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Abstract

In this paper, we introduce a large-scale dataset of papers annotated with their
reported Top-1 accuracy on the ImageNet test set, and compare existing and new
automatic metric extraction methods, along with a detailed qualitative error analysis.
Our study highlights common reporting challenges—such as ambiguous dataset
references, table-only metrics, and missing Top-1 values—that drive extraction
errors. We curate and release a dataset of 200 manually annotated ImageNet
classification papers, larger than prior work, and evaluate our pipeline against both
existing approaches and ablated baselines.

1 Introduction

Scientific performance metrics — such as top-1 accuracy on ImageNet — play a central role in
benchmarking model progress, establishing state-of-the-art (SOTA) claims, and guiding research
trends [Bornmann et al, 2021} [Barry et al.,|2022]. However, metrics are often inconsistently reported
across research papers: embedded in tables, mentioned only in captions or abstracts, expressed as
error rates, or omitted entirely. As a result, extracting similar metrics at scale remains a largely
manual and error-prone process.

In this paper, we present a case study in the automated extraction of top-1 accuracy for image
classification reported on ImageNet papers. We construct and release a manually-annotated dataset of
200 ImageNet classification papers—substantially larger than SCILEAD [Sahinug et al., [2024],
which annotated 43 papers across various NLP tasks. By releasing our annotated dataset at
https://anonymous.4open.science/r/imagenet-1leaderboard-samples, we aim to establish a
reproducible benchmark for LLM-assisted scientific metric extraction and support broader efforts in
automating literature understanding in machine learning research.

2 Annotated dataset

In this section, we describe the construction of our dataset, which is publicly accessible at https:
//anonymous. 4open.science/r/imagenet-1leaderboard-samples.

2.1 Paper collection

Our dataset originates from an automated collection of publication entries through the PaperWithCode
platform, focusing on computer vision papers that report results on the ImageNet dataset for the image
classification task. We implemented a simple “try/catch” script to repeatedly query PaperWithCode
API for PDFs or arXiv links, automatically skipping entries that lacked valid URLs or produced
parsing errors. The step yielded an initial pool of candidate papers, all of which claimed to present top-
1 accuracy on ImageNet or its widely recognized variants such as Tiny-ImageNet [Le and Yang, 2015].
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We programmatically retrieved ImageNet image-classification papers using the paper_dataset_list
endpoint of the PaperWithCode API, which returns results in its default (unspecified) orderﬂ We first
selected 12 papers to tune our prompts and then curated another 100 papers to build our development
set. For the validation set, we retrieved all papers (focused on the Image Classification task and
ImageNet) from PapersWithCode and selected the top 100 entries, sorted by descending publication
date, with preference given to those published in journals afterwards.

2.2 Label-verification protocol

From the successfully retrieved documents, we curated a corpus of papers on image classification
using the ImageNet dataset. We performed a manual examination of the performance metric reported
in each individual paper. Specifically, we identified references to “top-1 accuracy," and pinpointed
the corresponding numerical values. We manually annotated each paper with explicit labels such as
(Dataset: ImageNet, Metric: Top-1 Accuracy).

2.3 Dataset statistics and alignment on ImageNet

Most papers in our corpus report Top-1 Accuracy on the ImageNet dataset. However, many of them
were evaluated on variants or subsets of the ImageNet dataset, such as Tiny-ImageNet [Le and Yang]|
2015]], ImageNet-100 and etc. For instance, it is commonplace for evaluations for ILSVRC-2012 or
ILSVRC-2015, each of which differ slightly in the number of classes or distribution of images.

Table [2| summarizes the distribution of ground-truth top-1 accuracy presence in both the develop-
ment and validation sets. In both subsets, only about one-quarter of the papers explicitly report
a top-1 accuracy value. This skew reflects a common trend in the literature, where performance
metrics—particularly for ImageNet—are often reported only on validation sets, or embedded within
complex tables or figures, making automated extraction more challenging. In Fig.[3] we examine the
reported metrics from each paper—often referencing only a validation subset or using a multi-crop
evaluation strategy—and align them to a consistent schema. We attempt to unify various reporting
practices; however, directly comparing reported performance metrics across the literature remains
challenging.

2.4 Comparison with SCILEAD [Sahinuc et al.,2024]

While SCILEAD [Sahinug et al., [2024]] introduces a broad leaderboard spanning multiple NLP tasks
and metrics, our dataset is uniquely focused on Image Classification on the ImageNet dataset. We
curate a collection of 200 papers that explicitly report top-1 accuracy for the ImageNet classification
task, with manually verified ground-truth annotations. We observe 26 papers with metric presence in
the development set and 27 in the validation set (demonstrated in Table[2)). Moreover, the presence
or absence of metrics in our dataset is not artificially balanced or stratified. A detailed qualitative
analysis of papers with and without reported metrics is provided in Section[3.2]

3 Experimental results and discussion

3.1 Experimental results

We benchmarked our pipelines—VOTE-ENSEMBLE, EXTRACT-AND-VERIFY, against the existing
SCILEAD baseline in our full annotated validation and development set described in Section [2]
Figure [I] presents results on the validation set, and Figure [2] shows results on the development
set, reporting presence—correctness confusion matrices for the evaluated extraction systems. Full
definitions, additional baselines, and regression metrics are provided in Appendix [E}

3.2 Qualitative analysis

We illustrate our results with a qualitative analysis of easy and difficult cases, highlighting the
challenges from the evaluated extraction systems. We extend our qualitative analysis in Appendix [F]

'The API documentation does not state the sorting criterion; see https://paperswithcode-client|
readthedocs.io/en/latest/api/client.html|
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Figure 1: Presence—correctness confusion matrices on the validation set in comparison with extraction
quality across four methods: (a) VOTE-ENSEMBLE (Ours*), (b) EXTRACT-AND-VERIFY (Ours¥*),
(c) EXTRACT-only (Ours*), and (d) SCILEAD. Each matrix summarizes extraction outcomes con-
ditioned on whether a Top-1 accuracy value is present in the ground-truth (rows) and whether the
system produced an extraction (columns). Green cells indicate correct extractions, red cells indicate
incorrect or hallucinated values, and blank cells indicate non-extraction when ground truth is absent.
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Figure 2: Error matrices comparing extraction quality across methods on the development set.

3.2.1 Straightforward (‘easy”’) examples

* Abstract, 1807.11626v3 (Fig. 3): “On the ImageNet classification task, our MnasNet
achieves 75.2% top-1 accuracy ...” —A single numeric value appears in the abstract; the metric
name and dataset are explicit.

3.2.2 Difficult (‘“‘challenging”) Examples

* Alternate dataset variant (Fig.[7): “V-CapNet reaches 99.83% validation accuracy on the
Natural Images dataset.” —Dataset differs from canonical ImageNet; the numeric value should be
excluded from extraction.

Table-only Top-1 value (Fig. [33): ImageNet top-1 accuracy (76.82%) is given only in a table, with no
reference in the main text. —Requires table reading; plain text search may be error-prone.

Multiple candidate Top-1 values (Fig. [[0): A table in 1909.13863v1 lists four Case rows with
different top-1 accuracies (55.5-57.1%). —Require an investigation on which value is the main result

or flag ambiguity.
e Top-1 accuracy omitted, only Top-5 present (Fig. : Sentence in 1807.10119v3 reports
“top-5 accuracy drops slightly ...”” while never stating Top-1. —Require returning “missing” rather

than hallucinate a Top-1 value.

Test vs. Validation ambiguity (Fig. [T6): “Classification performance comparison on ImageNet
(single crop, single model)... ” —DMentions classification on ImageNet without specifying
test/validation split, creating ambiguity on the split.

* Top-1 metrics embedded in large metric tables (Fig.[9] Fig. with additional examples in
Fig. BTH34} detailed in Section [FI): The top-1 accuracy for ImageNet appears within tables that
contain dozens of entries, dense formatting, and mixed dataset contexts. These settings present
challenges for automated extraction systems, due to ambiguous column headers, multi-dataset rows,
or inconsistent labeling. We highlight ten such cases:

— Ambiguous metric header (Fig. : A table contains values such as 85.6 and 89.5 without
specifying the evaluation split (validation/test) or whether the numbers correspond to top-1
accuracy. Systems returned mismatched values that failed to align with the ground truth (87.2).

- Cross-dataset overload (Fig.[22): The table mixes results for ImageNet-1K, CIFAR-100, and
TinyIlmageNet. The extracted value (82.0) does not correspond to the correct ImageNet Top-1
metric (85.9), highlighting difficulties in aligning rows with the intended benchmark.



—Extractors must jointly reason over model-metric—dataset alignment, disambiguate unlabeled
columns, and avoid numeric heuristics. Without semantic parsing or table structure awareness, these
large tables often lead to hallucinations or near-miss errors.

Key take-aways Easy cases share three traits: a single accuracy value, explicit dataset naming,
and standard wording. Failures occur when authors (i) report on validation instead of test set, (ii)
report on ImageNet variants or sampled subsets, (iii) place numbers only in supplementary material,
or (iv) use alternate metrics such as error rates or Top-5 accuracy. These observations guided our
rule-based post-processing (for error-to-accuracy conversion) and the heuristics that flag ambiguous
dataset references.

3.2.3 Cross-system top-1 accuracy extraction comparison on selected failure cases

We analyze additional representative failure cases across systems, with extended examples provided
below.

Top-1 metrics reported on validation set only (Fig. [20): A table presents classification and
localization error rates (Top-1, Top-5) on ILSVRC-15 validation set. —Top-1 accuracy must be inferred
by subtracting from 100%; Top-1 scores on test set is never given.

ImageNet was used in pretraining in the paper

* Non-ImageNet dataset with pretrained model (Fig.[19): “Caltech-256: 84.7 (ImageNet-CLS), 76.7
(Openlmages)” —Although the model is pretrained on ImageNet, evaluation is done on Caltech-256;
such results should not be extracted as ImageNet scores.

Top-1 metrics embedded in large metric tables (Fig.[25] Fig. 26| and Fig. Top-1 accuracy for
ImageNet frequently appears within large, multi-column tables featuring dense formatting and mixed dataset
benchmarks. The complex layouts pose challenges for automated extraction systems, particularly when headers
are ambiguous or dataset-metric alignment is unclear. Below, we present three additional annotated examples.

* Missing label context (Fig.[23)): Extractors failed to identify that 80.99 was the correct ImageNet
Top-1 accuracy. Instead, they returned 77.85 due to ambiguity in model-type alignment and lack of
direct sentence reference.

¢ Column overload in architecture benchmarking (Fig. : Dense layout with models, FLOPs, and
multiple accuracy metrics makes correct alignment difficult. Ground truth (79.96) was not captured by
any system.

* Grouped ViT-family entries with sparse labels (Fig.[27): The ground-truth Top-1 of 79.6 is lost
among model configurations. Systems instead hallucinated higher values (e.g., 82.0, 84.2) drawn from
unrelated rows.

VOTE- EXTRACT-
Paper Ground-truth ENSEMBLE AND-VERIFY SCILEAD EXTRACT-only
1610.02391v4. pdf (Fig.[20) 69.62 - 70.58 70.58 -
2505.14124v1 . pdf (Fig.[25) 80.99 - 77.85 x - 77.85 x
2412.15077v1.pdf (Fig. [26) 79.96 - - - 68.28 x
2411.15241v1. pdf (Fig.|27) 79.6 84.22 x - 81.9x 82.0x

Table 1: Cross-system Top-1 Accuracy extraction comparison on selected failure cases. Each system

either outputs an incorrect value (denoted by x) or abstains (“~"). These examples are highlighted in
the qualitative analysis (Sec.[3.2).

4 Conclusion

We presented a case study of extracting scientific metrics from the scientific literature using a historically
significant metric: top-1 accuracy reported on the ImageNet test set. We release a large annotated dataset
(substantially larger than previous annotated datasets of 43 papers) and present detailed qualitative error analysis.

We experimented with prior work as well as several methods based on recent ideas such as self-critique.
Expanding the labelled dataset would allow for enough statistical power to compare different methods.
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10-crop Single-Model

Test Validation Validation
File Name .+|Paper Name [+|Model +|Top-1[~|Top-5 A{~|Top 1 ~|Top-1~|Top-5 Aj~
1512.03385v1.pdf  Deep Residual Learning for Image R{ResNet-18
1512.03385v1.pdf  Deep Residual Learning for Image R{ResNet-34
1512.03385v1.pdf  Deep Residual Learning for Image R{ResNet-50
1512.03385v1.pdf  Deep Residual Learning for Image R{ResNet-101
1512.03385v1.pdf  Deep Residual Learning for Image R{ResNet-152 96.43% 78.57% 80.57%
1703.09844v5.pdf  Multiscale Dense Networks for ResqMSDNet 75% - -
1803.00942v3.pdf  Not All Samples Are Created Equal: |ResNet-50 - - - -
1807.10108v5.pdf  Effects of Degradations on Deep Ne|V-CapsNet - 99.83% -
1807.10119v3.pdf A Unified Approximation Framework|AlexNet - 80% -
1807.11164v1.pdf  ShuffleNetV2: Practical Guidelines |ShuffleNet v2-50 | 77.20% - -
1807.11254v2.pdf  Extreme Network Compression via fResNet34 64.75 64.3
1807.11459v1.pdf  Improving Transferability of Deep NgResNet-27 - - - -
1807.11626v3.pdf ~ MnasNet: Platform-Aware Neural AffMnasNet 75.20% - -
1909.11155v1.pdf ~ Anchor Loss: Modulating Loss Scale|ResNet-50 76.82% 93.03% :
1909.13863v1.pdf ~ XNOR-Net++: Improved Binary NeurBinary ResNet-18 | 57.10%  79.90%
1909.13863v1.pdf  XNOR-Net++: Improved Binary NeurdBinary AlexNet 46.90%  71.00%
omniVec_2023.pdf OmniVec: Learning robust represenOminiVec (FT) 92.40% - -

Figure 3: ground-truth table for a selected set of 12+ papers, recording Top-1/Top-5 values from the
test set, validation set, or a specific multi-crop procedure (e.g., 10-crop validation from [Krizhevsky
et al.L 2017). “~" and space denotes that no explicit metric was identified for that field.

A Related work

Our work builds on and integrates a sequence of ideas, including diverse prompting techniques and the self-
critique paradigm. Prior work such as SCILEAD [Sahinuc et al., [2024] has advanced the construction of
scientific leaderboards through an automated extraction pipeline. Our contribution lies in applying these
techniques—beginning with structured prompts incorporating verification and ensemble ideas—for an automated
extraction of scientific metrics from research papers.

In few-shot prompting, also referred to as “in-context learning," [Brown et al.| 2020], an LLM is provided with a
prompt consisting of multiple examples of the target task, each in the form of input-output pairs.

Query self-refinement is argued to enhance the initial outputs of large language models (LLMs) [Madaan et al.,
2023|]. Self-refinement is inspired by the way humans revise their written text. This method consists of an
iteratively feedback-driven process that improves the initial responses generated by LLMs.

The Least-to-Most prompting framework was introduced by |Zhou et al.| [2022], which decomposes reasoning
tasks into structured subproblems to improve performance. Each subproblem is solved in sequence with
subsequent steps conditioned on previous answers. The least-to-most prompting enables LLMs to generalize for
problems with more difficulties than those present in the prompts.

SCILEAD introduced an LLM-based method for the automatic constructions of scientific leaderboards [Sahinuc
et al.,|2024]]. SCILEAD contributes a manually curated dataset of leaderboards drawn from 43 scientific papers
and proposes an extraction schema based on task—dataset—metric (TDM) triples, where each triple represents
an extraction task, the associated dataset, and the reported evaluation metric. The work exhaustively annotates
individual papers by labeling all unique TDM combinations along with their respective top-reported results.

Several recent studies have explored the concept of direct self-critique by LLMs [Stechly et al.} 2024, [Weng
et al.| [2023] |Chen et al., |2023]]. Inspired by human cognitive processes, these approaches leverage the intuition
that verifying or critiquing an answer is typically easier or fundamentally different from generating it from
scratch. Hence, the strategies demonstrate potential to improve the overall quality of outputs [Stechly et al.|
2024]. In a standard self-critique pipeline, an LLM first generates an answer and subsequently receives its own
response as input, along with explicit prompting instructions to critique, refine, or revise the original answer.
The self-critique loop iterates and then stops at a predefined stopping criterion.

Our work builds upon these ideas by incorporating explicit verification steps, enabling cross-checking and
refinement of extracted performance metrics.



Metric Presence Development Set  Validation Set

Ground-truth Present 26 27
Ground-truth Absent 74 73
Total 100 100

Table 2: Distribution of ground-truth Top-1 Accuracy presence across the 100-paper development
and validation sets. Many papers do not explicitly report Top-1 Accuracy, often deferring such results
to supplemental materials or validation splits.

B Extraction experiments

We describe our extraction experiments for EXTRACT-AND-VERIFY in detail. We first introduce the VOTE-
ENSEMBLE style of prompting for aggregating predictions across paper sections, and then describe how
EXTRACT-AND-VERIFY builds upon it with an additional verification step.

Let n denote the number of text segments derived from each paper (e.g., abstract, results, conclusion), and & the
number of prompt attempts per section for diverse extraction outputs. The value of n is computed dynamically
for each paper using a lightweight chunking function, which groups every three consecutive pages into a single
segment. We set k£ = 5 in all experiments.

VOTE-ENSEMBLE prompting We begin by dividing each paper into n segments—typically correspond-
ing to sections such as the abstract, experimental results, and conclusion. For each segment, we apply an
extraction prompt that instructs the LLM to extract a top-1 accuracy reported on ImageNet and its corresponding
source sentence from literature. This extraction process is repeated k times per segment to capture various
responses. The resulting k sentence—accuracy pairs for i-th segment are then aggregated using our VOTE-
ENSEMBLE strategy, which selects the pair most frequently occurring as the final output. The prompt used in
this step is shown in Section[C.1]

EXTRACT-AND-VERIFY prompting We introduced a verification phase during the extraction process of
our EXTRACT-AND-VERIFY. For each section, the LLM re-evaluates each extracted sentence—accuracy pair in
the context of the original PDF page to verify whether the sentence appears in the text and whether the extracted
value explicitly corresponds to a top-1 accuracy on ImageNet. The verification is applied across the k extractions
generated during the ensemble step. The prompt template used for verification is demonstrated in Section[C.2]

To isolate the effect of ensembling and verification, we introduce EXTRACT-only—a minimal baseline where
extraction is performed with a single prompt iteration (k = 1) based on VOTE-ENSEMBLE. It enables the
independent assessment of each system component.

C Prompt examples

C.1 VOTE-ENSEMBLE prompt demonstration

Prompt Input

Find the accuracy value associated with most common sentences from the list of
sentences and accuracies. Only output the accuracy value.

Example 1:

’Sentence: "ImageNet1K Top-1 Accuracy ViT 88.5 89.1 88.6 92.4": 92.4’, ’Sentence:
"SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4 ImageNet1K Top-1 Accuracy ViT 88.5 89.1
88.6 92.4 Sun RGBD Top-1 Accuracy Simple3D-former 57.3 62.4 71.4 74.6"Accuracy: 92.47,
’Sentence: "ImageNetl1K Top-1 Accuracy ViT 88.5 89.1 88.6 92.4": 92.4’, ’Sentence:
"SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4 ImageNetl1K Top-1 Accuracy ViT 88.5
89.1 88.6 92.4 Sun RGBD Top-1 Accuracy Simple3D-former 57.3 62.4 71.4 74.6": 74.6’,
Expected Output: 92.4

Example 2:

’Sentence: "SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4 ImageNetl1K Top-1 Accuracy
ViT 88.5 89.1 88.6 92.4 Sun RGBD Top-1 Accuracy Simple3D-former 57.3 62.4 71.4
74.6": 74.6°, ’Sentence: "ImageNetlK Top-1 Accuracy ViT 88.5 89.1 88.6 82.4": 82.4’,
’Sentence: "SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4 ImageNetlK Top-1 Accuracy




ViT 88.5 89.1 88.6 82.4 Sun RGBD Top-1 Accuracy Simple3D-former 57.3 62.4 71.4 74.6":
82.4’, Expected Output: 82.4

Example 3:
’Sentence: "It’s not mentioned top-1 accuracy on ImageNet”: NA’, ’Sentence: "-": NA’,
’Sentence: "It’s not mentioned top-1 accuracy on ImageNet”: NA’, ’Sentence: "-": NA’,

Expected Output: NA

Example 4:

’Sentence: "It’s not mentioned.”: NA’, ’Sentence: "-": NA’, ’Sentence: "It’s mentioned
top-5 accuracy on ImageNet”: NA, ’Sentence: "Cocoa 23.3 21.2": 23.3’, Expected Output:
NA

Now extract the accuracy value associated with most common sentences,
sentences,ndgccuracies

Expected Output:

C.2 EXTRACT-AND-VERIFY prompt demonstration

Prompt Input

INPUTS
- page: full text of one PDF page, page
+ pair: "Sentence:<sentence> : <accuracy>", a_sentence_and_accuracy

TASK
Check whether the sentence appears in the page (with minor formatting variations), and
whether the accuracy is a valid Top-1 ImageNet value.

- If both sentence and accuracy are correct and found in the page, return the pair

unchanged. - If the accuracy is incorrect but a correct one exists, return the
corrected pair. - If no Top-1 ImageNet accuracy is found, return an empty string.
IMPORTANT

+ Only match Top-1 accuracy on ImageNet (not Top-5, CIFAR, COCO, etc.)
+ Output exactly one line, or nothing at all.

OUTPUT
Sentence:<sentence> : <accuracy>

D Error analysis metrics summarization

D.1 Regression metrics definitions

We present the regression metrics definitions in Table[3]

D.2 Presence—correctness matrix analysis

D.2.1 12-paper set

Figure[d] presents the error analysis in the form of confusion matrices along two axes:

1. whether the paper reports a Top-1 Accuracy value on ImageNet (row)

2. whether the system extracts such a value (column)

The counts are computed over the 12 manually inspected papers listed in Tablem



Table 3: Evaluation metrics and error categorization for extraction tasks, with matrix axis definitions

and term abbreviations.

Category

l

Metric Description

Presence—Correctness Matrix Axes

Row: Ground-truth Presence

Column: System Extraction

Whether the paper reports a Top-1 Accuracy value on ImageNet. Two possible
states:

Ground-truth Present — the metric is reported in the pape.

Ground-truth Absent — the metric is not reported.

Whether the system extracts a Top-1 Accuracy value. Three possible outputs:
Correctly Extracted/Extract Match(EM) — value is correctly extracted and
matches the ground-truth.

Incorrectly Extracted — value is extracted but incorrect (e.g., hallucinated or wrong
metric).

Extracted Absent — system does not extract any value.

Classification-style Metrics

#Extract Match (EM)

#Incorrect Extractions

Exact Match (EM) is defined as a correct extraction in which the extracted top-1
accuracy value exactly equals the ground-truth value recorded in the paper. EMs
are only counted when the ground-truth value is present, and the extracted value
aligns numerically with it (e.g., 76.82 matches 76.82 exactly).

the number of incorrect extractions when ground-truth is present.

Regression-style Metrics

MAE

RMSE

Let g; denotes extracted values, y; denotes ground-truth values and n denotes the

total number of papers where both ground-truth and extractions are present:

Mean Absolute Error between extracted and ground-truth numeric values:
n ~

MAE = % > e 19 — yil-

Root Mean Square Error: RMSE = \/ }L S (G — vi)2
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(b) Extract-and-Verify (Ours*) (c) SCILEAD

Figure 4: Error matrices comparing extraction quality across methods.

E Full experiment results

E.1 Runtime discussion & API rate limits

We report the runtime and cost to process one PDF on a single 8-core CPU with a 100 Mbps network link to the
OpenAl endpoint. The user tier 1 imposes 90 000 tokens min~* and 3 500 requests min~". Our pipeline uses a
single gpt-4o call per sections (consisting of a few pages), averaging ~1 650 input tokens and 120 output tokens.
We apply a dynamic safety delay time based on the characteristics of each paper between calls of OpenAl
requests. As a result, the average processing time per document is approximately 15 minutes—making the
pipeline more computationally intensive than initially expected. We evaluate the performance of our proposed
extraction pipelines, VOTE-ENSEMBLE, EXTRACT-AND-VERIFY, against the existing SCILEAD baseline in
our full annotated validation and development set described in Section[2] We then report on regression-based
metrics—quantifying how close the extracted values are numerically. The details of metric definitions can be
found in Section



System #Extract #Incorrect MAE | RMSE |

Match 1 Extractions |
VOTE-ENSEMBLE (Ours*) 3 12 19.633 35.672
EXTRACT-AND-VERIFY (Ours*) 6 8 3.033 4.500
EXTRACT-only (Ours*) 4 14 2.831 4.103
SCILEAD 7 8 5.026 11.027

Table 4: Regression metrics comparing VOTE-ENSEMBLE, EXTRACT-AND-VERIFY, EXTRACT-
only, and SCILEAD on the 100-paper validation set. EXTRACT-only represents a minimal baseline
where extraction is performed using a single section without voting.

E.2 100 Validation set with EXTRACT-only baseline

We compare our proposed methods, VOTE-ENSEMBLE, EXTRACT-AND-VERIFY, EXTRACT-only against
SCILEAD on our 100-paper validation set. Figure[I|shows the presence—correctness confusion matrices for four
extraction systems evaluated in the validation set.

Among the four systems, SCILEAD achieved the highest number of exact matches (7), followed by EXTRACT-
AND-VERIFY (6), EXTRACT-only (4), and VOTE-ENSEMBLE (3). Notably, EXTRACT-AND-VERIFY exhibited
lower regression errors compared to SCILEAD and VOTE-ENSEMBLE, despite recovering slightly fewer exact
matches. As reported in Table[d] both EXTRACT-AND-VERIFY and EXTRACT-only achieved the lowest Mean
Absolute Error (MAE) of 3.211 and RMSE of 4.550. In contrast, VOTE-ENSEMBLE reported high numeric
errors among its 12 incorrect extractions, yielding an MAE of 19.633 and RMSE of 35.672. SCILEAD showed
moderate regression performance (MAE: 5.026, RMSE: 11.027) but had a higher count of incorrect extractions
(8). While these results suggest performance differences across systems, we caution that the observed variations
may not be statistically significant due to the limited size of the validation set. To better understand the impact of
prompt aggregation and verification, we include an additional EXTRACT-only baseline with details in Section[E.4]

E.3 Development set results

We assess our proposed methods, VOTE-ENSEMBLE, EXTRACT-AND-VERIFY against SCILEAD on our
100-paper development set. Figure [2] presents presence—correctness confusion matrices comparing VOTE-
ENSEMBLE, EXTRACT-AND-VERIFY, and SCILEAD on our development set. To quantify performance, we
compute regression metrics over incorrect extractions—cases where both the ground-truth and predictions are
present, but the extracted values are incorrect. Table[5|reports the Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) for these incorrect extractions.

Both of our methods, VOTE-ENSEMBLE and EXTRACT-AND-VERIFY, correctly extracted 19 top-1 accuracy
values on ImageNet (73.1%), outperforming SCILEAD, which achieved 4 exact matches E] (15.4%). While
both of our methods reported 5 incorrect extractions, EXTRACT-AND-VERIFY showed higher regression error
in terms of regression errors among them. As shown in Table[5} EXTRACT-AND-VERIFY achieved a higher
Mean Absolute Error (MAE) of 1.632 and RMSE of 6.029, compared to 0.642 MAE and 2.112 RMSE for
VOTE-ENSEMBLE. SCILEAD presented higher error (MAE: 14.482, RMSE: 28.800). The results are based on
a limited development set and may not be statistically significant.

E.4 EXTRACT-only baseline result

To better understand the impact of prompt aggregation and verification, we include an additional EXTRACT-only
baseline. The method corresponds to setting & = 1 in VOTE-ENSEMBLE. While EXTRACT-only underperformed
SCILEAD in terms of exact match (4 vs. 7), it achieved lower regression error, with an MAE of 2.831 and RMSE

of 4.103. Again, we reiterate that our findings are based on a small sample and suggest they be interpreted with
caution.

F Extensions to Qualitative Analysis

F.1 More Cross-System Top-1 Extraction Comparison on Selected Failure Cases

We analyze additional representative failure cases across systems, with extended examples provided below.

Exact Match (EM) refers to a correct extraction where the extracted value exactly matches the ground-truth
value present in the paper.
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System #Extract #Incorrect MAE | RMSE |

Match 1 Extractions |
VOTE-ENSEMBLE (Ours*) 19 5 0.642 2.112
EXTRACT-AND-VERIFY (Ours*) 19 5 1.632 6.029
SCILEAD 4 8 14.482 28.800

Table 5: Regression metrics comparing VOTE-ENSEMBLE, EXTRACT-AND-VERIFY and SCILEAD
on development set.

Top-1 metrics reported on validation set only ( Fig.[14] Fig.[15] Fig.[20):

« Top-1 scores on validation set only (Fig.[14): “We acquire better classification results on complex

validation set ...” —Top-1 scores on validation reported; Top-1 scores on test set is never given.
* Top-1 scores on validation set only (Fig.[I3): “... top-I and top-5 error rates on the ImageNet

validation set . ..” with Top-1 = 22.15% for DenseNet-264. —Top-1 must be derived from the error
rate (100% - 22.15%), and validation set must be interpreted correctly.

+ Top-1 scores on validation set only (Fig.[20): A table presents classification and localization error
rates (Top-1, Top-5) on ILSVRC-15 validation set. —Top-1 must be inferred by subtracting from
100%; Top-1 scores on test set is never given.

ImageNet was pretrained in the paper (Fig.[17] Fig.[18] Fig.[19): —Requires filtering out such
examples as false positives despite mentioning ImageNet.

+ Non-ImageNet dataset with pretrained model (Fig. [T7): “We obtained an accuracy of
91.66% and 78.01% for the CALTECH 101 and neuromorphic CALTECH 101 datasets respectively.”
—Reports accuracy while using ImageNet-pretrained networks, but on non-ImageNet datasets (CAL-
TECH 101); must be excluded.

* Table-only accuracy, but not ImageNet (Fig.[T8): Table lists results like “85.3” under DA~ADAGE
Incremental for MNIST-M and SVHN. —Metrics shown in table format but pertain to other domains
(MNIST-M, SVHN); dataset mismatch with ImageNet.

« ImageNet-pretrained model on different datasets (Fig.[19): “Caltech-256: 84.7 (ImageNet-CLS),
76.7 (Openlmages)” —Although the model is pretrained on ImageNet, evaluation is done on
Caltech-256; such results should not be extracted as ImageNet scores.

Top-1 metrics embedded in large metric tables (continued) (Fig.[9] Fig. and Fig. 31H34):
Top-1 accuracy for ImageNet frequently appears within large, multi-column tables featuring dense formatting and
mixed dataset benchmarks. The complex layouts pose challenges for automated extraction systems, particularly
when headers are ambiguous or dataset-metric alignment is unclear. Below, we present four additional annotated
examples.

* Misaligned extraction due to unlabelled columns (Fig.24): Although the table includes Top-1
classification accuracy (81.02), extractors reported nearby but incorrect values (e.g., 76.1 or 79.5),
likely due to metric misinterpretation.

+ Under-specified table with missing axis labels (Fig.[29): The ImageNet Top-1 accuracy (76.2) is
never directly labeled. Extractors returned 72.2, reflecting structural ambiguity in the source format.

¢ Multiple candidate metrics in same table (Fig.[30): The Top-1 accuracy (78.1) is buried among
other results. Extractors selected 70.0, suggesting overreliance on numerical proximity rather than
structured alignment.

* (Fig.[31): “Comparison of Top-1 accuracy across various methods on the ImageNet dataset...”
Top-1 scores are shown across architectures like RN50 and ViT-B/16.
* (Fig.[32): “ImageNet: 74.1” appears in a large benchmark spanning multiple datasets.

Despite being explicitly labeled, the metric is embedded among heterogeneous datasets, making it
unclear. Systems may incorrectly associate the wrong metric with the wrong dataset.

* (Fig.[33): “Image classification results (Acc, %) on ImageNet.”

The table mixes logit-based and feature-based methods across two settings. Extractors must infer
correct Top-1 values from rows and columns with inconsistent grouping and abbreviations. Without
semantic understanding of headers, incorrect matches frequently occur.

* (Fig.[34): “ImageNet: 62.78 appears in a row alongside CUB200, EuroSAT, and other datasets.
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VOTE- EXTRACT-

Paper Ground-truth o\ opNBIE  AND-VERIFY

SCILEAD EXTRACT-only

2501.10640v2.pdf (Fig. 87.2 85.6 x - 83.9 x 89.5 x
2501.07783v1.pdf (Fig.[22) 85.9 82.0 x 82.1x - 82.0x
2505.14062v1 . pdf (Fig. [23) 83.0 - - 67.5 x -
2410.08407v2.pdf (Fig.[24] 81.02 - 76.1 x 79.51 x 76.1 x
2412.02366v3.pdf (Fig.[28) 78.73 73.3x - 65.8 x 77.23 x
2410.10773v1.pdf (Fig. 78.1 - 70.0 x - -
2504.08710v1. pdf (Fig. [29) 76.2 - 722 x - _
2412.20110v3.pdf (Fig.|31) 74.23 82.0 x 66.17 x 36.88 x 66.17 x
2503.12206v2. pdf (Fig.[32) 74.1 - 83.44 x - -
2412.08139v1.pdf (Fig.|33) 73.69 82.2x - 72.49 x 71.35x
2412.11917v3. pdf (Fig. 34) 62.78 71.89 x - - 63.31 x

Table 6: Cross-system Top-1 Accuracy extraction comparison on selected failure cases. Each system
either outputs an incorrect value (denoted by x) or abstains (“~"). These examples are highlighted in
the qualitative analysis (Sec.[3.2]and Sec. [FI).

G Limitations

While introducing a larger annotated dataset than prior work, several limitations remain in our study. First,
despite being larger than previous work, our dataset may still lack sufficient statistical power to demonstrate
significant performance differences across various extraction systems. Moreover, our use of the PapersWithCode
API for sampling—given its default ordering—may introduce sampling bias.

While ImageNet has historically served as a foundational benchmark dataset, it may not fully capture the diversity
of datasets or evaluation metrics in computer vision or the broader computer science community. Therefore, our
findings may not generalize to other tasks, domains, or scientific fields with different reporting conventions and
metric structures.

H Ethics statement

Our work introduces a large-scale dataset of papers annotated with their reported top-1 accuracy on the ImageNet
test set. All PDF papers in our study are publicly available on arXiv, which permits fair use and supports
responsible, reproducible, and transparent scientific research practices. All annotation work was performed by
the authors.

Our released dataset contains entries consisting of arXiv identifiers and their corresponding labeled Top-1
accuracy values on ImageNet. The intended use of our released dataset is strictly for academic research and
analysis. It is not designed for, nor licensed to support, commercial or production use, in accordance with the
original access conditions of the data sources.

File Name GT Top-1 Accu- VOTE-ENSEMBLE (Ours*) Extract Verify (Ours*) SCILEAD
racy

1909.13863v1.pdf 57.1 57.1 57.1 NA
1807.11164v1.pdf 77.2 77.2 75.4 18.56
omniVec_2023.pdf 92.4 92.4 92.4 NA
1803.00942v3.pdf NA NA NA NA
1703.09844v5.pdf 75 75 75 NA
1807.11626v3.pdf 75.2 66 75.2 76.7
1807.11459v1.pdf NA NA NA NA
1807.11254v2.pdf 77.86 NA NA -0.82
1807.10108v5.pdf NA NA NA NA
1512.03385v1.pdf NA NA NA NA
1909.11155v1.pdf 76.82 76.82 76.82 76.82
1807.10119v3.pdf NA NA NA NA

Table 7: Ground-truth versus extractor outputs on the 12-paper set. Cells in red bold indicate a
disagreement with the ground-truth.
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I Screenshots from ArXiv Papers with Extract Sections Highlighted

Abstract

Designing convolutional neural networks (CNN) for
mobile devices is challenging because mobile models need
to be small and fast, yet still accurate. Although significant
efforts have been dedicated to design and improve mobile
CNNs on all dimensions, it is very difficult to manually
balance these trade-offs when there are so many architec-
tural possibilities to consider. In this paper, we propose
an automated mobile neural architecture search (MNAS)
approach, which explicitly incorporate model latency into
the main objective so that the search can identify a model
that achieves a good trade-off between accuracy and
latency. Unlike previous work, where latency is considered
via another, often inaccurate proxy (e.g., FLOPS), our
approach directly measures real-world inference latency
by executing the model on mobile phones. To further
strike the right balance between flexibility and search
space size, we propose a novel factorized hierarchical
search space that encourages layer diversity throughout
the network. Experimental results show that our approach
consistently outperforms state-of-the-art mobile CNN
models across multiple vision tasks. On the ImageNet
classification task, our MnasNet achieves 75.2% top-1
accuracy with 78ms latency on a Pixel phone, which is
1.8x faster than MobileNetV2 [ "] with 0.5% higher
accuracy and 2.3x faster than NASNet [ ] with 1.2%
higher accuracy. Our MnasNet also achieves better mAP
quality than MobileNets for COCO object detection. Code
is at https://github.com/tensorflow/tpu/
tree/master/models/official/mnasnet.

Figure 5: Easy example. Top-1 accuracy (75.2 %) is stated plainly in the abstract of
1807.11626v3.pdf.
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tational budgets. We plot the performance of each MSDNet as a gray curve; we select the best
model for each budget based on its accuracy on the validation set, and plot the corresponding ac-
curacy as a black curve. The plot shows that the predictions of MSDNets with dynamic evaluation
are substantially more accurate than those of ResNets and DenseNets that use the same amount of
computation. For instance, with an average budget of 1.7 x 10° FLOPs, MSDNet achieves a top-1
accuracy of ~75%, which is ~6% higher than that achieved by a ResNet with the same number of
FLOPs. Compared to the computationally efficient DenseNets, MSDNet uses ~ 2— 3 x times fewer

B. Analysis of network depth in CapsuleNet architecture

In our study, CapsuleNet shows significantly higher ro-
bustness against image degradation than conventional deep
CNNs. However, state-of-the-art deep CNNs achieve better
recognition accuracy than CapsuleNet for noise-free samples
of all datasets. To improve the baseline performance of Cap-

Figure 6: Easy example. A single sentence in the main text of 1703.09844v5.pdf reports top-1
accuracy ( 75 %).

e )

optimize the network by minimizing the marginal loss only. In
our experiments, the proposed V-CapsNet fusion architecture
achieves 99.83% validation accuracy on the natural images
dataset, improving the baseline performance of CapsuleNet by

suleNet, we introduce a novel fusion architecture V-CapsNet 6_-2%- Flg ‘_’St'f’ws lhe mfh“e‘ft‘:l{e of}he P“’P"%"’d V-CapsNet

Figure 7: Challenging example. Top-1 accuracy is reported only on a validation split of an ImageNet
variant in 1807.10108v5.pdf.

method top-1 err. top-5 err.
VGG [41] (ILSVRC'14) - 8.437
GooglLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except ' reported on the test set).

Figure 8: Challenging example. The original ResNet paper (/512.03385.pdf) only reported on
ImageNet validation error rates.

Dataset Metric Modality Encoder Base Encoder Modified Encoder OmniVec (Pre.) OmniVec (FT)
AudioSet(A) mAP AST 48.5 49.4 44.7 54.8
AudioSet(A+V) mAP AST - - 48.6 55.2
SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4
ImageNetlK  Top-1 Accuracy ViT 88.5 89.1 88.6 92.4
Sun RGBD Top-1 Accuracy  Simple3D-former 57.3 62.4 71.4 74.6

Table 14. Impact of increasing backbone size of base modality encoders. All the base modality encoders above are based on ViT
architecture. We increase the number of parameters equivalent to our OmniVec-4 model, by replicating the number of layers.

Figure 9: Challenging example. In omniVec_2023.pdf, the ImageNet Top-1 value (92.4 %) appears
as one cell in a table containing multiple datasets.
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| Method \ shapes | Top-1 acc. | Top-5 acc. |

[ baseline [28] \ - | 512% | 732% |
Casel: a € RoIx1 55.5% 78.5%
Case 2: o o € ROhow>XWou 56.1% 79.0%
Case3: a®fB a € R®,B e RV ot | 567G 79.5%

o Wout
Cased: a@Boy | ©° Hj‘é’ %EMR 57.1% | 719.9%

Table 1: Top-1 and Top-5 classification accuracy using a binarized ResNet-18 on Imagenet
for various ways of constructing the scaling factor. o, 3,y are statistically learned via back-
propagation. Note that, at test time, all of them can be merged into a single factor, and a
single element-wise multiplication is required.

Figure 10: Challenging example. /909.13863vI1.pdf gives top-1 accuracy only within a table.

0.4% accuracy drop. Meanwhile, with the compressed model
the inference is accelerated by 2.2x. For AlexNet with the
ImageNet dataset, we achieve 4.9x model compression at
the cost that the top-5 accuracy drops slightly from 81.3% to
80%. For GoogLeNet with the ImageNet dataset, the proposed
method also brings 2.9x reduction of the model parameters

Figure 11: Challenging example. /807.10119v3.pdf omits top-1 accuracy, reporting only Top-5 (80
%).

Figure[4/shows performance of CNN features on MIT-indoor dataset. As a baseline we extract CNN

features from the entire image (after resizing to 256 x 256 pixels) and train a multi-class linear SVM.

This obtains 72.3% average performance. This is a strong baseline. Razavian et al. (2014) get 58.4%

using CNN trained on ImageNet. They improve the result to 69% after data augmentation.
Figure 12: Challenging example. /412.6598v2.pdf reports multiple references to ImageNet and
performance, but no clear top-1 accuracy value.
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Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon as internal covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its strength from making normal-
ization a part of the model architecture and performing the
normalization for each training mini-batch. Batch Nor-
malization allows us to use much higher learning rates and
be less careful about initialization. It also acts as a regu-
larizer, in some cases eliminating the need for Dropout.
Applied to a state-of-the-art image classification model,
Batch Normalization achieves the same accuracy with 14
times fewer training steps, and beats the original model
by a significant margin. Using an ensemble of batch-
normalized networks, we improve upon the best published
result on ImageNet classification: reaching 4.9% top-5
validation error (and 4.8% test error), exceeding the ac-
curacy of human raters.

Figure 13: Challenging example. /502.03167v3.pdf reports only Top-5 validation error (4.9%); no
Top-1 value.
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Abstract

Convolutional Neural Networks demonstrate high
performance on ImageNet Large-Scale Visual Recognition
Challenges contest. Nevertheless, the published results only
show the overall performance for all image classes. There
is no further analysis why certain images get worse results
and how they could be improved. In this paper, we provide
deep performance analysis based on different types of
images and point out the weaknesses of convolutional
neural networks through experiment. We design a novel
multiple paths convolutional neural network, which feeds
different versions of images into separated paths to learn
more comprehensive features. This model has better
presentation for image than the traditional single path
model. We acquire better classification results on complex

validation set on both top 1 and top 5 scores than the best
ILSVRC 2013 classification model.

Figure 14: Challenging example. /506.04701v3.pdf with validation results; top-1 accuracy on test
set not stated.

Model top-1 top-5

DenseNet-121(25.02 /23.61 |7.71 / 6.66
DenseNet-169 [23.80 / 22.08 |6.85/5.92

DenseNet-201 {22.58 / 21.46 |6.34 / 5.54

DenseNet-264 [22.15 /20.80|6.12/5.29

Table 3: The top-1 and top-5 error rates on the
ImageNet validation set, with single-crop / 10-
crop testing.

Figure 15: Challenging example. /608.06993v5.pdf where Top-1 error rate on ImageNet validation
set (e.g., 22.15%) needs conversion to accuracy and split is ambiguous.
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Table 1. Classification performance comparison on ImageNet (sin-
gle crop, single model). VGG-16 and ResNet-152 numbers are
only included as a reminder. The version of Inception V3 being
benchmarked does not include the auxiliary tower.

Top-1 accuracy Top-5 accuracy

VGG-16 0.715 0.901
ResNet-152 0.770 0.933
Inception V3 0.782 0.941
Xception 0.790 0.945

Figure 16: Challenging example. /6/0.02357v3.pdf mentions top-1 accuracy to ImageNet but split
is ambiguous.

Abstract—In the field of artificial intelligence, neuromor-
phic computing has been around for several decades. Deep
learning has however made much recent progress such that
it consistently outperforms neuromorphic learning algorithms
in classification tasks in terms of accuracy. Specifically in
the field of image classification, neuromorphic computing has
been traditionally using either the temporal or rate code for
encoding static images in datasets into spike trains. It is
only till recently, that neuromorphic vision sensors are widely
used by the neuromorphic research community, and provides
an alternative to such encoding methods. Since then, several
neuromorphic datasets as obtained by applying such sensors
on image datasets (e.g. the neuromorphic CALTECH 101) have
been introduced. These data are encoded in spike trains and
hence seem ideal for benchmarking of neuromorphic learning
algorithms. Specifically, we train a deep learning framework
used for image classification on the CALTECH 101 and a
collapsed version of the neuromorphic CALTECH 101 datasets.
We obtained an accuracy of 91.66% and 78.01% for the
CALTECH 101 and neuromorphic CALTECH 101 datasets
respectively. For CALTECH 101, our accuracy is close to the
best reported accuracy, while for neuromorphic CALTECH 101,
it outperforms the last best reported accuracy by over 10%.
This raises the question of the suitability of such datasets as
benchmarks for neuromorphic learning algorithms.

Figure 17: Accuracy reported (91.66% and 78.01%) is for CALTECH datasets, not ImageNet.
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SYNTH SYNTH
MNIST MNIST

Sources MNIST-M SVHN Avg.
USPS USPS

Target SVHN MNIST-M
combine sources 73.2 61.9 67.5
DG MLDG [89] 68.0 65.6 66.8
ADAGE Residual 68.2 65.7 66.9
ADAGE Incremental 75.8 67.0 71.4
combine sources 73.2 61.9 67.5
combine DANN [166] 68.9 71.6 70.3
DA DCTN [166] 775 70.9  74.2
ADAGE Residual 82.3 84.1 R3.2

ADAGE Incremental 85.3 85.3 85.3

Table 3.13. Classification accuracy results: experiments with 4 sources.

Figure 18: Accuracy values (e.g., 85.3) are shown in table format, but target domains are not
ImageNet.

Pre-trained Dataset IMAGENET-CLS [9, 46] OPENIMAGES [27]
CALTECH-256 [15] 84.7 76.7
SUN-397 [53] 57.3 51.1
OXFORD-102 FLOWERS [38] 87.4 83.1

Table 6: Linear classification results (Top-1 Accuracy) us-
ing Conv5 features from IMAGENET-CLS and OPENIM-
AGES pre-trained networks.

Figure 19: Pre-trained models are ImageNet-based, but classification is done on other datasets (e.g.,
Caltech-256).
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Classification Localization

Top-1 Top-5 Top-1  Top-5
Backprop [51] 30.38 10.89 61.12 51.46
3 c-MWP [58] 30.38 10.89 70.92  63.04
g  Grad-CAM (ours) 30.38 10.89 56.51 46.41
CAM [59] 33.40 12.20 57.20 45.14
3 ¢-MWP [58] 44.2 20.8 92.6 89.2
< Grad-CAM (ours) 44.2 20.8 68.3 56.6
% Grad-CAM (ours) 31.9 11.3 60.09  49.34
g CAM[59] 31.9 11.3 60.09  49.34

Table 1: Classification and localization error % on ILSVRC-15 val
(lower is better) for VGG-16, AlexNet and GoogleNet. We see that
Grad-CAM achieves superior localization errors without compromising
on classification performance.

Figure 20: Classification and localization error rates (%) on ILSVRC-15 validation set from

1610.02391v4.pdf. The table reports Top-1 classification error for models like VGG-16 and
AlexNet. Top-1 metrics on test set is not stated.
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TABLE 1V: Classification on ImageNet-1k

Model Type Parameters (M) GMACs Epochs Top-1 Accuracy (%)
ResNet18 [14] CNN 11.7 1.82 300 69.7
ResNet50 [14] CNN 25.6 4.1 300 80.4

ConvNext-T [70] CNN 28.6 74 300 82.7
EfficientFormer-L1 [42] CNN-ViT 123 13 300 79.2
EfficientFormer-L3 [42] CNN-ViT 31.3 39 300 82.4
EfficientFormer-L7 [42] CNN-ViT 82.1 102 300 83.3

LeViT-192 [71] CNN-ViT 10.9 0.7 1000 80.0

LeViT-384 [71] CNN-ViT 39.1 24 1000 82.6

EfficientFormerV2-S2 [43] CNN-ViT 12.6 13 300 81.6
EfficientFormerV2-L [43] CNN-ViT 26.1 2.6 300 83.3
PVT-Small [72] ViT 245 3.8 300 79.8
PVT-Large [72] ViT 61.4 9.8 300 81.7
DeiT-S [73] ViT 22.5 4.5 300 81.2
Swin-T [23] ViT 29.0 45 300 81.4
PoolFormer-s12 [74] Pool 12.0 2.0 300 77.2
PoolFormer-s24 [74] Pool 21.0 3.6 300 80.3
PoolFormer-s36 [74] Pool 31.0 52 300 81.4

PViHGNN-Ti [28] GNN 123 2.3 300 78.9

PViHGNN-S [28] GNN 28.5 6.3 300 82.5

PViHGNN-B [28] GNN 94.4 18.1 300 83.9

PViG-Ti [27] GNN 10.7 1.7 300 78.2
PViG-S [27] GNN 273 4.6 300 82.1
PViG-B [27] GNN 92.6 16.8 300 83.7
PVG-S [29] GNN 22.0 5 300 83.0
PVG-M [29] GNN 42.0 8.9 300 83.7
PVG-B [29] GNN 79.0 16.9 300 84.2

MobileViG-S [30] CNN-GNN 72 1.0 300 78.2

MobileViG-M [30] CNN-GNN 14.0 15 300 80.6

MobileViG-B [30] CNN-GNN 26.7 2.8 300 82.6

Greedy ViG-S [26] CNN-GNN 12.0 1.6 300 81.1

GreedyViG-M [26] CNN-GNN 21.9 32 300 82.9

GreedyViG-B [26] CNN-GNN 309 52 300 83.9

CViG-Ti (Ours) CNN-GNN 11.5 13 300 80.3

CViG-S (Ours) CNN-GNN 28.2 4.2 300 83.7

CViG-B (Ours) CNN-GNN 104.8 16.2 300 85.6

CViG-B' (Ours) CNN-GNN 105.2 62.3 300 87.2

Figure 21: Metric table from 2501.10640v2.pdf. No explicit Top-1 label or split is provided.
Extracted value (85.6) does not match the ground truth (87.2).

TABLE VIII
IMAGE CLASSIFICATION PERFORMANCE ON IMAGENET. UNDERLINE INDICATES FLOPS OR
METRICS ON PAR WITH THE BASELINE.

Model ‘ Resolution  #FLOPs Top-1 Acc
DeiT-B [’] 224 17.2G 81.8
PIIP-TSB (ours) 368/192/128 17.4G 82.1
ViT-L [4] 224 61.6G 84.0
ViT-L [] (our impl.) 224 61.6G 85.2
PIIP-SBL (ours) 320/160/96 39.0G 85.2
PITP-SBL (ours) 384/192/128 61.2G 85.9

Figure 22: Large benchmark comparison in 2501.07783v1.pdf with top-1 accuracy buried among
multiple datasets. The extracted value of 82.0 does not match the ground truth (85.9).
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TABLE 2
Image classification performance (Top-1 Accuracy) on ImageNet-1k under varying input resolutions. FLOPs are measured at input resolution of
224 x 224.

Input Resoluti
Method Publication ~ Param. FLOPS‘ fiput Resolution

\ 2242 256% 3842 5122 6402 7682 10242 12807 14082 15362
VMamba NeurlPS’24 31IM  49G | 825 825 825 811 793 761 623 502 451 409
GrootV NeurlPS'24 30M  4.8G | 834 839 836 820 801 77.6 679 524 450  39.1
MILA NeurlPS'24 25M  42G | 835 839 835 817 796 768 637 496 428 368
MSVMamba NeurlPS’24  33M  4.6G | 828 825 823 809 788 751 63.0 549 496 440
Spatial Mamba ICLR’25 27M  45G | 835 83.6 830 802 774 744 661 537 464 387
Mamba® CVPR’25 20M  46G | 811 457 254 128 78 53 28 18 1.6 14
MambaVision CVPR’25 32M  44G | 823 817 798 77.6 748 712 596 464 397 345
FractalMamba AAAT'25 3IM  48G | 830 835 839 830 818 803 763 659 588 521
FractalMamba++  Year'25 30M  48G | 830 833 841 839 830 819 788 743 713 675
MSVMamba NeurlPS’24 12M  1.5G | 798 80.1 800 783 758 720 594 439 365 299
Efficient VMamba  AAAI'25 1M 13G | 787 796 795 773 752 724 642 541 426 383
FractalMamba++  Year'25 1IM  16G | 795 80.6 820 813 801 783 733 663 617 561
MSVMamba NeurIPS24 7M  09G | 773 777 714 750 717 658 480 310 238 183
ViM ICML24 M 15G | 761 763 704 674 514 306 161 72 4.1 1.8
Efficient VMamba ~ AAAI'25 6M  08G | 765 769 765 73.8 704 658 520 362 294 241
FractalMamba++  Year’25 M 10G | 773 784 795 784 764 737 665 552 481 425

Figure 23: Ambiguous accuracy reporting in 2505.14062v1.pdf. Top-1 accuracy for ImageNet is
co-listed with CIFAR/Tiny-ImageNet rows. Systems failed to extract a valid value.

Table 1: Class-wise Bias and Distillation. The number of statistically significantly affected classes
comparing the class-wise accuracy of teacher vs. Distilled Student (DS) models, denoted #TC, and Non-Distilled
Student (NDS) vs. distilled student models, denoted #SC.

CIFAR-100 ImageNet
Teacher/Student ResNet56/ResNet20 DenseNet169/DenseNet121 ResNet50/ResNet18 ViT-Base/TinyViT

Model ~ Temp Test Acc. (%) #SC #TC Test Acc. (%) #SC #TC Test Top-1Acc. (%) #SC #TC Test Top-1 Acc. (%) #SC #TC
Teacher - 70.87 £0.21 - - 72.43 £ 0.15 - - 76.1 £0.13 - - 81.02 & 0.07 - -
NDS - 68.39 + 0.17 - - 70.17 £ 0.16 - - 68.64 + 0.21 - - 78.68 +0.19 - -
DS 2 68.63 + 0.24 5 15 70.93 £ 0.21 4 12 68.93 &+ 0.23 ks 314 78.79 £ 0.21 83 397
DS 3 68.92 + 0.21 7 12 71.08 £ 0.17 4 11 69.12 + 0.18 113 265 78.94 +0.14 137 318
DS 4 69.18 +0.19 8 9 71.16 +0.23 5 9 69.57 + 0.26 169 237 79.12+0.23 186 253
DS 5 69.77 + 0.22 9 8 71.42+0.18 8 9 69.85 + 0.19 190 218 79.51 £ 0.17 215 206
DS 6 69.81 +0.15 9 8 71.39 £ 0.22 8 8 69.71 +0.13 212 193 80.03 +0.19 268 184
DS 7 69.38 +0.18 10 6 71.34+0.16 9 7 70.05 +0.18 205 174 79.62 +0.23 329 161
DS 8 69.12 +0.21 13 6 7129+ 0.13 11 7 70.28 +0.27 346 138 79.93 +0.12 365 127
DS 9 69.35 & 0.27 18 9 71.51+0.23 12 9 70.52 = 0.09 371 101 80.16 + 0.17 397 96
DS 10 69.24 + 0.19 22 11 71.16 £ 0.21 14 10 70.83 £ 0.15 408 86 79.98 +0.12 426 78

Figure 24: In 2410.08407v2.pdf, Top-1 accuracy (81.02) appears in a table with closely related
numbers. Extractors returned 76.1 or 79.51, misaligned with the correct value.
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Table 2: Top-1 and Top-5 classificati (%) on ImageNet. T denotes the results from [18] and i from [43]. The best results are highlighted

in Bold.

Model + Method Top-1/ Top-5
ResNet50 + Hard Label 76.30/93.05
ResNet50 + LS[34] 76.67/ -*
ResNet50 + CutOut[44] 77.07/93.34"
ResNet50 + Disturb Label[35] 76.41/93.10"
ResNet50 + BYOT][8] 76.96 / 93.491
ResNet50 + TF-KD[7] 76.56 / -*
ResNet50 + CS-KD[21] 76.78 / -*
ResNet50 + Zipf’s LS[43] 77.25 /-*
ResNet152 (Teacher)

ResNet50 + KD[1] 7149 -

7785 / 93.57

ResNet50 + Ours (2x2) (1.557)/ (0.527)
7159 / 93.56
ResNet50 + Ours (4x4) (1.291) 7 (0.517)
MobileNetV2 [41] 60.05 / 83.20
. 60.83 / 84.31
MobileNetV2 + Ours (2x2) ©.781)/ (1.117)
MViTv2 [42] 7171 /-
. 80.99 /-
MViTv2 + Ours (2X2) (3281 /-

Figure 25: Example from 2505.14124v1.pdf where 80.99 is reported, but the Top-1 metric is
embedded among unlabeled entries. Systems extracted 77.85, a nearby but incorrect value.

Dataset Approach ResNet-18 Swin-T MobileNet-V2 VGG-16bn

top-1 Rem. | top-1 Rem. top-1 Rem. | top-1 Rem.

Dense model 92.00 017 91.63 0/12 93.64 0/35 93.09 0/15

Smallest weights 88.49 117 86.92 3/12 10.00 135 90.53 mns

Smallest gradients 88.60 117 86.96 3/12 10.00 1735 90.4 715

CIFAR-10 EGP 90.64 517 86.04 6/12 92.22 6/35 10.00 115
LF 90.65 117 85.73 2/12 89.24 9/35 86.46 15

EASIER 86.53 117 91.25 6/12 92.45 16/35 93.03 75

TLC 90.91+0.57 12/17 | 91.98+0.07  6/12 92.97+0.38 17/35 | 93.61+0.23 715

Dense model 41.86 017 75.88 0/12 45.70 0/35 58.44 0/15

Smallest weights 37.42 817 72.90 1712 0.5 1735 56.88 15

Smallest gradients 37.88 8/17 72.92 112 0.5 135 57.34 u1s

Tiny-Inet LF 37.86 417 50.54 1712 25.88 12/35 3122 15
EGP 37.44 5117 71.48 /12 46.88 1735 — —

EASIER 35.84 6/17 70.94 1/12 47.58 11/35 55.16 15

TLC 38.66 + 0.68 917 74.07+£0.02 112 47.84+0.55 16/35 | 57.63+0.65 15

Dense model 79.70 017 97.00 0/12 96.10 0/35 96.10 0/15

Smallest weights 84.30 8/17 95.10 3/12 18.50 1735 95.20 3/15

Smallest gradients 83.60 6/17 95.90 3/12 18.50 135 95.50 15

PACS LF 82,90 317 87,70 2/12 79.70 135 93.60 15
EGP 81.60 317 93.50 4/12 17.70 3/35 — —

EASIER 88.30 917 93.80 3/12 94.40 735 95.20 3/15

TLC 84.80 £ 0.78 917 96.57 £ 0.41 4/12 94.87+0.19 11/35 | 95.98 +0.22 4/15

Dense model 67.85 017 85.83 0/12 81.83 0/35 84.62 0/15

Smallest weights 65.89 16/17 69.99 5/12 6.43 1/35 80.71 715

Smallest gradients 66.26 117 70.18 512 6.43 135 80.99 s

VLCS LF 63.28 m1 70.92 /12 68.87 2/35 80.24 2/15
EGP 64.40 517 82.76 3/12 45.85 2/35 — —

EASIER 54.24 15117 78.19 512 72.88 22/35 78.84 6/15

TLC 66.43+0.66 16/17 | 82.79+0.31 512 76.11+1.18 23/35 | 81.41+0.42 7ns

Dense model 68.28 0/17 81.08 0/12 71.87 0/35 73.37 0/15

Smallest weights 67.80 217 79.74 1712 0.1 135 70.67 15

Smallest gradients 67.56 217 79.71 1712 0.1 1735 70.12 15

ImageNet LF 67.62 1mn7 73.51 112 7.89 135 72.22 2/15
EGP 61.73 217 78.62 1712 0.1 1735 — —

EASIER 67.20 217 78.78 /12 41.14 2/35 119 15

TLC 67.81 217 79.96 1/12 59.43 2/35 72.89 2/15

Table 1: Test performance (top-1) and the number of removed layers (Rem.) for all image classification setups considered. The
best results between Smallest weights/gradients, LF, EGP, EASIER, and TLC are in bold.

Figure 26: Figure from 2412.15077v1 . pdf, where top-1 accuracy (79.96) appears in a multi-column
architecture table. No extractor returned the correct value.
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Input Token Throughput Latency | Top-1 | Params FLOPs
Method | Venue Size ‘ Epochs | yrixer | Gmi)t Thrat | me)l | B+ | op o0
MobileViTV2 0.5 [45] Arxiv 2022 2562 300 Att. 6,702 x0.32 0.149 | 70.2 14 466
MobileOne-S0 [67] CVPR 2023 2242 300 Conv 13313 x0.64 0.075 | 714 21 275
EMO-1M [83] ICCV 2023 2242 300 Att. 6,945 x0.34 0.144 71.5 13 261
MobileFormer-96M [3] CVPR 2022 2242 450 Att. 11,554 x0.56 0.087 | 72.8 4.6 96
SHVIT-S1 [80] CVPR 2024 2242 300 Att. 19,868 x0.96 0.050 | 72.8 6.3 241
EfficientViM-M1 - 2242 300 SSD 20,731 x1.00 0.048 | 729 6.7 239
MobileNetV3-L 0.75 [22] ICCV 2019 2242 600 Conv 10,846 x0.52 0.092 73.3 4.0 155
EfficientViT-M3 [36] CVPR 2023 2242 300 Att. 16,045 x0.77 0.062 | 73.4 6.9 263
EfficientViM-M1 - 2242 450 SSD 20,731 x1.00 0.048 | 735 6.7 239
EfficientFormerV2-S0 [33] | NeurIPS 2022 | 2242 300 Att. 1,350 x0.08 0.741 73.7 35 407
EfficientViT-M4 [36] CVPR2023 | 2242 | 300 At. | 15807  x093 0.063 | 74.3 8.8 299
EdgeViT-XXS [48] ECCV 2022 2242 300 Att. 5,990 x0.35 0.167 74.4 4.1 556
EMO-2M [83] ICCV 2023 2242 300 Att. 4,990 x0.29 0.200 | 75.1 2.3 439
MobileNetV3-L 1.0 [22] ICCV 2019 2242 600 Conv 9,493 x0.56 0.105 | 75.2 54 217
MobileFormer-151M [3] CVPR 2022 2242 450 Att. 8,890 x0.52 0112 | 75.2 1.6 151
SHVIT-S2 [80] CVPR 2024 | 2242 300 Att. 15,899 x0.93 0.063 | 75.2 11.4 366
EfficientViM-M2 - 2242 300 SSD 17,005 x1.00 0.059 | 75.4 13.9 355
MobileViTV2 0.75 [45] Arxiv 2022 2562 300 Att. 4,409 x0.26 0227 | 75.6 29 1030
FastViT-T8 [66] ICCV 2023 | 2562 | 300 Att. 4365  x026 0229 | 75.6 3.6 705
EfficientViM-M2 - 2242 450 SSD 17,005 x1.00 0.059 | 75.8 13.9 355
EfficientMod-XXS [43] ICLR 2024 2242 300 Att. 7022 x0.59 0.142 76.0 4.7 583
ConvNeXtV2-A [72] CVPR 2023 2242 300 Conv 7563 x0.63 0.132 | 76.2 37 552
EfficientViT-M5 [36] CVPR 2023 2242 300 Att. 11,105 x0.93 0.090 | 77.1 12.4 522
MobileOne-S2 [67] CVPR2023 | 2242 | 300 | Conv 5360  x045 0.187 | 774 78 1299
SHVIT-S3 [80] CVPR 2024 | 2242 | 300 Att. 11873 x099 0.084 | 774 142 601
EdgeViT-XS [48] ECCV 2022 2242 300 Att. 4,405 x0.37 0.227 | 77.5 6.7 1136
EfficientViM-M3 - 2242 300 SSD 11,952 x1.00 0.084 | 776 16.6 656
MobileFormer-294M [3] CVPR 2022 2242 450 Att. 6,576 x0.55 0.152 | 77.9 114 294
EfficientFormerV2-S1 [33] | NeurIPS 2022 2242 300 Att. 1,248 x0.10 0.801 77.9 6.1 668
EfficientViM-M3 - 2242 450 SSD 11,952 x1.00 0.084 | 77.9 16.6 656
ConvNeXtV2-F [72] CVPR 2023 2242 300 Conv 6,405 x0.78 0.156 | 78.0 5.2 785
MobileViTV2 1.0 [45] Arxiv 2022 2562 300 Att. 2,977 x0.36 0336 | 78.1 49 1844
MobileOne-S3 [67] CVPR2023 | 2242 | 300 | Conv 4181  x051 0239 | 78.1 10.1 1896
EfficientMod-XS [43] ICLR 2024 2242 300 Att. 5321 x0.65 0.188 783 6.6 778
EMO-6M [83] ICCV 2023 2242 300 Att. 3,266 x0.40 0.306 | 79.0 6.1 961
FastViT-T12 [66] ICCV 2023 2562 300 Att. 2,741 x0.34 0365 | 79.1 6.8 1419
MobileFormer-508M [3] CVPR 2022 2242 450 Att. 4,586 x0.56 0218 | 79.3 14.0 508
MobileOne-$4 [67] CVPR2023 | 2242 | 300 | Conv 3041 %037 0320 | 794 148 2978
SHVIT-S4 [80] CVPR 2024 2562 300 Att. 8,024 x0.98 0.124 | 79.4 16.5 986
EfficientViM-M4 - 2562 300 SSD 8,170 x1.00 0.122 | 794 19.6 1111
MobileViTV2 1.25 [45] Arxiv 2022 2562 300 Att. 2,409 x0.24 0415 | 79.6 15 2857
EfficientViM-M4 - 2562 450 SSD 8,170 x1.00 0122 | 79.6 19.6 1111

Table 3. Comparison of efficient networks on ImageNet-1K [10] classification. Results are sorted by accuracy. We also denote the
relative throughput Thr., of each method compared to EfficientViM in each split.

Figure 27: In 2411.15241v1.pdf, 79.6 is reported in a dense comparison table with ViT variants.
Systems hallucinated or extracted higher values (e.g., 82.0, 84.2).

TABLE 2: Top-1 and Top-5 accuracies comparison on ImageNet-1K using ResNet-50, on Tiny ImageNet-200 and CIFAR-
100 using PreActResNet-18. FGSM error rates on CIFAR-100 and Tiny-ImageNet-200 datasets are also computed for
PreActResNet-18. Compared numbers are taken either from the original papers or from Kang and Kim (2023), following
the exact protocols.

Method ImageNet-1K | Tiny ImageNet-200 | CIFAR-100

Top-1 Top-5 Top-1 Top-5 FGSM Top-1 Top-5 FGSM

Acc (%) Acc (%) Acc (%) Acc (%)  Error (%) | Acc (%) Acc (%) Error (%)

Vanilla-He et al. (2016b) 75.97 92.66 57.23 73.65 42.77 76.33 91.02 23.67
AugMix Hendrycks et al. (2019) 76.75 93.30 55.97 74.68 - 75.31 91.62 43.33
ManifoldMix Verma et al. (2019) 76.85 93.50 58.01 74.12 41.99 79.02 93.37 20.98
Mixup Zhang et al. (2018) 77.03 93.52 56.59 73.02 4341 76.84 92.42 23.16
CutMix Yun et al. (2019b) 77.08 93.45 56.67 75.52 43.33 76.80 91.91 23.20
Guided-SR Kim et al. (2020a) 77.20 93.66 55.97 74.68 - 80.60 94.00 -
PixMix Hendrycks et al. (2022) 77.40 - - - - 79.70 - -
PuzzleMix Kim et al. (2020a) 77.51 93.76 63.48 75.52 36.52 80.38 94.15 19.62
GuidedMix Kang and Kim (2023) 77.53 93.86 64.63 8249 - 81.20 94.88 -
Co-Mixup Kim et al. (2020b) 77.63 93.84 64.15 - - 80.15 - -
YOCO Han et al. (2022) 77.88 - - - - - - -
Azizi et al. Azizi et al. (2023) 78.17 - - - - - - -
GenMix 78.73 95.47 65.80 83.70 34.47 82.58 95.51 16.83

Figure 28: Metric table from 2412.02366v3. pdf, where 78.73 is buried among comparisons across
variants. Extractors returned mismatched outputs like 73.3 or 65.8.
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Table 2. ImageNet-1k results for HgVT and other isotropic net-
works. % CNN, ¢Transformer, *GNN, ®HGNN, and AHgVT.

ImNet | Real V2
Model Params | FLOPs | Top-1 | Top-1 | Top-1
## ResMLP-512 conv3x3 [52] | 16.TM 3.2B 77.0 84.0 65.5
s# ConvMixer-768/32 [55] 21.1M 20.9B 80.2 - -
s# ConvMixer-1536/20 [55] 51.6M 51.1B 81.4 - -
4DINOv1-S [2] 21.T™M 4.6B 77.0 - -
4VIiT-B/16 [12] 86.4M 55.5B 77.9 83.6 -
4DeiT-Ti [53] 5™ 1.3B 72.2 80.1 60.4
4DeiT-S [53] 22.1M 4.6B 79.8 85.7 68.5
4DeiT-B [53] 86.4M 17.6B 81.8 86.7 T1.5
*ViG-Ti[16] 7.1M 1.3B 73.9 - -
* ViG-S [16] 22. ™™ 4.5B 80.4 - -
*ViG-B [16] 86.8M 17.7B 82.3 - -
'ViHGNN-Ti [17] 8.2M 1.8B 74.3 - -
'ViHGNN-S [17] 23.2M 5.6B 81.5 - -
'ViHGNN-B [17] 88.1M 19.4B 82.9 - -
AHgVT-Ti (ours) 7™ 1.8B 76.2 83.2 643
AHgVT-S (ours) 22.9M 5.5B 81.2 86.7 70.1

Tab. 2 presents the ImageNet-1k top 1 accuracy | of HgVT

Figure 29 Top 1 accuracy of 76 2 from 2504. 0871 ov1.pdf is presented in a large table with no
metric labels. Extracted values (e.g., 72.2) reflect misalignment.

3 Results Table 1: Classification performance
comparison on IN-1k dataset.

We evaluate the baseline IJEPA and our proposed encoder
conditioned variant EC-IJEPA on several visual benchmarks Model Accuracy
consistent with prior work [14, 16]. We follow the setup -

from Assran et al. [14] to pretrain the baseline IJEPA and B (I:{}IEJI})%‘&\/(I&,]I'Z_/]{?I) 6) ;23
our proposed EC-IJEPA on the ImageNet-1k (IN-1k) dataset .
[13] (see Appendix & for more details). The pretrained 1IJEPA (ViT-H/14) 774
encoders are then used to extract representations, by average = EC-IJEPA (ViT-H/14) 78.1
poolmg the - output sequence of patch- level tokens from the

Figure 30: In 2410.10773v1.pdf, top-1 accuracy (78.1) appears W1th multlple cand1date rows and
no clear indicator. Systems returned incorrect values such as 70.0.

Models RN50 RNI101 V-B/16 V-B/32
Zero-shot CLIP (Radford et al., 2021) 60.33  62.53 68.73 63.80
CoOp (Gu et al., 2021) 6295 66.60 71.92 66.85
CLIP-Adapter (Gao et al., 2024) 63.59 65.39 71.13 66.19
Tip-Adapter (Zhang et al., 2021) 62.03 64.78 70.75 65.61
Tip-Adapter-F (Zhang et al., 2021) 65.51 68.56 73.69 68.65
CMM 66.17 68.93 74.23 69.17

Table 2: Comparison of Top-1 accuracy across various methods on the ImageNet dataset using
16-shot learning with different architectures, where RN’ represents ResNet and *V-’ represents ViT
(Dosovitskiy, 2020).

Figure 31: Large table showing top-1 accuracies across various architectures on ImageNet, but split
(validation/test) is not explicitly stated.
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CLIPS | 735 | 943 | 93.1 | 769 | 76.2 | 903 | 30.0 | 67.6 | 52.5 | 73.8 | 60.9 | 74.0 | 46.2 | 69.9
CLIPDS | 755 | 937 | 93.5 | 78.1 | 79.5 | 90.9 | 31.8 | 69.0 | 54.8 | 762 | 619 | 77.7 | 48.8 | 71.6
CuPL 76.7 | 935 | 93.8 | 77.6 | 797 | 93.4 | 36.1 | 733 | 617 | 784 | 634 | - | - | 752
DCLIP | 751|970 | 93.0 | 75.1 | 79.5 | 91.1 | 31.8 | 69.6 | 56.1 | 76.2 | 62.2 | 765 | 48.9 | 71.7
Waffle 751 | 962 | 932 | 765 | 783 | 91.5 | 325 | 69.4 | 553 | 76.0 | 623 | 77.0 | 49.1 | 717
MPVR (Mix) | 75.9 | 95.4 | 93.1 | 70.6 | 83.8 | 91.4 | 37.6 | 72.5 | 61.6 | 75.8 | 62.2 | 78.4 | 49.7 | 72.9
MPVR (GPT) | 76.8 | 96.1 | 93.7 | 78.3 | 83.6 | 91.5 | 34.4 | 73.0 | 629 | 78.1 | 63.4 | 782 | 50.6 | 73.9
Ours (SLAC) | 73.8 | 96.6 | 96,5 | 88.7 | 77.7 | 929 | 65.6 | 73.5 | 585 | 85.2 | 67.9 | 89.9 | 66.1 | 79.4
Ours (TLAC) | 74.1 | 97.0 | 97.1 | 90.2 | 85.7 | 94.4 | 79.4 | 79.0 | 72.6 | 89.5 | 69.2 | 90.8 | 68.2 | 83.6

Table 1. Table compares the results of our models with those of previous training-free methods.

Results of previous state-of-the-art models

have been taken from [25].The best result is displayed in bold, while the second-highest result is shown in blue. Higher scores represent

superior performance.

Figure 32: Top-1 accuracy of 74.1 appears in a multi-dataset benchmark.

Logit Feature Logit + Featurc
Setting T 8 | KD DKD NKD CTKD WTTM WKD-L| FitNet CRD Review CAT WKD.F|CRD+ DPK FCED KD- “‘;,KK%'?
@B @ 54 51 s | 241 (5] KDS] (5] Gour) [KD(S] (7] (8] ZerolS6] “yeury
Top-1 7331 69.75|71.03 7170 7196 7151 72.19 7249 | 7053 7117 7161 7126 7250 | 7138 7251 7225 7217 7276
@ s 9142 59.07(9005 9041~ 9047  — 9075 | 8987 9013 9051 9045 9L00 |9049 9077 9071 9046  9L08
@ T 76166881050 205 TS~ 709 70T [ 7026 L3 M6 T2 | - T 732 T2 136
Top-5 92.86 88.76|89.80 91.05 - ~ 9132 | 9014 9041 9100 9LI3 913 | - 9LI7 9124 9105 9163

Table 4: Image classification results (Acc, %) on ImageNet. In setting (a), the teacher (T) and student
(8) are ResNet34 and ResNet18, respectively, while setting (b) consists of a teacher of ResNet50
and a student of MobileNetV1. We refer to Table in Section C.4 for additional comparison to
competitors with different setups.

Figure 33: Table 4 compares classification accuracy (%) across methods and settings on ImageNet.

Source of P Description Assignment | Max #desc. | |ImageNet ImageNetV2 CUB200 EuroSAT Places365 DTD Flowers102

DCLIP LLM (global eval) 13 61.99 55.09 51.79 43.31 3991  43.09 62.97
DCLIP LLM (local-k eval) 13 61.99 55.06 51.83 43.29 39.87  43.09 62.86
DCLIP Ours 5 62.57 55.48 53.80 49.89 42.64 47.23 66.37
Random Ours | 5 | 6218 55.22 5231 40.82 4044 4473 66.12
Contrastive LLM 40 62.03 54.88 52.24 46.97 4037 4441 62.90
Contrastive  Ours 5 62.78 55.48 53.45 49.47 42.65 46.97 67.07

Table 1: Image classification in classname-free setup with different assignments and pools. Our method consistently produces
the highest accuracies in this setting. We use the best-performing w,;, of the respective assignment to ensure a fair comparison.

Figure 34: Top-1 accuracy reported on ImageNet appears in a wide comparison table (e.g., 62.78).

Table 2. Classification accuracies on ImageNet (ResNet-50)

Loss Fn.  Parameter Top-1 Top-5
CE 76.39  93.20
OHEM p=08 7627 9321
FL v=05 7672 93.06
AL (ours) =05 7682 93.03

Figure 35: Challenging example. /909.11155v1.pdf gives top-1 accuracy only within a table; the
metric is absent from the surrounding text.
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