
Learning from Multi-Table Relational Data with the
Relational Graph Perceiver

Divyansha Lachi∗
University of Pennsylvania

Philadelphia, PA, USA
div11@upenn.edu

Mahmoud Mohammadi
SAP

Seattle, WA, USA
mahmoud.mohammadi@sap.com

Joe Meyer
SAP

Palo Alto, CA, USA
joseph.meyer@sap.com

Vinam Arora
University of Pennsylvania

Philadelphia, PA, USA
vinam@upenn.edu

Shivashriganesh P. Mahato
University of Pennsylvania

Philadelphia, PA, USA
smahato@upenn.edu

Tom Palczewski
SAP

Palo Alto, CA, USA
tom.palczewski@sap.com

Eva L. Dyer
University of Pennsylvania

Philadelphia, PA, USA
eva.dyer@upenn.edu

Abstract

Relational data in domains such as healthcare, finance, and e-commerce capture
complex, time-evolving interactions among diverse entities. Models operating
on such data must integrate long-range spatial and temporal dependencies while
supporting multiple predictive tasks. However, existing relational graph models
largely focus on spatial structure, treating time as a constraint rather than a modeling
signal, and are typically designed for single-task prediction. We introduce the
Relational Graph Perceiver (RGP), a transformer architecture with a Perceiver-
style latent bottleneck that integrates signals from diverse node and edge types
into a shared latent space for global relational reasoning. RGP also includes a
flexible cross-attention decoder for joint multi-task learning across disjoint label
spaces and a temporal subgraph sampler that enhances context by retrieving time-
relevant nodes beyond local neighborhoods. Experiments on RelBench, SALT, and
CTU show that RGP delivers state-of-the-art performance, offering a general and
scalable solution for relational deep learning.

1 Introduction

Relational data is central to many real-world systems in domains such as healthcare, finance, and
e-commerce, capturing interactions between entities (e.g., patients and providers, customers and
products) that evolve over time and span multiple modalities [3]. These datasets are typically stored
in multi-table relational databases, presenting modeling challenges that involve both long-range
structural dependencies and temporal dynamics. Relational Deep Learning (RDL) provides a prin-
cipled framework for learning from such data by converting relational databases into heterogeneous
temporal graphs [9], where nodes correspond to entities and edges represent typed relationships.
While Graph Neural Networks (GNNs) have been widely used in RDL, they primarily capture local

∗Work done during internship at SAP.

AI for Tabular Data Workshop
39th Conference on Neural Information Processing Systems (EurIPS 2025).

Table: users

Table: sales

Table: items

1
2
3
4
5

...

items

sales

users

time

Cross
Aention

Cross
Aention

Query node

Self Aention
Transformer Decoder

user-churn

user-ltv

...

Temporal
Context

Neighborhood
Context

tquery
Δt

Query token

Query time

tu1
tu2
tu3

attru1
attru2
attru3

tu4 attru4
tu5 attru5

1
2
3
4
5

ti1
ti2
ti3

attri1
attri2
attri3

ti4 attri4
ti5 attri5

6 ti6 attri6

1 ts1 attrs1

...

2 ts2 attrs2
3 ts3 attrs3
4 ts4 attrs4

Query node

Figure 1: Overview of the RGP architecture. We convert relational databases into heterogeneous temporal
graphs, where nodes represent entities (e.g., users) and edges capture their interactions. For a given query node,
RGP encodes structural and temporal context through parallel cross-attention modules, producing latent tokens
processed by self-attention blocks. A lightweight decoder then maps these latents to predictions across tasks
such as churn or lifetime value (LTV).

structure and suffer from oversquashing and limited expressiveness [27, 1, 24]. Graph Transformers
(GTs) offer a promising alternative by using attention mechanisms for global aggregation [4, 28], but
most are designed for static, homogeneous graphs and struggle to capture the structural and temporal
heterogeneity of relational data [7]. In addition, existing relational graph models, whether GNN [25]
or GT [7] based, mainly focus on spatial structure and typically only use time to limit the sampled
neighborhood instead of actively guiding context selection.

Our Approach. We propose the Relational Graph Perceiver (RGP), a transformer architecture for
heterogeneous temporal graphs. RGP adopts the Perceiver framework [14] to encode relational graphs
through a fixed-size latent bottleneck, enabling efficient global reasoning across entity types and
time. To go beyond local neighborhoods, RGP includes a temporal subgraph sampler that retrieves
structure-agnostic, time-relevant nodes that complement conventional neighborhood sampling. In
addition, RGP features a multi-task decoder that enables joint learning across tasks with disjoint label
spaces using similarity-based loss over text-encoded labels. We evaluate RGP on RelBench [25],
CTU [22], and SALT [17], spanning binary, multi-class, and ranking tasks. RGP achieves strong
results across all settings while enabling scalable, parameter-efficient multi-task learning.

Our contributions are as follows:
• We present the Relational Graph Perceiver (RGP), the first Perceiver-based graph transformer

architecture tailored for heterogeneous temporal graphs. RGP enables efficient global reasoning
across relational data.

• We introduce a novel temporal subgraph sampler that selects nodes based on timestamp proxim-
ity, allowing the model to incorporate nonlocal temporal context beyond structural neighborhoods.

• We develop a flexible multi-task decoder that enables joint training across tasks with disjoint
label spaces using task-conditioned queries and similarity-based loss over text-encoded labels.

2 Method

We introduce the Relational Graph Perceiver (RGP), a general-purpose transformer architecture
for heterogeneous temporal graphs. RGP consists of three components (Figure 1): (i) a temporal
context sampler retrieving time-relevant nodes beyond the local neighborhood, (ii) a Perceiver-style
encoder compressing variable-size relational subgraphs into fixed-length latent representations, and
(iii) a flexible multi-task decoder supporting diverse prediction tasks without task-specific heads.
Tokenizing Heterogeneous Temporal Graphs We first convert relational databases into heteroge-
neous temporal graphs G = (V, E , ϕ, ψ, τ), where nodes V represent entities and edges E ⊆ V × V
denote typed relations annotated with timestamps (Figure 1). Here, ϕ : V → TV maps each node
to its entity type, ψ : E → TE assigns relation types to edges, and τ : E ∪ V → R provides
temporal information for both nodes and edges. Each node vi is represented by a token embed-
ding xi = MultiModalEncoder(ui) + PE(vi), where ui denotes raw attributes and PE(vi) is a
composite positional encoding that integrates structural and temporal cues such as hop distance and
centrality [7]: PE(vi) =WPE[etype∥ecent∥ehop∥etime], with WPE as a learned projection matrix. For
more details about tokenization refer to Appendix A.2.

Temporal Sampler Standard neighborhood sampling methods restrict temporal windows around a
target node to prevent information leakage [7, 25], treating time mainly as a boundary constraint on

2

graph-based sampling. In contrast, we introduce a time-context sampler that uses temporal proximity
itself as a modeling signal, independent of graph connectivity. This sampler retrieves nodes and edges
that are close in time to the query entity, allowing the model to incorporate nonlocal but temporally
co-occurring events—such as concurrent user actions that enrich predictive context. Formally, given
a graph G = (V,E), node timestamps Tv : V → R, and a seed time tseed, we assign timestamps to
edges based on the node timestamps and select a subgraph using either a fixed time window ∆t or
the k closest edges in time. The full algorithm is provided in Appendix A.3.2. Nodes selected by the
temporal sampler are processed in parallel with structurally sampled neighbors.

Compression via Cross Attention Standard self-attention has quadratic complexity O(N2
g), mak-

ing it infeasible for large graphs. RGP addresses this by adopting a Perceiver-style encoder [13, 19]
that replaces dense pairwise attention with a small set of learnable latent tokens acting as an informa-
tion bottleneck. These latents attend to input nodes through cross-attention, enabling efficient global
aggregation.

Given the tokenized and sampled subgraph for each query entity, RGP applies the Perceiver encoder
to aggregate information across all nodes efficiently. Let Xg = [x1, . . . ,xNg] denote the sequence
of node embeddings within the subgraph. We maintain K ≪ Ng learnable latent tokens Z0 =
[z0,1, . . . , z0,K] that attend to the node embeddings through cross-attention:

Z(1)
g = Z(0) + softmax

(
QK⊤

g /
√
dk

)
Vg, (1)

where Q = WqZ0, Kg = WkXg, and Vg = WvXg. Two parallel cross-attention branches
independently process nodes from structural and temporal samplers, and their latent outputs are
summed to form a unified latent embedding. The latents are then processed by L Transformer
blocks operating in latent space, producing the final representation Zout

g . This design scales as
O(KNg + LK2) ≪ O(N2

g), offering large computational and memory savings compared to full
Graph Transformers while retaining global context integration.

Figure 2: Overview of Flexible multi-task
decoder: The decoder receives a query node
representation (combined with a task description
embedding) and attends to the latents from the
perceiver encoder via cross attention.

Multi-Task Decoder After encoding, the latent repre-
sentation is mapped to task-specific predictions through
a multi-task decoder that combines cross-attention with
similarity-based loss. Task descriptions and labels are
encoded using a frozen text encoder. Given a task em-
bedding qtask and the tokenized target node xi, we form
a task-aware query qi = xi + qtask which attends to
the encoder output Zout

g ∈ RK×d via cross-attention,
zi = CrossAttn(qi,Z

out
g). Label embeddings Elabel are

used to compute logits si = Elabelzi, followed by a
softmax and cross-entropy loss. This unified decod-
ing scheme enables scalable multi-task learning across
disjoint label spaces without task-specific output heads.

3 Results

We evaluate the Relational Graph Perceiver (RGP) on three heterogeneous temporal graph
benchmarks—RelBench[25], CTU[22], and SALT[17]. Our experiments focus on the node (or
entity) classification task, where the goal is to predict categorical attributes of entities in relational
graphs. We implement RGP within the RDL pipeline [25], replacing the original GNN component
while retaining the existing task logic and infrastructure. Following prior work, we tune only key
architectural parameters such as the number of layers and latent tokens, while keeping other settings
fixed across datasets. Please refer to Appendix A.4.1 for more details. Due to the diversity of these
benchmarks, we report results separately for each and compare RGP against the publicly available
baselines in each setting. Across all benchmarks, we also include comparisons with RDL [8], a
widely adopted pipeline that combines RelGNN [2] with GraphSAGE aggregation, serving as a
strong reference point for relational deep learning tasks.

Results on Benchmarks On RelBench [25], a recent benchmark for relational deep learning
comprising seven datasets from domains such as e-commerce, social networks, and sports, RGP
achieves state-of-the-art performance (Table 1), outperforming RelGT on 10 out of 12 tasks. Notably,

3

Table 1: Results on Relbench: We report Area Under the ROC Curve (AUC) as the evaluation metric.
Best values are in bold, and relative gains show the percentage improvement of RGP over RelGT.

Dataset Task RDL HGT HGT+PE RelGT RGP
(ours)

% Rel Gain
vs. RelGT

rel-f1 driver-dnf 0.7262 0.7142 0.7109 0.7587 0.7844 +3.39
driver-top3 0.7554 0.6389 0.8340 0.8352 0.8789 +5.22

rel-avito user-clicks 0.6590 0.6584 0.6387 0.6830 0.6943 +1.66
user-visits 0.6620 0.6426 0.6507 0.6678 0.6662 -0.24

rel-event user-repeat 0.7689 0.6717 0.6590 0.7609 0.7894 +3.75
user-ignore 0.8162 0.8348 0.8161 0.8157 0.8439 +3.46

rel-trial study-outcome 0.6860 0.5679 0.5691 0.6861 0.7027 +2.42
rel-amazon user-churn 0.7042 0.6608 0.6589 0.7039 0.7089 +0.71

item-churn 0.8281 0.7824 0.7840 0.8255 0.8262 +0.08
rel-stack user-engagement 0.9021 0.8898 0.8818 0.9053 0.9045 -0.09

user-badge 0.8966 0.8652 0.8636 0.8624 0.8868 +2.83
rel-hm user-churn 0.6988 0.6773 0.6491 0.6927 0.7025 +1.41

Average Gain vs. RelGT (%) 2.20

A B

Figure 3: (A) Ablation results showing performance impact of removing key RGP components. Values are
reported relative to the full model. (B) Relative performance of multi-task vs. single-task training: the Y-axis
shows the average multi-task performance normalized to the average single-task performance across all tasks
within each dataset.

RGP yields an average relative improvement of 2.2% over RelGT across all tasks. Gains are
particularly pronounced on smaller datasets, where self-attention-based models like RelGT are more
prone to overfitting. For example, on the driver-top3 task from the F1 dataset, RGP outperforms
RelGT by 3.39%, and on the driver-dnf task, by 5.22%. Next, we evaluated on CTU [22], a
collection of heterogeneous graphs from domains such as insurance, law, and retail with multi-class
classification tasks. We report F1 scores following standard practice from ReDeLEx [23]. As shown
in Table 5, RGP consistently outperforms the DBFormer baseline across all datasets, achieving up to
a 8.19% gain on dallas. However, we note that tree-based methods such as LightGBM sometimes
outperform RDL-based approaches on two out of three CTU tasks. Nevertheless, RGP consistently
achieves best performance within RDL based methods. Finally, on SALT[17], a real-world dataset
derived from an enterprise resource planning (ERP) system, RGP outperforms both baselines on three
of four tasks (Table 4). On sales-payterms, it performs slightly below HGT (0.58 vs. 0.60 MRR)
while still surpassing RDL. Across all benchmarks, RGP outperforms strong baselines across binary,
multi-class, and ranking tasks, demonstrating its versatility as a general relational graph model.

Ablation Study To better understand the key components of our model, we ablate (1) the temporal
context sampler and (2) the Perceiver bottleneck. Relative performance to the full model is shown in
Figure 3A. Removing the temporal sampler, which retrieves nodes based on temporal proximity,
leads to consistent performance drops—most notably a ∼3% decline on rel-f1, which includes many
cold-start driver nodes lacking structural history. Replacing the Perceiver bottleneck with full self-
attention yields slight improvements on some tasks but introduces significant computational overhead
and overfitting on smaller datasets (e.g., a ∼6.6% drop on driver-top3). Overall, the Perceiver’s cross-
attention design provides a more efficient and regularized alternative, maintaining strong performance
while being 2–6% more compute-efficient than full self-attention (see Appendix A.4.2).

Multi Task Results Finally, we evaluate the multi-task decoder, which enables scalable learning
across diverse label spaces. Unlike prior task-specific approaches, RGP performs task-conditioned
decoding via cross-attention and similarity-based supervision over text-encoded labels, allowing a

4

single model to handle multiple tasks jointly. As shown in Figure 3B, multi-task training matches
or surpasses single-task performance while reducing training cost. It improves results on the event
dataset but slightly lowers on f1 due to task imbalance (1.5k vs. 10k samples). Overall, RGP enables
efficient and generalizable multi-task learning without retraining or architectural changes.

4 Conclusion

We introduced RGP, a Transformer-based architecture for heterogeneous temporal graphs that com-
bines a Perceiver-style encoder for scalable global reasoning, a temporal subgraph sampler for
capturing temporally relevant context, and a flexible multi-task decoder for joint prediction across
diverse label spaces. Across multiple benchmarks, RGP achieves state-of-the-art performance while
reducing computational cost. Ablations confirm the value of temporal context and the Perceiver
bottleneck, and the unified decoder enables efficient multi-task learning—positioning RGP as a strong
candidate for large-scale foundation models in relational domains.

Acknowledgements and Funding Disclosure

Thanks to Keertika Saroj for insightful discussions and feedback on this manuscript. This project
was also supported by NSF CAREER Award RI:2146072, NSF award CIF:RI:2212182 as well as
generous gifts from the CIFAR Azrieli Global Scholars Program (D.L, V.A and E.L.D).

References
[1] M. Black, Z. Wan, A. Nayyeri, and Y. Wang. Understanding oversquashing in gnns through

the lens of effective resistance. In International Conference on Machine Learning, pages
2528–2547. PMLR, 2023.

[2] T. Chen, C. Kanatsoulis, and J. Leskovec. Relgnn: Composite message passing for relational
deep learning. arXiv preprint arXiv:2502.06784, 2025.

[3] E. F. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387, 1970.

[4] V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. arXiv
preprint arXiv:2012.09699, 2020.

[5] V. P. Dwivedi and M. M. Bronstein. A generalization of transformer networks to graphs. AAAI
DLG Workshop, 2021.

[6] V. P. Dwivedi et al. Graph neural networks with learnable structural and positional representa-
tions. ICLR 2022, 2022.

[7] V. P. Dwivedi, S. Jaladi, Y. Shen, F. López, C. I. Kanatsoulis, R. Puri, M. Fey, and J. Leskovec.
Relational graph transformer. arXiv preprint arXiv:2505.10960, 2025.

[8] M. Fey, W. Hu, K. Huang, J. E. Lenssen, R. Ranjan, J. Robinson, R. Ying, J. You, and
J. Leskovec. Relational deep learning: Graph representation learning on relational databases.
arXiv preprint arXiv:2312.04615, 2023.

[9] M. Fey, W. Hu, K. Huang, J. E. Lenssen, R. Ranjan, J. Robinson, R. Ying, J. You, and
J. Leskovec. Position: Relational deep learning-graph representation learning on relational
databases. In Forty-first International Conference on Machine Learning, 2024.

[10] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive Representation Learning on Large Graphs.
In NIPS, pages 1024–1034, 2017.

[11] W. Hu, Y. Yuan, Z. Zhang, A. Nitta, K. Cao, V. Kocijan, J. Sunil, J. Leskovec, and M. Fey.
Pytorch frame: A modular framework for multi-modal tabular learning. arXiv preprint
arXiv:2404.00776, 2024.

5

[12] Z. Hu, Y. Dong, K. Wang, and Y. Sun. Heterogeneous graph transformer. In Proceedings of the
web conference 2020, pages 2704–2710, 2020.

[13] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, A. Brock,
E. Shelhamer, O. Hénaff, M. M. Botvinick, A. Zisserman, O. Vinyals, and J. Carreira. Perceiver
io: A general architecture for structured inputs & outputs. In ICLR 2022 (Spotlight), 2022. Also
available as arXiv:2107.14795.

[14] A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisserman, and J. Carreira. Perceiver: General
perception with iterative attention. In International conference on machine learning, pages
4651–4664. PMLR, 2021.

[15] B. Jiang and D. Ma. Defining least community as a homogeneous group in complex networks.
Physica A: Statistical Mechanics and its Applications, 428:154–160, 2015.

[16] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly
efficient gradient boosting decision tree. Advances in neural information processing systems,
30, 2017.

[17] T. Klein, C. Biehl, M. Costa, A. Sres, J. Kolk, and J. Hoffart. Salt: Sales autocompletion linked
business tables dataset. arXiv preprint arXiv:2501.03413, 2025.

[18] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. Tossou. Rethinking graph trans-
formers with spectral attention. Advances in Neural Information Processing Systems, 34:21618–
21629, 2021.

[19] D. Lachi, M. Azabou, V. Arora, and E. Dyer. Graphfm: A scalable framework for multi-graph
pretraining. arXiv preprint arXiv:2407.11907, 2024.

[20] Q. Mao, Z. Liu, C. Liu, and J. Sun. Hinormer: Representation learning on heterogeneous
information networks with graph transformer. In Proceedings of the ACM web conference 2023,
pages 599–610, 2023.

[21] G. Mialon, D. Chen, M. Selosse, and J. Mairal. Graphit: Encoding graph structure in transform-
ers. arXiv preprint arXiv:2106.05667, 2021.

[22] J. Motl and O. Schulte. The ctu prague relational learning repository, 2024.

[23] J. Peleška and G. Šír. Redelex: A framework for relational deep learning exploration. arXiv
preprint arXiv:2506.22199, 2025.

[24] S. Qureshi et al. Limits of depth: Over-smoothing and over-squashing in gnns. Big Data Mining
and Analytics, 7(1):205–216, 2023.

[25] J. Robinson, R. Ranjan, W. Hu, K. Huang, J. Han, A. Dobles, M. Fey, J. E. Lenssen, Y. Yuan,
Z. Zhang, X. He, and J. Leskovec. Relbench: A benchmark for deep learning on relational
databases. In NeurIPS 2024 Datasets and Benchmarks Track, 2024. Poster; also available as
arXiv:2407.20060.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[27] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

[28] R. Ying, Z. Liu, J. You, Y. Zhou, C. Li, M. Jiang, and J. Leskovec. Do transformers really
perform badly for graph representation? In ICLR 2021, 2021.

[29] Y. Yuan, Z. Zhang, X. He, A. Nitta, W. Hu, D. Wang, M. Shah, S. Huang, B. Stojanovič,
A. Krumholz, et al. Contextgnn: Beyond two-tower recommendation systems. arXiv preprint
arXiv:2411.19513, 2024.

6

A Appendix

A.1 Related Work

Representing relational datasets as heterogeneous temporal graphs has enabled the use of graph
learning methods for tasks like node classification and link prediction. The RelBench benchmark[25]
formalizes this paradigm and provides a strong baseline using Heterogeneous GraphSAGE [10] with
temporal neighbor sampling, surpassing classical tabular methods like LightGBM [16]. Several
architectures have been proposed to better exploit relational structure: RelGNN [2] introduces
composite message passing to preserve information across bridge and hub nodes, while ContextGNN
[29] combines pair-wise and two-tower encoders for recommendation scenarios.

Graph Transformers (GTs) adapt the self-attention paradigm [26] to graph-structured data, capturing
long-range dependencies without iterative neighborhood aggregation [5]. Early GT variants focused
on local attention with positional encodings like Laplacian eigenvectors [6], while later designs
incorporated global attention mechanisms [28, 21, 18] and scaling strategies such as hierarchical
pooling or sparse attention. Heterogeneous GTs such as HGT [12] and Hinormer [20] model multi-
type graphs, but face quadratic cost and per-task training inefficiency. Most relevant to our work
is the Relational Graph Transformer (RelGT) [7], which introduced a hybrid local/global attention,
establishing strong performance on RelBench. Our approach differs by adopting a Perceiver-style
latent bottleneck and temporal sampling, enabling greater scalability and multi-task capability.

While GTs highlight the importance of global context, their computational footprint motivates
exploring efficiency-focused alternatives. The Perceiver architecture [14] introduces a fixed-size
latent array that attends to high-dimensional inputs via cross-attention, followed by latent self-
attention, decoupling input size from computational complexity. Perceiver IO [13] extends this
framework to handle diverse output domains from a shared latent representation. In graph learning,
early Perceiver-inspired adaptations have been proposed for homogeneous graphs or static settings
[15], but these typically omit temporal sampling and are not optimized for multi-task inference. Our
encoder adapts this latent bottleneck principle specifically to heterogeneous temporal graphs.

Existing RDL methods excel at modeling relational structure but face oversquashing and limited
temporal reach. Graph Transformers capture long-range context but remain computationally heavy
and often schema-restrictive. Perceiver-based models address scalability but have not been tailored
to heterogeneous temporal graphs or multi-task learning in relational settings. This motivates
architectures like ours that combine the latent efficiency of Perceivers with relational and temporal
inductive biases, while enabling shared encoders across multiple tasks.

A.2 Tokenizing Heterogeneous Temporal Graphs

To process relational data with transformer-based models, we first convert relational databases into
graph-structured inputs (Figure 1), enabling end-to-end learning without the need for manual feature
engineering. Following prior work in relational deep learning [7, 25], we represent relational
databases as relational entity graphs (REGs), modeled as heterogeneous temporal graphs.

Relational Graph: A relational database can be formally described as a tuple (T ,R), where
T = T1, . . . , Tn is a collection of entity tables, andR ⊆ T × T is a set of inter-table relationships.
Each relation (Tfkey, Tpkey) ∈ R denotes a foreign-key reference from one table to the primary key of
another. Each table Ti contains a set of entities (rows), where each entity is typically defined by (1) a
unique identifier, (2) foreign-key references, (3) entity-specific attributes (e.g., numeric, categorical),
and (4) timestamp metadata.

We transform this database into a heterogeneous temporal graph: G = (V, E , ϕ, ψ, τ) where V is the
set of nodes (entities), E ⊆ V × V is the set of edges representing primary-foreign key relationships,
ϕ : V → TV maps each node to its source table (entity type), ψ : E → TE assigns relation types to
edges, and τ : E∪V → R associates timestamps with both nodes and edges. This graph representation
captures both the schema structure and temporal dynamics of the database.

Token Construction. Each node vi ∈ V is mapped to a token embedding xi ∈ Rd by applying a
multi-modal encoder to its raw attributes, followed by the addition of a positional encoding:

xi = MultiModalEncoder(ui) + PE(vi),

7

where ui denotes the raw attributes of the node (e.g., tabular, categorical, or multi-modal features),
MultiModalEncoder is the modality-aware encoder taken from [11]. This encoder applies separate
encoders for each modality (e.g., numerical, categorical, or text) and aggregates their outputs into a
unified embedding using a ResNet (see Appendix A.3.1 for more details). PE(vi) captures structural
and temporal context such as node centrality, hop distances, or timestamp embeddings. Each input
graph is mapped to a full input sequence formed by these node-level tokens.

Positional Encodings. To represent the position of each node in a heterogeneous and temporal
relational graph, we combine multiple structure and time-aware signals into a unified encoding.
Specifically, for each node vi, we compute:

• Node type embedding etype(vi): a learned embedding based on the node type ϕ(vi).
• Centrality embedding ecent(vi): a linear projection of centrality scores (e.g., degree,

PageRank).
• Hop distance embedding ehop(vi): a learned embedding of the hop distance from a

designated entity node (e.g., the seed node or query node in the task).
• Relative time encoding etime(vi): a projection of τ(vi)−τseed to capture temporal alignment.

We concatenate these components and project them into the final positional encoding:

PE(vi) =WPE · [etype(vi)∥ecent(vi)∥ehop(vi)∥etime(vi)] ,

where WPE ∈ Rd′×d is a learned projection matrix and ∥ denotes concatenation.

Remarks. This multi-element positional encoding allows the model to incorporate fine-grained
structural, temporal, and schema-level context across highly diverse relational graphs. While the
individual components of this encoding are adapted from established techniques [7, 28], their
integration provides a unified representation that is suitable for heterogeneous graph modeling.

Once tokenized, we construct an input subgraph around each target entity using a combination
of structural sampling [25] and temporal context sampling. The resulting node sequence is then
passed to our Perceiver-based encoder, which compresses it into a fixed-size latent representation via
cross-attention.

A.3 Model Details

A.3.1 Multi Model Encoder

In heterogeneous temporal relational graphs derived from relational databases, each node may contain
a rich set of multi-modal attributes, such as numerical values, categorical fields, text descriptions,
timestamps, and image features. To obtain expressive node-level representations suitable for down-
stream tasks, we use a modality-aware feature encoder taken from prior work in relational deep
learning [25, 11].

Given a node v ∈ V , we denote its raw attributes as xv = {x(m)
v }m∈Mv

, whereMv ⊆ M is the
subset of modalities present for node v. Each feature within each modality is independently encoded
using a modality-specific function ϕm, yielding a set of intermediate embeddings:

h(m)
v = ϕm

(
x(m)
v

)
, ϕm : X (m) → Rdm , (2)

where dm is the dimensionality assigned to modality m. Supported modalities include:

• Numerical features: encoded via linear layers or small MLPs.
• Categorical features: embedded using learned lookup tables.
• Text features: embedded via pretrained or fine-tuned language models (e.g., BERT).
• Timestamps: embedded as scalar values or periodic functions (e.g., sinusoidal encodings).

The resulting embeddings are concatenated:

hconcat
v =

⊕
m∈Mv

h(m)
v ∈ R

∑
m∈Mv

dm , (3)

8

and passed through a table-specific (or node-type-specific) projection function—a ResNet in our
case—to obtain the final node representation:

h(0)
v = fτ(v)

(
hconcat
v

)
, fτ(v) : R

∑
dm → Rd, (4)

where τ(v) denotes the node type (i.e., source table) and d is the unified hidden dimension used
across the model.

A.3.2 Time-Context Sampling Algorithm

Edge Timestamp Assignment. Each edge is assigned a timestamp equal to the maximum times-
tamp of its two endpoint nodes:

Te(u, v) = max (Tv(u), Tv(v)) .

Time-Context-Aware Sampling. Given a reference timestamp tseed, we sample a subgraph by
selecting edges based on one of two strategies:

• Time window: include all edges where |Te(u, v)− tseed| ≤ ∆t.

• Top-k: select the k edges closest in time to tseed.

The resulting subgraph contains all nodes incident to the selected edges.

Algorithm 1 Time-Context-Aware Edge Sampling

Input: Graph G = (V,E), timestamp function T : V → R, reference time tseed, sampling rule (∆t or k)
Output: Subgraph Gsub = (Vsub, Esub)

Initialize Escored ← ∅
for each edge (u, v) ∈ E do
te ← max(T (u), T (v))
score← |te − tseed|
Add (u, v, te, score) to Escored

end for
if time window ∆t specified then
Eselected ← {(u, v) | (u, v, te, s) ∈ Escored, s ≤ ∆t}

else if edge count k specified then
Sort Escored ascending by score
Eselected ← first k edges

else
Eselected ← E

end if
Vsub ← nodes appearing in Eselected
return Gsub = (Vsub, Eselected)

A.4 Experiment details

A.4.1 Hyperparameter

We use a controlled hyperparameter setup to ensure consistent evaluation across diverse datasets
without exhaustive tuning. Following prior work, we fix most settings and tune only two architectural
hyperparameters: the number of Perceiver layers L ∈ {2, 4, 6} and the number of latent tokens
n ∈ {8, 16, 32} in the cross-attention bottleneck. All other hyperparameters are kept fixed across
datasets to reflect realistic training scenarios where compute budgets limit per-task tuning.

Table 2 summarizes the fixed hyperparameter settings used in our experiments. All models are trained
using the AdamW optimizer with a learning rate of 10−3 and a weight decay of 10−5. We use a
cosine learning rate scheduler with 10 warmup steps, and all experiments are run for 200 epochs.

9

Table 2: Summary of hyperparameter settings used in RGP experiments.
Component Value / Setting
Optimizer and Training Setup
Optimizer AdamW
Learning rate 10−3

Weight decay 10−5

Scheduler Cosine with 10 warmup steps
Epochs 200
Batch size 512

Model Architecture
Latent token count n {8, 16, 32} (tuned)
Transformer layers L {2, 4, 6} (tuned)
Dropout 0.2
hidden dim 128

Temporal Sampler
Edges per type 10
Temporal decay 0.1

A.4.2 Runtime Comparison: Cross-Attention vs Self-Attention

To quantify the efficiency benefits of using a cross-attention (CA) bottleneck over full self-attention
(SA), we measure the total training time across three representative tasks. As shown in Table 3, the
Perceiver-based encoder with CA consistently achieves lower runtime compared to its SA counterpart.
While SA sometimes offers marginal accuracy improvements on larger datasets, the increase in
computational cost is substantial.

Table 3: Average training time for Cross-Attention (CA) vs. Self-Attention (SA) models. Experiments
were run on a single B200 GPU.

Dataset Cross-Attention (CA) Self-Attention (SA)
rel-f1 2.7 min 7.5 min
rel-amazon 3.5 hrs 18.5 hrs
rel-event 4.5 min 22 min

B Results on additional datasets

Tables 5 and 4 present detailed results for the CTU[22] and SALT[17] benchmarks. For CTU, we
follow the evaluation protocol from ReDeLEx [23] and report macro-F1 scores across multiple
heterogeneous graph datasets. RGP consistently outperforms the DBFormer baseline, achieving up to
an 8.19% gain on dallas. For SALT, derived from an enterprise ERP system, we report MRR scores
for four relational prediction tasks. RGP surpasses both baselines on three out of four tasks, with
slightly lower performance on sales-payterms (0.58 vs. 0.60 for HGT). Overall, these extended results
confirm RGP’s strong and consistent performance across diverse relational domains.

Table 4: Results on SALT: We report MRR score as the evaluation metric. Best values are in bold.
Relative gains are percentage improvement over HGT.

Task RDL HGT RGP
(ours) % Rel Gain v.s HGT

item-incoterms 0.64 0.75 0.81 +8.00
sales-group 0.20 0.31 0.34 +9.68
sales-payterms 0.39 0.60 0.58 -3.33
sales-shipcond 0.59 0.76 0.81 +6.58

10

Table 5: Results on CTU benchmarks: We report F1 score as the evaluation metric. Best values are
in bold. Relative gains are percentage improvement over DBFormer.

Dataset Task LightGBM XGBoost TabResNet Linear SAGE
(RDL) DBFormer RGP

(ours)
Rel.

(%) Gain vs. DBF

accidents temp. 0.170 0.336 0.187 0.583 0.566 0.727 0.743 +2.20
dallas temp. 0.584 0.512 0.247 0.393 0.424 0.513 0.555 +8.19
legalacts temp. 0.851 0.220 0.220 0.721 0.698 0.703 0.736 +4.69

11

	Introduction
	Method
	Results
	Conclusion
	Appendix
	Related Work
	Tokenizing Heterogeneous Temporal Graphs
	Model Details
	Multi Model Encoder
	Time-Context Sampling Algorithm

	Experiment details
	Hyperparameter
	Runtime Comparison: Cross-Attention vs Self-Attention

	Results on additional datasets

