
Infinite Limits of Multi-head Transformer Dynamics

Blake Bordelon, Hamza Chaudhry, Cengiz Pehlevan
John A. Paulson School of Engineering and Applied Sciences

Center for Brain Science
Kempner Institute for the Study of Natural and Artificial Intelligence

Harvard University
Cambridge, MA 02138

blake_bordelon@g.harvard.edu
hchaudhry@g.harvard.edu

cpehlevan@seas.harvard.edu

Abstract

In this work, we analyze various scaling limits of the training dynamics of trans-
former models in the feature learning regime. We identify the set of parameteriza-
tions that admit well-defined infinite width and depth limits, allowing the attention
layers to update throughout training–a relevant notion of feature learning in these
models. We then use tools from dynamical mean field theory (DMFT) to analyze
various infinite limits (infinite key/query dimension, infinite heads, and infinite
depth) which have different statistical descriptions depending on which infinite
limit is taken and how attention layers are scaled. We provide numerical evidence
of convergence to the limits and discuss how the parameterization qualitatively
influences learned features.

1 Introduction

Increasing the scale of transformer models has continued to improve performance of deep learning
systems across many settings including computer vision [1, 2, 3, 4] and language modeling [5, 6, 7,
8, 9]. However, understanding the optimization stability and limiting behavior of these models under
increases in model scale remains a core challenge.

One approach to scaling up systems in a stable and predictable way is to identify parameterizations
of neural networks that give approximately scale-independent feature updates during training [10,
11, 12]. The mean field parameterization, commonly referred to as µP, is a well-known example that
satisfies this property [13, 14, 15]. When such parameterizations are adopted, the learned internal
representations in hidden layers of the network are very similar across model scales [16, 17], but
performance tends to improve with model scale [10, 11, 12]. Further, theoretical results about their
limits can often be obtained using Tensor Programs [14] or dynamical mean field theory (DMFT)
techniques [15, 17].

In this work, we develop a theoretical treatment of randomly initialized transformers. We study
various scaling limits of the training dynamics of these models including the infinite key/query
dimension limit, the infinite head limit, and the infinite depth limit. Concretely, our contributions are
the following:

1. We derive a DMFT for feature learning in randomly initialized transformers with key/query
dimension N , attention head count H and depth L. From the derived DMFT action, we
identify large N , large H and large L limits of the training dynamics.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

2. We analytically show that the large key-query N → ∞ limit requires the µP scaling of
key/query inner product with 1/N , even if key/queries are reparameterized to decrease the
size of their updates from gradient descent.

3. From the limiting equations, we show that this N → ∞ limit causes multi-head self attention
trained with stochastic gradient descent (SGD) to effectively collapse to single-head self
attention since all heads follow identical dynamics.

4. To overcome this limitation, we analyze the infinite head H → ∞ limit while fixing N .
We show there is a limiting distribution of attention variables across heads at each layer
throughout training. Despite N being finite, the infinite-head H → ∞ limit leads to
concentration of the network’s output logits and learned residual stream feature kernels,
giving deterministic training dynamics.

5. Finally, we examine large depth limits of transformers with residual branch scaling. We
illustrate and discuss the tension between parameterizing a model so that it has a non-trivial
kernel at initialization while maintaining feature learning within the multi-head self attention
(MHSA) and multi-layer perceptron (MLP) blocks.

1.1 Related Works

Hron et al. [18] studied the Neural Network Gaussian Process limit of multi-head self attention in
the infinite-head H → ∞ limit. They showed that, at initialization, there is a limiting distribution
over attention matrices and that the outputs of the multi-head attention block follow a Gaussian
process, establishing a connection to kernel methods. Dinan et al. [19] develop a similar theory of
transformers at initialization and compute the Neural Tangent Kernel associated with this architecture
as the dimensions per head N → ∞ using a 1√

N
scaling of the key-query inner product within

each attention layer. One of our key theoretical results is showing that this picture of a distribution
over learned attention heads persists throughout training in the feature-learning regime as H → ∞
(though the distribution of residual stream variables generally becomes non-Gaussian).

Several works have analyzed the signal propagation properties of transformers at initialization at large
key/query dimension N and large depth L [20, 21, 22, 23] including providing modifications to the
standard transformer architecture [22, 24]. In this work, we pursue large depth limits of transformers
by scaling the residual branch as L−αL with αL ∈ [12 , 1], which has been shown to converge to a
limit not only at initialization [25, 26, 27], but also throughout training in the feature learning regime
[11, 12, 27]. However, we argue that in transformers that αL = 1 is preferable as it enables the
attention layers to update non-negligibly as L → ∞.

Yang et al. [10] introduced the µP scaling for attention layers which multiplies the key/query inner
product with 1

N rather than the more commonly used 1√
N

[5]. They show empirically that this
change improves stability of training and transfer of optimal hyperparameters across different values
of N . Vyas et al. [16] empirically found that such µP transformers learn attention matrices that
become approximately consistent across different heads and model sizes, suggesting that models
parameterized in µP learn similar representations across scales.

In addition to work on infinite width and depth limits of deep networks, there is also a non-asymptotic
approach to optimizer design and scaling based on controlling the norm of weight updates [28].
This approach coincides with µP width-scaling when the spectral norm of the weights is used as the
measure of distance [29], and can achieve hyperparameter transfer for a wide array of optimizers and
initialization schemes [30?].

2 Parameterizations with Feature Learning Limits

We consider a transformer architecture with L layers, H heads per layer, and N dimensional keys/
queries per head. Transformers are often defined in terms of dmodel = Hdhead = HN which can
be increased by scaling the number of heads or the dimension of each head, where N is often
written dhead. Our goal is to determine the set of parameterizations that allow the attention layers
to undergo non-trivial feature learning in the various N,H, L → ∞ limits. The analysis of these
limits is performed with batch size and number of training steps t fixed while the other architectural
parameters are taken to infinity.

2

2.1 Model Scalings
The network’s output is computed by a depth L recursion through hidden layers ℓ ∈ [L] starting with
the first layer h1

s(x) =
1√
D
W 0xs ∈ RNH where xs ∈ RD is the input at spatial/token position s.

Preactivations in subsequent layers hℓ are determined by a forward pass through the residual stream
which contains an attention layer and a MLP layer

hℓ+1
s = h̃ℓ

s +
β0

LαL
MLP

(
h̃ℓ
s

)
, h̃ℓ

s = hℓ
s +

β0

LαL
MHSA

(
hℓ
)
s
. (1)

The constants γ0 and β0 control the rate of feature learning and the effective depth respectively 1. We
will consider αL ∈ [12 , 1].

2 The multi-head self attention layer (MHSA) with pre-layer-norm3 is

MHSA
(
hℓ
)
s
=

1√
NH

∑
h∈[H]

W ℓ
Ohv

ℓσ
hs , vℓσ

hs =
∑

s′∈[S]

σℓ
h′ss′v

ℓ
h′s′

vℓ
hs =

1√
NH

W ℓ
V hh̄

ℓ
s , h̄ℓ

s = LN(hℓ
s), (2)

where σℓ
h ∈ RS×S are the attention matrices passed through a matrix-valued nonlinearity σ

(
Aℓ

h

)
4.

For a sequence of length S, the pre-attention matrix Aℓ
h ∈ RS×S is defined as

Aℓ
hss′ =

1

NαA
kℓ
hs · qℓ

hs′ , k
ℓ
hs =

1

N
3
2−αA

√
H
W ℓ

Khh̄
ℓ
s , q

ℓ
hs =

1

N
3
2−αA

√
H
W ℓ

Qhh̄
ℓ
s. (3)

The exponent αA will alter the scale of the pre-attention variables Aℓ
h at initialization. The input

matrices have shape W ℓ
V h,W

ℓ
Kh,W

ℓ
Qh ∈ RN×NH, while the output matrices have shape W ℓ

Oh ∈
RNH×N . All of the weights W ℓ

Oh′ ,W ℓ
Qh,W

ℓ
Kh are initialized with Θ(1) entries while W ℓ

Kh,W
ℓ
Qh

have entries of size Θ(N1−αA) which ensures that all key and query k, q vectors are Θ(1) at
initialization. The pre-attention variables Aℓ

h ∈ RS×S at each head h are determined by key kℓ
hs

and query qℓ
hs′ inner products. The MLP layer consists of two linear layers with an element-wise

nonlinearity ϕ applied in between, where W ℓ,2,W ℓ,1 ∈ RNH×NH are initialized with Θ(1) entries:

MLP(h̃ℓ
s) =

1√
NH

W ℓ,2ϕ
(
h̃ℓ,1
s

)
, h̃ℓ,1

s =
1√
NH

W ℓ,1 ¯̃hℓ
s ,

¯̃
hℓ
s = LN

(
h̃ℓ
s

)
. (4)

µP scaling [13, 31, 14, 15] downscales the readout of the last layer compared to standard and NTK
parameterization [32]. Thus, we define the output of the model as

f =
1

γ0NHwL ·
(

1

S
∑
s

hL
s

)
(5)

5 where hL
s ∈ RNH are the final layer preactivations at spatial/token position s ∈ [S]. The parameter

γ0 is an additional scalar that controls the rate of change of the internal features of the network
relative to the network output [33].

2.2 Learning Rate Scalings
In order to approximately preserve the size of internal feature updates, we must scale the learning
rate η appropriately with (N,H, L). However, this scaling depends on the optimizer. In Table 2,
we provide the appropriate scaling of learning rates for SGD and Adam for any αL ∈ [12 , 1] and
αA ∈ [12 , 1]. In what follows, we focus on the SGD scaling and theoretically analyze the N → ∞,
H → ∞, and L → ∞ limits of the training dynamics. We also provide in Table 2 details about
what prefactor the first layer should be multiplied by and the initial weights divided by to ensure
convergence to the L → ∞ limit. Example FLAX implementations of these parameterizations for
vision and language modeling transformers are provided in Appendix B.

1The scale of the update to the residual stream due to each layer will be O(γ0β
2
0/L).

2If αL < 1
2

or αA < 1
2

some of the forward pass variables would diverge at initialization as L → ∞ or
N → ∞ respectively. If αL > 1 then updates to internal residual blocks will diverge as L → ∞.

3The LN denotes layer-norm which we let be defined in terms of each vector’s instantaneous mean and
variance LN(h) = 1√

σ2+ϵ
(h− µ1) where µ = 1

NH1 · h and σ2 = 1
NH |h− µ1|2.

4The nonlinearity is generally softmax. For autoregressive tasks, it is taken to be causal.
5Instead of pooling over space, outputs f could also carry spatial index s (such as next word prediction).

3

(a) Scaled Residual Stream (b) MHSA Block

Figure 1: Schematic representations of the transformer architecture we model. (a) The forward pass
through the residual stream is an alternation of MHSA and MLP blocks scaled by β0L

−αL . (b)
The MHSA block computes keys, queries, values, and attention variables to produce a concatenated
output of dimension dmodel = NH.

Optimizer Global LR First/Last Layer Rescale Multiplier First/Last Layer Std. Dev.
SGD η0NHL2αL−1 L

1
2−αL Θ(1)

Adam η0√
NHL−1+αL L1−αL

√
NH 1√

NHL−1+αL

Table 1: The learning rates which should be applied to obtain the correct scale of updates for SGD or
Adam optimizers. In addition, the weight variance and multiplier for the first layer may need to be
rescaled (relative to eq (5)) with width/depth depending on the parameterization and optimizer.

Our analysis assumes that at each step t of SGD or Adam a mini-batch Bt of size Θ(1) is used to
estimate the loss gradient. We assume that the minibatches are fixed. Further, the number of total
training steps is assumed to not be scaled jointly with the model size. Therefore the analysis provided
here can cover both online SGD for a fixed number of steps or full batch GD (repeating data) with a
Θ(1) sized dataset.

3 Infinite Limits of Learning Dynamics
In this section, we first analyze the infinite dimension-per-head N → ∞ limit of training. We find
that for this limit, the µP rule of αA = 1 is necessary and show that all heads collapse to the same
dynamics. To counteract this effect, we next analyze the infinite head H → ∞ limit of the training
dynamics at fixed N,L, where we find a limiting distribution over attention heads. We will conclude
by analyzing the statistical descriptions of various infinite depth L → ∞ limits. 6.

3.1 Mean Field Theory Treatment of the Learning Dynamics
To obtain the exact infinite limits of interest when scaling dimension-per-head N , the number of heads
H, or the depth L to infinty, we work with a tool from statistical physics known as dynamical mean
field theory (DMFT). Classically, this method has been used to analyze high dimensional disordered
systems such as spin glasses, random recurrent neural networks, or learning algorithms with high
dimensional random data [34, 35, 36, 37, 38, 39]. Following [15, 11], we use this method to reason
about the limiting dynamics of randomly initialized neural networks by tracking a set of deterministic
correlation functions (feature and gradient kernels) as well as additional linear-response functions
(see Appendix D). The core conceptual idea of this method is that in the infinite limit and throughout
training, all neurons remain statistically independent and only interact through collective variables
(feature kernels, neural network outputs, etc). Further the collective variables can be computed as
averages over distribution of neurons in each hidden layer or along the residual stream. This DMFT
description can be computed using a path integral method that tracks the moment generating function
of the preactivations or with a dynamical cavity method (see Appendix D).
3.2 Scaling Dimension-Per-Head N

One way of obtaining a well-defined infinite parameter limit of transformers is to take the N → ∞
limit, where N is the dimension of each head. A priori, it is unclear if there are multiple ways
of scaling the key/query inner product. Concretely, it is unknown what values for the exponent
αA are admissible for the pre-attention A = 1

NαA k · q. The keys and queries are uncorrelated
at initialization which motivated the original choice of αA = 1

2 [5, 18]. Yang et al. [10] assume
the entries of the key and query vectors move by Θ(1), implying αA = 1 is necessary since the

6Training time, sample size, sequence length/spatial dimension are all treated as fixed Θ(1) quantities.

4

10 2 10 1 100

Learning Rate

0.8

1.0

1.2

1.4

1.6

Te
st

 L
os

s

= 1
= 1

2
N = 4
N = 8
N = 16
N = 32
N = 64

(a) Hyperparameter Transfer for Various αA

101 102 103

N

10 6

10 4

10 2

100

102

Va
r

N 2

= 1
= 1

2

(b) Attention variance across heads

Figure 2: Increasing dimension-per-head N with heads fixed for αA = {1, 1
2}. (a) Both αA = 1

and αA = 1
2 exhibit similar hyperparameter transfer for vision transformers trained on CIFAR-5M

over finite N at H = 16. (b) The variance of attention variables across the different heads of a
vision transformer after training for 2500 steps on CIFAR-5M. For αA = 1 the variance of attention
variables decays at rate O(N−2) and for αA = 1

2 the variance does not decay with N .

update to k is correlated to q and vice versa. However, it is possible to obtain Θ(1) updates to the
attention variable for alternative values of αA if we choose the change to key (also query) entries after
gradient descent to be δki ∼ Θ(N−1+αA). We show that this scaling can approximately preserve
optimal hyperparameters across N in Figure 2 (a) and give similar dynamics under SGD Appendix C.
However, as we show in Appendix E.1.2, any well defined N → ∞ limit of SGD requires αA = 1.
The reason is not that keys and queries become correlated, but rather that the scale of the backward
pass must be controlled to ensure the dynamics remain stable (non-divergent) under SGD training.
After performing two or more gradient descent steps, we demonstrate that the backpropagation signals
will diverge as N → ∞ unless initial key and query weight matrices are downscaled to have variance
of order ΘN (1). In Appendix E, we provide a DMFT analysis of the N → ∞ limit of the transformer
training dynamics. We summarize the result of that analysis informally below.

Result 1 (Infinite Dimension-Per-Head N) (Informal) A stable feature learning N → ∞ limit of
transformer SGD training requires taking αA = 1 (µP scaling), even if key/query updates are allowed
to be rescaled to account for their correlation. The limiting dynamics of training are governed by the
residual stream kernel Hℓ

ss′(x,x
′, t, t′) = 1

NHhℓ
s(x, t) ·hℓ

s′(x
′, t′) and a collection of inner product

kernels in each head h that concentrate as N → ∞

V ℓ
hss′(x,x

′, t, t′) =
1

N
vℓ
hs(x, t) · vℓ

hs′(x
′, t′) , Qℓ

h(x,x
′, t, t′) =

1

N
qℓ
hs(x, t) · qℓ

hs′(x
′, t′) (6)

Kℓ
hss′(x,x

′, t, t′) =
1

N
kℓ
hs(x, t) · kℓ

hs′(x
′, t′) , Aℓ

hss′(x, t) =
1

N
kℓ
hs(x, t) · qℓ

hs′(x, t), (7)

alongside residual-stream gradient kernels and response functions in the sense of [15, 11]. The NN
output logits f(x, t) evolve deterministically according to the above kernels as well as kernels for
the gradient vectors gℓ ≡ γ0NH ∂f

∂hℓ which appear in the backward pass. These variables become
identical across heads such that for any h, h′ ∈ [H], Aℓ

hss′(x, t) = Aℓ
h′ss′(x, t). All preactivations on

the residual stream and key/query/value variables within a MHSA block are statistically independent
across neurons and can be described by a single scalar stochastic process

hℓ+1
s (x, t) = hℓ

s(x, t) + β0L
−αL ũℓ

s(x, t) + β0L
−αLuℓ+1

s (x, t)

+ η0γ0β
2
0L

−1
∑
t′<t

∑
s′∈[S]

∫
dx′

[
C̃ℓ

ss′(x,x
′, t, t′)g̃ℓs′(x

′, t′) + Cℓ
ss′(x,x

′, t, t′)gℓs′(x
′, t′)

]
kℓhs(x, t) = uℓ

Khs(x, t) +
∑
t′s′

∫
dx′Ckℓ

ss′(x,x
′, t, t′)qℓhs′(x

′, t′) (8)

where ũℓ, uℓ, uℓ
Kh are Gaussian processes with covariances Φℓ,1, V ℓσ, Hℓ respectively. Analo-

gous equations hold for the queries and values. In the limit, the kernels Hℓ
ss′(x,x

′, t, t′) =〈
hℓ
s(x, t)h

ℓ
s′(x

′, t′)
〉

, Aℓ
hss′(x, t) =

〈
kℓhs(x, t)q

ℓ
hs′(x, t)

〉
, etc. are computed as averages ⟨·⟩ over

5

these random variables. The deterministic kernels Cℓ, C̃ℓ can also be expressed in terms of single
site averages of residual variables and head averages of MHSA variables. The kernels Cℓ, C̃ℓ, Ckℓ

depend on the precise mini-batches of data Bt presented at each step t which we assume are known.

We derive this result using a Martin-Siggia-Rose path integral formalism [40] for DMFT in Appendix
E. Full DMFT equations can be found in Appendix E.2. Following prior works on DMFT for infinite
width feature learning, the large-N limit can be straightforwardly obtained from a saddle point of the
DMFT action [15, 11, 41, 17].
Collapse of Attention Heads As N → ∞, multi-head self-attention will effectively compute the
same outputs as a single-head self-attention block. We theoretically derive this effect in Appendix
E.2.1 and demonstrate it empirically in Figure 2 (b). This experiment shows that in αA = 1 (µP)
transformers trained for 2500 steps on CIFAR-5M [42], the variance of attention matrices across
heads decreases with N . However, we note that if the scaling exponent is chosen instead as αA = 1

2
there is non-decreasing diversity of attention variables across heads. This result is consistent with
recent empirical findings that attention variables in µP transformers converge to the same limiting
quantities at large N with H fixed for different initializations and also across model sizes [16]. This
aspect of transformers in the large-N limit is potentially undesirable as some tasks could require
learning multiple attention mechanisms. Furthermore, this suggests scaling the model in this limit
could increase computational cost without improving performance. To circumvent this, we explore if
there exist well defined limits at finite N with a diversity of attention variables across heads.
3.3 Scaling Number of Heads
In this section, we take H → ∞ with the inner dimension N fixed. Rather than having all kernels
concentrate, the kernel of each head of the MHSA block follows a statistically independent stochastic
process. This picture was shown to hold at initialization by Hron et al. [18]. Here, using a DMFT
analysis, we show that it continues to hold throughout training in the feature learning regime.

Result 2 (Infinite Head Limit) (Informal) The H → ∞ limit of SGD training dynamics in a ran-
domly initialized transformer at any key/query dimension N , scaling exponents αA, αL, and any
depth L is governed by head-averaged kernels for pairs of input data x,x′ at training times t, t′ and
spatial/token positions s, s′ such as

V ℓ,σ
ss′ (x,x

′, t, t′) =
1

NH
H∑

h=1

vℓσ
hs(x, t) · vℓσ

hs′(x
′, t′) (9)

which converge to deterministic values as H → ∞. The attention variables
{kℓ

h(x, t), q
ℓ
h(x, t),v

ℓ
h(x, t),Aℓ

h(x, t)} within each head become statistically independent across
heads and decouple in their dynamics (but not across dimensions within a head). Each residual
stream neuron becomes independent and obeys a single site stochastic process analogous to Result 1,
but with different kernels.

We derive this and the full DMFT in Appendix E.3, showing that the joint distribution of head-
averaged dynamical quantities satisfies a large deviation principle and the limit can be derived as a
saddle point of a DMFT action.

To gain intuition for this result, we first examine variables Hℓ and Aℓ
h at initialization. In Figure 3,

we plot the convergence of a N = 4, L = 8 vision transformer’s residual stream kernel Hℓ to its
H → ∞ limit at rate O(H−1) in square error, consistent with perturbative analysis near the limit
[17]. Next, we plot the distribution (over heads) of Ah at a fixed pair of spatial/token positions for a
fixed sample. This is a non-Gaussian random variable for finite N , but as N → ∞ the distribution of
A will approach a Gaussian with variance Θ(N1−2αA).

We then investigate training dynamics as we approach the H → ∞ limit. In Figure 4 (a) we show the
test loss on CIFAR-5M as a function of the number of training iterations. The performance tends
improve as H increases and the model approaches its limit. In Figure 4 (b) we show that all of
the models are converging in function space by measuring the squared error between finite H head
models and a proxy for the infinite H model. Since the H → ∞ limit is essentially uncomputable,
we approximate it as the ensemble averaged predictor of the widest possible models, a technique used
in prior works [16, 11]. We again see that at early time, the logits of H head models converge to the
limit proxy at a rate O(H−1), but after continued training the convergence rate weakens. This effect

6

101 102 103

10 5

10 4

10 3

10 2

|H
H

|2

1

= 1
= 2
= 3
= 4
= 5
= 6
= 7
= 8

(a) Initial Hℓ Kernels, N = 4

2 1 0 1 2
10 2

10 1

100

De
ns

ity

= 32
= 64
= 128
= 256

Gaussian

(b) Ah Distribution N = 1

2 1 0 1 2
10 2

10 1

100

De
ns

ity

= 32
= 64
= 128
= 256

Gaussian

(c) Ah Distribution N = 16

Figure 3: The initial kernels converge as H → ∞ and are determined by (possibly non-Gaussian)
distributions of Aℓ

h over heads in each layer. (a) Convergence of Hℓ
ss′(x,x

′) = 1
HNhℓ

s(x) · hℓ
s′(x

′)

in a L = 8, N = 4 vision transformer at initialization at rate O(H−1). (b) The density of Aℓ
h entries

over heads at fixed spatial location converges as H → ∞ but is non-Gaussian for small N . (c) As
N → ∞ the initial density of A approaches a Gaussian with variance of order O(N1−2αA).

0 500 1000 1500 2000 2500
Steps

1.0

1.2

1.4

1.6

1.8

2.0

Te
st

 L
os

s

= 16
= 32
= 64
= 128
= 256
= 512
= 1024
= 2048

(a) Training Dynamics Varying H

101 102 103
10 4

10 3

10 2

10 1

100

|f
f

|2
1

steps=25
steps=100
steps=250
steps=500
steps=1000
steps=2000

(b) Convergence to H → ∞ limit

Figure 4: Approaching the large head limit H → ∞ in early portion of SGD dynamics for a vision
transformer trained on CIFAR-5M with (L,N) = (2, 4) and (γ0, β, αA) = (0.05, 4, 1

2) and losses
averaged over 10 random inits (colored error bars are standard deviations). (a) As H increases the
loss and the variability over random initial seed decreases. (b) The mean square difference between
output logits for H head models and a proxy for the infinite head model on a held out batch of test
examples. Following prior works, our proxy for the limit is the ensemble averaged outputs of the
widest models [16, 11].

has been observed in µP networks in many settings [16] and a theoretical model of this was provided
in recent work which argues it arises from low-rank effects in the finite H kernels [39].

3.4 Infinite Depth Limits
We next describe the infinite depth limits which depend on the choice of αL. Below we informally
describe the main finding which again uses a DMFT formalism and is based on analyses in recent
works on infinite depth networks from Bordelon et al. [11] and Yang et al. [12].
Result 3 (Infinite Depth Limit) (Informal) The training dynamics for H, L → ∞ with L−αL

branch scaling with αL ∈ [12 , 1] is described by a differential equation for residual variables hs(τ, t)

in layer time τ = limL→∞
ℓ
L for the residual stream

hs(τ,x, t) = β0 δαL, 12

∫ τ

0

dus(τ
′,x, t)

+ η0γ0β
2
0

∑
t′<t

∫
dx′

∫ τ

0

dτ ′Css′(τ
′,x,x′, t, t′)gs′(τ

′,x′, t′) (10)

where the Brownian motion term dus(τ,x, t) survives in the limit only if αL = 1
2 and has covariance

⟨dus(τ,x, t)dus′(τ
′,x′, t′)⟩ = δ(τ − τ ′)dτdτ ′ [Φss′(τ,x,x

′, t, t′) + V σ
ss′(τ,x,x

′, t, t′)] (11)

7

and the deterministic kernel Css′(τ,x,x
′, t, t′) can be expressed in terms of head-averaged kernels

and response functions. The weights inside each hidden MHSA layer or each MLP layer are frozen in
the L → ∞ limit unless αL = 1. All response functions are suppressed at L → ∞ unless αL = 1

2 .

Below we provide a couple of short comments about this result. The proof and full DMFT is provided
in Appendix E.4.

1. At initialization t = 0, the only term which contributes to the residual stream layer dynamics
is the integrated Brownian motion

∫ τ

0
du(τ ′) which survives at infinite depth for αL = 1

2 .
For αL = 1 this term disappears in the limit. The structure of C(τ) is also modified by
additional response functions at αL = 1

2 [11] which we show disappear for αL = 1.

2. The weights within residual blocks (including the MHSA block) can be treated as completely
frozen for αL < 1 in the L → ∞ limit, which leads to the simplified statistical description
of the preactivations in those layers. However, the residual stream variables h(τ) do still
obtain ΘL(1) updates. At αL = 1 the weights in the MHSA blocks evolve by ΘL(1),
causing additional feature evolution in the model.

3. A consequence of our large N and large L result is that the N,L → ∞ limit with αL = 1
2

(the parameterization studied by [11, 12]) would lead to Aℓ
hss′(x, t) = 0 for all time t. Thus

the MHSA blocks would only involve average pooling operations over the spatial indices,
despite the residual stream kernels Hℓ updating from feature learning.

101 102

L

10 1

100

|W
q,

k(t
)

W
q,

k(0
)|

L 1/2

L = 1
2

L = 1

(a) Key/Query Weight Changes

105 106 107 108 109 1010

Compute

100

6 × 10 1

Te
st

 L
os

s

L = 1
2

L = 1
L = 4
L = 8
L = 16
L = 32

(b) Depth Scaling for αL ∈ { 1
2
, 1}

Figure 5: Depth scaling in a vision transformer on CIFAR-5M with αL ∈ { 1
2 , 1}. (a) The key and

query weights move by 1/
√
L. (b) The compute scaling laws with models at fixed width N,H and

varying depth L. At large L, the αL = 1 (dashed) models perform better at fixed compute.

First, we note in Figure 5 that the weights within each attention block freeze as L → ∞ with αL = 1
2

case but move at a constant scale for αL = 1. As a consequence, the loss at large L can be lower in
the α = 1 parameterization.

We can see some numerical evidence for the first of these effects in Figure 6 (a)-(b) where initially
training at large L is slower than the base model and the initial kernel appears quite different for
L = 4 and L = 64. The initial kernel will decrease in scale as L → ∞ for αL = 1 since the
preactivation vectors lose variance as we discuss in Appendix E.4, resulting in slower initial training.
However, we note that the final learned feature kernels are quite similar after enough training.

In summary, our results indicate that the αL = 1 parameterization is the one that allows attention
layers to actually be learned in the limit L → ∞, but that this parameterization leads to a less
structured kernel at initialization.

4 Experiments in Realistic Settings
In practice, large scale neural networks do not generally operate close to their limit. Given the costs of
training large networks, one would ideally operate in a regime where there is a guarantee of consistent
improvements with respect to model scale. In pursuit of this goal, we apply our theoretical findings
of this paper to training language models on a larger natural language dataset, a Transformer with
causal attention blocks trained on the C4 dataset [43] with Adam optimizer. As mentioned in 2.2,
while our exact theoretical description of these infinite limits focus on SGD, we can implement an
appropriate scaling for Adam which preserves the scale of internal feature updates. This allows us

8

102 103 104 105

Steps
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Te
st

 L
os

s

Base
= 128

N = 128
L = 64

(a) Training Dynamics

In
iti

al
 H

L (x
,x

′) Base

Fi
na

l H
L (x

,x
′)

= 128 N = 128 L = 64

(b) Initial and Final Residual Stream Pooled Kernels

In
iti

al
 H

L
′

Base

Fi
na

l H
L
′

= 128 N = 128 L = 64

(c) Spatial Kernels for Single Sample

1 0 1
0

1

2

3

4

5

In
iti

al
 D

en
sit

y

= 1
2

= 1

15 10 5 0
0.0

0.2

0.4

0.6

0.8

Fin
al

 D
en

sit
y

N = 16
N = 32
N = 64
N = 128

(d) Attention Distributions Before and After Training

Figure 6: Initial and final representations are converging as model scale increases after one pass of
training on the full CIFAR-5M with SGD+momentum. The base model is a (N,H, L) = (16, 16, 4)
and (αA, αL, β0, γ0) = (1, 1, 4, 0.1). (a) The test loss dynamics for one pass through CIFAR-5M.
The dynamics are very similar across different head-counts H but the early dynamics are changed for
large depth L, consistent with our theory. (b) The initial and final feature kernels after spatial pooling
at the last layer of the residual stream. The initial kernel at large L is quite different for αA = 1 due
to suppression of Brownian motion on the forward pass, which we explain in Section 3.4. (c) The
residual stream kernel across pairs of spatial positions for a single randomly chosen input sample. (d)
The distribution of attention entries across heads at a fixed pair of spatial locations and data point.
The initial variance of A decreases for αA = 1 but the update is roughly consistent across N . For
αA = 1

2 both initial and final distributions for Ah are consistent across N .

to investigate realistic training dynamics of our LLM as we take the N,L,H → ∞ limits. Training
details are provided in Appendix F

In Figure 7 (a), we sweep over each of the model dimensions independently for each parameterization
of αA ∈ {1, 1

2} on the left and right respectively. For fixed N and L, scaling H provides a similar
increase in performance in both parameterization and appear to start converging to a final loss around
5, with slight benefit to αA = 1

2 . For fixed H and L, scaling N provides a similar increase in
performance to scaling heads in when αA = 1, but a substantial increase when αA = 1

2 . This is in
line with our predictions in Section 3.2 about the benefits of diversity across attention heads. Next,
for fixed N and H, scaling L provides little to no benefit in either parameterization as predicted in
Section 3.4. Finally, we inspect the sample and spatial residual stream kernels of these models before
and after training and find that the kernels are identical for both αA, except for a slight difference for
large N . Furthermore, they are extremely similar for large N and large H.

Taken together, these results suggest that scaling different model dimensions do indeed have different
effects on training dynamics and final performance. This provides groundwork for future large-scale
experiments systematically investigating their trade-offs, thereby identifying compute-optimal scaling
of realistic architectures in parameterizations with well-defined limits.

5 Discussion
This paper provided analysis of the infinite head, depth and key/query dimension limits of transformer
training in the feature learning regime. We showed that feature learning in µP multi-head transformers
in the limit of N → ∞ collapses to single-head self-attention. At finite N and infinite heads H → ∞

9

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

10

11

L
os

s

αA = 1

Base

H = 16

H = 32

H = 64

H = 128

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

10

11

αA = 1
2

Base

H = 16

H = 32

H = 64

H = 128

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

10

11

L
os

s

Base

N = 16

N = 32

N = 64

N = 128

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

10

11

Base

N = 16

N = 32

N = 64

N = 128

0 2000 4000 6000 8000 10000

Steps

3

4

5

6

7

8

9

10

11

L
os

s

Base

L = 8

L = 16

L = 32

L = 64

0 2000 4000 6000 8000 10000

Steps

3

4

5

6

7

8

9

10

11

Base

L = 8

L = 16

L = 32

L = 64

(a) Training dynamics of LLM on C4

In
it

ia
l
H
L
(x
,x
′)

Base

F
in

al
H
L
(x
,x
′)

:
α
A

=
1

F
in

al
H
L
(x
,x
′)

:
α
A

=
1 2

H = 128 N = 128 L = 64

(b) Kernels: final token across samples

In
it

ia
l
H
L ss
′

Base

F
in

al
H
L ss
′:
α
A

=
1

F
in

al
H
L ss
′:
α
A

=
1 2

H = 128 N = 128 L = 64

(c) Kernels: tokens within single sample

Figure 7: Training dynamics and initial/final representations of decoder only language models
trained on C4 converge with increasing model scale. The base model has (N,H, L) = (8, 8, 4) and
(αL, β0, γ0) = (1, 4, 0.25) and αA ∈ {1, 1

2}. (a) Train loss dynamics after 10000 steps on C4 using
Adam optimizer. The dynamics improve consistently when scaling H for both values of αA, with
slight benefit to αA = 1

2 . Scaling N reveals a significant advantage to setting αA = 1
2 . Scaling L

provides little improvement for either parameterization of αA. (b) Initial and final residual stream
kernels for the final token across samples for Base,H = 128, N = 128, and L = 64 models. The first
row is at initialization. The second and third rows are after training with αA ∈ {1, 1

2} respectively.
(c) Initial and final feature kernels across pairs of tokens for a single randomly chosen input sample.
Note both types of kernels are identical across αA except for a slight difference at large N .

we showed that there is an alternative limit which maintains a distribution over attention heads. We
discussed two different large depth limits of transformer training that reduce to differential equations
in the residual layer time τ . The depth scaling that maintains feature learning within all MHSA
blocks (αL = 1) causes the initial kernel to lose structure from the initialization as L → ∞, but
allows learning of the self-attention variables, whereas the depth scaling that preserves structure from
initialization (αL = 1

2) leads to static layers.

Limitations and Future Directions Currently exact theoretical analysis of the limit is focused
on SGD (and can be easily extended to SGD+momentum [15]) while Adam is currently only
reasoned with rough scaling arguments rather than an exact theoretical description of the limit. Since
Adam is most commonly used to train transformers, a theory of the limiting dynamics of Adam
in Transformers would be an important future extension. In addition, while we provide an exact
asymptotic description of network training, the limiting equations are compute intensive for realistic
settings which is why we focus our empirical investigations on training large width networks in
the appropriate parameterizations. Lastly our techniques assume that the number of training steps
is fixed as the scaling parameters of interest (N,H, L) are taken to infinity. However, it would be
important to understand learning dynamics in the regime where model size and training times are
chosen to balance a compute optimal tradeoff (or perhaps even training longer than compute optimal)
[8, 39, 44]. In this regime, harmful finite model-size effects become significant and comparable to
the finite training horizon [10, 16, 17, 39]. Thus stress testing the ideas in this work at larger scales
and longer training runs would be an important future direction of research into scaling transformer
models.

10

Acknowledgements and Disclosure of Funding

BB would like to thank Alex Atanasov, Jacob Zavatone-Veth, Lorenzo Noci, Mufan Bill Li, Boris
Hanin, Alex Damian, Eshaan Nichani for inspiring conversations. We would also like to thank Alex
Atanasov and Jacob Zavatone-Veth for useful comments on an earlier version of this manuscript. BB
is supported by a Google PhD fellowship. HC was supported by the GFSD Fellowship, Harvard GSAS
Prize Fellowship, and Harvard James Mills Peirce Fellowship. CP was supported by NSF Award
DMS2134157 and NSF CAREER Award IIS2239780. CP is further supported by a Sloan Research
Fellowship. This work has been made possible in part by a gift from the Chan Zuckerberg Initiative
Foundation to establish the Kempner Institute for the Study of Natural and Artificial Intelligence. The
computations in this paper were run on the FASRC Cannon cluster supported by the FAS Division of
Science Research Computing Group at Harvard University.

References
[1] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining

Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[2] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE transactions on
pattern analysis and machine intelligence, 45(1):87–110, 2022.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[4] Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab, Matthias Minderer, and Yi Tay. Scenic:
A jax library for computer vision research and beyond. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 21393–21398, 2022.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[6] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[9] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[10] Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. Advances in Neural Information Processing Systems, 34:17084–17097,
2021.

[11] Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=KZJehvRKGD.

[12] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Feature learning in infinite depth neural
networks. In The Twelfth International Conference on Learning Representations, 2023.

11

https://openreview.net/forum?id=KZJehvRKGD
https://openreview.net/forum?id=KZJehvRKGD

[13] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers
neural networks: dimension-free bounds and kernel limit. In Conference on Learning Theory,
pages 2388–2464. PMLR, 2019.

[14] Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, pages 11727–11737. PMLR,
2021.

[15] Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution
in wide neural networks. Advances in Neural Information Processing Systems, 35:32240–32256,
2022.

[16] Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and
Cengiz Pehlevan. Feature-learning networks are consistent across widths at realistic scales,
2023.

[17] Blake Bordelon and Cengiz Pehlevan. Dynamics of finite width kernel and prediction fluctua-
tions in mean field neural networks. arXiv preprint arXiv:2304.03408, 2023.

[18] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp
and ntk for deep attention networks. In International Conference on Machine Learning, pages
4376–4386. PMLR, 2020.

[19] Emily Dinan, Sho Yaida, and Susan Zhang. Effective theory of transformers at initialization,
2023.

[20] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pages 2793–2803. PMLR, 2021.

[21] Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and
Aurelien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of
rank collapse. Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

[22] Bobby He and Thomas Hofmann. Simplifying transformer blocks. arXiv preprint
arXiv:2311.01906, 2023.

[23] Aditya Cowsik, Tamra Nebabu, Xiao-Liang Qi, and Surya Ganguli. Geometric dynamics of
signal propagation predict trainability of transformers, 2024.

[24] Lorenzo Noci, Chuning Li, Mufan Li, Bobby He, Thomas Hofmann, Chris J Maddison, and Dan
Roy. The shaped transformer: Attention models in the infinite depth-and-width limit. Advances
in Neural Information Processing Systems, 36, 2024.

[25] Soufiane Hayou. On the infinite-depth limit of finite-width neural networks. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=RbLsYz1Az9.

[26] Nicola Muca Cirone, Maud Lemercier, and Cristopher Salvi. Neural signature kernels as
infinite-width-depth-limits of controlled resnets. arXiv preprint arXiv:2303.17671, 2023.

[27] Lénaïc Chizat and Praneeth Netrapalli. The feature speed formula: a flexible approach to
scale hyper-parameters of deep neural networks, 2024. URL https://arxiv.org/abs/2311.
18718.

[28] Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between
two neural networks and the stability of learning. Advances in Neural Information Processing
Systems, 33:21370–21381, 2020.

[29] Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning.
arXiv preprint arXiv:2310.17813, 2023.

[30] Jeremy Bernstein, Chris Mingard, Kevin Huang, Navid Azizan, and Yisong Yue. Automatic
gradient descent: Deep learning without hyperparameters. arXiv preprint arXiv:2304.05187,
2023.

[31] Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing
systems, 31, 2018.

12

https://openreview.net/forum?id=RbLsYz1Az9
https://openreview.net/forum?id=RbLsYz1Az9
https://arxiv.org/abs/2311.18718
https://arxiv.org/abs/2311.18718

[32] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,
2018.

[33] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. Advances in neural information processing systems, 32, 2019.

[34] Haim Sompolinsky and Annette Zippelius. Dynamic theory of the spin-glass phase. Physical
Review Letters, 47(5):359, 1981.

[35] Moritz Helias and David Dahmen. Statistical field theory for neural networks, volume 970.
Springer, 2020.

[36] Stefano Sarao Mannelli, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborova. Passed
& spurious: Descent algorithms and local minima in spiked matrix-tensor models. In interna-
tional conference on machine learning, pages 4333–4342. PMLR, 2019.

[37] Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Dynamical
mean-field theory for stochastic gradient descent in gaussian mixture classification. Advances
in Neural Information Processing Systems, 33:9540–9550, 2020.

[38] Cedric Gerbelot, Emanuele Troiani, Francesca Mignacco, Florent Krzakala, and Lenka Zde-
borova. Rigorous dynamical mean field theory for stochastic gradient descent methods. arXiv
preprint arXiv:2210.06591, 2022.

[39] Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural
scaling laws, 2024.

[40] Paul Cecil Martin, ED Siggia, and HA Rose. Statistical dynamics of classical systems. Physical
Review A, 8(1):423, 1973.

[41] Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics
in wide neural networks. arXiv preprint arXiv:2210.02157, 2022.

[42] Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi. The deep bootstrap framework:
Good online learners are good offline generalizers. arXiv preprint arXiv:2010.08127, 2020.

[43] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[44] Ibrahim M Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit
in shape: Scaling laws for compute-optimal model design. Advances in Neural Information
Processing Systems, 36, 2024.

[45] Etai Littwin and Greg Yang. Adaptive optimization in the ∞-width limit. In The Eleventh
International Conference on Learning Representations, 2022.

[46] Mufan Li, Mihai Nica, and Dan Roy. The neural covariance sde: Shaped infinite depth-and-
width networks at initialization. Advances in Neural Information Processing Systems, 35:
10795–10808, 2022.

13

Appendix

A Additional Figures

100 101 102 103

Steps
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Te
st

 L
os

s

= 16
= 32
= 64
= 128

(a) Vary H

100 101 102 103

Steps
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Te
st

 L
os

s

N = 16
N = 32
N = 64
N = 128

(b) Vary N

100 101 102 103

Steps
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Te
st

 L
os

s

L = 4
L = 8
L = 16
L = 32
L = 64

(c) Vary L

Figure 8: One pass training on CIFAR-5M with vision transformers with the setting of Figure 6.

In
iti

al
 H

L (x
,x

′) = 16

Fi
na

l H
L (x

,x
′)

= 32 = 64 = 128

In
iti

al
 H

L (x
,x

′) N = 16

Fi
na

l H
L (x

,x
′)

N = 32 N = 64 N = 128

In
iti

al
 H

L (x
,x

′) L = 4

Fi
na

l H
L (x

,x
′)

L = 8 L = 16 L = 32

Figure 9: Examples of initial and learned kernels in final residual stream layer with various extrapola-
tions of a base vision transformer model with (H, N, L) = (16, 16, 4) trained on CIFAR-5M.

14

In
iti

al
 H

L
′

= 16

Fi
na

l H
L
′

= 32 = 64 = 128

In
iti

al
 H

L
′

N = 16

Fi
na

l H
L
′

N = 32 N = 64 N = 128

In
iti

al
 H

L
′

L = 4

Fi
na

l H
L
′

L = 8 L = 16 L = 32

Figure 10: Spatial kernels for a single test point before and after training across H, N, L values.

0 500 1000 1500 2000 2500
Steps

1.4

1.6

1.8

2.0

2.2

Te
st

 L
os

s

N = 8
N = 16
N = 32
N = 64
N = 128
N = 256
N = 512

(a) N Scaling with α = 1

0 500 1000 1500 2000 2500
Steps

1.4

1.6

1.8

2.0

2.2

Te
st

 L
os

s

N = 8
N = 16
N = 32
N = 64
N = 128
N = 256
N = 512

(b) N Scaling with α = 1
2

Figure 11: Early training dynamics on CIFAR-5M in vision transformer with different dimension-
per-head N with heads fixed at H = 4 for αA = {1, 1

2}.

15

109 1010 1011 1012 1013
4.0

4.5

5.0

5.5

6.0

6.5

7.0

L
os

s

αA = 1

Base

H = 16

H = 32

H = 64

H = 128

109 1010 1011 1012 1013
4.0

4.5

5.0

5.5

6.0

6.5

7.0
αA = 1

2

Base

H = 16

H = 32

H = 64

H = 128

109 1010 1011 1012 1013
4.0

4.5

5.0

5.5

6.0

6.5

7.0

L
os

s Base

N = 16

N = 32

N = 64

N = 128

109 1010 1011 1012 1013
4.0

4.5

5.0

5.5

6.0

6.5

7.0

Base

N = 16

N = 32

N = 64

N = 128

109 1010 1011 1012 1013

Compute

4.0

4.5

5.0

5.5

6.0

6.5

7.0

L
os

s Base

L = 8

L = 16

L = 32

L = 64

109 1010 1011 1012 1013

Compute

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Base

L = 8

L = 16

L = 32

L = 64

Figure 12: Performance of language models trained on C4 in main text Figure 7(a) as a function of
compute, estimated as FLOPs = 6× Params. The base model has size (N,H, L) = (8, 8, 4) and we
examine scaling up N,H, L with either αA = 1/2 or αA = 1. The αA = 1 models perform better at
fixed compute for either N or H scaling. Increasing L does not significantly increase compute in this
regime since the embedding and decoding layers contribute most of the parameters.

16

B Implementations for Vision and Causal Language Modeling Transformers

We provide an example FLAX implementation of the vision transformer and causal language model.

We start by defining a fixed layernorm operation

1 from flax import linen as nn
2 import jax.numpy as jnp
3

4

5 class LN_Fixed(nn.Module):
6

7 eps: jnp.float32 = 1.0e-6
8 @nn.compact
9

10 def __call__(self , x):
11

12 features = x.shape [-1] # number of features
13 mean = jnp.mean(x , axis = -1) # mean of x
14 var = jnp.var(x , axis = -1) # var of x
15 out = (x - mean[:,:,jnp.newaxis]) / jnp.sqrt(var[:,:,jnp.

newaxis] + self.eps)
16 return out

The MHSA layer is implemented as the following where scale_exp represents αA.

1 # MHSA attention layer
2 from einops import rearrange
3

4 class Attention(nn.Module):
5 """Multi -head Self -Attention Layer """
6 scale_exp: jnp.float32
7 dim: int
8 heads: int
9

10 def setup(self):
11

12 self.c = 1.5 - self.scale_exp # exponent for the scale factor
13 kif_qk = nn.initializers.normal(stddev = self.dim **(self.c -

0.5)) # possible scaling with N
14 kif_v = nn.initializers.normal(stddev = 1.0) # O_N(1)

entries
15 # computes key , query , value
16 self.qk_layer = nn.Dense(features = 2 * self.heads * self.dim ,

kernel_init = kif_qk , use_bias = False)
17 self.v_layer = nn.Dense(features = self.heads * self.dim ,

kernel_init = kif_v , use_bias = False)
18 self.out_layer = nn.Dense(features = self.heads * self.dim ,

kernel_init = kif_v , use_bias = False)
19 return
20

21 def __call__(self ,inputs):
22

23 qk = self.qk_layer(inputs) / self.heads **(0.5) / self.dim**(
self.c)

24 qk = rearrange(qk, ’b l (h d) -> b h l d’ , h = self.heads) #
(batch , heads , loc , d)

25 q,k = jnp.split(qk, 2, axis = -1) # gives q, k each of shape (
batch , heads , loc , d)

26

27 v = self.v_layer(inputs) / jnp.sqrt(inputs.shape [-1])
28 v = rearrange(v, ’b l (h d) -> b h l d’, h = self.heads)
29 A = self.dim**(-self.scale_exp) * jnp.einsum(’ijkl ,ijml ->ijkm’

, q, k) # batch x heads x loc x loc
30 sigma_A = softmax(A, axis=-1)

17

31 out = jnp.einsum(’ijkl ,ijlm ->ijkm’, sigma_A , v) # (batch , head
, loc , d)

32 out = rearrange(out , ’b h l d -> b l (h d)’)
33 out = self.out_layer(out) / jnp.sqrt(out.shape[-1])
34 return out

The two layer MLP block is implemented as the following with ϕ = gelu nonlinearity.

1 class MLP_Block(nn.Module):
2 """ Two Layer MLP Block """
3 features: int
4

5 @nn.compact
6 def __call__(self ,x):
7 N = self.features
8 kif = nn.initializers.normal(stddev = 1.0) # O_N(1) entries
9 h = nn.Dense(features = N, kernel_init = kif , use_bias = False

)(x) / jnp.sqrt(N)
10 h = nn.gelu(h)
11 h = nn.Dense(features = N, kernel_init = kif , use_bias = False

)(h) / jnp.sqrt(N)
12 return h
13

We also allow for a trainable positional encoding matrix.

1

2 class PositionalEncoding(nn.Module):
3 """ Trainable Positional Encoding """
4 d_model : int # Hidden dimensionality of the input.
5 max_len : int # Maximum length of a sequence to expect.
6 scale: jnp.float32 # scale parameter for initialization
7

8 def setup(self):
9 # Create matrix of [SeqLen , HiddenDim] representing the

positional encoding for max_len inputs
10 self.pos_embedding = self.param(’pos_embedding ’,
11 nn.initializers.normal(stddev

= self.scale),
12 (1, 1+self.max_len , self.

d_model))
13

14 def __call__(self , x, train=True):
15 B,T,_ = x.shape
16 x = x + self.pos_embedding [:,:T] / self.scale
17 return x

Each residual block is implemented as the following. Below we show the αL = 1 implementation.

1 # Residual Block
2 class ResidBlock(nn.Module):
3

4 dim: int
5 heads: int
6 features: int
7 L: int
8 scale_exp: jnp.float32 = 1.0
9 beta: jnp.float32 = 4.0

10

11 @nn.compact
12 def __call__(self ,x):
13 h = LN_Fixed ()(x)
14 h = Attention(dim = self.dim , scale_exp = self.scale_exp ,

heads = self.heads)(h)
15 x = x + self.beta / self.L * h
16 h = LN_Fixed ()(x)

18

17 h = MLP_Block(features = self.features)(h)
18 x = x + self.beta / self.L * h
19 return x

Our vision transformer model consists of an embedding layer which is applied to each patch, a
positional encoding layer, L residual layers each containing a MHSA and MLP block, a spatial
pooling operation, and a readout.

1

2 class VIT(nn.Module):
3

4 "simple VIT model with "
5 dim: int
6 heads: int
7 depth: int
8 patch_size: int
9 scale_exp: jnp.float32 = 1.0

10 adam_scale: int = 0.0
11 beta: jnp.float32 = 4.0
12

13 @nn.compact
14 def __call__(self , x):
15 d_model = self.heads * self.dim
16 L = self.depth
17 D = 3
18

19 # patchify images
20 x = rearrange(x, ’b (w p1) (h p2) c -> b (w h) (p1 p2 c)’, p1

= self.patch_size , p2 = self.patch_size) # (batch , loc ,
patch_ch_dim)

21

22 kif_first= nn.initializers.normal(stddev = d_model **(-0.5* self
.adam_scale) * (L/self.beta)**(0.5 * (1.0- self.adam_scale))) #
O_N (1) entries

23 kif = nn.initializers.normal(stddev = 1.0) # O_N (1) entries
24 kif_last = nn.initializers.normal(stddev = (L/self.beta)**(0.5

* (1-self.adam_scale)))
25

26 # read -in weights
27 x = (L/self.beta)**(-0.5 * (1.0- self.adam_scale))*d_model

**(0.5 * self.adam_scale) * nn.Dense(features = N, kernel_init =
kif_first , use_bias = False)(x) / jnp.sqrt(D * self.patch_size **2
)

28

29 # positional encoding
30 x = PositionalEncoding(d_model = d_model , max_len = (32// self.

patch_size)**2, scale = d_model **(-0.5* self.adam_scale)*(L/self.
beta)**(0.5 * (1.0- self.adam_scale)))(x)

31

32 # residual stream with pre -LN
33 for l in range(self.depth):
34 x = ResidBlock(dim = self.dim , heads = self.heads ,

scale_exp=self.scale_exp , features = d_model , beta=self.beta , L =
L)(x)

35

36 # last norm layer
37 x = LN_Fixed ()(x)
38 # pool over spatial dimension
39 x = x.mean(axis = 1) # (batch , d_model)
40 x = (L/self.beta)**(-0.5*(1 - self.adam_scale)) * nn.Dense(

features = 10, use_bias = False , kernel_init = kif_last)(x) /
d_model **(1.0 -0.5* self.adam_scale) # for mean field scaling

41 return x

19

For the causal decoder only model, we need to modify the Attention layer and also prevent pooling
over spatial indices before the readout.

1

2 class Causal_Attention(nn.Module):
3

4 scale_exp: jnp.float32
5 dim: int
6 heads: int
7 qk_ln: bool = True
8

9 def setup(self):
10

11 self.c = 1.5 - self.scale_exp # exponent for the scale factor
12 kif_qk = nn.initializers.normal(stddev = self.dim **(self.c -

0.5)) # possibly needs to be scaled with N
13 kif_v = nn.initializers.normal(stddev = 1.0) # O_N(1)

entries
14 # computes key , query , value
15 self.qk_layer = nn.Dense(features = 2 * self.heads * self.dim ,

kernel_init = kif_qk , use_bias = False)
16 self.v_layer = nn.Dense(features = self.heads * self.dim ,

kernel_init = kif_v , use_bias = False)
17 self.out_layer = nn.Dense(features = self.heads * self.dim ,

kernel_init = kif_v , use_bias = False)
18 return
19

20 def __call__(self ,inputs):
21

22 qk = self.qk_layer(inputs) / self.heads **(0.5) / self.dim**(
self.c) # (batch , loc , 3*h*d)

23 qk = rearrange(qk, ’b l (h d) -> b h l d’ , h = self.heads) #
(batch , heads , loc , d)

24 q,k = jnp.split(qk, 2, axis = -1) # gives q, k each of shape (
batch , heads , loc , d)

25

26 v = self.v_layer(inputs) / jnp.sqrt(inputs.shape [-1])
27 v = rearrange(v, ’b l (h d) -> b h l d’, h = self.heads)
28

29 A = 1.0/ self.dim**(self.scale_exp) * jnp.einsum(’ijkl ,ijml ->
ijkm’, q, k) # batch x heads x loc x loc

30 exp_A = jnp.einsum(’ijkl ,kl->ijkl’, jnp.exp(A), jnp.tril(jnp.
ones((v.shape[2], v.shape [2]))))

31 phi_A = exp_A / exp_A.sum(axis = -1)[:,:,:,jnp.newaxis]
32

33 out = jnp.einsum(’ijkl ,ijlm ->ijkm’, phi_A , v) # (batch , head ,
loc , d)

34 out = rearrange(out , ’b h l d -> b l (h d)’)
35 out = self.out_layer(out) / jnp.sqrt(out.shape[-1])
36 return out
37

38

39 class LM_Transformer(nn.Module):
40 """A simple Decoder only transformer """
41

42 dim: int
43 heads: int
44 depth: int
45 scale_exp: jnp.float32
46 adam_scale: int
47 beta: jnp.float32
48 VOCAB_SIZE: int
49

50 @nn.compact
51 def __call__(self , x, train = True):

20

52 d_model = self.heads * self.dim
53 L = self.depth
54 kif_first = nn.initializers.normal(stddev = d_model **(-0.5*

self.adam_scale) * (L/self.beta)**(0.5 * (1-self.adam_scale))) #
O(1) entries

55 kif0 = nn.initializers.normal(stddev = 0.0)
56 kif = nn.initializers.normal(stddev = 1.0) # O(1) entries
57 kif_last = nn.initializers.normal(stddev = (L/self.beta)**(0.5

* (1-self.adam_scale)) * d_model **(-0.5* self.adam_scale))
58

59 # embed the batch x sequence integers to
60 x = (L/self.beta)**(-0.5 * (1-self.adam_scale))* d_model

**(0.5 * self.adam_scale) * nn.Embed(self.VOCAB_SIZE , d_model ,
embedding_init = kif_first)(x) # batch x seq len x N

61

62 x = PositionalEncoding(d_model = d_model , scale = d_model
(-0.5* self.adam_scale) * (L/self.beta)(0.5 *(1-self.adam_scale
)))(x)

63

64 for l in range(self.depth):
65 h = LN_Fixed ()(x)
66 x = x + self.beta/L * Causal_Attention(dim = self.dim ,

scale_exp = self.scale_exp , heads = self.heads)(h)
67 h = LN_Fixed ()(x)
68 x = x + self.beta/L * MLP_Block(features = d_model)(h)
69

70 x = LN_Fixed ()(x)
71 x = (L/self.beta)**(-0.5 * (1 - self.adam_scale)) * nn.Dense

(features = self.VOCAB_SIZE , use_bias = True , kernel_init = kif0)(
x) / d_model **(1.0 -0.5* self.adam_scale) # for mean field scaling

72 return x

C Simple Heuristic Scaling Analysis

In this section, we heuristically work out the simple scaling analysis to justify the set of parameteriza-
tions and learning rates we consider. More detailed theoretical analysis for the limit of SGD training
is provided in Appendix E where we exactly characterize the N → ∞, H → ∞ and L → ∞ limits.
We consider taking heads H, inner dimension N and depth L to infinity separately and attempt to
control the scale of gradients and updates.

C.1 Learning Rate Scalings

We show that the correct learning rate scaling for SGD is η = η0NHL2αL−1. For Adam, the learning
rate should be scaled as η = η0N

−1/2H−1/2L−1+αL .

Optimizer Bulk Parameters LR First Layer Rescale Factor
SGD η0NHL2αL−1 L− 1

2−α

Adam η0N
−1/2H−1/2L−1+αL L1−αL

Table 2: The learning rates which should be applied to obtain the correct scale of updates for SGD or
Adam optimizers. In addition, the weight variance and multiplier for the first layer may need to be
rescaled with depth depending on the parameterization and optimizer.

C.2 Heuristic Analysis of Feature Changes Under SGD

In this section we consider performing a single update on a single example to all weight matrices.

δW ℓ
Oh ∼ 1

L1−αL

√
NH

gℓ+1vℓ⊤
h (12)

21

where gℓ+1 ∈ RNH and vℓ
h ∈ RN have Θ(1) entries. Thus, computing a perturbation to the forward

pass we find

δhℓ+1 = δhℓ +
1

LαL

√
NH

H∑
h=1

(
1

L1−αL

√
NH

gℓ+1vℓ⊤
h

)
vℓ
h

=δhℓ +
1

L

 1

NH
∑
h

vℓ
h · vℓ

h

 gℓ+1 (13)

The term in the brackets is Θ(1) and we see that the perturbation from each layer contributes Θ(L−1).
As there are L layers, this will give a total change to the final layer hL that is Θ(1).

For the Attention variables, we note that the

δW ℓ
Kh ∼ 1

L1−αL

√
NH

qℓ
hh

ℓ⊤ , δW ℓ
Qh ∼ 1

L1−αL

√
NH

kℓ
hh

ℓ⊤ (14)

where qh,k
ℓ
h ∈ RN are the query and key for head h and h ∈ RNH is the residual stream preactiva-

tion. We can thus compute the changes to the keys and queries due to changes in their associated
weights

δkℓ
h =

1

N
3
2−αA

√
H

(
1

L1−αL

√
NH

qℓ
hh

ℓ⊤
)
hℓ =

1

L1−αLN1−αA
qℓ
hH

ℓ

δqℓ
h =

1

N
3
2−αA

√
H

(
1

L1−αL

√
NH

kℓ
hh

ℓ⊤
)
hℓ =

1

L1−αLN1−αA
qℓ
hH

ℓ. (15)

where Hℓ = 1
NHhℓ · hℓ ∼ Θ(1). Combining these changes , we find the following update to the

pre-Attention variables Aℓ
h = 1

NαA kℓ
h · qℓ

h

δAℓ
h =

1

L1−αLN
qℓ
h · qℓ

hH
ℓ +

1

L1−αLN
kℓ
h · kℓ

hH
ℓ +

1

L2−2αLN2−2αA
Aℓ

h(H
ℓ)2

= Θ(L−1+αL), (16)

since 1
N k · k, 1

N q · q ∼ Θ(1). This update to the attention variable due to changes in W ℓ
K ,W ℓ

Q will
clearly die out as L → ∞ unless αL = 1.

C.3 Heuristic Analysis of Feature Changes Under Adam

For Adam, the gradient of each individual parameter entry is approximately normalized by its scale
[45]. Thus the learning rate η sets the size of the updates. This is why we scale the learning rate as
η = 1

L1−αL
√
NH which gives the same scale updates to the weights as SGD

δW ℓ
Oh ≈ η gℓ+1vℓ⊤

h =
1

L1−αL

√
NH

gℓ+1vℓ⊤
h (17)

Again computing the correction to the forward pass we find

δhℓ+1 = δhℓ +
1

LαL

√
NH

H∑
h=1

(
1

L1−αL

√
NH

gℓ+1vℓ⊤
h

)
vℓ
h

=δhℓ +
1

L

 1

NH
∑
h

vℓ
h · vℓ

h

 gℓ+1 = Θ(1) (18)

Similarly our update generates the same scale of weight updates to the key and query weight matrices

δW ℓ
Kh ∼ 1

L1−αL

√
NH

qℓ
hh

ℓ⊤ , δW ℓ
Qh ∼ 1

L1−αL

√
NH

kℓ
hh

ℓ⊤ (19)

We can therefore follow the identical argument to identify the scale of the change to the pre-attention
variables δAℓ

h = Θ(L1−αL).

22

C.4 What Counts as Feature Learning for Attention Layers?

Any parameterization with αN ∈ [12 , 1] will cause all updates to Aℓ
h and entries of hℓ+1 to be

ΘN,H,L(1) across finite N . The entries of q and k only move by ΘN (1) if αA = 1 (µP scaling).
However, we argue that this criterion is not strictly necessary. Rather, feature learning could
alternatively be defined in terms of evolution of macroscopic variables (H , A, f , etc) rather than
preactivation or key/query vector entries themselves. Table 3 summarizes two example values of αA
which are of special interest for their N → ∞ limits.

Variance of A(0) Update to A Update to k, q Entries
αA = 1 (µP) Θ(N−1) Θ(1) Θ(1)

αA = 1
2 Θ(1) Θ(1) Θ(N− 1

2)
Table 3: Two interesting choices of scaling for the attention layer exponent αA which give approx-
imately constant updates to the attention matrices Ah. The µP scaling αA = 1 causes the entries
of the key/query vector entries to move non-negligibly but causes all heads to be identical (and all
A = 0) at initialization. Scaling instead with αA = 1

2 causes the A variables to be random but still
non-negligibly updated under training.

The choice αA = 1
2 allows the variance of Aℓ

h to be constant size as a function of N while also
enabling learning of these variables. We verify these scalings in Figure 13.

102 103 104

N

10 10

10 8

10 6

10 4

10 2

100

102

(
k)

2

t = 1
t = 200

= 1
2

= 1
N 1

N 2

(a) Change in k Entries (SGD)

102 103 104

N

10 12

10 9

10 6

10 3

100

103

(
)2

t = 1
t = 200

= 1
2

= 1
N 2

(b) Change in A Entries (SGD)

102 103 104

N

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

(
k)

2

t = 1
t = 200

= 1
2

= 1
N 1

(c) Change in k Entries (Adam)

102 103 104

N

10 5

10 4

10 3

10 2

10 1

100

101

(
)2

t = 1
t = 200

= 1
2

= 1

(d) Change in A Entries (Adam)

Figure 13: The update to (a) key kh entries and (b) pre-attention variables Ah after t steps of gradient
descent for scaling exponents αA ∈ {1, 1

2}. At the first step of SGD, the updates to the keys and
attention variables are suppressed due to a lack of correlation between WO and the gradient ∂f

∂h̃
.

After training for multiple steps, this correlation increases and non-negligible updates to the attention
variables occur. (c)-(d) The same but for the Adam optimizer with our proposed parameterization.

23

D DMFT Primer and Simple Examples

D.1 Main Conceptual Idea of the Approach

Dynamical mean field theory is a method that was developed in the physics of spin glasses for dealing
with dynamical systems that depend on a fixed source of disorder. The disorder could be random
couplings between sites in a spin glass model [34], random connections between neurons in a random
recurrent neural network [35], random data drawn from a distribution [37, 39] or the random initial
weights in a deep neural network [15, 11]. In our case, we are interested in the last example, where
the feature learning dynamics of a randomly initialized transformer is a function of the initial weights
in each layer. In what follows, we will give a primer on the main objects which typically appear in a
DMFT analysis (the correlation and response functions) to illustrate the main ideas of the approach.

D.2 Example 1: Linear Dynamics with GOE Matrix

In this section, we discuss and derive the DMFT equations for the simplest possible example, a linear
dynamical system with a Gaussian symmetric coupling matrix.

In this example we show that the DMFT path integral is computing something non-trivial about
the kinds of dynamics induced by a linear dynamical system with a random matrix. In this linear
example, the DMFT path integral encodes spectral properties of the random matrix.

Let’s consider the simplest possible example: d
dthi(t) =

1√
N

∑N
j=1 Wijhj(t) where Wij = Wji is

a Gaussian symmetric matrix (GOE). This matrix is fixed while the state h(t) ∈ RN evolves. The
path integral appraoch would tell you that in the N → ∞ limit, every neuron i has identical statistics
given by the stochastic integro-differential equation

∂th(t) = u(t) +

∫ t

0

dsR(t, s)h(s) , u(t) ∼ GP(0, C(t, s))

C(t, s) = ⟨h(t)h(s)⟩ , R(t, s) =

〈
δh(t)

δu(s)

〉
(20)

where ⟨·⟩ denotes an average over the random variables u(t). In this picture, the averages ⟨⟩ over
the noise can also be interpreted as averages over all N neurons in the system, each of which are
independent. This stochastic equation can be used to close the evolution equations for the correlation
C(t, s) and linear response function R(t, s).

A generic result of this path integral DMFT picture is

1. All neurons (all variables hi) decouple statistically. The presence of all other neurons only
enters through "macroscopic" quantities C(t, s) and R(t, s) known as the correlation and
response functions. The distribution of these functions over random realizations satisfies
a large deviations principle where the distribution over C,R has the form p(C,R) ∼
e−NS(C,R) where S is the DMFT action obtained from the path integral method.

2. Extra memory terms like
∫ t

0
R(t, s)h(s) appear which depend on the state at earlier times

s < t. The Markovian (deterministic) system for p(h|W) becomes stochastic and non-
markovian after marginalizing p(h) =

∫
dW p(h|W)p(W). I would argue these memory

terms are not obvious apriori but are systematic to compute in this framework.

Since this toy example is a linear dynamical system, one can also identify a connection between the
DMFT correlation and response and spectral properties of the random matrix W . We note that the
response has the form

R(t, s) =
1

N
Tr exp (W (t− s)) =

∫
dλρ(λ)eλ(t−s) (21)

where ρ(λ) is the eigenvalue density of W . In fact a Fourier transform of our DMFT equation
recovers the semicircle law ρ(λ) = 1

π ImR(iλ) = 1
2π

√
[4− λ2]+ for the eigenvalues.

In general, one can think of DMFT as a more powerful version of this method that can also handle
nonlinearities.

24

D.3 Example 2: Deep Linear Network Updates

In this section I will try showing how this DMFT approach can give useful insights into reasoning
about learning updates which are not obvious apriori. While our paper advocates for taking depth
L → ∞ in a residual network, we first thought about simply scaling depth in a standard MLP. Below
we show how the proliferation of response terms gives a different predicted scaling with L than if we
naively disregarded response terms.

Consider a non-residual linear MLP network with µP/mean-field scaling with L hidden layers with
N → ∞. Train the model for a single step of gradient descent with learning rate η on a data point
(x, y) with |x|2 = 1 and y = 1 and output multiplier 1/γ0. The forward pass variables hℓ(t) and the
backward pass variables gℓ(t) are defined recursively as

hℓ+1(t) =
1√
N

W ℓ(t)hℓ(t) =
1√
N

W ℓ(0)hℓ(t) + ηγ0
∑
s<t

Hℓ(t, s)gℓ+1(s) (22)

gℓ(t) =
1√
N

W ℓ(t)⊤gℓ+1(t) =
1√
N

W ℓ(0)⊤gℓ+1(t) + ηγ0
∑
s<t

Gℓ+1(t, s)hℓ+1(s) (23)

Now, naively, one may think that 1√
N
W ℓ(0)hℓ(t) has entries that are independently Gaussian with

covariance Hℓ(t, t′). However, this is incorrect and the DMFT response functions give an additional
correction.

The DMFT Equations for this Model Following the approach of [15, 11], we find the following
DMFT equations for the preactivations hℓ after 1 step of training

hℓ(0) = uℓ(0) , gℓ(0) = rℓ(0)

hℓ(1) = uℓ(1) +Aℓ−1(1, 0)gℓ(0) + ηγ0H
ℓ−1(1, 0)gℓ(0) (24)

where the random variables uℓ(0), uℓ(1) and rℓ(0) have the following covariance structure〈
uℓ(0)uℓ(0)

〉
= Hℓ−1(0, 0) ,

〈
uℓ(1)uℓ(0)

〉
= Hℓ−1(1, 0) ,

〈
uℓ(1)uℓ(1)

〉
= Hℓ−1(1, 1)〈

rℓ(0)rℓ(0)
〉
= Gℓ+1(0, 0), (25)

and the feature kernels Hℓ(t, t′), Gℓ(t, t′) and response functions Aℓ(t, t′) have the form

Hℓ(t, t′) =
〈
hℓ(t)hℓ(t′)

〉
, Gℓ(t, t′) =

〈
gℓ(t)gℓ(t′)

〉
Aℓ(t, t′) =

〈
δhℓ(t)

δrℓ(t′)

〉
(26)

These recursions can be solved with the initial conditions Hℓ(0, 0) = 1 and Gℓ(0, 0) = 1 which
implies that Hℓ(1, 0) = 1 so that

Aℓ(1, 0) = ηγ0 +Aℓ−1(1, 0) = ℓηγ0 (27)
Using this equation, we find

Hℓ(1, 1) =
〈
hℓ(1)hℓ(1)

〉
= Hℓ−1(1, 1) + η2γ2

0ℓ
2 = 1 + η2γ2

0

ℓ∑
k=1

k2 (28)

This is the DMFT prediction for the scale of the feature kernels after a step of training.

Neglecting the DMFT Response Gives Incorrect Depth Scalings for MLPs However, if we had
neglected the DMFT response functions and approximated the dynamics as

Hℓ(1, 1) = Hℓ−1(1, 1) + η2γ2
0 =⇒ Hℓ(1, 1) = 1 + η2γ2

0 ℓ (29)

The feature variance after t = 1 step of gradient descent Hℓ =
〈
hℓ(1)2

〉
after t = 1 step, the final

layer

HL ∼
{
1 + 1

3η
2γ2

0 L3 DMFT Response Included (Full DMFT)
1 + η2γ2

0 L DMFT Response Neglected
(30)

We see that without the response terms we get a completely different scaling prediction with L!

25

Scaled Residual Networks For 1√
L

residual block scaling (αL = 1
2), the response functions are

still important to accurately characterize the dynamics and contribute ΘL(1) corrections to the feature
learning dynamics as L → ∞. However, for the 1/L block multiplier scaling, the response functions
do not contribute in the limit. These facts are not-apriori obvious but follow from the DMFT analysis
(either path integral or cavity approach).

E DMFT Analysis for Transformers

In this section, we derive the limiting equations for the infinite head limit H → ∞ of training with
SGD. The results can be easily extended to SGD with momentum following the methods of [11, 15].

E.1 Deriving the DMFT Action

In this section we will derive the limiting equations of motion for stochastic gradient descent in the
H → ∞ limit. We start by defining the loss function which we aim to minimize

L =

∫
dx p(x) ℓ[f(x)] (31)

where p(x) is the data distribution of interest. We note that this can be the population loss or the
empirical loss on a finite collection of points. We let ∆(x, t) ≡ −∂ℓ[f(x,t)]

∂f(x,t) represent the error
signal on datapoint x. At each step of training t a batch of examples Bt = {x1(t), ...,x|Bt|(t)} is
generated and used to estimate a gradient for SGD. In what follows, we let Ex∼Bt

represent averages
over the minibatch at time t. We emphasize here that the batches Bt are assumed to be given or fixed
and are not averaged over as random draws from p(x), but rather our expectation simply denotes the
empirical mean over the minibatch at time t

Ex∼Bt
[f(x)] =

1

|Bt|
∑
x∈Bt

f(x). (32)

We start by expressing again the forward pass equations for each layer. To make this analysis more
compressed while still capturing all of the interesting aspects, we will first compute the equations
of motion in the absence of MLP layers (which were analyzed in prior works, see Appendix E) and
layernorm (which in the limit it will only apply a deterministic affine transformation to each of the
entries of the residual stream and the backward pass gradient variables as we will show explicitly in
Appendix E.6). In the absence of layernorm, our forward pass has the form

hℓ+1
s (x, t) = hℓ

s(x, t) +
β0

LαL
MHSA

(
hℓ(x, t)

)
s

(33)

where the MHSA layer is

MHSA
(
hℓ(x, t)

)
s
=

1√
H
∑
h∈[H]

∑
s′∈[S]

oℓ
hs′(x, t)σ

ℓ
hss′(x, t)

oℓ
hs(x, t) =

1√
N

W ℓ
Oh(t)v

ℓ
hs(x, t) (34)

vℓ
hs(x, t) =

1√
NH

W ℓ
V h(t)h

ℓ
s(x, t)

σℓ
hss′(x, t) = σ

(
Aℓ

h(x, t)
)
ss′

, Aℓ
hss′(x, t) =

1

NαA
kℓ
hs(x, t) · qℓ

hs′(x, t)

kℓ
hs(x, t) =

1

N
3
2−αA

√
H
W ℓ

Kh(t)h
ℓ
s(x, t)

qℓ
hs(x, t) =

1

N
3
2−αA

√
H
W ℓ

Qh(t)h
ℓ
s(x, t) , (35)

To compute the weight dynamics we again introduce the necessary gradient fields which we previously
argued have Θ(1) entries

gℓ
s(x, t) ≡ γ0NH ∂f(x, t)

∂hℓ
s(x, t)

(36)

26

We also introduce the following intermediate quantities which are necessary to characterize the
backward pass through the attention layer

M ℓ
hss′(x, t) ≡

1

N
√
H

gℓ+1
s (x, t) · oℓ

hs′(x, t)

σ̇ℓ
hss′s′′(x, t) ≡

∂σℓ
hss′(x, t)

∂Aℓ
hss′′(x, t)

(37)

We need to break up each of the weight matrices into their initial component and their update from
SGD

W ℓ
Oh(t) = W ℓ

Oh(0) +
β0η0γ0

L1−αL

√
NH

∑
t′<t

Ex∼Bt′

∑
s

∆(x, t′)g̃ℓ
s(x, t

′)vℓσ
hs(x, t

′)⊤

W ℓ
V h(t) = W ℓ

V h(0) +
β0η0γ0

L1−αL

√
NH

∑
t′<t

Ex∼Bt′

∑
ss′

∆(x, t′)σℓ
ss′ g̃

ℓ
Ohs(x, t

′)hℓ
s′(x, t

′)⊤

W ℓ
Kh(t) = W ℓ

Kh(0) +
β0η0γ0

L1−αL

√
NH

∑
t′<t

Ex∼Bt′

∑
ss′s′′

∆(x, t′)M ℓ
hss′(x, t

′)σ̇ℓ
ss′s′′q

ℓ
hs′′(x, t

′)hℓ
s(x, t

′)⊤

W ℓ
Qh(t) = W ℓ

Qh(0) +
β0η0γ0

L1−αL

√
NH

∑
t′<t

Ex∼Bt′

∑
ss′s′′

∆(x, t′)M ℓ
hss′(x, t

′)σ̇ℓ
ss′s′′k

ℓ
hs(x, t

′)hℓ
s′′(x, t

′)⊤

We can now express the residual stream as

hℓ+1
s (x, t) = hℓ

s(x, t) + β0L
−αL χ̄ℓ+1

Os (x, t)

+ η0γ0β
2
0L

−1
∑
t′<t

Ex′∼Bt′∆(x′, t′)
∑
s′

gℓ+1
s′ (x′, t′)V ℓσ

ss′ (x,x
′, t, s) (38)

where we introduced the fields

χ̄ℓ
Os(x, t) =

1√
H

H∑
h=1

∑
s′

χℓ
Ohs′(x, t)σ

ℓ
ss′(x, t) , χ

ℓ
Ohs(x, t) =

1√
N

W ℓ
Oh(0)v

ℓ
hs(x, t)

and the kernel

V ℓσ
ss′ (x,x

′, t, s) =
1

HN

H∑
h=1

vℓσ
hs(x, t) · vℓσ

hs′(x
′, t′) =

1

H
H∑

h=1

∑
s′′s′′′

σℓ
ss′′σ

ℓ
s′s′′′V

ℓ
hs′′s′′′(x,x

′, t, t′)

(39)

We see that, regardless of the choice of αL, the update to the residual stream due to feature learning
will scale as 1/L which is necessary for a stable infinite depth limit [11]. To track the dynamics of
the value vectors, we must also track the variables

χℓ
V hs(x, t) =

1√
NH

W ℓ
V h(0)h

ℓ
s(x, t) (40)

We similarly find the following for the key dynamics

kℓ
hs(x, t) = χℓ

Khs(x, t)

+
β0η0γ0

L1−αLN1−αA

∑
t′<t

Ex∼Bt′

∑
s′s′′s′′′

∆(x, t′)M ℓ
hs′s′′(x, t

′)σ̇ℓ
s′s′′s′′′q

ℓ
hs′′′(x, t

′)Hℓ
ss′(x,x

′, t, t′)

χℓ
Khs(x, t) =

1

N
3
2−αA

√
H
W ℓ

Kh(0)h
ℓ
s(x, t) (41)

and an analogous update equation holds for the query dynamics q

qℓ
hs(x, t) = χℓ

Qhs(x, t)

+
β0η0γ0

L1−αLN1−αA

∑
t′<t

Ex′∼Bt′

∑
s′s′′

∆(x′, t′)M ℓ
hss′(x

′, t′)σ̇ℓ
ss′s′′(x

′, t′)kℓ
hs′′(x

′, t′)Hℓ
ss′(x,x

′, t, t′)

χℓ
Qhs(x, t) =

1

N
3
2−αA

√
H
W ℓ

Qh(0)h
ℓ
s(x, t) (42)

27

We see that if the residual stream is frozen so that χK ,χQ are static, the keys and queries will only
evolve in the N,L → ∞ limits if αL = αA = 1 as we argued in the main text. From these equations
we can deduce the pre-attention values Aℓ

hss′(x, t).

Next, we examine the dynamics of the M ℓ
hs(x, t) variables which are defined as

M ℓ
hss′(x, t) =

1

N
√
H
gℓ+1
s (x, t) · oℓ

hs′(x, t).

We can verify that M ℓ
h are all ΘN,H(1) throughout training by expanding the dynamics of the

attention output oℓ
hs′(x, t).

E.1.1 Backward Pass

Next, we need to work out the recursions for the backward pass variables. After these equations have
been worked out, we can isolate the dependence of the full dynamics on all of the initial weights.

MHSA Layer We will start by differentiating through the MHSA layer

gℓ
s(x, t) =

∑
s′

(
∂h̃ℓ

s′(x, t)

∂hℓ
s(x, t)

⊤

)⊤

gℓ+1
s′

= gℓ+1
s (x, t) +

β0

LαL

∑
s′

(
∂

∂hℓ
s(x, t)

⊤ MHSA(hℓ(x, t))s′

)⊤

gℓ+1
s′ (x, t)

= gℓ+1
s (x, t) +

β0

LαL

√
NH

∑
s′

∑
h

W ℓ
V h(t)

⊤gℓσ
Ohs(x, t)

+
β0

LαL

√
NH

∑
h

W ℓ
Qh(t)

⊤kℓMσ̇
hs (x, t) +

β0

LαL

√
NH

∑
h

W ℓ
Kh(t)

⊤qℓMσ̇
hs (x, t) (43)

= gℓ+1
s (x, t) +

β0

LαL

[
ξ̄ℓQs(x, t) + ξ̄ℓKs(x, t) + ξ̄ℓV s(x, t)

]
+

β2
0η0γ0
L

∑
t<t′

Ex′∼t′∆(x′, t′)Gℓσ
Oss′(x,x

′, t, t′)hℓ
s′(x

′, t′)

+
β2
0η0γ0
L

∑
t<t′

Ex′∼t′∆(x′, t′)
[
KℓMσ̇

ss′ (x,x′, t, t′) +QℓMσ̇
ss′ (x,x′, t, t′)

]
hℓ
s′(x

′, t′) (44)

where we introduced the variables

gℓσ
Ohs(x, t) =

∑
s′

σℓ
ss′(x, t)g

ℓ
Ohs′(x, t)

kℓMσ̇
hs (x, t) =

∑
s′s′′

M ℓ
hs′s′′(x, t)σ̇

ℓ
hs′s′′′s(x, t)k

ℓ
hs′(x, t)

qℓMσ̇
hs (x, t) =

∑
s′′s′′′

M ℓ
hss′′(x, t)σ̇

ℓ
hss′′s′′′(x, t)q

ℓ
hs′′′(x, t)

and their associated kernels

Gℓσ
Oss′(x,x

′, t, t′) =
1

NH
H∑

h=1

gℓσ
Oh(x, t) · gℓσ

Ohs′(x, t)

KℓMσ̇
ss′ (x,x′, t, t′) =

1

NH
H∑

h=1

kℓMσ̇
hs (x, t) · kℓMσ̇

hs′ (x′, t′)

QℓMσ̇
ss′ (x,x′, t, t′) =

1

NH
H∑

h=1

qℓMσ̇
hs (x, t) · qℓMσ̇

hs′ (x′, t′) (45)

28

where we introduced the following random fields

ξ̄ℓV s(x, t) =
1√
H
∑
hs′

ξℓV hs′(x, t)σ
ℓ
hs′s(x, t)

ξℓV hs′(x, t) =
1√
N

W ℓ
V h(0)

⊤gℓ
Ohs′(x, t)

ξ̄ℓQs(x, t) =
1√
H
∑
hs′s′′

ξℓQhs′(x, t)σ̇
ℓ
hs′s′′s(x, t)M

ℓ
hs′s′′(x, t)

ξℓV hs′(x, t) =
1√
N

W ℓ
V h(0)

⊤gℓ
Ohs′(x, t)

ξ̄ℓKs(x, t) =
1√
H

∑
hs′′s′′′

ξℓKhs′′′(x, t)σ̇
ℓ
hss′′s′′′(x, t)M

ℓ
hss′′(x, t)

ξℓKhs′′′(x, t) =
1√
N

W ℓ
Kh(0)

⊤qℓ
hs′′′(x, t) (46)

E.1.2 Why we need αA = 1 for gradient stability

From the previous equation we see that regardless of the choice of αA we need to choose the variance
of W ℓ

Kh(0) and W ℓ
Qh(0) so that 1√

N
W ℓ

Kh(0)q
ℓ
h(x, t) has O(1) entries. This means that the entries

can at most Θ(1) and not Θ(N1−αA) as we originally stipulated in order to obtain k and q with
Θ(1) entries at initialization. Thus, with this required scaling, we must have either αA = 1 and Θ(1)
variance of the weights, which leads to attention variables which are Θ(N−1/2) at initialization or
we choose αA = 1

2 and choose k, q to have entries of scale Θ(N−1/2) at initialization. These both
lead to the same vanishing initial condition for the pre-attention variables. It thus suffices to consider
µP scaling αA = 1 to study the N → ∞ limit. We stress that this effect is not visible from a simple
heuristic analysis of the forward pass variables after an update like we perform in Appendix C.

Isolating all Dependence on Initial Conditions To summarize the previous sections, we begin by
collecting all of the stochastic fields which show up in the dynamics and depend on the initial weight
matrices. These quantities all come in pairs since for each matrix we need to consider the forward
and backward passes through the initial matrix.

The following variables are necessary to characterize the dynamics of the NH-dimensional residual
stream

χℓ
Ohs(x, t) =

1√
N

W ℓ
Oh(0)v

ℓ
hs(x, t) , ξ

ℓ
Ohs(x, t) =

1√
NH

W ℓ
Oh(0)

⊤gℓ+1
s (x, t)

χℓ
V hs(x, t) =

1√
NH

W ℓ
V h(0)h

ℓ
s(x, t) , ξ

ℓ
V hs(x, t) =

1√
N

W ℓ
V h(0)

⊤gℓ
Ohs(x, t)

χℓ
Qhs(x, t) =

1√
NH

W ℓ
Qh(0)h

ℓ
s(x, t) , ξ

ℓ
Qhs(x, t) =

1√
N

W ℓ
Qh(0)

⊤kℓ
hs(x, t)

χℓ
Khs(x, t) =

1√
NH

W ℓ
Kh(0)h

ℓ
s(x, t) , ξ

ℓ
Khs(x, t) =

1√
N

W ℓ
Kh(0)

⊤qℓ
hs(x, t) (47)

From these variables, we can reconstruct the entire dynamics for the h, g fields. We there-
fore study the moment generating functional for the above primitive random variables. Let

29

θ0 = {W ℓ
Oh,W

ℓ
V h(0),W

ℓ
Kh(0),W

ℓ
Qh(0)}

Z[{j}] = Eθ0
exp

∑
ℓhst

∫
dx
[
j
χℓ
O

hs (x, t) · χℓ
Ohs(x, t) + j

ξℓO
hs (x, t) · ξℓOhs(x, t)

]
× exp

∑
ℓhst

∫
dx
[
j
χℓ
K

hs (x, t) · χℓ
Khs(x, t) + j

ξℓK
hs (x, t) · ξℓKhs(x, t)

]
× exp

∑
ℓhst

∫
dx

[
j
χℓ
Q

hs (x, t) · χℓ
Qhs(x, t) + j

ξℓQ
hs (x, t) · ξℓQhs(x, t)

]
× exp

∑
ℓhst

∫
dx
[
j
χℓ
V

hs (x, t) · χℓ
V hs(x, t) + j

ξℓV
hs (x, t) · ξℓV hs(x, t)

] (48)

We multiply by the identity to enforce the definition of these random variables in terms of the initial
weights. As an example, we would have for the first random variable χℓ+1

s (x, t) and its corresponding
pair ξℓs(x, t)

Attention Output Matrices In this section we integrate over W ℓ
Oh,W

ℓ
Kh,W

ℓ
Qh.

lnEW ℓ
Oh(0)

exp

(
− i√

N

∑
ts

∫
dx TrW ℓ

Oh(0)
⊤
[
χ̂ℓ

Ohs(x, t)v
ℓ
hs(x, t)

⊤ +
1√
H
gℓ+1
s (x, t)ξ̂ℓOhs(x, t)

⊤
])

= −1

2

∑
tt′ss′

∫
dxdx′χ̂ℓ

Ohs(x, t) · χ̂ℓ
Ohs′(x

′, t′)V ℓ
hss′(x,x

′, t, t′)

= −1

2

∑
tt′ss′

∫
dxdx′ξ̂ℓOhs(x, t) · ξ̂ℓOhs′(x

′, t′)Gℓ+1
ss′ (x,x

′, t, t′)

− i
∑
tt′ss′

∫
dxdx′

[
ξ̂ℓOhs(x, t) · vℓ

hs(x, t)R
gℓ+1,χℓ

O

hss′ (x,x′, t, t′)
]

(49)

where we introduced the response function

R
gℓ+1,χℓ

O

hss′ (x,x′, t, t′) ≡ − i

N
√
H
gℓ+1
s (x, t) · χ̂ℓ

Ohs′(x
′, t′). (50)

Value Matrices Next, we average over the value matrices W ℓ
V h(0) which gives

lnEW ℓ
V h(0)

exp

(
− i√

N

∑
ts

∫
dx TrW ℓ

V h(0)
⊤
[

1√
H
χ̂ℓ

V hs(x, t)h
ℓ
s(x, t)

⊤ + gℓ
Ohs(x, t)ξ̂

ℓ
V hs(x, t)

⊤
])

= −1

2

∑
tt′ss′

∫
dxdx′

[
χ̂ℓ

V hs(x, t) · χ̂ℓ
V hs(x, t)H

ℓ
ss′(x,x

′, t, t′) + ξ̂ℓV hs(x, t) · ξ̂ℓV hs′(x
′, t′)Gℓ

Ohss′(x,x
′, t, t′)

]
− i

∑
tt′ss′

∫
dxdx′

[
χ̂ℓ

V hs(x, t) · gℓ
Ohs′(x

′, t′)R
hℓ,ξℓV
hss′ (x,x′, t, t′)

]
R

hℓ,ξℓV
hss′ (x,x′, t, t′) = − i

N
√
H
hℓ
s(x, t) · ξ̂ℓV hs′(x

′, t′) (51)

30

Key/Query Matrices Next, we need to perform the averages involving WKh(0) which has entries
resulting in

lnEW ℓ
Kh(0)

exp

(
− i√

N

∑
ts

∫
dx TrW ℓ

Kh(0)
⊤
[

1√
H
χ̂ℓ

Khs(x, t)h
ℓ
s(x, t)

⊤ + qℓ
hs(x, t)ξ̂

ℓ
Khs(x, t)

⊤
])

= −1

2

∑
tt′ss′

∫
dxdx′

[
χ̂ℓ

Khs(x, t) · χ̂ℓ
Khs(x, t)H

ℓ
ss′(x,x

′, t, t′) + ξ̂ℓKhs(x, t) · ξ̂ℓKhs′(x
′, t′)Qℓ

hss′(x,x
′, t, t′)

]
− i

∑
tt′ss′

∫
dxdx′

[
χ̂ℓ

Khs(x, t) · qℓ
hs′(x

′, t′)R
hℓ,ξℓK
hss′ (x,x′, t, t′)

]
R

hℓ,ξℓK
hss′ (x,x′, t, t′) ≡ − i

N
√
H
hℓ
s(x, t) · ξ̂ℓKhs′(x

′, t′) (52)

We follow an identical procedure for the query matrices W ℓ
Q(0).

lnEW ℓ
Qh(0)

exp

(
− i√

N

∑
ts

∫
dx TrW ℓ

Qh(0)
⊤
[

1√
H
χ̂ℓ

Qhs(x, t)h
ℓ
s(x, t)

⊤ + kℓ
hs(x, t)ξ̂

ℓ
Qhs(x, t)

⊤
])

= −1

2

∑
tt′ss′

∫
dxdx′

[
χ̂ℓ

Qhs(x, t) · χ̂ℓ
Qhs(x, t)H

ℓ
ss′(x,x

′, t, t′) + ξ̂ℓQhs(x, t) · ξ̂ℓQhs′(x
′, t′)Kℓ

hss′(x,x
′, t, t′)

]
− i

∑
htt′ss′

∫
dxdx′

[
χ̂ℓ

Qhs(x, t) · kℓ
hs′(x

′, t′)R
hℓ,ξℓQ
hss′ (x,x′, t, t′)

]
R

hℓ,ξℓQ
hss′ (x,x′, t, t′) ≡ − i

N
√
H
hℓ
s(x, t) · ξ̂ℓQhs′(x

′, t′) (53)

Enforce Kernel Definitions After this step, we can introduce new resolutions of the identity for
each of the kernels that appeared in the above computation

1 =

∫
dHℓ

ss′(x,x
′, t, t′)dĤℓ

ss′(x,x
′, t, t′)

2πiN−1H−1

exp
(
Ĥℓ

ss′(x,x
′, t, t′)

[
NHHℓ

ss′(x,x
′, t, t′)− hℓ

s(x, t) · hℓ
s′(x

′, t′)
])

1 =

∫
dGℓ

ss′(x,x
′, t, t′)dĜℓ

ss′(x,x
′, t, t′)

2πiN−1H−1

exp
(
Ĝℓ

ss′(x,x
′, t, t′)

[
NHGℓ

ss′(x,x
′, t, t′)− gℓ

s(x, t) · gℓ
s′(x

′, t′)
])

(54)

31

This is repeated for all of the response functions which involve sums over NH variables

1 =

∫
dR

gℓ+1,χℓ
O

hss′ (x,x′, t, t′)dR
vℓ,ξℓO
s′s (x′,x, t′, t)

2πiN−1

exp

(
−R

vℓ,ξℓO
hs′s (x′,x, t′, t)

[
NR

gℓ+1,ξℓO
hss′ (x,x′, t, t′) +

i√
H
gℓ+1
s (x, t) · χ̂ℓ

Ohs′(x
′, t′)

])

1 =

∫
dR

hℓξℓV
hss′ (x,x

′, t, t′)dR
gℓ
Oχℓ

V

hs′s (x′,x, t′, t)

2πiN−1

exp

(
−R

gℓ
Oχℓ

V

hs′s (x′,x, t′, t)

[
NR

hℓξℓV
hss′ (x,x

′, t, t′) +
i√
H
hℓ
s(x, t) · ξ̂ℓV hs′(x

′, t′)

])

1 =

∫
dR

hℓξℓK
hss′ (x,x′, t, t′)dR

qℓχℓ
K

hs′s (x′,x, t′, t)

2πiN−1

exp

(
−R

qℓχℓ
K

hs′s (x′,x, t′, t)

[
NR

hℓξℓK
hss′ (x,x′, t, t′) +

i√
H
hℓ
s(x, t) · ξ̂ℓKhs′(x

′, t′)

])

1 =

∫
dR

hℓξℓQ
hss′ (x,x

′, t, t′)dR
kℓχℓ

Q

hs′s (x′,x, t′, t)

2πiN−1

exp

(
−R

kℓχℓ
Q

hs′s (x′,x, t′, t)

[
NR

hℓξℓQ
hss′ (x,x

′, t, t′) +
i√
H
hℓ
s(x, t) · ξ̂ℓQhs′(x

′, t′)

])
There are other kernels which are only relevant within a single head including {Qℓ

h,K
ℓ
h, A

ℓ
h,M

ℓ
h}.

These

1 =

∫
dQℓ

hss′(x,x
′, t, t′)dQ̂ℓ

hss′(x,x
′, t, t′)

2πiN−1

exp
(
Q̂ℓ

hss′(x,x
′, t, t′)

[
NQℓ

hss′(x,x
′, t, t′)− qℓ

hs(x, t) · qℓ
hs′(x

′, t′)
])

1 =

∫
dKℓ

hss′(x,x
′, t, t′)dK̂ℓ

hss′(x,x
′, t, t′)

2πiN−1

exp
(
K̂ℓ

hss′(x,x
′, t, t′)

[
NKℓ

hss′(x,x
′, t, t′)− kℓ

hs(x, t) · kℓ
hs′(x

′, t′)
])

1 =

∫
dM ℓ

hss′(x, t)dM̂
ℓ
hss′(x, t)

2πiN−1

exp

(
M̂ ℓ

hss′(x, t)

[
NM ℓ

hss′(x, t)−
1√
H
g̃ℓ
s(x, t) · oℓ

hs′(x, t)

])
1 =

∫
dAℓ

hss′(x, t)dÂℓ
hss′(x, t)

2πiN−1

exp
(
Âℓ

hss′(x, t)
[
NAℓ

hss′(x, t)− kℓ
hs(x, t) · qℓ

hs′(x, t)
])

We now combine all of the order parameters into a large collection Q which are vectorized over all
layer, time, spatial and sample indices

Q = Vec{Hℓ, Gℓ, V ℓ,Kℓ, Qℓ}
∪ {Ĥℓ, Ĝℓ, V̂ ℓ, K̂ℓ, Q̂ℓ}
∪ {RvℓξℓO , Rgℓ+1,χℓ

O , Rkℓχℓ
Q , Rqℓ,χℓ

K}
∪ {Rhℓ,ξℓV , Rhℓ,ξℓK , Rhℓ,ξℓQ , Rhℓ,ξℓV }. (55)

After introducing this collection of order parameters, our original MGF satisfies a large deviation
principle with

Z ∝
∫
dQ exp (NHL S(Q)) (56)

32

where the DMFT action S(Q) has the form

S =
1

L

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′[Hℓ

ss′(x,x
′, t, t′)Ĥℓ

ss′(x,x
′, t, t′) +Gℓ

ss′(x,x
′, t, t′)Ĝℓ

ss′(x,x
′, t, t′)]

+
1

HL

H∑
h=1

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′

[
Q̂ℓ

hss′(x,x
′, t, t′)Qℓ

hss′(x,x
′, t, t′) + K̂ℓ

hss′(x,x
′, t, t′)Kℓ

hss′(x,x
′, t, t′)

]

+
1

HL

H∑
h=1

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′

[
V̂ ℓ
hss′(x,x

′, t, t′)V ℓ
hss′(x,x

′, t, t′)
]

+
1

HL

H∑
h=1

L∑
ℓ=1

∑
tss′

∫
dx
[
Âℓ

hss′(x, t)Aℓ
hss′(x, t) + M̂ ℓ

hss′(x, t)M
ℓ
hss′(x, t)

]

− 1

HL

H∑
h=1

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′

[
R

vℓ,ξℓO
hs′s (x′,x, t′, t)R

gℓ+1,ξℓO
hss′ (x,x′, t, t′) +R

gℓ
Oχℓ

V

hs′s (x′,x, t′, t)R
hℓξℓV
hss′ (x,x

′, t, t′)
]

− 1

HL

H∑
h=1

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′

[
R

qℓχℓ
K

hs′s (x′,x, t′, t)R
hℓξℓK
hss′ (x,x′, t, t′) +R

kℓχℓ
Q

hs′s (x′,x, t′, t)R
hℓξℓQ
hss′ (x,x

′, t, t′)

]

+
1

L
lnZres +

1

LH
H∑

h=1

L∑
ℓ=1

lnZℓ
MHSA,h (57)

33

The residual stream single site moment generating functional has the form

Zres =

∫ ∏
ℓhsxt

dχ̂Ohs(x, t)dχOhs(x, t)

2π

dξ̂V hs(x, t)dξV hs(x, t)

2π

dξ̂Khs(x, t)dξKhs(x, t)

2π

dξ̂Qhs(x, t)dξQhs(x, t)

2π

exp

(
−

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′Ĥℓ

ss′(x,x
′, t, t′)hℓ

s(x, t)h
ℓ
s′(x

′, t′)

)

exp

(
−

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′Ĝℓ

ss′(x,x
′, t, t′)gℓs(x, t)g

ℓ
s′(x

′, t′)

)

exp

−
L∑

ℓ=1

∑
h

∑
tss′

∫
dxM̂ ℓ

hss′(x, t)g
ℓ+1
s (x, t)oℓhs′(x, t)

exp

−1

2

∑
ℓh

∑
tt′ss′

∫
dxdx′χ̂ℓ

Ohs(x, t)χ̂
ℓ
Ohs′(x

′, t′)V ℓ
hss′(x,x

′, t, t′)

exp

−1

2

∑
ℓh

∑
tt′ss′

∫
dxdx′ξ̂ℓV hs(x, t)ξ̂

ℓ
V hs′(x

′, t′)Gℓ
Ohss′(x,x

′, t, t′)

exp

−1

2

∑
ℓh

∑
tt′ss′

∫
dxdx′ξ̂ℓKhs(x, t)ξ̂

ℓ
Khs′(x

′, t′)Qℓ
hss′(x,x

′, t, t′)

exp

−1

2

∑
ℓh

∑
tt′ss′

∫
dxdx′ξ̂ℓQhs(x, t)ξ̂

ℓ
Qhs′(x

′, t′)Kℓ
hss′(x,x

′, t, t′)

exp

i
∑
ℓh

∑
ts

∫
dxχ̂ℓ

Ohs(x, t)χ
ℓ
Ohs(x, t) + ξ̂ℓV hs(x, t)ξ

ℓ
V hs(x, t)

exp

i
∑
ℓh

∑
ts

∫
dxξ̂ℓQhs(x, t)ξ

ℓ
Qhs(x, t) + ξ̂ℓKhs(x, t)ξ

ℓ
Khs(x, t)

exp

− i√
H
∑
ℓh

∑
tt′ss′

∫
dxdx′R

vℓ,ξℓO
hss′ (x,x′, t, t′)χ̂ℓ

Ohs(x, t)g
ℓ+1
s′ (x′, t′)

exp

− i√
H
∑
ℓh

∑
tt′ss′

∫
dxdx′R

gℓ
Oχℓ

V

hss′ (x,x′, t, t′)ξ̂ℓV hs(x, t)h
ℓ
s′(x

′, t′)

exp

− i√
H
∑
ℓh

∑
tt′ss′

∫
dxdx′R

qℓχℓ
K

hss′ (x,x′, t, t′)ξ̂ℓKhs(x, t)h
ℓ
s′(x

′, t′)

exp

− i√
H
∑
ℓh

∑
tt′ss′

∫
dxdx′R

kℓχℓ
Q

hss′ (x,x′, t, t′)ξ̂ℓQhs(x, t)h
ℓ
s′(x

′, t′)

 (58)

Though this expression is cumbersome, we will show that, since Ĥ, Ĝ vanish at their saddle point
this MGF merely encodes the following statistical description of the fields of interest such as

χℓ
Ohs(x, t) = uℓ

Ohs(x, t) +
1√
H
∑
t′s′

∫
dx′R

vℓ,ξℓO
hss′ (x,x′, t, t′)gℓ+1

s′ (x′, t′)

uℓ
Ohs(x, t) ∼ GP

(
0, V ℓ

hss′(x,x
′, t, t′)

)
(59)

34

We note that h only depends on χ̄ℓ
O = 1√

H

∑H
h=1 χ

ℓ
Ohσ

ℓ
h so it has the form

χ̄ℓ
O =

1√
H

H∑
h=1

uℓ
Ohσ

ℓ
h + R̄vℓξℓOgℓ , R̄vℓξℓO =

1

H
H∑

h=1

R
vℓ,ξℓO
h σℓ

h (60)

This fact will be important when we take the large head limit with N fixed in Appendix E.3.

Next, we analyze the single site MGF for the hidden MHSA layers

Zℓ
MHSA,h =

∫ ∏
ℓhsxt

dξ̂Ohs(x, t)dξOhs(x, t)

2π

dχ̂V hs(x, t)dχV hs(x, t)

2π

dχ̂Khs(x, t)dχKhs(x, t)

2π

dχ̂Qhs(x, t)dχQhs(x, t)

2π

exp

(
−
∑
tt′ss′

∫
dxdx′Q̂ℓ

hss′(x,x
′, t, t′)qℓhs(x, t)q

ℓ
hs′(x

′, t′)

)

exp

(
−
∑
tt′ss′

∫
dxdx′K̂ℓ

hss′(x,x
′, t, t′)kℓhs(x, t)k

ℓ
hs′(x

′, t′)

)

exp

(
−
∑
tt′ss′

∫
dxdx′V̂ ℓ

hss′(x,x
′, t, t′)vℓhs(x, t)v

ℓ
hs′(x

′, t′)

)

exp

(
−
∑
tss′

∫
dxÂℓ

hss′(x, t)k
ℓ
hs(x, t)q

ℓ
hs′(x, t)

)

exp

(
−1

2

∑
tt′ss′

∫
dxdx′ξ̂ℓOhs(x, t)ξ̂

ℓ
Ohs′(x

′, t′)Gℓ+1
ss′ (x,x

′, t, t′)

)

exp

(
−1

2

∑
tt′ss′

∫
dxdx′χ̂ℓ

V hs(x, t)χ̂
ℓ
V hs(x, t)H

ℓ
ss′(x,x

′, t, t′)

)

exp

(
−1

2

∑
tt′ss′

∫
dxdx′χ̂ℓ

Khs(x, t)χ̂
ℓ
Khs(x, t)H

ℓ
ss′(x,x

′, t, t′)

)

exp

(
−1

2

∑
tt′ss′

∫
dxdx′χ̂ℓ

Qhs(x, t)χ̂
ℓ
Qhs(x, t)H

ℓ
ss′(x,x

′, t, t′)

)

exp

(
i
∑
ts

∫
dx ξ̂ℓOhs(x, t)ξ

ℓ
Ohs(x, t) + χ̂ℓ

V hs(x, t)χ
ℓ
V hs(x, t)

)

exp

(
i
∑
ts

∫
dx χ̂ℓ

Qhs(x, t)χ
ℓ
Qhs(x, t) + χ̂ℓ

Khs(x, t)χ
ℓ
Khs(x, t)

)

exp

(
−i
∑
tt′ss′

∫
dxdx′R

gℓ+1,χℓ
O

hss′ (x,x′, t, t′)ξ̂ℓOhs(x, t)v
ℓ
hs′(x

′, t′)

)

exp

(
−i
∑
tt′ss′

∫
dxdx′R

hℓ,ξℓV
hss′ (x,x′, t, t′)χ̂ℓ

V hs(x, t)g
ℓ
Ohs′(x

′, t′)

)

exp

−i
∑

htt′ss′

∫
dxdx′R

hℓ,ξℓQ
hss′ (x,x′, t, t′)χ̂ℓ

Qhs(x, t)k
ℓ
hs′(x

′, t′)

exp

−i
∑

htt′ss′

∫
dxdx′R

hℓ,ξℓK
hss′ (x,x′, t, t′)χ̂ℓ

Khs(x, t)q
ℓ
hs′(x

′, t′)

 (61)

35

E.2 Infinite N (Key/Query dimension) Limit

First, we take the N → ∞ limit with H, L fixed. This can be obtained with a simple saddle point
procedure using the action in the form written in the previous section. This calculation exactly mimics
prior works [15, 11] where all of the order parameters Q take on their values at the saddle point Q⋆.

∂S(Q)

∂Q
|Q⋆ = 0 (62)

Saddle Point Values for Order Parameters Under this saddle point, all of the order parameters
presented will concentrate and all neurons will become statistically independent. The governing
equations for the order parameters Q⋆ are given in terms of averages ⟨·⟩ over the single site densities
defined by the moment generating functionals Z and have the form

Hℓ
ss′(x,x

′, t, t′) =
〈
hℓ
s(x, t)h

ℓ
s′(x

′, t′)
〉
, Gℓ

ss′(x,x
′, t, t′) =

〈
gℓs(x, t)g

ℓ
s′(x

′, t′)
〉

M ℓ
hss′(x, t) =

〈
gℓ+1
s (x, t)oℓhs′(x, t)

〉
, V ℓ

hss′(x,x
′, t, t′) =

〈
vℓhs(x, t)v

ℓ
hs′(x

′, t′)
〉

Qℓ
hss′(x,x

′, t, t′) =
〈
qℓhs(x, t)q

ℓ
hs′(x

′, t′)
〉
, Kℓ

hss′(x,x
′, t, t′) =

〈
kℓhs(x, t)k

ℓ
hs′(x

′, t′)
〉

Aℓ
hss′(x, t) =

〈
kℓhs(x, t)q

ℓ
hs′(x, t)

〉
R

gℓ+1,χℓ
O

hss′ (x,x′, t, t′) =
√
H
〈

δgℓ+1
s (x, t)

δuℓ
Ohs′(x

′, t′)

〉

R
hℓ,ξℓV
hss′ (x,x′, t, t′) =

√
H
〈

δhℓ
s(x, t)

δrℓV hs′(x
′, t′)

〉

R
hℓ,ξℓK
hss′ (x,x′, t, t′) =

√
H
〈

δhℓ
s(x, t)

δrℓKhs′(x
′, t′)

〉

R
hℓ,ξℓQ
hss′ (x,x′, t, t′) =

√
H
〈

δhℓ
s(x, t)

δrℓQhs′(x
′, t′)

〉

R
vℓξ̂ℓO
hss′ (x,x

′, t, t′) =

〈
δvℓhs(x, t)

δrℓOhs′(x
′, t′)

〉

R
gℓ
Oχℓ

V

ss′ (x,x′, t, t′) =

〈
δgℓOhs(x, t)

δuℓ
V hs′(x

′, t′)

〉

R
kℓχℓ

Q

ss′ (x,x′, t, t′) =

〈
δkℓhs(x, t)

δuℓ
Qhs′(x

′, t′)

〉

R
qℓχℓ

K

ss′ (x,x′, t, t′) =

〈
δqℓhs(x, t)

δuℓ
Khs′(x

′, t′)

〉
(63)

36

Single Site Stochastic Processes Our fields of interest will obey the stochastic dynamics

χℓ
Ohs(x, t) = uℓ

hs(x, t) +
1√
H
∑
t′s′

∫
dx′R

vℓ,ξℓO
hss′ (x,x′, t, t′)gℓ+1

s′ (x′, t′)

uℓ
Ohs(x, t) ∼ GP

(
0, V ℓ

hss′(x,x
′, t, t′)

)
ξℓV hs(x, t) = rℓV hs(x, t) +

1√
H
∑
t′s′

∫
dx′R

gℓ
O,χℓ

V

hss′ (x,x′, t, t′)hℓ
s′(x

′, t′)

rℓV hs(x, t) ∼ GP
(
0, Gℓ

Ohss′(x,x
′, t, t′)

)
ξℓKhs(x, t) = rℓKhs(x, t) +

1√
H
∑
t′s′

∫
dx′R

qℓ,χℓ
K

hss′ (x,x′, t, t′)hℓ
s′(x

′, t′)

rℓKhs(x, t) ∼ GP
(
0, Qℓ

hss′(x,x
′, t, t′)

)
ξℓKhs(x, t) = rℓKhs(x, t) +

1√
H
∑
t′s′

∫
dx′R

qℓ,χℓ
K

hss′ (x,x′, t, t′)hℓ
s′(x

′, t′)

rℓKhs(x, t) ∼ GP
(
0, Qℓ

hss′(x,x
′, t, t′)

)
ξℓOhs(x, t) = rℓOhs(x, t) +

∑
t′s′

∫
dx′R

gℓ+1χℓ
O

hss′ (x,x′, t, t′)vℓhs′(x
′, t′)

rℓOhs(x, t) ∼ GP
(
0, Gℓ+1

ss′ (x,x
′, t, t′)

)
χℓ
V hs(x, t) = uℓ

V hs(x, t) +
∑
t′s′

∫
dx′R

hℓξℓV
hss′ (x,x

′, t, t′)gℓOhs′(x
′, t′)

uℓ
Ohs(x, t) ∼ GP

(
0, Hℓ

ss′(x,x
′, t, t′)

)
χℓ
Khs(x, t) = uℓ

Khs(x, t) +
∑
t′s′

∫
dx′R

hℓξℓK
hss′ (x,x′, t, t′)qℓhs′(x

′, t′)

uℓ
Khs(x, t) ∼ GP

(
0, Hℓ

ss′(x,x
′, t, t′)

)
χℓ
Qhs(x, t) = uℓ

Qhs(x, t) +
∑
t′s′

∫
dx′R

hℓξℓQ
hss′ (x,x

′, t, t′)kℓhs′(x
′, t′)

uℓ
Qhs(x, t) ∼ GP

(
0, Hℓ

ss′(x,x
′, t, t′)

)
(64)

Residual Stream The forward pass residual variables obey the following stochastic process

hℓ+1
s (x, t) = hℓ

s(x, t) + β0L
−αL χ̄ℓ

Ohs(x, t)

+ η0γ0β
2
0L

−1
∑
t′<t

Ex′∼Bt′∆(x′, t′)
∑
s′

gℓ+1
s′ (x′, t′)V ℓσ

ss′ (x,x
′, t, s) (65)

where

χ̄ℓ
Ohs(x, t) =

1√
H

H∑
h=1

∑
s′∈[S]

σℓ
hss′(x, t)χ

ℓ
Ohs′(x, t) (66)

the backward pass satisfies

gℓs(x, t) =gℓ+1
s (x, t) +

β0

LαL

[
ξ̄ℓQs(x, t) + ξ̄ℓKs(x, t) + ξ̄ℓV s(x, t)

]
+

β2
0η0γ0
L

∑
t<t′

Ex′∼t′∆(x′, t′)Gℓσ
Oss′(x,x

′, t, t′)hℓ
s′(x

′, t′)

+
β2
0η0γ0
L

∑
t<t′

Ex′∼t′∆(x′, t′)
[
KℓMσ̇

ss′ (x,x′, t, t′) +QℓMσ̇
ss′ (x,x′, t, t′)

]
hℓ
s′(x

′, t′)

(67)

37

The keys and queries have dynamics

kℓhs(x, t) = χℓ
Khs(x, t)

+
β0η0γ0

L1−αLN1−αA

∑
t′<t

Ex∼Bt′

∑
s′s′′s′′′

∆(x, t′)M ℓ
hs′s′′(x, t

′)σ̇ℓ
s′s′′s′′′q

ℓ
hs′′′(x, t

′)Hℓ
ss′(x,x

′, t, t′)

qℓhs(x, t) = χℓ
Qhs(x, t)

+
β0η0γ0
L1−αL

∑
t′<t

Ex′∼Bt′

∑
s′s′′

∆(x′, t′)M ℓ
hss′(x

′, t′)σ̇ℓ
ss′s′′(x

′, t′)kℓhs′′(x
′, t′)Hℓ

ss′(x,x
′, t, t′)

(68)

E.2.1 Multi-head Attention is Single-Head Attention as N → ∞

In this section, we use the derived saddle point equations for the N → ∞ limit and argue that they
imply that all heads in the MHSA layer learn identical attention matrices and contribute the same
feature updates to the residual stream. To do so, we proceed in a three step inductive argument.

1. First, we show that at initialization, all key, query, value and attention matrices
{Qh,Kh, Vh,Ah,Mh} are equal across heads.

2. Next, we show inductively that if these quantities {Qh,Kh, Vh,Ah,Mh} are identical across
heads up to some time, then that implies that the response functions Rh are also identical
across heads up to that time.

3. Lastly, we show that if the response functions Rh are identical up to some time, then that
implies that the MHSA kernels {Qh,Kh, Vh,Ah,Mh} will also be identical across heads at
future times.

First, we note that, at initialization, all of the MHSA kernels are identical across heads since

∀ h ∈ [H] Qℓ
hs(x,x

′, 0, 0) = Kℓ
hs(x,x

′, 0, 0) = V ℓ
hs(x,x

′, 0, 0) = Hℓ
ss′(x,x

′, 0, 0)

M ℓ
hss′(x, 0) = Aℓ

hss′(x, 0) = 0. (69)

Next, we need to analyze the response functions under an inductive hypothesis on the equality of
the MHSA kernels. We start by noting that all response functions are causal so we can group the
response functions that arise from χℓ

Oh with the feature learning update to the residual stream, writing
the following compressed equation for the forward and backward passes

hℓ+1
s (x, t) = hℓ

s(x, t) +
1√
H

H∑
h=1

∑
s′

uℓ
Ohs′(x, t)σ

ℓ
hss′(x, t)

+ η0γ0β
2
0L

−1
∑
t′<t

∑
s′

∫
dx′Chℓ

ss′(x,x
′, t, t′)gℓ+1

s′ (x′, t′)

gℓs(x, t) = gℓs(x, t) +
1√
H
∑
hs′

rℓV hs′(x, t)σ
ℓ
hs′s(x, t)

+
1√
H
∑
hs′s′′

rℓQhs′(x, t)σ̇
ℓ
hs′s′′s(x, t)M

ℓ
hs′s′′(x, t)

+
1√
H

∑
hs′′s′′′

rℓKhs′′′(x, t)σ̇
ℓ
hss′′s′′′(x, t)M

ℓ
hss′′(x, t)

+ η0γ0β
2
0L

−1
∑
t′<t

∑
s′

∫
dx′Cgℓ

ss′(x,x
′, t, t′)hℓ

s′(x
′, t′)

38

where Chℓ

and Cgℓ

only involve deterministic head-averaged kernels and thus do not carry a h index.
We now derive useful response function identities

√
H δhℓ

s(x, t)

δuℓ′
Ohs′(x

′, t′)
= Θ(ℓ− ℓ′)δ(t− t′)δ(x− x′)σℓ

hss′(x, t)

+ η0γ0β
2
0L

−1
ℓ∑

k=1

∑
t′′<t

∑
s′′

∫
dx′′Chk

ss′′(x,x
′′, t, t′′)

(
√
Hδgk+1

s′′ (x′′, t′′)

δuℓ′
Ohs′(x

′, t′)

)
√
H δgℓs′′(x

′′, t′′)

δuℓ′
Ohs′(x

′, t′)
= η0γ0β

2
0L

−1
L∑

k=ℓ

∑
t′′<t

∑
s′′

∫
dx′′Cgk

ss′′(x,x
′′, t, t′′)

(
√
H δhk

s′′(x
′′, t′′)

δuℓ′
Ohs′(x

′, t′)

)
(70)

These equations give the needed response function Rgℓ+1χℓ
O . From these equations we immediately

see that if σℓ
hss′(x, t) = σℓ

h′ss′(x, t) (which holds under our inductive hypothesis) then R
gℓ+1χℓ

O

h =

R
gℓ+1χℓ

O

h′ . This same argument is repeated for all other response functions that are computed as
derivatives of residual stream variables. We have thus found that

∀h, h′ ∈ [H] , R
gℓ+1χℓ

O

h = R
gℓ+1χℓ

O

h′ , R
hℓξℓV
h = R

hℓξℓV
h′ , R

hℓξℓK
h = R

hℓξℓK
h′ , R

hℓξℓQ
h = R

hℓξℓQ
h′

Now, we can analyze the dynamics of the keys, queries and values within a head using the above
property and the original inductive hypothesis that Ah = Ah′ ,Mh = Mh′ ... for times less than t. We
will now prove that this implies that these variables will remain the same. We start by examining the
keys and queries which have the form

kℓhs(x, t) = uℓ
Khs(x, t) +

∑
t′<t

∑
s′

∫
dx′Ckℓ

ss′(x,x
′, t, t′)qℓhs′(x

′, t′) (71)

qℓhs(x, t) = uℓ
Qhs(x, t) +

∑
t′<t

∑
s′

∫
dx′Cqℓ

ss′(x,x
′, t, t′)kℓhs′(x

′, t′) (72)

where Ckℓ

ss′(x,x
′, t, t′) and Cqℓ

ss′(x,x
′, t, t′) are two operators that do not carry a h (are the same

across all heads). These relations can be viewed as a linear system of equations. We let kℓ
h =

Vec{kℓhs(x, t)}sxt and analogously Ckℓ

= Mat{Ckℓ

ss′(x,x
′, t, t′)} as in the calculations of Bordelon

and Pehlevan [15, 41]. Using this shorthand, we can express the key/query and attention kernels as

kℓ
h =

[
I −Ckℓ

Cqℓ
]−1 [

uℓ
Kh +Ckℓ

uℓ
Qh

]
, qℓ

h =
[
I −CqℓCkℓ

]−1 [
uℓ
Qh +Cqℓuℓ

Kh

]
Kℓ

h =
[
I −Ckℓ

Cqℓ
]−1 [

Hℓ +Ckℓ

HℓCkℓ⊤
] [

I −Ckℓ

Cqℓ
]−1⊤

Qℓ
h =

[
I −CqℓCkℓ

]−1 [
Hℓ +CqℓHℓCqℓ⊤

] [
I −CqℓCkℓ

]−1⊤

Aℓ
h =

[
I −Ckℓ

Cqℓ
]−1

Ckℓ

HℓCqℓ⊤
[
I −CqℓCkℓ

]−1⊤
(73)

We thus see that the final kernels Kℓ
h,Q

ℓ
h,A

ℓ
h are all identical across heads. An identical argument

can be carried out for the value kernel V ℓ
h and the M ℓ

h order parameter.

E.3 Infinite H Limit

In this section, we compute the infinite head limit with N,L fixed. This limit is more technically
involved than the N → ∞ limit which required only a simple saddle point of the full DMFT action
over all kernels. At finite N we cannot use this technique since the kernels within MHSA blocks are
random variables. However, as was shown in Bordelon and Pehlevan [17], the DMFT action still
contains the necessary information to characterize the distribution over order parameters at finite N .
In the case of transformers with infinitely many heads, a subset of the order parameters introduced in

39

the previous section will still concentrate as H → ∞ including

Hℓ
ss′(x,x

′, t, t′) =
1

NHhℓ
s(x, t) · hℓ

s(x, t)

Gℓ
ss′(x,x

′, t, t′) =
1

NHgℓ
s(x, t) · gℓ

s(x, t)

V ℓσ
ss′ (x,x

′, t, t′) =
1

H
H∑

h=1

∑
s′′s′′′

V ℓσ
hs′′s′′′(x,x

′, t, t′)σℓ
hss′′(x, t)σ

ℓ
hss′′′(x

′, t′)

and many more correlation and response functions. We will call the full collection of all the necessary
head-averaged order parameters Qglobal. Further, not all of the stochastic fields will be relevant to
characterize the residual stream. Specifically, only head-averaged fields χ̄ℓ

O, ξ̄ℓV , ξ̄
ℓ
K , ξ̄ℓQ are relevant.

For example, the first of these is defined as

χ̄ℓ
Os(x, t) =

1√
H

H∑
h=1

∑
s′∈[S]

σℓ
hss′(x, t)χ

ℓ
Ohs′(x, t)

=
1√
H

H∑
h=1

∑
s′∈[S]

σℓ
hss′(x, t)

[
uℓ
Ohs′(x, t) +

1√
H
∑
t′s′′

∫
dx′R

vℓ,ξℓO
hs′s′′ (x,x

′, t, t′)gℓ+1
s′′ (x′, t′)

]

= ūℓ
Os′(x, t) +

∑
t′s′

∫
dx′R̄

vℓξℓOσ
ss′ (x,x′, t, t′)gℓ+1

s′ (x′, t′) (74)

We note that the above equation is true at any value of N but the covariance of uℓ
h and the response

functions R
vℓξℓO
h are random variables [17]. However, the residual stream only depends upon

collective, head-averaged variables

ūℓ
Os′(x, t) =

1√
H

H∑
h=1

∑
s′∈[S]

σℓ
hss′u

ℓ
Ohs′(x, t) (75)

R̄
vℓξℓOσ
ss′ (x,x′, t, t′) =

1

H
H∑

h=1

∑
s′′

σℓ
hss′′(x, t)R

vℓ,ξℓO
hs′′s′ (x,x

′, t, t′). (76)

The intuition behind the large H limit is that, even though σℓ
h and R

vℓξℓO
h are random variables, there

should be a central limit theorem for ūℓ
O and a law of large numbers for R̄vℓξℓOσ

ss′ (x,x′, t, t′).

E.3.1 Partitioning Order Parameters

Based on the intuition developed in the previous section, we now derive an alternative DMFT action
by tracking the moment generating functional for the head-averaged random fields that occur on the
residual stream χ̄ℓ

O, ξ̄
ℓ
V , ξ̄

ℓ
K , ξ̄ℓQ. To characterize this joint distribution, we must also of course keep

track of the random fields within the MHSA blocks such as {χℓ
Qh, χ

ℓ
Kh, χ

ℓ
V h, ξ

ℓ
Oh}h∈[H]. Repeating

the path integral setup of the previous section, we need to performing averages over all initial weights
such as

lnE{W ℓ
Oh(0)}

exp

− i√
NH

H∑
h=1

TrW ℓ
Oh(0)

⊤
∑
ts

∫
dx
[
ˆ̄χ
ℓ
Os(x, t)v

ℓσ
hs(x, t)

⊤ + gℓ+1
s (x, t)ξ̂ℓOhs(x, t)

⊤
]

= −1

2

∑
tt′ss′

∫
dxdx′ ˆ̄χ

ℓ
Os(x, t) · ˆ̄χ

ℓ
Os′(x

′, t′)V ℓσ
ss′ (x,x

′, t, t′)

− 1

2

∑
h∈[H]

∑
tt′ss′

∫
dxdx′ξ̂ℓOhs(x, t) · ξ̂ℓOhs′(x

′, t′)Gℓ+1
ss′ (x,x

′, t, t′)

− 1

NH
∑
tt′ss′

∫
dxdx′

(
ˆ̄χ
ℓ
Os(x, t) · gℓ+1

s′ (x′, t′)
)∑

h∈[H]

vℓσ
hs(x, t) · ξ̂ℓOhs′(x

′, t′)

(77)

40

It is clear that from this integral that the relevant self-averaging order parameters are

V ℓσ
ss′ (x,x

′, t, t′) =
1

NH
H∑

h=1

vℓσ
hs(x, t) · vℓσ

hs′(x
′, t′)

Gℓ
ss′(x,x

′, t, t′) =
1

NH
H∑

h=1

gℓ
s(x, t) · gℓ

s′(x
′, t′)

Rgℓχ̄O

ss′ (x,x′, t, t′) = − i

NHgℓ+1
s (x, t) · ˆ̄χℓ

Os′(x
′, t′)

R̄
vℓξℓO
ss′ (x,x′, t, t′) = − i

NH
H∑

h=1

vℓσ
s (x, t) · ξ̂ℓOhs′(x

′, t′) (78)

We repeat this same procedure for all collections of weights and arrive at the following set of order
parameters

Qglobal = Vec{Hℓ, Gℓ, V ℓσ,KℓMσ̇, QℓMσ̇, Gℓσ
O }

∪ {Ĥℓ, Ĝℓ, V̂ ℓσ, K̂ℓMσ̇, Q̂ℓMσ̇, Ĝℓσ
O }

∪ {Rgℓχ̄O , Rhℓξ̄V , Rhℓξ̄K , Rhℓξ̄Q}
∪ {R̄vℓξℓO , R̄gℓ

Oχℓ
V , R̄qℓχℓ

K , R̄kℓχℓ
Q} (79)

We expect that these order parameters will be self-averaging since they involve averages over H
variables. However, the other variables we introduced {Ah, Qh,Kh, Vh} will not concentrate at finite
N and will instead behave as random variables.

After introducing these order parameters we find that the moment generating functional has the form

Z =

∫
dQglobal exp (NHL S(Qglobal)) (80)

where S has the form

S =
1

L

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′[Hℓ

ss′(x,x
′, t, t′)Ĥℓ

ss′(x,x
′, t, t′) +Gℓ

ss′(x,x
′, t, t′)Ĝℓ

ss′(x,x
′, t, t′)]

+
1

L

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′[V ℓσ

ss′ (x,x
′, t, t′)V̂ ℓσ

ss′ (x,x
′, t, t′) +KℓMσ̇

ss′ (x,x′, t, t′)K̂ℓMσ̇
ss′ (x,x′, t, t′)]

+
1

L

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′[Gℓσ

Oss′(x,x
′, t, t′)Ĝℓσ

Oss′(x,x
′, t, t′) +QℓMσ̇

ss′ (x,x′, t, t′)Q̂ℓMσ̇
ss′ (x,x′, t, t′)]

− 1

L

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′[Rgℓχ̄O

ss′ (x,x′, t, t′)R̄
vℓξℓO
s′s (x′,x, t′, t) +R

hℓξ̄ℓV
ss′ (x,x′, t, t′)R̄

gℓ
Oχℓ

V

s′s (x′,x, t′, t)]

− 1

L

L∑
ℓ=1

∑
tt′ss′

∫
dxdx′[Rhℓξ̄K

ss′ (x,x′, t, t′)R̄
qℓχℓ

K

s′s (x′,x, t′, t) +R
hℓξ̄Q
ss′ (x,x′, t, t′)R̄

kℓχℓ
Q

s′s (x′,x, t′, t)]

+
1

L
lnZres +

1

NL

L∑
ℓ=1

lnZℓ
MHSA (81)

41

The single site moment generating function for the residual stream has the form

Zres =

∫ ∏
ℓsxt

dχ̄ℓ
Os(x, t)d ˆ̄χ

ℓ
Os(x, t)

2π

dξ̄ℓQs(x, t)d
ˆ̄ξℓQs(x, t)

2π

dξ̄ℓKs(x, t)d
ˆ̄ξℓKs(x, t)

2π

dξ̄ℓV s(x, t)d
ˆ̄ξℓV s(x, t)

2π

exp

(
−
∑

ℓtt′ss′

∫
dxdx′

[
hℓ
s(x, t)h

ℓ
s′(x

′, t′)Ĥℓ
ss′(x,x

′, t, t′) + gℓs(x, t)g
ℓ
s′(x

′, t′)Ĝℓ
ss′(x,x

′, t, t′)
])

exp

(
−1

2

∑
ℓtt′ss′

∫
dxdx′

[
ˆ̄χℓ
Os(x, t) ˆ̄χ

ℓ
Os′(x

′, t′)V ℓσ
ss′ (x,x

′, t, t′) + ˆ̄ξℓV s(x, t)
ˆ̄ξℓV s′(x

′, t′)Gℓσ
Oss′(x,x

′, t, t′)
])

exp

(
−1

2

∑
ℓtt′ss′

∫
dxdx′

[
ˆ̄ξℓKs(x, t)

ˆ̄ξℓKs′(x
′, t′)QℓMσ̇

ss′ (x,x′, t, t′) + ˆ̄ξℓQs(x, t)
ˆ̄ξℓQs′(x

′, t′)KℓMσ̇
ss′ (x,x′, t, t′)

])

exp

(
−i

∑
ℓtt′ss′

∫
dxdx′

[
ˆ̄χℓ
Os(x, t)g

ℓ+1
s′ (x′, t′)R̄

vℓξℓO
ss′ (x,x′, t, t′) + ˆ̄ξℓV s(x, t)h

ℓ
s′(x

′, t′)R̄
gℓ
Oχℓ

V

ss′ (x,x′, t, t′)
])

exp

(
−i

∑
ℓtt′ss′

∫
dxdx′

[
ˆ̄ξℓKs(x, t)h

ℓ+1
s′ (x′, t′)R̄

qℓχℓ
K

ss′ (x,x′, t, t′) + ˆ̄ξℓQs(x, t)h
ℓ
s′(x

′, t′)R̄
kℓχℓ

Q

ss′ (x,x′, t, t′)

])

exp

(
i
∑
ℓts

∫
dx
[
ˆ̄χℓ
Os(x, t)χ̄

ℓ
Os(x, t) +

ˆ̄ξℓV s(x, t)ξ̄
ℓ
V s(x, t)

])

exp

(
i
∑
ℓts

∫
dx
[
ˆ̄ξℓKs(x, t)ξ̄

ℓ
Ks(x, t) +

ˆ̄ξℓQs(x, t)ξ̄
ℓ
Qs(x, t)

])
(82)

We can express the MHSA single-head partition functions ZMHSA in terms of the remaining order
parameters within each head that will no longer concentrate at finite N

Qℓ
MHSA ={Aℓ,M ℓ, Qℓ,Kℓ, V ℓ, Gℓ

O, Âℓ, M̂ ℓ, Q̂ℓ, K̂ℓ, V̂ ℓ, Ĝℓ
O} (83)

After introducing these order parameters, we have

ZMHSA =

∫
dQℓ

MHSA exp
(
NSMHSA(Q

ℓ
MHSA)

)
SMHSA =

∑
tt′ss′

∫
dxdx′[Qℓ

ss′(x,x
′, t, t′)Q̂ℓ

ss′(x,x
′, t, t′) +Kℓ

ss′(x,x
′, t, t′)K̂ℓ

ss′(x,x
′, t, t′)]

+
∑
tt′ss′

∫
dxdx′[V ℓ

ss′(x,x
′, t, t′)V̂ ℓ

ss′(x,x
′, t, t′) +Gℓ

Oss′(x,x
′, t, t′)Ĝℓ

Oss′(x,x
′, t, t′)]

+
∑
tss′

∫
dx[Aℓ

ss′(x, t)Âℓ
ss′(x, t) +M ℓ

ss′(x, t)M̂
ℓ
ss′(x, t)] + lnZℓ

qkv (84)

42

where the key-query-value single site partition function has the form

Zℓ
qkv =

∫ ∏
sxt

dξ̂ℓOs(x, t)dξ
ℓ
Os(x, t)

2π

dχ̂ℓ
V s(x, t)dχ

ℓ
V s(x, t)

2π

dχ̂ℓ
Ks(x, t)dχ

ℓ
Ks(x, t)

2π

dχ̂ℓ
Qs(x, t)dχ

ℓ
Qs(x, t)

2π

exp

(
−
∑
tt′ss′

∫
dxdx′Q̂ℓ

ss′(x,x
′, t, t′)qℓs(x, t)q

ℓ
s′(x

′, t′)

)

exp

(
−
∑
tt′ss′

∫
dxdx′K̂ℓ

ss′(x,x
′, t, t′)kℓs(x, t)k

ℓ
s′(x

′, t′)

)

exp

(
−
∑
tt′ss′

∫
dxdx′V̂ ℓ

ss′(x,x
′, t, t′)vℓs(x, t)v

ℓ
s′(x

′, t′)

)

exp

(
−
∑
tt′ss′

∫
dxdx′V̂ ℓσ

ss′ (x,x
′, t, t′)vℓσs (x, t)vℓσs′ (x

′, t′)

)

exp

(
−
∑
tt′ss′

∫
dxdx′Ĝℓσ

Oss′(x,x
′, t, t′)gℓσOs(x, t)g

ℓσ
Os′(x

′, t′)

)

exp

(
−
∑
tt′ss′

∫
dxdx′K̂ℓMσ̇

ss′ (x,x′, t, t′)kℓMσ̇
s (x, t)kℓMσ̇

s′ (x′, t′)

)

exp

(
−
∑
tt′ss′

∫
dxdx′Q̂ℓMσ̇

ss′ (x,x′, t, t′)qℓMσ̇
s (x, t)qℓMσ̇

s′ (x′, t′)

)

exp

(
−
∑
tss′

∫
dxÂℓ

ss′(x, t)k
ℓ
s(x, t)q

ℓ
s′(x, t)

)

exp

(
−1

2

∑
tt′ss′

∫
dxdx′ξ̂ℓOs(x, t)ξ̂

ℓ
Os′(x

′, t′)Gℓ+1
ss′ (x,x

′, t, t′)

)

exp

(
−1

2

∑
tt′ss′

∫
dxdx′χ̂ℓ

V s(x, t)χ̂
ℓ
V s(x, t)H

ℓ
ss′(x,x

′, t, t′)

)

exp

(
−1

2

∑
tt′ss′

∫
dxdx′χ̂ℓ

Ks(x, t)χ̂
ℓ
Ks(x, t)H

ℓ
ss′(x,x

′, t, t′)

)

exp

(
−1

2

∑
tt′ss′

∫
dxdx′χ̂ℓ

Qs(x, t)χ̂
ℓ
Qs(x, t)H

ℓ
ss′(x,x

′, t, t′)

)

exp

(
i
∑
ts

∫
dx ξ̂ℓOs(x, t)ξ

ℓ
Os(x, t) + χ̂ℓ

V s(x, t)χ
ℓ
V s(x, t)

)

exp

(
i
∑
ts

∫
dx χ̂ℓ

Qs(x, t)χ
ℓ
Qs(x, t) + χ̂ℓ

Ks(x, t)χ
ℓ
Ks(x, t)

)

exp

(
−i

∑
tt′ss′s′′

∫
dxdx′R̄

gℓ+1χ̄ℓ
O

ss′ (x,x′, t, t′)ξ̂ℓOs(x, t)v
ℓ
s′′(x

′, t′)σℓ
ss′s′′(x

′, t′)

)

exp

(
−i
∑
tt′ss′

∫
dxdx′R

hℓ,ξ̄ℓV
hss′ (x,x′, t, t′)χ̂ℓ

V hs(x, t)g
ℓ
Ohs′(x

′, t′)

)

exp

−i
∑

htt′ss′

∫
dxdx′R

hℓξ̄ℓQ
hss′ (x,x

′, t, t′)χ̂ℓ
Qhs(x, t)k

ℓ
hs′(x

′, t′)

exp

−i
∑

htt′ss′

∫
dxdx′R

hℓξ̄ℓK
hss′ (x,x′, t, t′)χ̂ℓ

Khs(x, t)q
ℓ
hs′(x

′, t′)

 (85)

43

The saddle point equations for this limit are computed as derivatives with respect to Qglobal only,
reflecting that head-averages will converge as H → ∞

∂S

∂Qglobal
= 0. (86)

The final saddle point equations are given in terms of averages over the distribution of heads defined
by ZMHSA which we denote as ⟨·⟩MHSA as well as averages over the residual stream which we denote
as ⟨·⟩.
These equations give the following (we suppress the sequence indices to simplify the final expressions)

Hℓ(x,x′, t, t′) =
〈
hℓ(x, t)hℓ(x′, t′)

〉
, Gℓ(x,x′, t, t′) =

〈
gℓ(x, t)gℓ(x′, t′)

〉
V ℓσ(x,x′) =

〈
V ℓ(x,x′, t, t′)σℓ(x, t)σℓ(x′, t′)

〉
MHSA

Gℓσ
Oss′(x,x

′) =
〈
Gℓ

O(x,x
′, t, t′)σℓ(x, t)σℓ(x′, t′)

〉
MHSA

KℓMσ̇(x,x′) =
〈
Kℓ(x,x′, t, t′)M ℓ(x, t)M ℓ(x′, t′)σ̇ℓ(x, t)σ̇ℓ(x′, t′)

〉
MHSA

QℓMσ̇(x,x′) =
〈
Qℓ(x,x′, t, t′)M ℓ(x, t)M ℓ(x′, t′)σ̇ℓ(x, t)σ̇ℓ(x′, t′)

〉
MHSA

R
gℓ+1,χ̄ℓ

O

ss′ (x,x′, t, t′) =

〈
δgℓ+1

s (x, t)

δūℓ
Os′(x

′, t′)

〉
R

hℓ,ξ̄ℓV
ss′ (x,x′, t, t′) =

〈
δhℓ

s(x, t)

δr̄ℓV s′(x
′, t′)

〉
R

hℓ,ξℓK
ss′ (x,x′, t, t′) =

〈
δhℓ

s(x, t)

δr̄ℓKs′(x
′, t′)

〉
R

hℓ,ξℓQ
ss′ (x,x′, t, t′) =

〈
δhℓ

s(x, t)

δr̄ℓQs′(x
′, t′)

〉

R̄
vℓξ̂ℓO
hss′ (x,x

′, t, t′) =
1

N
Tr
〈

δvℓσ
s (x, t)

δrℓOs′(x
′, t′)⊤

〉
MHSA

R̄
gℓ
Oχℓ

V

ss′ (x,x′, t, t′) =
1

N
Tr

〈
δgℓσ

Ohs(x, t)

δuℓ
V hs′(x

′, t′)⊤

〉
MHSA

R̄
kℓχℓ

Q

ss′ (x,x′, t, t′) =
1

N
Tr

〈
δkℓMσ

s (x, t)

δuℓ
Qs′(x

′, t′)⊤

〉
MHSA

R̄
qℓχℓ

K

ss′ (x,x′, t, t′) =
1

N
Tr

〈
δqℓ

hs(x, t)

δuℓ
Khs′(x

′, t′)⊤

〉
MHSA

(87)

Residual Stream Dynamics The residual stream satisfies the following single-site dynamics

hℓ+1
s (x, t) =hℓ

s(x, t) +
β0

LαL
ūℓ
Os(x, t) +

β0

Lα

∑
t′s′

∫
dx′R̄

vℓξℓO
ss′ (x,x′, t, t′)gℓ+1

s′ (x′, t′)

+
η0γ0β

2
0

L

∑
t′<t

Ex′∼Bt′V
ℓσ
ss′ (x,x

′, t, t′)gℓ+1
s′ (x′, t′) , ūℓ

Os(x, t) ∼ GP(0, V ℓσ)

gℓs(x, t) =gℓ+1
s (x, t) +

β0

LαL

[
r̄ℓV s(x, t) + r̄ℓKs(x, t) + r̄ℓQs(x, t)

]
+

β0

Lα

∑
t′s′

∫
dx′[R̄

gℓ
Oχℓ

V

ss′ (x,x′, t, t′) + R̄
kℓχℓ

Q

ss′ (x,x′, t, t′) + R̄
qℓχℓ

K

ss′ (x,x′, t, t′)]hℓ
s′(x

′, t′)

+
η0γ0β

2
0

L

∑
t′<t

Ex′∼Bt′ [G
ℓσ
Oss′(x,x

′, t, t′) +KℓMσ̇
Oss′ (x,x

′, t, t′) +QℓMσ̇
Oss′(x,x

′, t, t′)]hℓ
s′(x

′, t′)

r̄ℓV s(x, t) ∼ GP(0, Gℓσ
O) , r̄ℓQs(x, t) ∼ GP(0, QℓMσ̇) , r̄ℓKs(x, t) ∼ GP(0, QℓMσ̇)

(88)

44

This matches the result provided in the main text which introduces a compressed

Cℓ
ss′(x,x

′, t, t′) =
1

η0γ0β0
R̄

vℓξℓO
ss′ (x,x′, t, t′) + pt′(x

′)∆(x′, t′)V ℓσ
ss′ (x,x

′, t, t′) (89)

where pt(x) =
1

|Bt|
∑

x′∈Bt
δ(x− x′) denotes the uniform distribution over the batch Bt.

E.4 Infinite L Limits

In this section, we discuss the two large L limits. This can be derived formally in two distinct ways.
First, one could start with the initial For this section, it suffices to reason about the scale of the
Gaussian noise which appears in the residual stream and the contribution from the response functions.

E.4.1 Basic Intuition

Deriving the infinite depth limits To gain intuition for the large H, L → ∞ limit, we use the fact that
the random variables χℓ = uℓ +Rℓgℓ decompose into a Gaussian uℓ which are uncorrelated across
layers and a linear response Rℓ are response functions. This implies that

hL =
β0

LαL

L∑
k=1

uk +
β0

LαL

L∑
k=1

Rkgk +
η0γ0β

2
0

L

L∑
k=1

V kσgk (90)

We first note that the sum of the Gaussians is a zero-mean random variable with standard deviation

1

Lα

L∑
k=1

uk ∼ O(L
1
2−αL) (91)

Thus, this integrated random variable will vanish unless αL = 1
2 .

Next, we can investigate the scale of the residual stream response functions. For instance

∂hℓ

∂uk
= O

(
L−αL

)
,
∂hℓ

∂rk
= O

(
L−αL

)
,
∂gℓ

∂uk
= O

(
L−αL

)
,
∂gℓ

∂rk
= O

(
L−αL

)
1

LαL

ℓ∑
k=1

Rkgk = O
(
L1−2αL

)
(92)

As a consequence, we see that the effect of the Gaussian and linear response terms will vanish as
L → ∞ provided that αL > 1

2 . We will consider first, the case where α = 1 which gives an ODE
like limit for the residual updates before moving onto the more involved αL = 1

2 case.

To formally take the L → ∞ limit, we redefine all of the preactivation fields and kernels in terms of
layer time τ defined as

τ = lim
L→∞

ℓ

L
∈ [0, 1]. (93)

For example, the residual kernels are defined as

Hss′(τ,x,x
′, t, t′) ≡ lim

L→∞
HLτ

ss′ (x,x
′, t, t′). (94)

The finite difference equations for the residual updates L(hℓ+1 − hℓ) ∼ ∂
∂τ h(τ) become differential

updates (either SDE-like or ODE-like depending on αL) [46, 11].

E.4.2 ODE Limit αL = 1

First, we investigate the case of αL = 1. In this case, the H, L → ∞ limit results in a complete
disappearance of the χ̄ℓ

O, ξ̄
ℓ
V , ξ̄

ℓ
K , ξ̄ℓQ fields.

∂τhs(τ,x, t) = η0γ0β
2
0

∑
t′<t

Ex′∼Bt
∆(x′, t′)V σ

ss′(τ,x,x
′, t, t′)gs′(τ

′,x′, t′)

− ∂τgs(τ,x, t) = η0γ0β
2
0

∑
t′<t

Ex′∼Bt∆(x′, t′)[Gσ
ss′(τ,x,x

′, t, t′) +KMσ̇
ss′ (τ,x,x′, t, t′)]gs′(τ

′,x′, t′)

+ η0γ0β
2
0

∑
t′<t

Ex′∼Bt∆(x′, t′)[QMσ̇
ss′ (τ,x,x

′, t, t′)]gs′(τ
′,x′, t′) (95)

45

E.4.3 SDE Limit αL = 1
2

This αL = 1
2 limit is more technically involved since neither the Gaussian terms from the DMFT

nor the response functions vanish. For the Gaussian terms, we note that the sums of the independent
Gaussians are all multiplied by 1√

L
∼

√
dτ , which can be interpreted as integrated Brownian motion

in the limit

lim
L→∞

1√
L

ℓ∑
k=1

uk →
∫ τ

0

du(τ ′)

⟨du(τ)du(τ ′)⟩ = V σ(τ)δ(τ − τ ′)dτdτ ′ (96)

Following the derivation of Bordelon et al. [11], which maintains the exact dependence on the full
integrated response and provides the result as an integrated SDE

hs(τ,x, t) = β0

∫ τ

0

dūs(τ
′x, t) + η0γ0β

2
0

∑
t′<t

Ex′∼Bt′

∫ τ

0

dτ ′Css′(τ,x,x
′, t, t′)gs′(τ

′,x′, t′)

Css′(τ,x,x
′, t, t′) =

1

η0γ0β0
R̄vξO

ss′ (τ,x,x
′, t, t′) + pt′(x

′)∆(x′, t′)V σ
ss′(τ,x,x

′, t, t′). (97)

Combining the forward pass equations from the previous two subsection recovers the Result 3 of the
main text. This is combined with a complementary equation for the backward pass.

E.5 Effect of MLP Layers

Adding the MLP block to the residual stream can also be easily handled with the methods of the
preceeding sections. The forward pass equations in this case take the form

h̃ℓ
s(x, t) = hℓ

s(x, t) +
β0

LαL
MHSA

(
hℓ(x, t)

)
s

(98)

hℓ+1(x, t) = h̃ℓ
s(x, t) +

β0

LαL
MLP

(
h̃ℓ
s(x, t)

)
, (99)

where the MLP layer is

MLP(h̃ℓ
s) =

1√
NH

W ℓ,2ϕ
(
h̃ℓ,1
s

)
, h̃ℓ,1 =

1√
NH

W ℓ,1h̃ℓ
s (100)

The following gradient fields are necessary

gℓ
s(x, t) ≡ γ0NH ∂f(x, t)

∂hℓ
s(x, t)

, g̃ℓ
s(x, t) ≡ γ0NH ∂f(x, t)

∂h̃ℓ
s(x, t)

g̃ℓ,1
s (x, t) ≡ γ0NH ∂f(x, t)

∂h̃ℓ,1
s (x, t)

(101)

W ℓ,2(t) = W ℓ,2(0) +
β0η0γ0

L1−αL

√
NH

∑
t′<t

Ex∼Bt′

∑
s

∆(x, t′)gℓ+1
s (x, t′)ϕ(h̃ℓ,1

s (x, t′))⊤

W ℓ,1(t) = W ℓ,1(0) +
β0η0γ0

L1−αL

√
NH

∑
t′<t

Ex∼Bt′

∑
s

∆(x, t′)g̃ℓ,1
s (x, t′)h̄ℓ

s(x, t
′)⊤ (102)

The MLP hidden layer dynamics is much simpler to characterize and resembles the structure analyzed
in prior works on infinite width networks [15].

h̃ℓ,1
s (x, t) = χ̃ℓ,1

s (x, t) +
β0η0γ0
L1−αL

∑
t′<t

Ex∼Bt′

∑
s

∆(x, t′)g̃ℓ,1
s (x, t′)Hℓ

ss′(x,x
′, t, t′) (103)

Again, we see that the inner dynamics for h̃ℓ,1 due to the weight updates in this layer scale as
L−1+αL , suggesting the need to choose αL = 1 if we desire this hidden layer to contribute to the
representational updates.

46

MLP Layer Gradients For the MLP layer we have the simpler backpropagation equations

g̃ℓ,1
s (x, t) =

(
∂hℓ+1

s (x, t)

∂h̃ℓ,1
s (x, t)

)⊤

gℓ+1
s (x, t)

=
β0

Lα
L

ϕ̇(h̃ℓ,1
s (x, t))⊙

[
1√
NH

W ℓ,2(t)⊤gℓ+1
s (x, t)

]
g̃ℓ
s(x, t) =

1√
NH

W ℓ,1(t)⊤g̃ℓ,1
s (x, t) (104)

The components of these fields that depend on initial conditions are

ξℓ,1s (x, t) =
1√
NH

W ℓ,2(0)⊤gℓ+1
s (x, t)

ξℓs(x, t) =
1√
NH

W ℓ,1(0)⊤gℓ,1
s (x, t) (105)

MLP Matrices After utilizing these resolutions of the identity for all s,x, t, we can integrate over
the weights W ℓ,2(0)

lnEW ℓ,2(0) exp

(
− i√

NH
∑
ts

∫
dx TrW ℓ,2(0)⊤

[
χ̂ℓ+1

s (x, t)ϕ(h̃ℓ,1
s (x, t))⊤ + gℓ+1

s (x, t)ξ̂ℓ,1s (x, t)⊤
])

= −1

2

∑
tt′ss′

∫
dxdx′

[
χ̂ℓ+1

s (x, t) · χ̂ℓ+1
s′ (x′, t′)Φℓ,1

ss′(x,x
′, t, t′) + ξ̂ℓ,1s (x, t) · ξ̂ℓ,1s′ (x

′, t′)Gℓ+1
ss′ (x,x

′, t, t′)
]

− i
∑
tt′ss′

∫
dxdx′

[
χ̂ℓ+1

s (x, t) · gℓ+1
s′ (x′, t′)Rℓ,1

ss′(x,x
′, t, t′)

]
(106)

where we introduced the response function

Rℓ,1
ss′(x,x

′, t, t′) ≡ − i

NHϕ
(
h̃ℓ,1
s (x, t)

)
· ξ̂ℓ,1s′ (x

′, t′) (107)

We can perform an identical step to integrate over W ℓ,1(0). This gives us

lnEW ℓ,1(0) exp

(
− i√

NH
∑
ts

∫
dx TrW ℓ,1(0)⊤

[
ˆ̃χℓ,1
s (x, t)h̃ℓ

s(x, t)
⊤ + gℓ,1

s (x, t)ξ̂ℓs(x, t)
⊤
])

= −1

2

∑
tt′ss′

∫
dxdx′

[
ˆ̃χℓ,1
s (x, t) · ˆ̃χℓ,1

s′ (x
′, t′)H̃ℓ

ss′(x,x
′, t, t′) + ξ̂ℓs(x, t) · ξ̂ℓs′(x′, t′)Gℓ,1

ss′(x,x
′, t, t′)

]
− i

∑
tt′ss′

∫
dxdx′

[
χ̂ℓ,1

s (x, t) · gℓ+1
s′ (x′, t′)R̃ℓ

ss′(x,x
′, t, t′)

]
(108)

where we introduced

R̃ℓ
ss′(x,x

′, t, t′) = − i

NH h̃ℓ
s(x, t) · ξ̂ℓh(x′, t′) (109)

E.6 Effect of Layer Norm on the Limiting Process

Layernorm The derivative of layer-norm ∂h̄ℓ
s′

∂hℓ⊤
s′

acts as the following in the large H limit

∂h̄

∂h⊤ =
1√

σ2 + ϵ

(
I − 1

NH11⊤
)
− 1

NH
1

(σ2 + ϵ)3/2
[h− µ1] [h− µ1]

⊤ (110)

In the limit of H → ∞ the variables µ = 1
NHh ·1 and σ2 = 1

NH |h−µ1|2 will become deterministic
over random initializations. We thus just have to consider how these types of vectors act on gradients(

∂h̄

∂h⊤

)⊤

g =
1√

σ2 + ϵ
(g − 1µg)−

1

(σ2 + ϵ)3/2
[h− µ1]

(
1

NH [h− µ1]
⊤
g

)
. (111)

Each of these operations will lead to one inner product that will be self averaging µg = 1
NH1 · g or(

1
NH [h− µ1]

⊤
g
)

. Thus this operation will not alter the backward pass in terms of scaling.

47

F Compute Resources and Experimental Details

Each of the experimental runs performed in this paper were all performed on single NVIDIA H100
GPU. Each run of the full CIFAR-5M took anywhere from 5 minutes to 1 hour depending on model
size. Each run of the C4 training took anywhere from 1 hour to 6 hours depending on model size and
total amount of training steps.

The language model trained on C4 used a context length of 256 and the GPT-tokenizer from Hug-
gingface. Sequences that were too short were concatenated with other sentences to reach the full
context length rather than padding the end of the sequence. We use trainable positional encodings
and separate embedding and decoding parameters as implemented in Appendix F.

48

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim to analyze various limits of transformer training and provide theoret-
ical and empirical results to that effect.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

49

Justification: We provide a limitations and future directions section in our conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide derivations of all of our results at the level of rigor of physics
calculations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide example FLAX code which shows how our models are imple-
mented. We also mention the datasets and hyperparameters used.
Guidelines:

50

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code in the uploaded supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

51

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the number of ensembles and general experimental details (SGD
vs Adam, depth, width, head number etc) in all of our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide errorbars wherever appropriate, usually averaging and measuring
standard deviation over different initializations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a section mentioning the compute resources used. All experiments
can be performed on a single Nvidia A100 or H100 GPU. The details on run times for each
experiment are provided in Appendix F.

Guidelines:

52

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are conforming to the code of ethics and preserve our anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is of a theoretical nature and is about general scientific understanding
of transformer models.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

53

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: We are not releasing any data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the papers that introduce the common crawl (C4) and the CIFAR-5M
datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

54

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not perform any crowdsourcing experiments or research involving
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There are no study participants in our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

55

	Introduction
	Related Works

	Parameterizations with Feature Learning Limits
	Model Scalings
	Learning Rate Scalings

	Infinite Limits of Learning Dynamics
	Mean Field Theory Treatment of the Learning Dynamics
	Scaling Dimension-Per-Head N
	Scaling Number of Heads
	Infinite Depth Limits

	Experiments in Realistic Settings
	Discussion
	Additional Figures
	Implementations for Vision and Causal Language Modeling Transformers
	Simple Heuristic Scaling Analysis
	Learning Rate Scalings
	Heuristic Analysis of Feature Changes Under SGD
	Heuristic Analysis of Feature Changes Under Adam
	What Counts as Feature Learning for Attention Layers?

	DMFT Primer and Simple Examples
	Main Conceptual Idea of the Approach
	Example 1: Linear Dynamics with GOE Matrix
	Example 2: Deep Linear Network Updates

	DMFT Analysis for Transformers
	Deriving the DMFT Action
	Backward Pass
	Why we need A = 1 for gradient stability

	Infinite N (Key/Query dimension) Limit
	Multi-head Attention is Single-Head Attention as N

	Infinite H Limit
	Partitioning Order Parameters

	Infinite L Limits
	Basic Intuition
	ODE Limit L = 1
	SDE Limit L = 12

	Effect of MLP Layers
	Effect of Layer Norm on the Limiting Process

	Compute Resources and Experimental Details

