couplings of flow and diffusion models,
such as Diff2Flow (Schusterbauer et al., 2025), which transfers knowledge from pretrained diffu-
sion models to flow matching models, and generator matching (Patel et al., 2024), which connects
diffusion and flow matching under Markov generative processes.
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Another line of work studies error control in FM. Prior analyses of probability flow ODEs and FM
(Song et al., 2021; Lu et al., 2022; Lai et al., 2023; Albergo et al., 2023) show that FM alone can-
not guarantee likelihood maximization or KL divergence minimization between target and learned
distributions.

1.3 ORGANIZATION

We organize the rest of this paper as follows: We provide necessary background materials in Sec-
tion 2. We present our proposed 1-NFE RMFlow in Section 3. We present our training loss function
for RMFlow in Section 4. Our numerical results for RMFlow in Section 5. Technical proofs and
additional experimental details and results are provided in the appendix.

2 BACKGROUND

In this section, we provide a brief review of flow-based generative models, especially MeanFlows.
For a detailed exploration of FM, we refer the reader to (Lipman et al., 2023; Liu et al., 2023a;
Fukumizu et al., 2024). For a given data x1 = xdata ∼ p and a prior sample x0 ∼ q (e.g., standard
Gaussian N (0, I)), a (conditional) flow path—connecting the two samples—can be constructed as
xt = atx1 + btx0 with at and bt being predefined schedules. A common choice is at = 1− t and
bt = t, which corresponds to rectified flow (Liu et al., 2023a). This interpolation can be equivalently
expressed as the solution to the ODE ẋt = ut(xt|z), where z = (x0,x1) denotes the coupling of
start and end points, and ut(xt|z) = ȧtx1 + ḃtx0 is the conditional vector field. FM learns an
unconditional vector field ut(x) := Ez [ut(x|z)|xt = x], which does not require knowledge of the
pair z = (x0,x1). This is achieved by training a neural network ût(x; θ) to minimize the objective:

LCFM(θ) := Et,z

[
∥ût(xt; θ)− ut(xt|z)∥2

]
. (1)

After training, we generate data by integrating dxt

dt = ût(xt; θ) from t = 0 to 1, with x0 ∼ q.

Although FM is conceptually simple, sample generation requires multiple evaluations of ût(xt; θ),
which can be computationally intensive. To address this inefficiency issue, MeanFlow learns an
averaged velocity field based on the instantaneous velocity field ut(xt), defined as:

ut,r(xt) :=
xr − xt

r − t
=

1

r − t

∫ r

t

us(xs)ds. (2)

This allows data generation by transporting xt to xr using the approximate average velocity field
ût,r:

xr = xt + (r − t)ût,r(xt; θ). (3)
In particular, 1-NFE generation corresponds to x1 = x0 + û0,1(x0; θ). For Multi-NFE generation,
ût,r(x; θ) is evaluated sequentially on a chosen grid 0 = τ0 < · · · < τn = 1 and is applied between
consecutive grid points to transport samples. This approach achieves high-fidelity generation with
significantly fewer NFEs compared to FM models that rely on the instantaneous velocity field ut(x).

In MeanFlows, the mean velocity field ut,r(x) is approximated by a neural network ût,r(x; θ), with
the weights θ being calibrated by minimizing the following conditional mean flow matching LCMFM

loss function:
LCMFM(θ) := Et,r,z

[
∥ût,r(x; θ)− sg

(
utgt
t,r (x; θ)

)
∥2
]
, (4)

where 0 ≤ t ≤ r ≤ 1 are uniform samples from the interval [0, 1] and utgt
t,r is the target defined as:

utgt
t,r (x; θ) := ut(x|z) + (r − t)

[
∇ût,r(x; θ) · ut(x|z) + ∂tût,r(x; θ)

]
,

with sg denoting a stop-gradient operation. This stop-gradient approach prevents higher-order opti-
mization while ensuring that zero loss guarantees dynamical consistency. The target velocity utgt

t,r is
efficiently computed using Jacobian-vector products (jvp) in autodiff libraries such as PyTorch
(Paszke et al., 2019) or JAX (Bradbury et al., 2018).

3 THE DESIGN OF RMFLOW

In this section, we describe the design of 1-NFE RMFlow for high-fidelity generation, with or with-
out multimodal guidance.
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3.1 MOTIVATION

In practice, the true data distribution xdata is unavailable due to its complexity and the limited nature
of observed data. Following the standard practice in the field, as established in works such as (Ho
et al., 2020; Song et al., 2021; Lu et al., 2022; Lipman et al., 2023), we approximate it with a noisy,
smoothed version xtgt = xdata + σminϵ ∼ ptgt, where ϵ ∼ N (0, I) and σmin is small (e.g., 10−3).
This approach ensures stability and robust learning of the data distribution.

MeanFlows learn a neural network, by minimizing LCMFM in equation 4, to transport a prior sample
x0 directly to the noisy target, i.e., x1 = xtgt. Boffi et al. (2024; 2025) showed that this approach
reduces the Wasserstein distance between the target distribution ptgt and the learned distribution pθ:

Theorem 3.1. [Boffi et al. (2025)] There exists a constant M > 0 such that:

M · LCMFM(θ) ≥ W 2
2 (ptgt, pθ) := inf

γ∈Π(ptgt,pθ)
E(x,y)∼γ

[
∥x− y∥2

]
, (5)

where M is a constant, W 2
2 (ptgt, pθ) denotes the Wasserstein distance between ptgt and pθ, and

Π(ptgt, pθ) is the set of all joint distributions with marginals ptgt and pθ.

While controlling the Wasserstein distance provides a meaningful measure of distributional align-
ment, empirical evidence indicates that FM enforces additional constraints, such as KL divergence
(Lu et al., 2022), often achieves superior generative performance over the FM baseline. With this in
mind, we aim to enhance the fidelity of 1-NFE MeanFlows, pushing beyond current limitations in a
manner analogous to improvements seen in FMs.

3.2 NOISE INJECTION REFINEMENT

We decompose the generation process into two stages. In the first stage, a 1-NFE MeanFlow trans-
ports the prior x0 to an intermediate noisy state

x1 = xdata + σϵ1, with ϵ1 ∼ N (0, I) and σ < σmin.

In the second stage, a single noise injection step is applied:

xtgt = x1 + (σmin − σ)ϵ2, ϵ2 ∼ N (0, I),

to generate the final sample. This additional noise injection aligns with the designs of VAEs (Kingma
& Welling, 2013), allowing principled likelihood maximization via a loss term derived from the
evidence lower bound (ELBO) (Wainwright et al., 2008) to optimize the MeanFlow parameters. We
will prove in Theorem 4.1 that this formulation enables control over the KL divergence between the
target distribution ptgt and the learned distribution pθ.

In summary, our data generation process is defined as

x̂tgt = x0 + û0,1(x0; θ) + (σmin − σ)ϵ2, ϵ2 ∼ N (0, I), (6)

where û0,1(x0; θ) denotes the learned average velocity field. Although RMFlow is conceptually
a two-stage framework, equation 6 demonstrates that generation is performed in a single step: the
learned flow is evaluated once (1-NFE), and a noise term is added in parallel to produce the output.

3.3 MULTIMODALITY

To support cross-modality generation, we incorporate an encoder ϕω(c) that embeds conditioning
signals (e.g., text prompts). The prior samples for both guided (potentially multimodal) and un-
guided generation are defined as

x0 =

{
ϕω(c) + σcϵ, for guided generation,

ϵ, for unguided generation,

where ϵ ∼ N (0, I). This design allows the flow to incorporate multimodal guidance if available,
while defaulting to unconditional generation otherwise. Here, ϕω(·) is an encoder chosen following
common practice (see Section 5), and σc ≪ 1 (e.g., 10−3) is pre-chosen to control perturbations.
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Specifically, for a given data pair (xdata, c), we train the MeanFlow to transport the prior sample
x0 = ϕω(c) + σcϵ to the intermediate target x1 = xdata + σϵ1, where ϵ1 ∼ N (0, I). The encoder
and MeanFlow are optimized jointly, and we will discuss the training objective in Section 4.
Remark 1. Our proposed RMFlow differs from MeanFlow in two aspects: (1) We apply a tailored
encoder to the guidance, (2) we add a noise injection step to refine the generation result.

4 THE TRAINING OF RMFLOW

In this section, we present the training procedure for RMFlow. We first establish the theoretical
foundation of noise-injection refinement, showing that it enables likelihood maximization of the
learned distribution with respect to the target distribution. Building on this, we introduce a joint
training objective that combines LCMFM (for Wasserstein control) with likelihood maximization
and optional guidance regularization, ensuring both fidelity and flexibility in guided generation.
Finally, we adopt parameter-efficient fine-tuning (PEFT; cf. (Hu et al., 2022; Dettmers et al., 2023))
to implement RMFlow for large-scale tasks.

4.1 LIKELIHOOD MAXIMIZATION

In this section, we show that the noise-injection step in equation 6 enables likelihood maximiza-
tion during RMFlow training. Specifically, for a given prior sample x0, the intermediate sample
generated by the MeanFlow is

x1 = x0 + û0,1(x0; θ).
By equation 6, the conditional distribution of the final generated sample given the prior is

xtgt | x0 ∼ N
(
x0 + û0,1(x0; θ), (σmin − σ)2I

)
,

where ϵ1, ϵ2 ∼ N (0, I) are i.i.d. The corresponding log-likelihood is

log pθ(xtgt | x0) = − 1

2(σmin − σ)2
∥∥xtgt −

(
x0 + û0,1(x0; θ)

)∥∥2 + C, (7)

where C = −d
2 log(2π(σmin − σ)2) and d is the dimensionality of the data.

Therefore, we define the following loss term to maximize the likelihood:

LNLL := Ex0,xdata,ϵ

[∥∥(xdata + σminϵ)− (x0 + û0,1(x0; θ))
∥∥2]. (8)

The following theorem formalizes the theoretical guarantee of the noise-injection refinement. In
particular, it demonstrates that minimizing the loss LNLL maximizes the expected log-likelihood,
thereby reducing the KL divergence between the target and learned distributions.
Theorem 4.1. The negative log-likelihood loss LNLL provides a lower bound on the expected log-
likelihood of the target distribution:

−A · LNLL + C ≤ Extgt
[log pθ(xtgt)] = −H(ptgt)−DKL(ptgt ∥ pθ), (9)

where H(ptgt) := −Extgt [log ptgt] is the entropy of ptgt, DKL(ptgt||pθ) := Extgt [log
ptgt

pθ
] denotes

the KL divergence between the target and the learned distributions, and A,B > 0 are constants.

4.1.1 JOINT TRAINING OBJECTIVE

RMFlow is trained by jointly optimizing the original MeanFlow loss (Wasserstein control) and like-
lihood maximization, resulting in the following objective function:

LRMFlow(θ, ω) = LCMFM︸ ︷︷ ︸
I

+λ1LNLL︸ ︷︷ ︸
II

+λ2E(xdata,c)[∥ϕω(c)∥2]︸ ︷︷ ︸
III

,
(10)

where λ1, λ2 ≥ 0 are two hyperparameters. We remark that Term I controls the gap between the
probability flows of the exact and approximated mean velocities in intermediate states, Term II for
likelihood maximization, and Term III is designed for guided generation and is set to 0 for unguided
generation. Here, the expectation in III is taken over all data-guidance pairs (xdata, c).
Remark 2. Term III in equation 10 can be considered as a regularization on the prior distribution,
and a similar term is used in training VAE (Kingma & Welling, 2013). Empirically, we observe that
term III can be very large, resulting in substantial performance degradation.
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4.2 MEMORY-EFFICIENT FINE-TUNING

For relatively small-scale tasks, we train our RMFlow by directly minimizing LRMFlow. Compared
to LCMFM, our new objective LRMFlow introduces additional gradient pathways, increasing memory
footprint. To balance efficiency and performance for large-scale tasks, we first train the MeanFlow
model by minimizing LCMFM, and then fine-tune it using PEFT (Hu et al., 2022; Dettmers et al.,
2023), with LRMFlow as a supervised objective in our large-scale experiments on text-to-image and
molecule generation tasks. During fine-tuning, we further strengthen training by integrating 1-NFE
sampling with a policy-gradient objective that incorporates physical feedback on sample quality for
molecule generation tasks, as described in Zhou et al. (2025).

5 NUMERICAL EXPERIMENTS

In this section, we validate the efficacy and efficiency of RMFlow for both guided and unguided
sample generation. We consider two synthetic tasks: sampling a 1D mixture Gaussian distribution
and a 2D checkerboard density (Section 5.1). We also consider several benchmark tasks, including
context-to-molecular structure generation (Section 5.2), sampling trajectories of dynamical systems
(time series; Section 5.3), and text-to-image generation (Section 5.4).

Software and Equipment. We implement synthetic tasks, context-to-molecule generation, and text-
to-image generation using PyTorch. We implement the time series generation task using JAX.
Additionally, we use Torch DDP and torch.compile to optimize the model execution for
context-to-molecule and text-to-image generation. All the experiments are carried out on multiple
NVIDIA RTX 3090/4090 GPUs.

Training Setups. See Appendix B for the details of training setups.

Evaluation Metrics: For synthetic tasks and time-series generation, we evaluate performance using
the estimated KL divergence and total variation (TV) distance between the generated samples and
the ground-truth. Both KL and TV are computed from densities obtained via histogram-based esti-
mation of the sample and ground-truth distributions. For molecule generation, we predict bond types
from pairwise interatomic distances and atom types, and then compute atom and molecule stability,
following Hoogeboom et al. (2022). For the image generation task, we assess sample quality using
the Fréchet Inception Distance (FID) (Heusel et al., 2017).

We use NFE to measure generation efficiency following (Geng et al., 2025). Notice that the Gaussian
noise injection step takes negligible time compared to the neural network function evaluation.

1-NFE MeanFlow 8-NFE MeanFlow 32-NFE MeanFlow 1-NFE RMFlow (ours)

TV 1.4422 0.7977 0.6737 0.7567
KL 0.8074 0.4074 0.1017 0.2332

Table 1: Contrasting 1-NFE RMFlow with 1/8/32-NFE MeanFlow for mixture Gaussian sampling. 1-NFE
RMFlow outperforms both 1- and 8-NFE MeanFlows, while slightly worse than 32-NFE MeanFlow.

1-NFE MeanFlow 8-NFE MeanFlow 32-NFE MeanFlow 1-NFE RMFlow (ours)

TV 0.238 0.167 0.155 0.173
KL 0.311 0.139 0.118 0.163

Table 2: Contrasting 1-NFE RMFlow with 1/8/32-NFE MeanFlow for checkerboard density sampling. 1-NFE
RMFlow significantly outperforms 1-NFE MeanFlow, closing the performance gap to multi-NFE MeanFlow.

5.1 SYNTHETIC TASKS

In this experiment, we train a simple ResNet-based model under both MeanFlow and RMFlow
frameworks for 105 iterations using a batch size of 256 to sample (1) 1D Gaussian mixture

6
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pdata = 0.35N (1.5, 0.04)+0.25N (0.5, 0.04)+0.4N (−1.5, 0.04), and (2) 2D checkerboard where
the probability density resembles a checkerboard pattern. We consider 1/8/32-NFE MeanFlow and
1-NFE RMFlow for sample generation. Tables 1 and 2 show that 1-NFE RMFlow significantly
outperforms 1-NFE MeanFlow, closing the performance gap to multi-NFE MeanFlow.

5.2 CONTEXT-TO-MOLECULE: QM9 GENERATION

We train MeanFlow and RMFlow for context-to-molecule generation on the QM9 dataset Ramakr-
ishnan et al. (2014), a benchmark containing atomic coordinates and quantum-chemical properties
for 130k small molecules with up to 9 heavy atoms (up to 29 atoms including hydrogens). Fol-
lowing Hoogeboom et al. (2022), we perform condition generation on seven molecular properties:
(1) number of atoms, (2) HOMO, (3) LUMO, (4) α (isotropic polarizability), (5) gap, (6) µ (dipole
moment), and (7) Cv (heat capacity). These properties are concatenated into a context vector and
mapped to the data space using ϕω(c), parameterized by a single EGNN block Garcia Satorras et al.
(2021).

Our model backbone follows the EGNN architecture in (Garcia Satorras et al., 2021; Hoogeboom
et al., 2022), augmented with a time-embedding module for the additional scalar time variable r.
In addition, molecule stability is used as the reward within the RL framework, following the ap-
proach of Zhou et al. (2025), to provide feedback during training (see Section 4.2). We adopt the
train/val/test splits of Anderson et al. (2019), comprising 100k/18k/13k molecules, respectively.
Table 3 shows that 1-NFE RMFlow attains state-of-the-art performance, whereas competing SOTA
methods require n-NFE with n ≫ 1. Figure 4 depicts a few randomly generated molecules and the
corresponding contexts.

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)
Contexts:
(1) N atom: 21 — homo: -6.34 — lumo: 1.82 — alpha: 77.77 — gap: 8.16 — mu: 1.55 — Cv: -27.27
(2) N atom: 18 — homo: -6.62 — lumo: -0.85 — alpha: 74.21 — gap: 5.77 — mu: 3.27 — Cv: -19.37
(3) N atom: 22 — homo: -6.44 — lumo: 1.99 — alpha: 83.22 — gap: 8.43 — mu: 1.52 — Cv: -29.10
(4) N atom: 22 — homo: -6.56 — lumo: 2.01 — alpha: 81.16 — gap: 8.57 — mu: 0.31 — Cv: -30.52
(5) N atom: 18 — homo: -5.79 — lumo: -0.02 — alpha: 77.48 — gap: 5.77 — mu: 2.00 — Cv: -23.75
(6) N atom: 20 — homo: -5.30 — lumo: 0.34 — alpha: 91.41 — gap: 5.64 — mu: 1.54 — Cv: -24.78
(7) N atom: 16 — homo: -7.05 — lumo: -1.20 — alpha: 68.35 — gap: 5.84 — mu: 1.37 — Cv: -18.86
(8) N atom: 20 — homo: -6.94 — lumo: 0.94 — alpha: 78.01 — gap: 7.88 — mu: 2.36 — Cv: -25.09
(9) N atom: 16 — homo: -6.74 — lumo: 0.60 — alpha: 58.89 — gap: 7.34 — mu: 4.43 — Cv: -18.93
(10) N atom: 18 — homo: -6.76 — lumo: 0.77 — alpha: 73.96 — gap: 7.53 — mu: 1.95 — Cv: -24.84
(11) N atom: 16 — homo: -6.09 — lumo: -0.10 — alpha: 74.33 — gap: 5.98 — mu: 3.87 — Cv: -22.98
(12) N atom: 20 — homo: -6.82 — lumo: 0.53 — alpha: 76.55 — gap: 7.36 — mu: 1.12 — Cv: -26.04

Figure 4: A few randomly selected RMFlow-generated molecules, together with the corresponding contexts.

5.3 TIME SERIES: DYNAMICAL SYSTEM

Sampling trajectories in dynamical systems under event guidance is a key challenge for predicting
and understanding complex phenomena such as climate and extreme events (Perkins & Alexander,
2013; Mosavi et al., 2018). Recent works (Finzi et al., 2023) and (Huang et al., 2025) have intro-
duced diffusion and FM models specifically designed for event-guided sampling.

In this experiment, we perform dynamical system trajectory forecasting with MeanFlow and RM-
Flow, formulating it as a time series problem by discretizing the time variable t into uniform in-
tervals. Each trajectory (either from a dataset or sampled) is a discrete time series of vectors con-
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Metrics No Tuncation Error Atomic Stab. (↑) Mol Stab. (↑) NFE(↓)
(Discretization)

ENF ✗ 85±0.1% 4.9±0.2% ≫ 1
E-DM Hoogeboom et al. (2022) ✗ 98.73±0.1% 82.11±0.4% ≫ 1
Bridge Wu et al. (2022) ✗ 98.7±0.1% 81.8±0.2% ≫ 1
Bridge + Force Wu et al. (2022) ✗ 98.8±0.1% 84.6±0.3% ≫ 1
GeoLDM Xu et al. (2023) ✗ 98.73% 89.40±0.5% ≫ 1
GeoBFN Song et al. (2024) ✗ 99.0% 93.9% ≫ 1
E-DM + RLPF Zhou et al. (2025) ✗ 99.1% 93.4% ≫ 1
MeanFlow w/o contexts ✓ 98.2±0.07% 79.3±0.8% 1
MeanFlow w/ contexts ✓ 98.4±0.05% 84.3±0.5% 1
RMFlow w/o contexts (ours) ✓ 98.8±0.05% 90.1±0.5% 1
RMFlow w/ contexts (ours) ✓ 98.9±0.05% 93.2±0.4% 1
RMFlow w/ contexts + RLPF (ours) ✓ 98.9±0.05% 93.5±0.3% 1
Data – 99% 95.2% –

Table 3: Contrasting the performance of different models for QM9 molecule generation. We run RMFlow
with contexts by randomly selecting 104 contexts in the test dataset of QM9 five times.

catenated into xdata = [x(τm)]Mm=1 ∈ RMd, where M is the total number of time steps, d is the
dimension of the system, and x(τm) ∈ Rd denotes the discretized trajectory at time τm. Our goal is
to generate xdata = [x(τm)]Mm=1 ∈ RMd with 1-NFE using MeanFlow and RMFlow.

We train our models on the Lorenz and FitzHugh–Nagumo dynamical systems (see (Huang et al.,
2025, Appendix B.1) for a brief review of these two models); using a U-Net backbone. For event
guidance, where events are defined by a constraint function E = {xdata |C(xdata) > 0}, we adopt
a simple but effective design: the event-guidance vector and the first three states x(τ1),x(τ2),x(τ3)
are embedded through an MLP ϕω into the target data space RMd. This avoids reliance on Tweedie’s
formula as used in (Finzi et al., 2023; Huang et al., 2025). Tables 4 and 5 show that RMFlow
yields significantly better 1-NFE generation than MeanFlow, while achieving accuracy comparable
to multi-NFE methods.

Lorenz FitzHugh-Nagumo

Model w/o E (↓) w/ E (↓) w/o E (↓) w/ E (↓) NFE (↓)

Diffusion Huang et al. (2025) 0.0314 0.1001 0.0277 0.1192 128
FM Huang et al. (2025) 0.0348 0.0972 0.0314 0.2164 128
FDM Huang et al. (2025) 0.0306 0.0914 0.0266 0.1168 128

MeanFlow 0.0469 0.1250 0.0398 0.2268 1
MeanFlow 0.0366 0.1011 0.0345 0.1988 8
MeanFlow 0.0351 0.0991 0.0302 0.1723 32
RMFlow (ours) 0.0332 0.0956 0.0289 0.1543 1

Table 4: TV distance between the generated (by different models) and test trajectory distributions, estimated
from histogram-based density approximations, with/without conditioning on event.

Lorenz FitzHugh-Nagumo

Model w/o E (↓) w/ E (↓) w/o E (↓) w/ E (↓) NFE (↓)

Diffusion Huang et al. (2025) 0.0056 0.2774 0.0260 0.3011 128
FM Huang et al. (2025) 0.0081 0.2560 0.0280 0.3468 128
FDM Huang et al. (2025) 0.0049 0.3045 0.0280 0.2084 128

MeanFlow 0.0109 0.3887 0.0347 0.3921 1
MeanFlow 0.0091 0.3163 0.0297 0.2422 8
MeanFlow 0.0054 0.2722 0.0281 0.2490 32
RMFlow (ours) 0.0059 0.2866 0.0287 0.2499 1

Table 5: KL divergence between the generated (by different models) and test trajectory distributions, estimated
from histogram-based density approximations, with/without conditioning on the event.

5.4 TEXT-TO-IMAGE

In this experiment, we train MeanFlow and RMFlow for text-to-image generation on the COCO
dataset Chen et al. (2015). Following Stable Diffusion Rombach et al. (2022), all operations are
performed in the latent space R4×32×32. The mapping ϕω(c) converts the text conditions into initial
latent states. Concretely, we fine-tune the pretrained text-embedding model e5-base (Wang et al.,
2022) and attach an MLP to project the embeddings into the latent space. Additionally, we fine-
tune the Stable Diffusion VAE decoder on COCO using PEFT (Hu et al., 2022; Dettmers et al.,
2023) so that it can decode the final latent state into images. Both MeanFlow and RMFlow use a
480M-parameter U-Net as the latent-space backbone.
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We adopt the Karpathy split (Karpathy & Fei-Fei, 2015) for training and validation, and evaluation
is performed with COCO FID-30K following Rombach et al. (2022); He et al. (2025) (details in
Appendix B.2). As shown in Table 6, RMFlow attains FID comparable to the best single-step
generators on COCO, such as Distilled Stable Diffusion (Liu et al., 2023b), StyleGAN-T (Sauer
et al., 2023). Importantly, RMFlow (and MeanFlow) is orthogonal to the other methods listed in
Table 6, as it does not rely on auxiliary models for training. In contrast, GAN-based approaches
require a discriminator, and distilled models depend on a pretrained teacher. Moreover, our models
are trained under limited computational resources (e.g., RTX 3090/4090 GPUs with 24 GB memory)
using mixed-precision bf16, whereas most state-of-the-art models listed in Table 6 are trained on
multiple A100 80 GB GPUs with full-precision fp16. These results indicate that RMFlow has strong
potential for further improvement if trained with larger computational budgets.

(1) The dining table near the kitchen has a ...
(2) A woman riding a surfboard on a wave in the ...
(3) A woman sitting on a wooden park bench ...
(4) A stack of old trunks and luggage against ...
(5) Rows of unripe bananas on display in ...
(6) stop sign with spray painted words on it.
(7) A couple of horses that are next to a fence.
(8) A red and white street sign mounted on ...

(1) A man making a sandwich on a lunch truck.
(2) A skateboarder performing a trick on an indoor ramp.
(3) There is a large sign that says a street name on it.
(4) A white plate topped with onion rings and ...
(5) A big zebra and a little zebra standing and looking.
(6) The meal is ready on the tray to be eaten.
(7) A bike and a dog on the sidewalk outside a ...
(8) A cat up on a desk drinking milk from a glass.

Figure 5: COCO dataset samples generated using 1-NFE RMFlow conditioned on different input prompts.

Type params NFE Teacher-free COCO FID-30K (↓) Resolution
(or discriminator-free)

Stable Diffusion v1.5 Rombach et al. (2022) Diff 860M ≫ 1 ✓ 9.62 256 × 256
Stable Diffusion v2.1 Rombach et al. (2022) Diff 860M ≫ 1 ✓ 13.45 256 × 256
FlowTok-XL He et al. (2025) ODE 698M ≫ 1 ✓ 10.1 256 × 256
Show-o Xie et al. (2024) Diff 1.3B ≫ 1 ✓ 9.24 256 × 256
PixArt Chen et al. (2023) ODE 630M ≫ 1 ✓ 7.32 256 × 256
LDM Rombach et al. (2022) Diff 1.4B ≫ 1 ✓ 12.63 256 × 256

VQGAN+T Jahn et al. (2021) GAN 1.1B 1 ✗ 32.76 256 × 256
LAFITE Zhou et al. (2022) GAN 75M 1 ✗ 26.94 256 × 256
StyleGAN-T Sauer et al. (2023) GAN 1B 1 ✗ 13.90 256 × 256
InstaFlow Liu et al. (2023b) ODE 900M 1 ✗ 13.10 512 × 512
UFOGen Xu et al. (2024b) Diff 900M 1 ✗ 12.78 512 × 512
Stable Diffusion + Distill Liu et al. (2023b) Diff 900M 1 ✗ 34.6 256 × 256
Rectified Flow + Distill Liu et al. (2023b) ODE 900M 1 ✗ 20.0 256 × 256

MeanFlow ODE 620M 1 ✓ 27.31 256 × 256
RMFlow (ours) Diff 620M 1 ✓ 18.91 256 × 256

Table 6: FID of the generated images on the benchmark COCO2014 dataset using different models.

6 CONCLUDING REMARKS

In this work, we introduce RMFlow, a refinement of MeanFlow with minimal computational and
memory overhead. The central innovation lies in augmenting the 1-NFE MeanFlow with a subse-
quent noise injection step, which facilitates likelihood maximization. To support this mechanism, we
propose a novel loss function that jointly minimizes the discrepancy between the exact and learned
probability paths while maximizing likelihood. Empirical results demonstrate that 1-NFE RMFlow
achieves strong performance in multimodal generation tasks.

A promising direction for future research is to extend RMFlow to support multiple mean flow trans-
port steps. Specifically, we envision applying a noise-injection step after each transport step, which
would require the design of a corresponding loss function to maintain likelihood maximization. This
extension presents additional challenges compared to the current formulation and opens avenues for
more expressive and accurate generative modeling.
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ETHICS STATEMENT

In this paper, we propose a new framework to improve MeanFlow for efficient data generation. The
new model can generate high-fidelity data efficiently. Our work belongs to fundamental research and
is expected to improve existing models for generative modeling. Our work is methodological, and
we validate our proposed approaches on the benchmark datasets. We do not expect to cause negative
societal problems. Furthermore, we do not see any issues with potential conflicts of interest and
sponsorship, discrimination/bias/fairness concerns, privacy and security issues, legal compliance,
and research integrity issues (e.g., IRB, documentation, research ethics.

REPRODUCIBILITY STATEMENT

We are committed to conducting reproducible research. To ensure the integrity and transparency of
our work, we employ a multifaceted approach: First, we meticulously compare the novelty of our
research against existing literature. This involves a thorough examination of the current state of the
field to identify gaps in knowledge and demonstrate the unique contributions of our work. Second,
we provide detailed derivations of our proposed approaches and theoretical results. By carefully
outlining the mathematical underpinnings of our methods, we enhance the understanding of our
work and facilitate its verification by others. Third, we conduct rigorous experiments using widely
recognized benchmark datasets. This allows us to evaluate the performance of our methods against
established standards and provides a solid foundation for comparison with other approaches. Fourth,
we meticulously report experimental details, including the specific datasets used, parameters chosen,
and evaluation metrics employed. Finally, we make all experimental codes, accompanied by com-
prehensive documentation, publicly available. This open-source approach empowers researchers to
inspect our methods, verify our results, and build upon our work. By sharing our code, we foster
collaboration, advance the field, and contribute to the overall reproducibility of scientific research.
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A TECHNICAL PROOFS

Theorem 4.1. The negative log-likelihood loss LNLL provides a lower bound on the expected log-
likelihood of the target distribution:

−A · LNLL + C ≤ Extgt
[log pθ(xtgt)] = −H(ptgt)−DKL(ptgt ∥ pθ), (9)

where H(ptgt) := −Extgt [log ptgt] is the entropy of ptgt, DKL(ptgt||pθ) := Extgt [log
ptgt

pθ
] denotes

the KL divergence between the target and the learned distributions, and A,B > 0 are constants.

proof of Theorem 4.1. We begin with the marginal likelihood:

log pθ(xtgt) = logEx0

[
pθ(xtgt|x0))

]
≥ Ex0

[
log pθ(xtgt|x0)

]
,

(11)

where the inequality follows from Jensen’s inequality.

Taking expectation over xtgt gives

Extgt [log pθ(xtgt)] ≥ Ex0,xtgt

[
log pθ(xtgt|x0)

]
. (12)

Now, by substituting the log-likelihood expression equation 7, we obtain

Ex0,xtgt

[
log pθ(xtgt|x0)

]
= Ex0,xtgt

[
− 1

2(σmin − σ)2
∥∥xtgt −

(
x0 + û0,1(x0; θ)

)∥∥2 + C
]

= − 1

2(σmin − σ)2
Ex0,xtgt

[∥∥xtgt −
(
x0 + û0,1(x0; θ)

)∥∥2]+ C

= − 1

2(σmin − σ)2
LNLL + C

(13)

Combining the inequalities, there exist constants A,C > 0 such that

−A · LNLL + C ≤ Extgt [log pθ(xtgt)]. (14)

Finally, recall that
Extgt [log pθ(xtgt)] = −H(ptgt)−DKL(ptgt ∥ pθ), (15)

which establishes the desired relation.

B EXPERIMENT SETUP

Flow map design. For a given pair z = (x0,x1), we choose the conditional velocity field ut(x|z)
following (Albergo & Vanden-Eijnden, 2023), i.e.,

ut(x|z) =
γ̇(t)

γ(t)

(
x− tx1 − (1− t)x0

)
+ (x1 − x0), (16)

where γ(t) = η(1− t) with γ(0) = η, γ(1) = 0, and η = 10−2, 5× 10−2, 10−1.

Training Setup:

Loss Metric: Following Geng et al. (2025), we focus on part I (mean flow loss) of LRMFlow 10,
expressed as L = |∆|2ζ2 , where ∆ denotes the regression error. In practice, we apply a weight

w =
(

1
∥∆∥2

2+1e−3

)m

with m = 1 − ζ. When m = 0.5, this formulation becomes closely related
to the Pseudo-Huber loss introduced in Song & Dhariwal (2023); hence, we adopt m = 0.5 for
all experiments. The hyperparameters λ1 and λ2 in LRMFlow are selected individually for each
experiment, as reported below.
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Time sampling and condition: For the part III and II in LRMFlow 10, we only need to sample x0 so
that the time is always zero. Similar one sampling method used in Geng et al. (2025), we sample
(t, r) such that p(t) = 2t and

p(r|t) = q · 10≤r<t

t
+ (1− q)δ(r − t)

so for given sampled t, we sample r from U [0, t) with probability q and set r = t probability 1− q.
q is selected individually for each experiment, as reported below. We use positional embedding for
(r, t), which are then combined and provided as the conditioning of the neural network. As used
in Geng et al. (2025), it is not necessary for the network to directly condition on (r, t), so we have
ut,r(·; θ) := net(·, t, t− r).

B.1 SYNTHETIC TASKS

In this task, we focus on how the value of λ1 affects performance, while omitting λ2 since guidance
embedding is unnecessary.

B.1.1 ALATION STUDY

Table 7 shows that the RMFlow has the best performance when λ1 = 1e− 1, 1e− 2.

λ1 0 1e-2 1e-1 1e1 1e2

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

2 1 0 1 2
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

Table 7: Ablation study on the Gaussian mixture task with varying λ1.

B.1.2 CONFIGURATION

The Gaussian mixture and checkerboard experiments share the same configuration, differing only in
the model’s input and output dimensions. The configuration is summarized in Table 8.

Model number of layers 6
hidden dim 256
activation SiLU

Train iteration 1e5
batch size 256
optimizer Adam Diederik (2014)

lr schedule polynomial
lr 1e-4

Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision fp32

λ1 [1e-1, 1e-2]

Table 8: Training Setup and Backbone Configuration for MeanFlow and RMFlow on Synthetic Tasks

B.2 TEXT-TO-IMAGE

VAE Decoder: We use the VAE in stabilityai/sd-vae-ft-mse Rombach et al.
(2022) and fine-tune the conv-in, up-blocks (0,-1), conv-out, quant-conv, and

15
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post-quant-conv parts of the VAE decoder to refine the decoded image quality on the tar-
get dataset using the VAE decoder reconstruction loss Kingma & Welling (2013) with the learning
rate 1e− 5.

Text Embedding Model: Following Section 5.4, we optimize solely the MLP parameters ω that map
pretrained e5 embeddings to the latent space under equation 10. Accordingly, ϕω is implemented
as a fixed e5 encoder plus a trainable MLP (i.e., a PEFT setup).

U-Net Backbone and Training Setup We build the latent-space backbone for Mean Flow and RM-
Flow by reusing selected U-Net blocks (∼480M parameters) from pretrained Stable Diffusion Rom-
bach et al. (2022), with an additional time embedding for r. This is effectively transfer learning.
Table 9 shows the U-Net configuration and the training setup.

U-Net block-out-channels [320, 640, 1280, 1280]
down-block types [CrossAttnDownBlock2D, CrossAttnDownBlock2D,

CrossAttnDownBlock2D, DownBlock2D]
layers-per-block 2
attention-head-dim 8
cross-attention-dim 768

Pre-train loss LCMFM

epochs 500
batch size per GPU 16
optimizer Adam
lr schedule polynomial
Warm up epoch 2
lr 1e-4
Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision fp16
trainable param 480M

Post-train loss LRMFlow

epochs 500
batch size per GPU 16
optimizer Adam
lr schedule polynomial
Warm up epoch 10
lr 5e-5
Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision bf16
trainable param 210M
λ1 [5e-2, 1e-2]

Reg for ϕω λ2 1e-4
Time sample p(r ̸= t) 0.25

Table 9: Training Setup and Backbone Configuration for MeanFlow and RMFlow on the COCO Text-to-Image
Dataset

B.3 CONTEXT-TO-MOLECULE

Context Embedding Model: We implement ϕω as an MLP followed by a single EGNN layer.
The MLP projects the context vector into the data space, and the EGNN layer further refines these
representations. The EGNN configuration matches that used in the Mean Flow/RMFlow backbone.

EGNN Backbone and Training Setup We use the same EGNN Backbone in (Hoogeboom et al.,
2022) augmented with a time-embedding module for the additional scalar time variable r. Table 10
shows the training setup and configuration.
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EGNN number of layers 9
acitivation SiLU
hidden dim 256

Pre-train loss LCMFM

epochs 1500
batch size per GPU 64
optimizer Adam
lr schedule polynomial
Warm up epoch 10
lr 1e-4
Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision fp32

Post-train loss LRMFlow

epochs 1500
batch size per GPU 64
optimizer Adam
lr schedule polynomial
Warm up epoch 10
lr 1e-4
Adam(β1, β2) (0.9, 0.95)
ema decay 0.9995
precision fp16
λ1 [1e-2, 5e-2]

Reg for ϕω λ2 1e-4
Time sample p(r ̸= t) 0.5

Table 10: Training Setup and Backbone Configuration for MeanFlow and RMFlow on Context-to-Molecule
Generation on QM9 Dataset

B.4 TIME SERIES: DYNAMIC SYSTEM

Trajectory dataset: we use the same dataset as decribed in (Huang et al., 2025, Appendix B.1).

Models: (1) We implement the guidance embedding function ϕω as an MLP that maps the event-
guidance vector together with the first three states x(τ1),x(τ2),x(τ3) into the prior sample; (2) we
adopt the UNet architecture from Finzi et al. (2023), adding an additional time embedding for r.

Training Setup: see Table 11

Train iteration 1e5
batch size 500
optimizer Adam

lr 1e-4
weight decay 0.995

λ1 1e-1
λ2 1e-4

Table 11: Training Setup for MeanFlow and RMFlow on Dynamical System Forecasting Tasks
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