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ABSTRACT

Model inversion attacks (MIAs) aim to reconstruct the private training data by
accessing the public model, raising concerns about privacy leakage. Black-
box MIAs, where attackers can only query the model and obtain outputs, are
closer to real-world scenarios. The latest black-box attacks have outperformed
state-of-the-art white-box attacks, and existing defenses cannot resist them ef-
fectively. To fill this gap, we propose Stealthy Shield Defense (SSD), a post-
processing algorithm against black-box MIAs. Our idea is to modify the model’s
outputs to minimize the conditional mutual information (CMI). We mathemat-
ically prove that CMI is a special case of Information Bottleneck (IB), and
thus inherits the benefits of IB—making predictions less dependent on inputs
and more dependent on ground truths. This theoretically guarantees our ef-
fectiveness, both in resisting MIAs and preserving utility. To minimize CMI,
we formulate a convex optimization problem and solve it via the water-filling
method. Without the need to retrain the model, our defense is plug-and-play
and easy to deploy. Experimental results indicate that SSD outperforms exist-
ing defenses, in terms of MIA resistance and model’s utility, across various attack
algorithms, private datasets, and model architectures. Our code is available at
https://github.com/ZhuangQu/Stealthy-Shield-Defense.

1 INTRODUCTION

Deep neural networks (DNNs) have driven widespread deployment in multiple mission-critical do-
mains, such as computer vision (He et al., 2015), natural language processing (Devlin et al., 2019)
and dataset distillation (Zhong et al., 2024b;a). However, their integration with sensitive training
data has raised concerns about privacy breaches. Recent studies (Fang et al., 2024b;a; 2025) have
explored various attack methods to probe such privacy, such as gradient inversion (Fang et al., 2023;
Yu et al., 2024b) and membership inference (Hu et al., 2021). Among the emergent threats, model
inversion attacks (MIAs) aim to reconstruct the private training data by accessing the public model,
posing the greatest risk (Qiu et al., 2024b). For instance, consider a face recognition access control
system with a publicly accessible interface. Through carefully crafted malicious queries, model in-
version attackers can infer the sensitive facial images stored in the system, along with the associated
user identities.

MIAs are divided into white-box and black-box (Fang et al., 2024c). White-box attackers know
the details of the model, whereas black-box attackers can only query the model and obtain outputs.
Black-box MIAs become more threatening than white-box because: (1) Black-box scenarios are
more common. As models grow larger nowadays, they are mostly stored on servers and can only be
accessed online, which is a typical black-box scenario. (2) Black-box attacks are more powerful.
The latest soft-label attack RLBMI (Han et al., 2023) and hard-label attack LOKT (Nguyen et al.,
2023) have outperformed state-of-the-art white-box attacks. (3) Existing defenses cannot resist
black-box attacks effectively. Existing defenses focus on modifying the weights and structure of
the model, but black-box attackers only exploit the outputs, and thus are less susceptible.
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Figure 1: An overview of Stealthy Shield Defense. With 3 classes, the probability simplex is a
triangle. CMI is defined as I(X; Ŷ |Y ). According to our Theorem 1, minimizing CMI makes the
mutual information I(X; Ŷ ) minimized and I(Ŷ ;Y ) maximized. As shown by Yang et al. (2024),
minimizing CMI makes the outputs more concentrated class-wisely.

To address these concerns, we propose Stealthy Shield Defense (SSD), a post-processing algorithm
against black-box MIAs. As shown in Figure 1, the idea of SSD is to modify the model’s outputs
to minimize the conditional mutual information (CMI). CMI quantifies the dependence between
inputs and predictions when ground truths are given. In Theorem 1, we prove that CMI is a special
case of Information Bottleneck (IB), and thus inherits the benefits of IB—making predictions less
dependent on inputs and more dependent on ground truths. Under this theoretical guarantee, SSD
achieves a better trade-off between MIA resistance and model’s utility. Without the need to retrain
the model, SSD is plug-and-play and easy to deploy.

The contributions of this paper are:

• We introduce CMI into model inversion defense for the first time, and theoretically prove
its effectiveness.

• We propose a post-processing algorithm to minimize CMI without retraining models. In
our algorithm, temperature is introduced to calibrate the sampling probability and adaptive
rate-distortion is introduced to constrain the modification to outputs. We speed up our
algorithm by GPU-based water-filling method as well.

• Our experiments indicate that we outperform all competitors, in terms of MIA resistance
and model’s utility, exhibiting strong generalizability across various attack algorithms, pri-
vate datasets, and model architectures.

2 RELATED WORKS

2.1 MODEL INVERSION ATTACKS AND DEFENSES

Model inversion attacks (MIAs) are a serious privacy threat to released models (Fang et al., 2024c).
MIAs are categorized as white-box (Zhang et al., 2019; Chen et al., 2020; Struppek et al., 2022;
Yuan et al., 2023; Qiu et al., 2024a) and black-box. We focus on black-box MIAs, where attackers
can only query the model and obtain outputs. In this scenario, BREP (Kahla et al., 2022) utilizes
zero-order optimization to drive the latent vectors away from the decision boundary. Mirror (An
et al., 2022) and C2FMI (Ye et al., 2023) explore genetic algorithms. LOKT (Nguyen et al., 2023)
trains multiple surrogate models and applies white-box attacks to them.

To address the threat of MIAs, a variety of defenses have been proposed. MID (Wang et al., 2020),
BiDO (Peng et al., 2022), and LS (Struppek et al., 2023) change the training losses, TL (Ho et al.,
2024) freezes some layers of the model, and CA-FaCe (Yu et al., 2024a) changes the structure of
the model. However, black-box attackers only exploit the outputs, and thus are rarely hindered. The
defense against black-box MIAs is still limited.

In this paper, we propose a novel black-box defense based on post-processing, without retraining
the model. Experimental results indicate that we outperform these existing defenses.
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2.2 INFORMATION BOTTLENECK AND CONDITIONAL MUTUAL INFORMATION

Tishby et al. (2000) proposed the Information Bottleneck (IB) principle: a good machine learning
model should compress the redundant information in inputs while preserving the useful information
for tasks. They later highlighted that information is compressed layer-by-layer in DNNs (Tishby
& Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017). Alemi et al. (2017) proposed Variational Infor-
mation Bottleneck (VIB) to estimate the bounds of IB, and Wang et al. (2020) applied VIB to their
Mutual Information-based Defense (MID).

Yang et al. (2024) proposed to use conditional mutual information (CMI) as a performance metric for
DNNs, providing the calculation formula and geometric interpretation of CMI. By minimizing CMI,
they improve classifiers (Yang et al., 2025) and address class imbalance (Hamidi et al., 2024). By
maximizing CMI, they improve knowledge distillation (Ye et al., 2024) and address nasty teachers
(Yang & Ye, 2024).

In this paper, we theoretically prove that CMI is a special case of IB and thus inherits the benefits of
IB. Furthermore, we propose a novel model inversion defense based on CMI.

3 PRELIMINARY

3.1 NOTATIONS

Let f : X → Y be a neural classifier, X ∈ X be an input, Y ∈ Y be the ground truth label,
Ŷ ∈ Y be the label predicted by f , and Z ∈ Z be the intermediate representation in f . Note that
Y → X → Z → Ŷ is a Markov chain. Let P be the probability function and P(x) := P{X = x},
P(y) := P{Y = y}, P(x, ŷ|y) := P{X = x, Ŷ = ŷ | Y = y}, etc.

Let ∆Y be the probability simplex over Y, f(x) ∈ ∆Y be the output from the softmax layer when x
is input to f , and fŷ(x) ∈ (0, 1) be the ŷ-th component of f(x), ŷ ∈ Y.

3.2 MODEL INVERSION ATTACKS

Let D ⊆ X × Y be the dataset learned by f . MIAs aim to reconstruct D̂ as close to D as possible.
Based on the access to f , MIAs are categorized as:

Hard-label: Attackers can query any x ∈ X and obtain f(x) ∈ Y, i.e. argmax
ŷ∈Y

fŷ(x).
Soft-label: Attackers can query any x ∈ X and obtain f(x) ∈ ∆Y.
White-box: Attackers know the details of f .

Hard-label and soft-label, collectively called black-box,1 are defended against in this paper.

3.3 MUTUAL INFORMATION-BASED DEFENSE (MID)

Wang et al. (2020) proposed to resist MIAs by reducing the dependence between X and Ŷ . The
dependence is quantified by the mutual information, which is defined as

I(X; Ŷ ) :=
∑
x∈X

∑
ŷ∈Y
P(x, ŷ) log P(x, ŷ)

P(x)P(ŷ)
. (1)

They reduced I(X; Ŷ ) to prevent attackers from inferring the information about D. However, low
I(X; Ŷ ) hurts the model’s utility. Especially, I(X; Ŷ ) = 0 iff X and Ŷ are independent, in which
case f is immune to any attack but useless at all.

As an alternative, they introduced the Information Bottleneck (Tishby & Zaslavsky, 2015), which is
defined as

I(X;Z)− β · I(Z;Y ) (2)
where β > 0. They used (2) as a regularizer to train f , minimizing I(X;Z) to resist MIAs while
maximizing I(Z;Y ) to preserve the model’s utility.

1Some literature refers to hard-label as label-only, and soft-label as black-box.
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4 METHODOLOGY

4.1 CONDITIONAL MUTUAL INFORMATION-BASED DEFENSE

We aim to resist black-box MIAs where attackers cannot access Z, so we still minimize I(X; Ŷ )
instead of I(X;Z). Furthermore, we observe that all MIA algorithms target one fixed label during
attacking. Formally, let

Dy := {x ∈ X : (x, y) ∈ D}
be the sub-dataset labeled with the ground truth y. When y is given, all attackers aim to reconstruct
D̂y as close to Dy as possible. Against their intention, we propose to minimize

I(X; Ŷ |Y = y) :=
∑
x∈X

∑
ŷ∈Y
P(x, ŷ|y) log P(x, ŷ|y)

P(x|y)P(ŷ|y)
. (3)

I(X; Ŷ |Y = y) quantifies the dependence between X and Ŷ when Y = y. We minimize (3) to
prevent attackers from inferring the information about Dy . To protect the complete D, we minimize
(3) for each y ∈ Y with the weight of P(y). This is equivalent to minimizing the conditional mutual
information (CMI), which is defined as

I(X; Ŷ |Y ) :=
∑
y∈Y
P(y) · I(X; Ŷ |Y = y). (4)

Theorem 1. CMI is a special case of Information Bottleneck (2) taking Z = Ŷ and β = 1, i.e.

I(X; Ŷ |Y ) = I(X; Ŷ )− I(Ŷ ;Y ).

Our proof is in Appendix A. Our theorem proves that CMI inherits the benefits of Information
Bottleneck (IB), i.e., minimizing CMI has two effects:

• Minimize I(X; Ŷ ) to compress the redundant information in inputs, and decrease the de-
pendence between inputs and predictions. This improves the MIA resistance as shown by
Wang et al. (2020).

• Maximize I(Ŷ ;Y ) to preserve the useful information for tasks, and increase the depen-
dence between predictions and ground truths. This improves the model’s utility obviously.

I(X;Z) in IB is challenging to calculate because X and Z are both high-dimensional. Wang et al.
(2020) could only approximate IB by variational bounds (Alemi et al., 2017). Fortunately, as a
special case of IB, CMI can be calculated directly (Yang et al., 2024).

4.2 MINIMIZE CMI VIA POST-PROCESSING

Previous works minimized CMI during training (Yang et al., 2024; Hamidi et al., 2024; Yang et al.,
2025). In contrast to them, we propose a training-free method to minimize CMI. We have

I(X; Ŷ |Y ) =
∑
y∈Y
P(y)

∑
x∈X

∑
ŷ∈Y
P(x, ŷ|y) log P(x, ŷ|y)

P(x|y)P(ŷ|y)
, by definitions (3-4),

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log P(ŷ|x, y)

P(ŷ|y)
,

=
∑
x∈X
P(x)

∑
y∈Y
P(y|x)

∑
ŷ∈Y
P(ŷ|x, y) log P(ŷ|x, y)

P(ŷ|y)
,

=
∑
x∈X
P(x)

∑
y∈Y
P(y|x)

∑
ŷ∈Y
P(ŷ|x) log P(ŷ|x)

P(ŷ|y)
, by Markov chain Y → X → Ŷ .

Thus minimizing I(X; Ŷ |Y ) is equivalent to minimizing
∑

y∈Y P(y|x)
∑

ŷ∈Y P(ŷ|x) log
P(ŷ|x)
P(ŷ|y)

for each x input to f . For simplicity, we sample y ∈ Y with the probability of P(y|x) and minimize

4



Published as a conference paper at ICLR 2025

∑
ŷ∈Y P(ŷ|x) log

P(ŷ|x)
P(ŷ|y) instead,2 which equals the original objective in terms of expectation. Next

we need to calculate P(ŷ|x), P(y|x) and P(ŷ|y).
To get P(ŷ|x), we have P(ŷ|x) = fŷ(x) by design of neural classifiers.

To get P(y|x), an intuitive idea is that P(y|x) = P(ŷ|x) for y = ŷ, but Guo et al. (2017) had
demonstrated its inaccuracy in modern neural classifiers. Inspired by their work, we introduce the
temperature to calibrate it.

To get P(ŷ|y), we have

P(ŷ|y) =
∑
x∈X
P(x, ŷ|y) =

∑
x∈X
P(x|y)P(ŷ|x, y) =

∑
x∈X
P(x|y)P(ŷ|x),

=
∑
x∈X
P(x|y)fŷ(x) = EX [fŷ(X) | Y = y] ≈ mean

x′∈Dy
fŷ(x

′),

where≈ is by that the samples in Dy are i.i.d. to P(x|y), and thus the sample mean can estimate the
conditional expectation. In practice we use the validation set as Dy , because the training samples
are overfitted by f and may cause inaccurate estimation.

Now our objective becomes

∑
ŷ∈Y
P(ŷ|x) log P(ŷ|x)

P(ŷ|y)
≈

∑
ŷ∈Y

fŷ(x) log
fŷ(x)

mean
x′∈Dy

fŷ(x′)
= KL(f(x)||mean

x′∈Dy
f(x′)), (5)

where KL is Kullback-Leibler divergence. To minimize (5), we fix mean
x′∈Dy

f(x′) for simplicity and

modify f(x). Let p ∈ ∆Y be the modified version of f(x) and our objective is KL(p||mean
x′∈Dy

f(x′)).

Additionally, we constrain ∥p − f(x)∥1 ≤ ε to preserve the model’s utility, where ε > 0 is the
distortion controller.

In information theory, minimizing the mutual information under bounded distortion constraints is
known as the rate-distortion problem (Shannon, 1959), which is for signal compression. If a signal
has less information, it is easier to compress, and a stricter distortion bound can be applied. Inspired
by his work, we introduce Shannon entropy to quantify the information in Ŷ when X = x, which is
defined as

H(Ŷ |X = x) := −
∑
ŷ∈Y
P(ŷ|x) logP(ŷ|x).

Our constraint becomes ∥p−f(x)∥1 ≤ ε ·H(Ŷ |X = x), where the distortion bound is proportional
to the amount of information. This new constraint reduces the modification when the information
is limited, and enhances the compression when the information is abundant. We refer to this as
adaptive rate-distortion.

Our defense is summarized as Algorithm 1. Without the need to retrain the model, our defense is
plug-and-play and easy to deploy.

Note that D′ := {qy : y ∈ Y} can be calculated and stored in advance. If the model owner and the
defender are not the same, the owner only needs to provide D′ instead of D, avoiding communication
costs and privacy risks.

(6) can be solved by existing convex optimizers. Furthermore, we derive the explicit solution in
Appendix B, calculate it within O(|Y| log |Y|) time in Algorithm 2, accelerate it via GPUs in Algo-
rithm 3, and evaluate the computational cost in Appendix C.

2With sampling, we only need to consider one y ∈ Y, so we can solve (6) within O(|Y| log |Y|) time by
Algorithm 2. Without sampling, we have to consider all y ∈ Y. The problem complexity is Ω(|Y|2), which is
unacceptable when Y is large.
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Algorithm 1: post-processing to minimize CMI.
Input: original output f(x), validation set D, temperature T , distortion controller ε.
Output: modified output p∗.
Sample y ∈ Y with the probability of softmax(f(x)T );
qy ← mean

x′∈Dy
f(x′);

H ← −
∑̂
y∈Y

fŷ(x) log fŷ(x);

Solve the convex optimization problem:

min KL(p||qy),

s.t. ∥p− f(x)∥1 ≤ ε · H,
p ∈ ∆Y.

(6)

return the optimal solution p∗;

5 EXPERIMENTS

5.1 SETTINGS

Datasets. We select CelebA (Liu et al., 2015) and FaceScrub (Ng & Winkler, 2014) as the private
datasets, and FFHQ (Karras et al., 2018) as the public dataset. CelebA has 10,177 labels and we
take 1,000 labels with the most images. FaceScrub has 530 labels and 106,863 images, but we only
take 43,147 images because the other URLs are broken. FFHQ has 70,000 unlabeled images. All
images are cropped and resized to 64× 64. We use 80% of the private samples for training, 10% for
validation, and 10% for testing.

Models. We select IR-152 (He et al., 2015) and VGG-16 (Simonyan & Zisserman, 2014) as the
target models, and MaxViT (Tu et al., 2022) as the evaluation models. IR-152 and MaxViT are pre-
trained on MS-Celeb-1M (Guo et al., 2016), and VGG-16 is pre-trained on ImageNet (Deng et al.,
2009). They are fine-tuned on the training set, and we select the best version by the validation set.
The evaluation model on CelebA achieves 97.3% test accuracy, and the one on FaceScrub achieves
99.3%.

Attacks. We select Mirror (An et al., 2022), C2FMI (Ye et al., 2023) and RLBMI (Han et al., 2023)
as the soft-label attackers, and BREP (Kahla et al., 2022) and LOKT (Nguyen et al., 2023) as the
hard-label attackers. They attack the first 100 private labels and reconstruct 5 images per label. For
RLBMI, BREP and LOKT, we train GANs and surrogate models on FFHQ. For Mirror and C2FMI,
we use the 256 × 256 StyleGAN2 (Karras et al., 2019) trained on FFHQ, whose generated images
are center-cropped to 176× 176 and resized to 64× 64.

Defenses. We select MID (Wang et al., 2020), BiDO (Peng et al., 2022), LS (Struppek et al., 2023),
TL (Ho et al., 2024) and Purifier (Yang et al., 2023) as the competitors. Purifier trains a CVAE, and
the others retrain the target models. We carefully tune their hyper-parameters to achieve the similar
validation accuracies. All hyper-parameters of defenses are in Appendix D.

To evaluate the MIA resistance and model’s utility, we consider the following metrics:

Attack Accuracy Let the evaluation model reclassify the reconstructed images. The top-1 and
top-5 accuracies are denoted as Acc1 and Acc5 respectively. Lower percentages indicate
better MIA resistance.

Feature Distance The image features are extracted from the penultimate layer of a model. We take
the average L2 feature distance between the reconstructed images and the nearest training
images. The features are extracted by the evaluation model and a FaceNet (Schroff et al.,
2015) trained on VGGFace2 (Cao et al., 2017), denoted as δeval and δface respectively.
Higher distances indicate better MIA resistance.

Test Accuracy The accuracy of the target model on the test set, denoted as Acc. Higher percentage
indicates better utility.
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Distortion The L1 distance between the outputs with and without defense. We take the average on
the test set, denoted as Dist. Lower distance indicates better utility.

All experiments are conducted on MIBench (Qiu et al., 2024b). The experiments about RLBMI,
Purifier and high resolution are in Appendix E-G.

Table 1: MIA resistance of various defenses under soft-label attacks.

Mirror C2FMI
↓ Acc1 ↓ Acc5 ↑ δeval ↑ δface ↓ Acc1 ↓ Acc5 ↑ δeval ↑ δface

IR
-1

52
C

el
eb

A

None 18.0% 31.0% 625 1.22 5.8% 15.4% 647 1.30
MID 17.8% 31.6% 629 1.22 1.2% 4.2% 699 1.48
BiDO 10.6% 25.8% 614 1.16 5.4% 13.0% 645 1.33

LS 9.0% 15.2% 660 1.36 1.8% 8.0% 660 1.36
TL 13.6% 28.6% 633 1.24 2.8% 5.0% 703 1.48

SSD 3.2% 8.2% 728 1.46 1.2% 1.8% 744 1.59

IR
-1

52
Fa

ce
Sc

ru
b

None 55.2% 76.8% 496 0.89 19.6% 41.4% 549 1.02
MID 38.0% 61.0% 534 0.96 0.2% 1.8% 715 1.44
BiDO 34.4% 60.4% 526 0.93 13.2% 27.6% 588 1.13

LS 45.8% 73.4% 503 0.90 13.6% 31.2% 564 1.05
TL 39.2% 63.2% 535 0.99 7.0% 18.6% 617 1.22

SSD 32.2% 46.4% 604 1.15 1.6% 5.6% 671 1.35

V
G

G
-1

6
Fa

ce
Sc

ru
b

None 29.0% 51.8% 544 1.00 12.8% 30.6% 588 1.11
MID 34.6% 64.8% 520 0.94 4.4% 17.8% 611 1.19
BiDO 20.0% 44.4% 556 1.03 12.0% 27.6% 575 1.09

LS 30.2% 56.4% 531 0.97 15.6% 37.4% 551 1.05
TL 17.8% 41.8% 558 1.03 8.4% 27.2% 574 1.10

SSD 16.4% 40.0% 604 1.13 3.2% 13.6% 656 1.29

Table 2: MIA resistance of various defenses under hard-label attacks.

BREP LOKT
↓ Acc1 ↓ Acc5 ↑ δeval ↑ δface ↓ Acc1 ↓ Acc5 ↑ δeval ↑ δface

IR
-1

52
C

el
eb

A

None 26.8% 50.8% 541 1.02 50.2% 67.8% 527 0.93
MID 20.8% 39.4% 596 1.13 32.4% 52.2% 551 1.00
BiDO 11.4% 33.4% 577 1.09 30.8% 48.4% 576 1.06

LS 19.4% 43.8% 547 1.03 33.6% 57.0% 537 1.01
TL 20.2% 46.4% 550 1.05 43.0% 66.2% 525 0.93

SSD 1.8% 4.2% 769 1.62 1.2% 9.0% 769 1.61

IR
-1

52
Fa

ce
Sc

ru
b

None 50.6% 77.2% 497 0.95 90.2% 96.2% 411 0.65
MID 36.2% 52.6% 570 1.10 61.8% 81.4% 475 0.78
BiDO 33.6% 62.6% 530 1.02 82.2% 94.8% 445 0.69

LS 36.0% 67.0% 521 1.01 84.8% 95.4% 429 0.69
TL 30.4% 59.0% 538 1.06 91.6% 98.4% 414 0.65

SSD 9.2% 13.4% 717 1.47 15.8% 25.0% 656 1.27

V
G

G
-1

6
Fa

ce
Sc

ru
b

None 28.2% 54.0% 543 1.06 75.8% 91.4% 444 0.74
MID 30.0% 56.8% 535 1.03 63.2% 86.8% 470 0.80
BiDO 21.6% 44.4% 566 1.10 67.4% 87.4% 474 0.80

LS 24.0% 50.4% 549 1.05 74.4% 90.6% 453 0.79
TL 20.8% 46.8% 566 1.08 67.4% 88.8% 471 0.79

SSD 10.8% 18.6% 693 1.40 24.0% 35.4% 635 1.24
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5.2 COMPARISONS WITH STATE-OF-THE-ART DEFENSES

Table 1 shows the evaluation results under soft-label attacks, and Table 2 shows the ones under hard-
label. Our SSD exhibits the best MIA resistance and outperforms all state-of-the-art defenses, across
various attack algorithms, private datasets, and model architectures. This is because we minimize
the CMI to prevent attackers from inferring the information about the private dataset.

Surprisingly, some defenses perform worse than no defense in some indicators. It demonstrates
that existing defenses may fail to resist modern black-box attacks. They focus on modifying the
weights and structure of the model, but black-box attackers only exploit the outputs and thus are
rarely hindered. This highlights the necessity of designing specialized black-box defenses.

Figure 2 shows the reconstructed images from IR-152 models trained on CelebA. Our SSD signif-
icantly enhances the difference between Dy and D̂y , forces attackers to reconstruct wrong images,
and thus protects the private data. In contrast, other defenses fail to prevent attackers from recon-
structing similar images, leading to privacy leakage.

Label 14  65  17 
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aa  Attack 

Defense 
Mirror C2FMI BREP LOKT 1 Mirror C2FMI BREP LOKT 1 Mirror C2FMI BREP LOKT 
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BiDO 
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SSD 

    

 

    

 

    
 

Figure 2: The reconstructed images from various attacks facing various defenses. Above are the
ground truth labels y and the private sub-datasets Dy (4 images shown). Below are the reconstructed
datasets D̂y (1 image shown).

Table 3: Model’s utility with various defenses.

IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

↑ Acc ↓ Dist ↑ Acc ↓ Dist ↑ Acc ↓ Dist

None 92.1% 0 98.2% 0 91.8% 0

MID 86.8% 0.607 95.5% 0.321 86.4% 0.744
BiDO 86.6% 0.371 95.3% 0.135 88.5% 0.313

LS 86.9% 0.317 95.6% 0.103 87.5% 0.295
TL 86.5% 0.352 95.8% 0.128 87.4% 0.306

SSD 87.1% 0.191 97.0% 0.055 89.3% 0.176
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Table 3 shows the evaluation results on model’s utility. Our SSD achieves the highest test accuracy,
because we minimize CMI to preserve the information useful for tasks. Additionally, SSD holds the
lowest distortion because of our adaptive rate-distortion constraint.

5.3 VISUALIZE THE OUTPUTS

We use t-SNE (van der Maaten & Hinton, 2008) to visualize how SSD modifies the outputs. The
target model is a VGG-16 model trained on FaceScrub. Figure 3 shows that minimizing CMI makes
the outputs aggregate into clusters, as demonstrated by Yang et al. (2024). For private samples, this
reduces the sensitivity between inputs and outputs, preventing attackers from inferring the private
information. For attack samples, this misleads attackers towards the wrong label.

(a) Tested w/o defense. (b) Tested with SSD. (c) Attacked w/o defense. (d) Attacked with SSD.

Figure 3: Visualizing the outputs by t-SNE. For (a) and (b), the test samples are colored according
to their ground truth labels. For (c) and (d), the attack samples are generated by Mirror.

5.4 ABLATION EXPERIMENTS
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Figure 4: The ablation results. The attacker of (a) is BREP, and (c) is Mirror. “w/o T.” denotes
“without temperature”, and “w/o Ada.” denotes “without adaptive rate-distortion”.

To explore the effects of temperature T and distortion controller ε, we conduct ablation experiments
on IR-152 models trained on FaceScrub.
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Figure 4(a) shows that a higher temperature helps to resist hard-label attacks, because it makes
the sampling probability more uniform, and attackers easier to get misleading labels. However, a
higher temperature decreases the test accuracy, as shown in Figure 4(b). Specifically, without the
temperature, neither the MIA resistance nor model’s accuracy is satisfactory, which highlights the
necessity of temperature.

Figure 4(c) shows that a larger distortion bound helps to resist soft-label attacks, because it allows
greater modifications. However, a larger distortion bound decreases the test accuracy and increases
the distortion, as shown in Figure 4(d). Specifically, without the adaptive rate-distortion, neither the
face distance nor the distortion is satisfactory, which highlights the necessity of adaption.

6 CONCLUSION

In contrast to previous researches on model inversion defense with a focus on white-box attacks, we
conduct a specific study on black-box attacks. Specifically, we investigate the impact of conditional
mutual information (CMI) and develop a CMI-based defense strategy. We conduct our defense
in the post-processing stage instead of re-training the model. To further reduce the modifications
to outputs, we introduce an adaptive rate-distortion framework and optimize it by the water-filling
method. Experimental results demonstrate that our defense method achieves state-of-the-art (SOTA)
performance against black-box attacks. We hope that our findings will help shift attention toward
robust defense mechanisms in black-box settings and inspire further researches in this area.
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A PROOF OF THEOREM 1

I(X; Ŷ |Y ),

=
∑
y∈Y
P(y)

∑
x∈X

∑
ŷ∈Y
P(x, ŷ|y) log P(x, ŷ|y)

P(x|y)P(ŷ|y)
, by definitions (3-4),

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log P(ŷ|x, y)

P(ŷ|y)
,

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log P(ŷ|x)

P(ŷ|y)
, by Markov chain Y → X → Ŷ ,

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log

(
P(x, ŷ)
P(x)

/
P(ŷ, y)
P(y)

)
,

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log

(
P(x, ŷ)
P(x)P(ŷ)

/
P(ŷ, y)
P(ŷ)P(y)

)
,

=
∑
x∈X

∑
ŷ∈Y
P(x, ŷ) log P(x, ŷ)

P(x)P(ŷ)
−

∑
ŷ∈Y

∑
y∈Y
P(ŷ, y) log P(ŷ, y)

P(ŷ)P(y)
,

=I(X; Ŷ )− I(Ŷ ;Y ), by definition (1).

B WATER-FILLING TO SOLVE (6)

For brevity, let q := qy , f := f(x), and ε := ε · H. Then (6) is restated as
min KL(p||q),
s.t. ∥p− f∥1 ≤ ε,

p ∈ ∆Y.

(7)

Let p∗ be the optimal solution. Note that KL(p||q) is a convex function with the minimum point
p = q. We have p∗ = q if ∥q − f∥1 ≤ ε, and ∥p∗ − f∥1 = ε otherwise.

Consider ∥q − f∥1 > ε in the following. Since p∗,f ∈ ∆Y, we have∑
i∈Y : p∗

i >fi

|p∗i − fi| =
∑

i∈Y : p∗
i <fi

|p∗i − fi| =
ε

2
. (8)

Lemma 1. ∀i ∈ Y, either qi ≥ p∗i ≥ fi or qi ≤ p∗i ≤ fi.

Proof. Assume that ∃i ∈ Y, p∗i > qi ≥ fi. Since p∗, q ∈ ∆Y, there must ∃j ∈ Y, p∗j < qj . Let

g(ξ) := (p∗i − ξ) log
p∗i − ξ

qi
+ (p∗j + ξ) log

p∗j + ξ

qj
.

Note that g′(ξ) is continuous and g′(0) = log
p∗
j

qj
− log

p∗
i

qi
< 0, so ∃ξ∗ > 0, ∀ξ ∈ (0, ξ∗),

g(ξ) < g(0). This implies that decreasing p∗i by ξ and increasing p∗j by ξ will reduce KL(p∗||q),
contradicting the optimality of p∗. No constraints are violated if ξ is chosen such that p∗i − ξ ≥ fi
and p∗j + ξ ≤ 1.

Let A := {i ∈ Y : qi > fi} and B := Y \ A. Based on (8) and Lemma 1, we divide (7) into two
sub-problems, (9) and (10).

min
∑
i∈A

pi log
pi
qi
,

s.t.
∑
i∈A

pi − fi =
ε

2
,

qi ≥ pi ≥ fi, i ∈ A.

(9)

min
∑
i∈B

pi log
pi
qi
,

s.t.
∑
i∈B

pi − fi = −
ε

2
,

qi ≤ pi ≤ fi, i ∈ B.

(10)
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To solve (9), we introduce Lagrange multipliers v∗ ∈ R for
∑
i∈A

p∗i − fi = ε
2 , and λ∗

i ≥ 0 for

p∗i ≥ fi, i ∈ A. The KKT conditions are

1 + log
p∗i
qi
− v∗ − λ∗

i = 0,

(p∗i − fi)λ
∗
i = 0.

Eliminating λ∗
i ≥ 0 yields

1 + log
p∗i
qi
≥ v∗, (11)

(p∗i − fi)

(
1 + log

p∗i
qi
− v∗

)
= 0. (12)

If 1 + log fi
qi
≥ v∗, then p∗i > fi implies 1 + log

p∗
i

qi
> v∗ contradicting (12), so p∗i = fi.

If 1 + log fi
qi

< v∗, then (11) implies p∗i > fi, and (12) implies p∗i = qi exp(v
∗ − 1).

In summary,

p∗i =

fi, 1 + log
fi
qi
≥ v∗,

qi exp(v
∗ − 1), other.

(13)

Let w∗
A := exp(v∗ − 1) and (13) becomes

p∗i = max(fi, w
∗
Aqi), i ∈ A, (14)

where w∗
A satisfies

∑
i∈A

p∗i − fi =
ε
2 . Let c(w) :=

∑
i∈A

max(0, wqi − fi), which is a piecewise-linear

increasing function with breakpoints w = fi
qi

, i ∈ A. Note that c(0) = 0 and c(1) = ∥q−f∥1

2 > ε
2 ,

we can find w∗
A ∈ (0, 1) such that c(w∗

A) =
ε
2 . The constraints qi ≥ p∗i , i ∈ A are naturally satisfied

by w∗
A < 1.

Solving (10) similarly yields

p∗i = min(fi, w
∗
Bqi), i ∈ B, (15)

where w∗
B satisfies

∑
i∈B

p∗i − fi = − ε
2 and w∗

B ∈ (1,+∞).

Combining (14-15) and w∗
A < 1 < w∗

B , the solution of (7) is

p∗i = min(max(fi, w
∗
Aqi), w

∗
Bqi), i ∈ Y. (16)

We propose Algorithm 2 to solve (7) efficiently. Firstly we address the trivial case. For non-trivial
cases, we ensure f1

q1
≤ f2

q2
≤ . . . ≤ f|Y|

q|Y|
by sorting. To find w∗

A, we check w = f1
q1
, f2
q2
, . . .

successively. Once c(w) > ε
2 at w =

fj
qj

, we get w∗
A =

ε
2+

∑j−1
i=1 fi∑j−1

i=1 qi
∈ [

fj−1

qj−1
,
fj
qj
). This process is

known as water-filling, because w is like a rising water level, f1
q1
, f2
q2
, . . . are like ascending steps,

and ε
2 is like the total volume of water. To find w∗

B , we check w =
f|Y|
q|Y|

,
f|Y|−1

q|Y|−1
, . . . similarly. This

symmetric process is known as reverse water-filling. Finally we undo the sorting and return (16).
Our time complexity is O(|Y| log |Y|) due to the sorting.

Furthermore, we propose Algorithm 3 to utilize GPU acceleration. Leveraging the PyTorch op-
erators, we manage to eliminate the if and while statements in Algorithm 2, making Algorithm 3
sequential completely and suitable for GPUs. Algorithm 3 can solve many (f , q) parallelly in one
batch, achieving lower computational costs.
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Algorithm 2: CPU-based water-filling.
Input: fi, qi for i ∈ Y.
Output: p∗i for i ∈ Y.
if
∑

i∈Y |qi − fi| ≤ ε then
return qi for i ∈ Y;

Reindex fi, qi so that f1
q1
≤ f2

q2
≤ . . . ≤ f|Y|

q|Y|
;

j ← 1;
F ← 0;
Q← 0;
while fj

qj
Q− F ≤ ε

2 do
F ← F + fj ;
Q← Q+ qj ;
j ← j + 1;

w∗
A ←

F + ε
2

Q
;

j ← |Y|;
F ← 0;
Q← 0;
while fj

qj
Q− F ≥ − ε

2 do
F ← F + fj ;
Q← Q+ qj ;
j ← j − 1;

w∗
B ←

F − ε
2

Q
;

Restore the indices of fi, qi;
return min(max(fi, w

∗
Aqi), w

∗
Bqi) for i ∈ Y;

Algorithm 3: GPU-based water-filling.
Input: PyTorch tensors f , q of size |Y|.
Output: PyTorch tensor p∗ of size |Y|.
m← (∥q − f∥1 ≤ ε);

Reindex f , q by torch.sort(fq );

F ← f .cumsum();
Q← q.cumsum();
M ← (fqQ− F ≤ ε

2 );

j ←M .argmin();

w∗
A ←

F [j] + ε
2

Q[j]
;

F ← 1− F ;
Q← 1−Q;
M ← (fqQ− F ≥ − ε

2 );

j ←M .argmax();

w∗
B ←

F [j]− ε
2

Q[j]
;

Restore the indices of f , q;
return q.where(m,f .clip(w∗

Aq, w
∗
Bq));

C COMPUTATIONAL COST

We evaluate the time cost of Algorithm 1, whose convex optimization problem is solved by Al-
gorithm 3. We take a batch with 512 images and infer 100 times. The time cost is measured by
torch.profiler, an official tool provided by PyTorch. We exclude the time for I/O (i.e. from disk
to memory, and from CPU to GPU), only counting the time for computation. Our experiment is
conducted on a NVIDIA GeForce RTX 3090.

Table 4: Time cost of Algorithm 1 equipped with Algorithm 3.

IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

None 18.63 s 17.70 s 5.65 s
SSD 19.22 s 18.16 s 6.07 s

Increment 3.1% 2.5% 7.4%

Table 4 shows that we increase little time. The higher percentage on VGG-16 is due to the shallower
model architecture. In absolute terms, modifying 512 outputs for 100 times only needs 0.5 seconds.
If we take the I/O time into account, the percentages will be low enough to be ignored.
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D HYPER-PARAMETERS OF DEFENSES

Table 5: Hyper-parameters of the defenses in our experiments.

IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

MID β = 0.005 β = 0.02 β = 0.015
BiDO λx = 0.0005, λy = 0.005 λx = 0.005, λy = 0.05 λx = 0.0005, λy = 0.005

LS α = −0.1 α = −0.05 α = −0.05
TL freeze 50% layers freeze 50% layers freeze 50% layers

SSD T = 0.1, ε = 0.35 T = 0.1, ε = 0.5 T = 0.1, ε = 0.8

E UNDER RLBMI ATTACK

Table 6: MIA resistance of various defenses under RLBMI attack.

↓ Acc1 ↓ Acc5 ↑ δeval ↑ δface
None 44% 65% 505 0.89
MID 31% 53% 523 0.90
BiDO 24% 44% 552 1.01

LS 24% 52% 527 0.98
TL 37% 55% 523 0.94

SSD 21% 42% 572 1.07

We conduct the experiment under RLBMI (Han et al., 2023), a soft-label attack. Aligned with
Tables 1-3, the target models are IR-152 trained on CelebA. Due to the huge computational cost of
RLBMI, we only reconstruct 1 image per label. Table 6 shows that our SSD still outperforms the
other defenses.

F COMPARISON WITH PURIFIER

Table 7: Comparisons between Purifier and SSD.

↓ Acc1 ↓ Acc5 ↑ δeval ↑ δface

Mirror Purifier 3.6% 8.2% 721 1.43
SSD 3.2% 8.2% 728 1.46

C2FMI Purifier 0.6% 2.6% 723 1.56
SSD 1.2% 1.8% 744 1.59

BREP Purifier 22.8% 41.6% 591 1.14
SSD 1.8% 4.2% 769 1.62

LOKT Purifier 40.2% 57.6% 546 0.99
SSD 1.2% 9.0% 769 1.61

↑ Acc ↓ Dist

Utility Purifier 84.5% 0.362
SSD 87.1% 0.191

Purifier (Yang et al., 2023) is a black-box defense against membership inference attacks, and perhaps
resists model inversion attacks. Despite the lack of details about λ and kNN, we reproduce their
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work setting λ = k = 1. If the L2 distance between the input and the nearest training sample is less
than 0.00005, then we swap the top-1 and top-2 labels. The validation set is used to train the CVAE.
Aligned with Tables 1-3, the target model is the same IR-152 trained on CelebA. Table 7 shows that
our SSD outperforms Purifier.

G HIGH RESOLUTION

We use HD-CelebA-Cropper3 to generate high resolution images, which are cropped and resized to
224× 224. The IR-152 and MaxViT models are retrained on this new CelebA, and the test accuracy
of MaxViT achieves 97.2%.

We select Mirror as the attacker, equipped with the 1024 × 1024 StyleGAN2 trained on FFHQ.
The generated images are center-cropped to 800 × 800 and resized to 224 × 224. Due to the huge
computational cost for high resolution, we only attack the first 20 labels and reconstruct 5 images
per label. Table 8 shows that our SSD still outperforms the other defenses.

Table 8: Comprehensive results on high resolution.

Mirror Utility Hyper-parameter
↓ Acc1 ↓ Acc5 ↑ δeval ↑ δface ↑ Acc ↓ Dist

None 32% 53% 492 1.25 96.4% 0

MID 37% 68% 477 1.28 93.1% 0.334 β = 0.005
BiDO 37% 55% 487 1.23 94.7% 0.112 λx = 0.05, λy = 0.5

LS 28% 43% 508 1.29 94.1% 0.118 α = −0.005
TL 64% 96% 472 1.17 94.1% 0.719 freeze 80% layers

SSD 17% 33% 522 1.30 95.0% 0.079 T = 0.1, ε = 1.5

H DISCUSSION ON ADAPTIVE ATTACKS

A potential adaptive attack strategy is:

1. Query the same x repeatedly and count the frequency of different outputs.
2. Estimate our sampling probability by the frequency.
3. Infer our original output by the sampling probability.

If an online server detects such pattern of queries, it can block them. Step back and consider again,
we propose a memory-free and low-cost strategy to block such adaptive attack:

Design a hash function h : X→ N where N is the integer set. When users/attackers query x, we take
h(x) as the random seed for sampling, ensuring same-input-same-output. Locality Sensitive Hash
(Gionis et al., 1999) can be used to cope with the perturbations to x.

3https://github.com/LynnHo/HD-CelebA-Cropper
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