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Abstract

In this paper, we introduce a large-scale dataset of papers annotated with their
reported Top-1 accuracy on the ImageNet test set, and compare existing and new
automatic metric extraction methods, along with a detailed qualitative error analysis.
Our study highlights common reporting challenges—such as ambiguous dataset
references, table-only metrics, and missing Top-1 values—that drive extraction
errors. We curate and release a dataset of 200 manually annotated ImageNet
classification papers, larger than prior work, and evaluate our pipeline against both
existing approaches and ablated baselines.

1 Introduction

Scientific performance metrics – such as top-1 accuracy on ImageNet – play a central role in
benchmarking model progress, establishing state-of-the-art (SOTA) claims, and guiding research
trends [Bornmann et al., 2021, Barry et al., 2022]. However, metrics are often inconsistently reported
across research papers: embedded in tables, mentioned only in captions or abstracts, expressed as
error rates, or omitted entirely. As a result, extracting similar metrics at scale remains a largely
manual and error-prone process.

In this paper, we present a case study in the automated extraction of top-1 accuracy for image
classification reported on ImageNet papers. We construct and release a manually-annotated dataset of
200 ImageNet classification papers—substantially larger than SCILEAD [Şahinuç et al., 2024],
which annotated 43 papers across various NLP tasks. By releasing our annotated dataset at
https://anonymous.4open.science/r/imagenet-leaderboard-samples, we aim to establish a
reproducible benchmark for LLM-assisted scientific metric extraction and support broader efforts in
automating literature understanding in machine learning research.

2 Annotated dataset

In this section, we describe the construction of our dataset, which is publicly accessible at https:
//anonymous.4open.science/r/imagenet-leaderboard-samples.

2.1 Paper collection

Our dataset originates from an automated collection of publication entries through the PaperWithCode
platform, focusing on computer vision papers that report results on the ImageNet dataset for the image
classification task. We implemented a simple “try/catch” script to repeatedly query PaperWithCode
API for PDFs or arXiv links, automatically skipping entries that lacked valid URLs or produced
parsing errors. The step yielded an initial pool of candidate papers, all of which claimed to present top-
1 accuracy on ImageNet or its widely recognized variants such as Tiny-ImageNet [Le and Yang, 2015].

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: NeurIPS 2025 LLM
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We programmatically retrieved ImageNet image-classification papers using the paper_dataset_list
endpoint of the PaperWithCode API, which returns results in its default (unspecified) order.1 We first
selected 12 papers to tune our prompts and then curated another 100 papers to build our development
set. For the validation set, we retrieved all papers (focused on the Image Classification task and
ImageNet) from PapersWithCode and selected the top 100 entries, sorted by descending publication
date, with preference given to those published in journals afterwards.

2.2 Label-verification protocol

From the successfully retrieved documents, we curated a corpus of papers on image classification
using the ImageNet dataset. We performed a manual examination of the performance metric reported
in each individual paper. Specifically, we identified references to “top-1 accuracy," and pinpointed
the corresponding numerical values. We manually annotated each paper with explicit labels such as
(Dataset: ImageNet, Metric: Top-1 Accuracy).

2.3 Dataset statistics and alignment on ImageNet

Most papers in our corpus report Top-1 Accuracy on the ImageNet dataset. However, many of them
were evaluated on variants or subsets of the ImageNet dataset, such as Tiny-ImageNet [Le and Yang,
2015], ImageNet-100 and etc. For instance, it is commonplace for evaluations for ILSVRC-2012 or
ILSVRC-2015, each of which differ slightly in the number of classes or distribution of images.

Table 2 summarizes the distribution of ground-truth top-1 accuracy presence in both the develop-
ment and validation sets. In both subsets, only about one-quarter of the papers explicitly report
a top-1 accuracy value. This skew reflects a common trend in the literature, where performance
metrics—particularly for ImageNet—are often reported only on validation sets, or embedded within
complex tables or figures, making automated extraction more challenging. In Fig. 3, we examine the
reported metrics from each paper—often referencing only a validation subset or using a multi-crop
evaluation strategy—and align them to a consistent schema. We attempt to unify various reporting
practices; however, directly comparing reported performance metrics across the literature remains
challenging.

2.4 Comparison with SCILEAD [Şahinuç et al., 2024]

While SCILEAD [Şahinuç et al., 2024] introduces a broad leaderboard spanning multiple NLP tasks
and metrics, our dataset is uniquely focused on Image Classification on the ImageNet dataset. We
curate a collection of 200 papers that explicitly report top-1 accuracy for the ImageNet classification
task, with manually verified ground-truth annotations. We observe 26 papers with metric presence in
the development set and 27 in the validation set (demonstrated in Table 2). Moreover, the presence
or absence of metrics in our dataset is not artificially balanced or stratified. A detailed qualitative
analysis of papers with and without reported metrics is provided in Section 3.2.

3 Experimental results and discussion

3.1 Experimental results

We benchmarked our pipelines—VOTE-ENSEMBLE, EXTRACT-AND-VERIFY, against the existing
SCILEAD baseline in our full annotated validation and development set described in Section 2.
Figure 1 presents results on the validation set, and Figure 2 shows results on the development
set, reporting presence–correctness confusion matrices for the evaluated extraction systems. Full
definitions, additional baselines, and regression metrics are provided in Appendix E.

3.2 Qualitative analysis

We illustrate our results with a qualitative analysis of easy and difficult cases, highlighting the
challenges from the evaluated extraction systems. We extend our qualitative analysis in Appendix F.

1The API documentation does not state the sorting criterion; see https://paperswithcode-client.
readthedocs.io/en/latest/api/client.html.
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(a) (b) (c) (d)

Figure 1: Presence–correctness confusion matrices on the validation set in comparison with extraction
quality across four methods: (a) VOTE-ENSEMBLE (Ours*), (b) EXTRACT-AND-VERIFY (Ours*),
(c) EXTRACT-only (Ours*), and (d) SCILEAD. Each matrix summarizes extraction outcomes con-
ditioned on whether a Top-1 accuracy value is present in the ground-truth (rows) and whether the
system produced an extraction (columns). Green cells indicate correct extractions, red cells indicate
incorrect or hallucinated values, and blank cells indicate non-extraction when ground truth is absent.

(a) GPT Vote Ensemble (Ours*) (b) Extract-and-Verify (Ours*) (c) SCILEAD

Figure 2: Error matrices comparing extraction quality across methods on the development set.

3.2.1 Straightforward (“easy”) examples
• Abstract, 1807.11626v3 (Fig. 5): “On the ImageNet classification task, our MnasNet

achieves 75.2% top-1 accuracy . . . ” —A single numeric value appears in the abstract; the metric
name and dataset are explicit.

3.2.2 Difficult (“challenging”) Examples
• Alternate dataset variant (Fig. 7): “V-CapNet reaches 99.83% validation accuracy on the

Natural Images dataset.” —Dataset differs from canonical ImageNet; the numeric value should be
excluded from extraction.

• Table-only Top-1 value (Fig. 35): ImageNet top-1 accuracy (76.82%) is given only in a table, with no
reference in the main text. —Requires table reading; plain text search may be error-prone.

• Multiple candidate Top-1 values (Fig. 10): A table in 1909.13863v1 lists four Case rows with
different top-1 accuracies (55.5–57.1%). —Require an investigation on which value is the main result
or flag ambiguity.

• Top-1 accuracy omitted, only Top-5 present (Fig. 11): Sentence in 1807.10119v3 reports
“top-5 accuracy drops slightly . . . ” while never stating Top-1. —Require returning “missing” rather
than hallucinate a Top-1 value.

• Test vs. Validation ambiguity (Fig. 16): “Classification performance comparison on ImageNet
(single crop, single model)... ” —Mentions classification on ImageNet without specifying
test/validation split, creating ambiguity on the split.

• Top-1 metrics embedded in large metric tables (Fig. 9, Fig. 21–30, with additional examples in
Fig. 31–34, detailed in Section F.1): The top-1 accuracy for ImageNet appears within tables that
contain dozens of entries, dense formatting, and mixed dataset contexts. These settings present
challenges for automated extraction systems, due to ambiguous column headers, multi-dataset rows,
or inconsistent labeling. We highlight ten such cases:

– Ambiguous metric header (Fig. 21): A table contains values such as 85.6 and 89.5 without
specifying the evaluation split (validation/test) or whether the numbers correspond to top-1
accuracy. Systems returned mismatched values that failed to align with the ground truth (87.2).

– Cross-dataset overload (Fig. 22): The table mixes results for ImageNet-1K, CIFAR-100, and
TinyImageNet. The extracted value (82.0) does not correspond to the correct ImageNet Top-1
metric (85.9), highlighting difficulties in aligning rows with the intended benchmark.
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—Extractors must jointly reason over model–metric–dataset alignment, disambiguate unlabeled
columns, and avoid numeric heuristics. Without semantic parsing or table structure awareness, these
large tables often lead to hallucinations or near-miss errors.

Key take-aways Easy cases share three traits: a single accuracy value, explicit dataset naming,
and standard wording. Failures occur when authors (i) report on validation instead of test set, (ii)
report on ImageNet variants or sampled subsets, (iii) place numbers only in supplementary material,
or (iv) use alternate metrics such as error rates or Top-5 accuracy. These observations guided our
rule-based post-processing (for error-to-accuracy conversion) and the heuristics that flag ambiguous
dataset references.

3.2.3 Cross-system top-1 accuracy extraction comparison on selected failure cases

We analyze additional representative failure cases across systems, with extended examples provided
below.

Top-1 metrics reported on validation set only (Fig. 20): A table presents classification and
localization error rates (Top-1, Top-5) on ILSVRC-15 validation set. —Top-1 accuracy must be inferred
by subtracting from 100%; Top-1 scores on test set is never given.

ImageNet was used in pretraining in the paper

• Non-ImageNet dataset with pretrained model (Fig. 19): “Caltech-256: 84.7 (ImageNet-CLS), 76.7
(OpenImages)” —Although the model is pretrained on ImageNet, evaluation is done on Caltech-256;
such results should not be extracted as ImageNet scores.

Top-1 metrics embedded in large metric tables (Fig. 25, Fig. 26 and Fig. 27) Top-1 accuracy for
ImageNet frequently appears within large, multi-column tables featuring dense formatting and mixed dataset
benchmarks. The complex layouts pose challenges for automated extraction systems, particularly when headers
are ambiguous or dataset-metric alignment is unclear. Below, we present three additional annotated examples.

• Missing label context (Fig. 25): Extractors failed to identify that 80.99 was the correct ImageNet
Top-1 accuracy. Instead, they returned 77.85 due to ambiguity in model-type alignment and lack of
direct sentence reference.

• Column overload in architecture benchmarking (Fig. 26): Dense layout with models, FLOPs, and
multiple accuracy metrics makes correct alignment difficult. Ground truth (79.96) was not captured by
any system.

• Grouped ViT-family entries with sparse labels (Fig. 27): The ground-truth Top-1 of 79.6 is lost
among model configurations. Systems instead hallucinated higher values (e.g., 82.0, 84.2) drawn from
unrelated rows.

Paper Ground-truth VOTE-
ENSEMBLE

EXTRACT-
AND-VERIFY SCILEAD EXTRACT-only

1610.02391v4.pdf (Fig. 20) 69.62 – 70.58 70.58 –
2505.14124v1.pdf (Fig. 25) 80.99 – 77.85 x – 77.85 x
2412.15077v1.pdf (Fig. 26) 79.96 – – – 68.28 x
2411.15241v1.pdf (Fig. 27) 79.6 84.22 x – 81.9 x 82.0 x

Table 1: Cross-system Top-1 Accuracy extraction comparison on selected failure cases. Each system
either outputs an incorrect value (denoted by x) or abstains (“–”). These examples are highlighted in
the qualitative analysis (Sec. 3.2).

4 Conclusion

We presented a case study of extracting scientific metrics from the scientific literature using a historically
significant metric: top-1 accuracy reported on the ImageNet test set. We release a large annotated dataset
(substantially larger than previous annotated datasets of 43 papers) and present detailed qualitative error analysis.

We experimented with prior work as well as several methods based on recent ideas such as self-critique.
Expanding the labelled dataset would allow for enough statistical power to compare different methods.
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Figure 3: ground-truth table for a selected set of 12+ papers, recording Top-1/Top-5 values from the
test set, validation set, or a specific multi-crop procedure (e.g., 10-crop validation from Krizhevsky
et al., 2017). “–” and space denotes that no explicit metric was identified for that field.

A Related work

Our work builds on and integrates a sequence of ideas, including diverse prompting techniques and the self-
critique paradigm. Prior work such as SCILEAD [Şahinuç et al., 2024] has advanced the construction of
scientific leaderboards through an automated extraction pipeline. Our contribution lies in applying these
techniques—beginning with structured prompts incorporating verification and ensemble ideas—for an automated
extraction of scientific metrics from research papers.

In few-shot prompting, also referred to as “in-context learning," [Brown et al., 2020], an LLM is provided with a
prompt consisting of multiple examples of the target task, each in the form of input-output pairs.

Query self-refinement is argued to enhance the initial outputs of large language models (LLMs) [Madaan et al.,
2023]. Self-refinement is inspired by the way humans revise their written text. This method consists of an
iteratively feedback-driven process that improves the initial responses generated by LLMs.

The Least-to-Most prompting framework was introduced by Zhou et al. [2022], which decomposes reasoning
tasks into structured subproblems to improve performance. Each subproblem is solved in sequence with
subsequent steps conditioned on previous answers. The least-to-most prompting enables LLMs to generalize for
problems with more difficulties than those present in the prompts.

SCILEAD introduced an LLM-based method for the automatic constructions of scientific leaderboards [Şahinuç
et al., 2024]. SCILEAD contributes a manually curated dataset of leaderboards drawn from 43 scientific papers
and proposes an extraction schema based on task–dataset–metric (TDM) triples, where each triple represents
an extraction task, the associated dataset, and the reported evaluation metric. The work exhaustively annotates
individual papers by labeling all unique TDM combinations along with their respective top-reported results.

Several recent studies have explored the concept of direct self-critique by LLMs [Stechly et al., 2024, Weng
et al., 2023, Chen et al., 2023]. Inspired by human cognitive processes, these approaches leverage the intuition
that verifying or critiquing an answer is typically easier or fundamentally different from generating it from
scratch. Hence, the strategies demonstrate potential to improve the overall quality of outputs [Stechly et al.,
2024]. In a standard self-critique pipeline, an LLM first generates an answer and subsequently receives its own
response as input, along with explicit prompting instructions to critique, refine, or revise the original answer.
The self-critique loop iterates and then stops at a predefined stopping criterion.

Our work builds upon these ideas by incorporating explicit verification steps, enabling cross-checking and
refinement of extracted performance metrics.
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Metric Presence Development Set Validation Set

Ground-truth Present 26 27
Ground-truth Absent 74 73

Total 100 100
Table 2: Distribution of ground-truth Top-1 Accuracy presence across the 100-paper development
and validation sets. Many papers do not explicitly report Top-1 Accuracy, often deferring such results
to supplemental materials or validation splits.

B Extraction experiments

We describe our extraction experiments for EXTRACT-AND-VERIFY in detail. We first introduce the VOTE-
ENSEMBLE style of prompting for aggregating predictions across paper sections, and then describe how
EXTRACT-AND-VERIFY builds upon it with an additional verification step.

Let n denote the number of text segments derived from each paper (e.g., abstract, results, conclusion), and k the
number of prompt attempts per section for diverse extraction outputs. The value of n is computed dynamically
for each paper using a lightweight chunking function, which groups every three consecutive pages into a single
segment. We set k = 5 in all experiments.

VOTE-ENSEMBLE prompting We begin by dividing each paper into n segments—typically correspond-
ing to sections such as the abstract, experimental results, and conclusion. For each segment, we apply an
extraction prompt that instructs the LLM to extract a top-1 accuracy reported on ImageNet and its corresponding
source sentence from literature. This extraction process is repeated k times per segment to capture various
responses. The resulting k sentence–accuracy pairs for i-th segment are then aggregated using our VOTE-
ENSEMBLE strategy, which selects the pair most frequently occurring as the final output. The prompt used in
this step is shown in Section C.1.

EXTRACT-AND-VERIFY prompting We introduced a verification phase during the extraction process of
our EXTRACT-AND-VERIFY. For each section, the LLM re-evaluates each extracted sentence–accuracy pair in
the context of the original PDF page to verify whether the sentence appears in the text and whether the extracted
value explicitly corresponds to a top-1 accuracy on ImageNet. The verification is applied across the k extractions
generated during the ensemble step. The prompt template used for verification is demonstrated in Section C.2.

To isolate the effect of ensembling and verification, we introduce EXTRACT-only—a minimal baseline where
extraction is performed with a single prompt iteration (k = 1) based on VOTE-ENSEMBLE. It enables the
independent assessment of each system component.

C Prompt examples

C.1 VOTE-ENSEMBLE prompt demonstration

Prompt Input

Find the accuracy value associated with most common sentences from the list of
sentences and accuracies. Only output the accuracy value.

Example 1:
’Sentence: "ImageNet1K Top-1 Accuracy ViT 88.5 89.1 88.6 92.4": 92.4’, ’Sentence:
"SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4 ImageNet1K Top-1 Accuracy ViT 88.5 89.1
88.6 92.4 Sun RGBD Top-1 Accuracy Simple3D-former 57.3 62.4 71.4 74.6"Accuracy: 92.4’,
’Sentence: "ImageNet1K Top-1 Accuracy ViT 88.5 89.1 88.6 92.4": 92.4’, ’Sentence:
"SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4 ImageNet1K Top-1 Accuracy ViT 88.5
89.1 88.6 92.4 Sun RGBD Top-1 Accuracy Simple3D-former 57.3 62.4 71.4 74.6": 74.6’,
Expected Output: 92.4

Example 2:
’Sentence: "SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4 ImageNet1K Top-1 Accuracy
ViT 88.5 89.1 88.6 92.4 Sun RGBD Top-1 Accuracy Simple3D-former 57.3 62.4 71.4
74.6": 74.6’, ’Sentence: "ImageNet1K Top-1 Accuracy ViT 88.5 89.1 88.6 82.4": 82.4’,
’Sentence: "SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4 ImageNet1K Top-1 Accuracy
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ViT 88.5 89.1 88.6 82.4 Sun RGBD Top-1 Accuracy Simple3D-former 57.3 62.4 71.4 74.6":
82.4’, Expected Output: 82.4

Example 3:
’Sentence: "It’s not mentioned top-1 accuracy on ImageNet": NA’, ’Sentence: "-": NA’,
’Sentence: "It’s not mentioned top-1 accuracy on ImageNet": NA’, ’Sentence: "-": NA’,
Expected Output: NA

Example 4:
’Sentence: "It’s not mentioned.": NA’, ’Sentence: "-": NA’, ’Sentence: "It’s mentioned
top-5 accuracy on ImageNet": NA, ’Sentence: "Cocoa 23.3 21.2": 23.3’, Expected Output:
NA

Now extract the accuracy value associated with most common sentences,
sentencesandaccuracies

Expected Output:

C.2 EXTRACT-AND-VERIFY prompt demonstration

Prompt Input

INPUTS
• page: full text of one PDF page, page
• pair: "Sentence:<sentence> : <accuracy>", a_sentence_and_accuracy

TASK
Check whether the sentence appears in the page (with minor formatting variations), and
whether the accuracy is a valid Top-1 ImageNet value.

– If both sentence and accuracy are correct and found in the page, return the pair
unchanged. – If the accuracy is incorrect but a correct one exists, return the
corrected pair. – If no Top-1 ImageNet accuracy is found, return an empty string.

IMPORTANT
• Only match Top-1 accuracy on ImageNet (not Top-5, CIFAR, COCO, etc.)
• Output exactly one line, or nothing at all.

OUTPUT
Sentence:<sentence> : <accuracy>

D Error analysis metrics summarization

D.1 Regression metrics definitions

We present the regression metrics definitions in Table 3.

D.2 Presence–correctness matrix analysis

D.2.1 12-paper set

Figure 4 presents the error analysis in the form of confusion matrices along two axes:

1. whether the paper reports a Top-1 Accuracy value on ImageNet (row)

2. whether the system extracts such a value (column)

The counts are computed over the 12 manually inspected papers listed in Table 7.
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Table 3: Evaluation metrics and error categorization for extraction tasks, with matrix axis definitions
and term abbreviations.

Category Metric Description
Presence–Correctness Matrix Axes
Row: Ground-truth Presence Whether the paper reports a Top-1 Accuracy value on ImageNet. Two possible

states:
Ground-truth Present – the metric is reported in the pape.
Ground-truth Absent – the metric is not reported.

Column: System Extraction Whether the system extracts a Top-1 Accuracy value. Three possible outputs:
Correctly Extracted/Extract Match(EM) – value is correctly extracted and
matches the ground-truth.
Incorrectly Extracted – value is extracted but incorrect (e.g., hallucinated or wrong
metric).
Extracted Absent – system does not extract any value.

Classification-style Metrics
#Extract Match (EM) Exact Match (EM) is defined as a correct extraction in which the extracted top-1

accuracy value exactly equals the ground-truth value recorded in the paper. EMs
are only counted when the ground-truth value is present, and the extracted value
aligns numerically with it (e.g., 76.82 matches 76.82 exactly).

#Incorrect Extractions the number of incorrect extractions when ground-truth is present.
Regression-style Metrics

Let ŷi denotes extracted values, yi denotes ground-truth values and n denotes the
total number of papers where both ground-truth and extractions are present:

MAE Mean Absolute Error between extracted and ground-truth numeric values:
MAE = 1

n

∑n
i=1 |ŷi − yi|.

RMSE Root Mean Square Error: RMSE =
√

1
n

∑n
i=1(ŷi − yi)2.

(a) GPT Vote Ensemble (Ours*) (b) Extract-and-Verify (Ours*) (c) SCILEAD

Figure 4: Error matrices comparing extraction quality across methods.

E Full experiment results

E.1 Runtime discussion & API rate limits

We report the runtime and cost to process one PDF on a single 8-core CPU with a 100 Mbps network link to the
OpenAI endpoint. The user tier 1 imposes 90 000 tokens min−1 and 3 500 requests min−1. Our pipeline uses a
single gpt-4o call per sections (consisting of a few pages), averaging ~1 650 input tokens and 120 output tokens.
We apply a dynamic safety delay time based on the characteristics of each paper between calls of OpenAI
requests. As a result, the average processing time per document is approximately 15 minutes—making the
pipeline more computationally intensive than initially expected. We evaluate the performance of our proposed
extraction pipelines, VOTE-ENSEMBLE, EXTRACT-AND-VERIFY, against the existing SCILEAD baseline in
our full annotated validation and development set described in Section 2. We then report on regression-based
metrics—quantifying how close the extracted values are numerically. The details of metric definitions can be
found in Section D.
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System #Extract
Match ↑

#Incorrect
Extractions ↓

MAE ↓ RMSE ↓

VOTE-ENSEMBLE (Ours*) 3 12 19.633 35.672
EXTRACT-AND-VERIFY (Ours*) 6 8 3.033 4.500
EXTRACT-only (Ours*) 4 14 2.831 4.103
SCILEAD 7 8 5.026 11.027

Table 4: Regression metrics comparing VOTE-ENSEMBLE, EXTRACT-AND-VERIFY, EXTRACT-
only, and SCILEAD on the 100-paper validation set. EXTRACT-only represents a minimal baseline
where extraction is performed using a single section without voting.

E.2 100 Validation set with EXTRACT-only baseline

We compare our proposed methods, VOTE-ENSEMBLE, EXTRACT-AND-VERIFY, EXTRACT-only against
SCILEAD on our 100-paper validation set. Figure 1 shows the presence–correctness confusion matrices for four
extraction systems evaluated in the validation set.

Among the four systems, SCILEAD achieved the highest number of exact matches (7), followed by EXTRACT-
AND-VERIFY (6), EXTRACT-only (4), and VOTE-ENSEMBLE (3). Notably, EXTRACT-AND-VERIFY exhibited
lower regression errors compared to SCILEAD and VOTE-ENSEMBLE, despite recovering slightly fewer exact
matches. As reported in Table 4, both EXTRACT-AND-VERIFY and EXTRACT-only achieved the lowest Mean
Absolute Error (MAE) of 3.211 and RMSE of 4.550. In contrast, VOTE-ENSEMBLE reported high numeric
errors among its 12 incorrect extractions, yielding an MAE of 19.633 and RMSE of 35.672. SCILEAD showed
moderate regression performance (MAE: 5.026, RMSE: 11.027) but had a higher count of incorrect extractions
(8). While these results suggest performance differences across systems, we caution that the observed variations
may not be statistically significant due to the limited size of the validation set. To better understand the impact of
prompt aggregation and verification, we include an additional EXTRACT-only baseline with details in Section E.4.

E.3 Development set results

We assess our proposed methods, VOTE-ENSEMBLE, EXTRACT-AND-VERIFY against SCILEAD on our
100-paper development set. Figure 2 presents presence–correctness confusion matrices comparing VOTE-
ENSEMBLE, EXTRACT-AND-VERIFY, and SCILEAD on our development set. To quantify performance, we
compute regression metrics over incorrect extractions—cases where both the ground-truth and predictions are
present, but the extracted values are incorrect. Table 5 reports the Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) for these incorrect extractions.

Both of our methods, VOTE-ENSEMBLE and EXTRACT-AND-VERIFY, correctly extracted 19 top-1 accuracy
values on ImageNet (73.1%), outperforming SCILEAD, which achieved 4 exact matches 2 (15.4%). While
both of our methods reported 5 incorrect extractions, EXTRACT-AND-VERIFY showed higher regression error
in terms of regression errors among them. As shown in Table 5, EXTRACT-AND-VERIFY achieved a higher
Mean Absolute Error (MAE) of 1.632 and RMSE of 6.029, compared to 0.642 MAE and 2.112 RMSE for
VOTE-ENSEMBLE. SCILEAD presented higher error (MAE: 14.482, RMSE: 28.800). The results are based on
a limited development set and may not be statistically significant.

E.4 EXTRACT-only baseline result

To better understand the impact of prompt aggregation and verification, we include an additional EXTRACT-only
baseline. The method corresponds to setting k = 1 in VOTE-ENSEMBLE. While EXTRACT-only underperformed
SCILEAD in terms of exact match (4 vs. 7), it achieved lower regression error, with an MAE of 2.831 and RMSE
of 4.103. Again, we reiterate that our findings are based on a small sample and suggest they be interpreted with
caution.

F Extensions to Qualitative Analysis

F.1 More Cross-System Top-1 Extraction Comparison on Selected Failure Cases

We analyze additional representative failure cases across systems, with extended examples provided below.

2Exact Match (EM) refers to a correct extraction where the extracted value exactly matches the ground-truth
value present in the paper.
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System #Extract
Match ↑

#Incorrect
Extractions ↓

MAE ↓ RMSE ↓

VOTE-ENSEMBLE (Ours*) 19 5 0.642 2.112
EXTRACT-AND-VERIFY (Ours*) 19 5 1.632 6.029
SCILEAD 4 8 14.482 28.800

Table 5: Regression metrics comparing VOTE-ENSEMBLE, EXTRACT-AND-VERIFY and SCILEAD
on development set.

Top-1 metrics reported on validation set only ( Fig. 14, Fig. 15, Fig. 20):

• Top-1 scores on validation set only (Fig. 14): “We acquire better classification results on complex
validation set . . . ” —Top-1 scores on validation reported; Top-1 scores on test set is never given.

• Top-1 scores on validation set only (Fig. 15): “. . . top-1 and top-5 error rates on the ImageNet
validation set . . . ” with Top-1 = 22.15% for DenseNet-264. —Top-1 must be derived from the error
rate (100% - 22.15%), and validation set must be interpreted correctly.

• Top-1 scores on validation set only (Fig. 20): A table presents classification and localization error
rates (Top-1, Top-5) on ILSVRC-15 validation set. —Top-1 must be inferred by subtracting from
100%; Top-1 scores on test set is never given.

ImageNet was pretrained in the paper (Fig. 17, Fig. 18, Fig. 19): —Requires filtering out such
examples as false positives despite mentioning ImageNet.

• Non-ImageNet dataset with pretrained model (Fig. 17): “We obtained an accuracy of
91.66% and 78.01% for the CALTECH 101 and neuromorphic CALTECH 101 datasets respectively.”
—Reports accuracy while using ImageNet-pretrained networks, but on non-ImageNet datasets (CAL-
TECH 101); must be excluded.

• Table-only accuracy, but not ImageNet (Fig. 18): Table lists results like “85.3” under DA–ADAGE
Incremental for MNIST-M and SVHN. —Metrics shown in table format but pertain to other domains
(MNIST-M, SVHN); dataset mismatch with ImageNet.

• ImageNet-pretrained model on different datasets (Fig. 19): “Caltech-256: 84.7 (ImageNet-CLS),
76.7 (OpenImages)” —Although the model is pretrained on ImageNet, evaluation is done on
Caltech-256; such results should not be extracted as ImageNet scores.

Top-1 metrics embedded in large metric tables (continued) (Fig. 9, Fig. 21–30, and Fig. 31–34):
Top-1 accuracy for ImageNet frequently appears within large, multi-column tables featuring dense formatting and
mixed dataset benchmarks. The complex layouts pose challenges for automated extraction systems, particularly
when headers are ambiguous or dataset-metric alignment is unclear. Below, we present four additional annotated
examples.

• Misaligned extraction due to unlabelled columns (Fig. 24): Although the table includes Top-1
classification accuracy (81.02), extractors reported nearby but incorrect values (e.g., 76.1 or 79.5),
likely due to metric misinterpretation.

• Under-specified table with missing axis labels (Fig. 29): The ImageNet Top-1 accuracy (76.2) is
never directly labeled. Extractors returned 72.2, reflecting structural ambiguity in the source format.

• Multiple candidate metrics in same table (Fig. 30): The Top-1 accuracy (78.1) is buried among
other results. Extractors selected 70.0, suggesting overreliance on numerical proximity rather than
structured alignment.

• (Fig. 31): “Comparison of Top-1 accuracy across various methods on the ImageNet dataset...”
Top-1 scores are shown across architectures like RN50 and ViT-B/16.

• (Fig. 32): “ImageNet: 74.1” appears in a large benchmark spanning multiple datasets.
Despite being explicitly labeled, the metric is embedded among heterogeneous datasets, making it
unclear. Systems may incorrectly associate the wrong metric with the wrong dataset.

• (Fig. 33): “Image classification results (Acc, %) on ImageNet.”
The table mixes logit-based and feature-based methods across two settings. Extractors must infer
correct Top-1 values from rows and columns with inconsistent grouping and abbreviations. Without
semantic understanding of headers, incorrect matches frequently occur.

• (Fig. 34): “ImageNet: 62.78” appears in a row alongside CUB200, EuroSAT, and other datasets.
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Paper Ground-truth VOTE-
ENSEMBLE

EXTRACT-
AND-VERIFY SCILEAD EXTRACT-only

2501.10640v2.pdf (Fig. 21) 87.2 85.6 x – 83.9 x 89.5 x
2501.07783v1.pdf (Fig. 22) 85.9 82.0 x 82.1 x – 82.0 x
2505.14062v1.pdf (Fig. 23) 83.0 – – 67.5 x –
2410.08407v2.pdf (Fig. 24) 81.02 – 76.1 x 79.51 x 76.1 x
2412.02366v3.pdf (Fig. 28) 78.73 73.3 x – 65.8 x 77.23 x
2410.10773v1.pdf (Fig. 30) 78.1 – 70.0 x – –
2504.08710v1.pdf (Fig. 29) 76.2 – 72.2 x – –
2412.20110v3.pdf (Fig. 31) 74.23 82.0 x 66.17 x 36.88 x 66.17 x
2503.12206v2.pdf (Fig. 32) 74.1 – 83.44 x – –
2412.08139v1.pdf (Fig. 33) 73.69 82.2 x – 72.49 x 71.35 x
2412.11917v3.pdf (Fig. 34) 62.78 71.89 x – – 63.31 x

Table 6: Cross-system Top-1 Accuracy extraction comparison on selected failure cases. Each system
either outputs an incorrect value (denoted by x) or abstains (“–”). These examples are highlighted in
the qualitative analysis (Sec. 3.2 and Sec. F.1).

G Limitations

While introducing a larger annotated dataset than prior work, several limitations remain in our study. First,
despite being larger than previous work, our dataset may still lack sufficient statistical power to demonstrate
significant performance differences across various extraction systems. Moreover, our use of the PapersWithCode
API for sampling—given its default ordering—may introduce sampling bias.

While ImageNet has historically served as a foundational benchmark dataset, it may not fully capture the diversity
of datasets or evaluation metrics in computer vision or the broader computer science community. Therefore, our
findings may not generalize to other tasks, domains, or scientific fields with different reporting conventions and
metric structures.

H Ethics statement

Our work introduces a large-scale dataset of papers annotated with their reported top-1 accuracy on the ImageNet
test set. All PDF papers in our study are publicly available on arXiv, which permits fair use and supports
responsible, reproducible, and transparent scientific research practices. All annotation work was performed by
the authors.

Our released dataset contains entries consisting of arXiv identifiers and their corresponding labeled Top-1
accuracy values on ImageNet. The intended use of our released dataset is strictly for academic research and
analysis. It is not designed for, nor licensed to support, commercial or production use, in accordance with the
original access conditions of the data sources.

File Name GT Top-1 Accu-
racy

VOTE-ENSEMBLE (Ours*) Extract Verify (Ours*) SCILEAD

1909.13863v1.pdf 57.1 57.1 57.1 NA
1807.11164v1.pdf 77.2 77.2 75.4 18.56
omniVec_2023.pdf 92.4 92.4 92.4 NA
1803.00942v3.pdf NA NA NA NA
1703.09844v5.pdf 75 75 75 NA
1807.11626v3.pdf 75.2 66 75.2 76.7
1807.11459v1.pdf NA NA NA NA
1807.11254v2.pdf 77.86 NA NA -0.82
1807.10108v5.pdf NA NA NA NA
1512.03385v1.pdf NA NA NA NA
1909.11155v1.pdf 76.82 76.82 76.82 76.82
1807.10119v3.pdf NA NA NA NA

Table 7: Ground-truth versus extractor outputs on the 12-paper set. Cells in red bold indicate a
disagreement with the ground-truth.
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I Screenshots from ArXiv Papers with Extract Sections Highlighted

Figure 5: Easy example. Top-1 accuracy (75.2 %) is stated plainly in the abstract of
1807.11626v3.pdf.
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Figure 6: Easy example. A single sentence in the main text of 1703.09844v5.pdf reports top-1
accuracy ( 75 %).

Figure 7: Challenging example. Top-1 accuracy is reported only on a validation split of an ImageNet
variant in 1807.10108v5.pdf.

Figure 8: Challenging example. The original ResNet paper (1512.03385.pdf ) only reported on
ImageNet validation error rates.

Figure 9: Challenging example. In omniVec_2023.pdf, the ImageNet Top-1 value (92.4 %) appears
as one cell in a table containing multiple datasets.
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Figure 10: Challenging example. 1909.13863v1.pdf gives top-1 accuracy only within a table.

Figure 11: Challenging example. 1807.10119v3.pdf omits top-1 accuracy, reporting only Top-5 (80
%).

Figure 12: Challenging example. 1412.6598v2.pdf reports multiple references to ImageNet and
performance, but no clear top-1 accuracy value.
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Figure 13: Challenging example. 1502.03167v3.pdf reports only Top-5 validation error (4.9%); no
Top-1 value.

16



Figure 14: Challenging example. 1506.04701v3.pdf with validation results; top-1 accuracy on test
set not stated.

Figure 15: Challenging example. 1608.06993v5.pdf where Top-1 error rate on ImageNet validation
set (e.g., 22.15%) needs conversion to accuracy and split is ambiguous.
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Figure 16: Challenging example. 1610.02357v3.pdf mentions top-1 accuracy to ImageNet but split
is ambiguous.

Figure 17: Accuracy reported (91.66% and 78.01%) is for CALTECH datasets, not ImageNet.

18



Figure 18: Accuracy values (e.g., 85.3) are shown in table format, but target domains are not
ImageNet.

Figure 19: Pre-trained models are ImageNet-based, but classification is done on other datasets (e.g.,
Caltech-256).
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Figure 20: Classification and localization error rates (%) on ILSVRC-15 validation set from
1610.02391v4.pdf. The table reports Top-1 classification error for models like VGG-16 and
AlexNet. Top-1 metrics on test set is not stated.
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Figure 21: Metric table from 2501.10640v2.pdf. No explicit Top-1 label or split is provided.
Extracted value (85.6) does not match the ground truth (87.2).

Figure 22: Large benchmark comparison in 2501.07783v1.pdf with top-1 accuracy buried among
multiple datasets. The extracted value of 82.0 does not match the ground truth (85.9).
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Figure 23: Ambiguous accuracy reporting in 2505.14062v1.pdf. Top-1 accuracy for ImageNet is
co-listed with CIFAR/Tiny-ImageNet rows. Systems failed to extract a valid value.

Figure 24: In 2410.08407v2.pdf, Top-1 accuracy (81.02) appears in a table with closely related
numbers. Extractors returned 76.1 or 79.51, misaligned with the correct value.
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Figure 25: Example from 2505.14124v1.pdf where 80.99 is reported, but the Top-1 metric is
embedded among unlabeled entries. Systems extracted 77.85, a nearby but incorrect value.

Figure 26: Figure from 2412.15077v1.pdf, where top-1 accuracy (79.96) appears in a multi-column
architecture table. No extractor returned the correct value.
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Figure 27: In 2411.15241v1.pdf, 79.6 is reported in a dense comparison table with ViT variants.
Systems hallucinated or extracted higher values (e.g., 82.0, 84.2).

Figure 28: Metric table from 2412.02366v3.pdf, where 78.73 is buried among comparisons across
variants. Extractors returned mismatched outputs like 73.3 or 65.8.
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Figure 29: Top-1 accuracy of 76.2 from 2504.08710v1.pdf is presented in a large table with no
metric labels. Extracted values (e.g., 72.2) reflect misalignment.

Figure 30: In 2410.10773v1.pdf, top-1 accuracy (78.1) appears with multiple candidate rows and
no clear indicator. Systems returned incorrect values such as 70.0.

Figure 31: Large table showing top-1 accuracies across various architectures on ImageNet, but split
(validation/test) is not explicitly stated.
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Figure 32: Top-1 accuracy of 74.1 appears in a multi-dataset benchmark.

Figure 33: Table 4 compares classification accuracy (%) across methods and settings on ImageNet.

Figure 34: Top-1 accuracy reported on ImageNet appears in a wide comparison table (e.g., 62.78).

Figure 35: Challenging example. 1909.11155v1.pdf gives top-1 accuracy only within a table; the
metric is absent from the surrounding text.
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