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Abstract

Academic poster generation is a crucial yet challenging task in scientific commu-
nication, requiring the compression of long-context interleaved documents into a
single, visually coherent page. To address this challenge, we introduce the first
benchmark and metric suite for poster generation, which pairs recent conference
papers with author-designed posters and evaluates outputs on (i) Visual Qual-
ity—semantic alignment with human posters, (ii) Textual Coherence—language
fluency, (iii) Holistic Assessment—six fine-grained aesthetic and informational
criteria scored by a VLM-as-judge, and notably (iv) PaperQuiz—the poster’s
ability to convey core paper content as measured by VLMs answering generated
quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-
in-the-loop multi-agent pipeline: the (a) Parser distills the paper into a structured
asset library; the (b) Planner aligns text–visual pairs into a binary-tree layout
that preserves reading order and spatial balance; and the (c) Painter–Commenter
loop refines each panel by executing rendering code and using VLM feedback to
eliminate overflow and ensure alignment. In our comprehensive evaluation, we find
that GPT-4o outputs—though visually appealing at first glance—often exhibit noisy
text and poor PaperQuiz scores, and we find that reader engagement is the primary
aesthetic bottleneck, as human-designed posters rely largely on visual semantics to
convey meaning. Our fully open-source variants (e.g., based on the Qwen-2.5 series)
outperform existing 4o-driven multi-agent systems across nearly all metrics, while
using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable
‘.pptx’ poster — all for just $0.005. These findings chart clear directions for the
next generation of fully automated poster-generation models. The code and datasets
are available at https://github.com/Paper2Poster/Paper2Poster.

1 Introduction

Academic posters play a pivotal role in scientific communication, enabling rapid dissemination of key
findings at conferences where attendees have only minutes to grasp core insights from the full papers.
Despite significant progress in automated slide generation – with systems such as PPTAgent [37] and
D2S [29] pioneering text-to-slide pipelines – poster creation [33, 30, 3] remains an underexplored
and substantially more challenging task. Unlike slide decks, which distribute content across multiple,
single-message slides, academic posters must condense an entire paper into a single, visually coherent
page. This requires (i) handling a much longer multi-modal context [24], (ii) tightly interleaving
text and graphics to convey complex ideas at a glance [33, 3], and (iii) respecting stringent spatial
constraints to avoid text overflow or layout collapse [10, 30]. These factors make VLM- or LLM-only
approaches insufficient: without explicit visual feedback like humans, it is difficult to reason about
spatial layouts, maintain logical flow within a confined canvas, ensuring legibility and aesthetic.

To systematically evaluate poster generation, we propose the Paper2Poster Benchmark, the first
benchmark and metric suite for this novel task. Our benchmark comprises recent conference papers
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Figure 1: Overview of this work. We address two core challenges in scientific poster generation:
Left: How to create a poster from a paper—we propose PosterAgent (Sec. 4), a framework that
transforms long-context scientific papers (20K+ tokens) into structured visual posters; and Right:
How to evaluate poster quality—we introduce the Paper2Poster benchmark (Sec. 3), which enables
systematic comparison between agent-generated and author-designed posters.
paired with author-designed posters, along with a human-and-model evaluation protocol that measures
(i) Visual Quality — how well the generated poster aligns visually with the human-designed version.
(ii) Textual Coherence — the clarity and fluency of the poster’s language. (iii) Holistic Assessment
— the overall aesthetic and informational quality, rated across six fine-grained dimensions by VLM
as Judge. Notably, (iv) PaperQuiz — motivated by the poster’s role as a bridge between authors
and readers, this metric evaluates how effectively the poster alone conveys core paper content by
simulating diverse reader comprehension using VLMs to answer questions derived from the paper.

To tackle multimodal context compression in Paper2Poster, we introduce PosterAgent, a multi-
agent framework that first globally organizes document content and then performs panel-level
refinements—while weaving visual feedback into every stage. Starting with the Parser, we ingest
the full paper PDF and transform it into an asset library of section-level text summaries and extracted
figures and tables. Next, the Planner semantically matches each synopsis to its corresponding
visual asset and generates a binary-tree layout, allocating panels by estimated content length while
preserving reading order and spatial balance. Finally, the Painter–Commenter loop refines each
panel: the Painter distills section-figure pairs into concise bullet points and renders draft panels
via python-pptx code, and the Commenter—a VLM with zoom-in reference prompts—provides
targeted feedback to correct text overflow and spatial alignment. This top-down, visual-in-the-loop
design produces concise, coherent posters without manual tuning.

Using Paper2Poster, we comprehensively evaluate human-designed (oracle) posters, state-of-the-
art generative models (e.g., GPT-4o), and multi-agent solutions, revealing several key insights: (i)
GPT-4o’s outputs, though visually appealing at first glance, suffer from noisy or incoherent text,
yielding high perplexity and poor PaperQuiz performance; (ii) VLM-based judging shows the primary
aesthetic bottleneck is Engagement rather than informational content, since human posters convey
meaning predominantly through visual semantics; (iii) PaperQuiz proves a reliable metric—VLM
reader scores correlate closely with human evaluations, and more capable VLMs achieve higher
scores on well-designed posters; and (iv) our Paper2Poster pipeline, built on a fully open-source
toolbox (e.g., Qwen-2.5-VL-7B), surpasses existing GPT-4o–based multi-agent approaches on nearly
all metrics while consuming 87% fewer tokens. Our findings illuminate pathways for the next
generation of models and agent systems aimed at fully automated poster generation.

2 Related Work

2.1 Visual Design Automation

Recent advances in multi-modal learning have driven significant progress in automating visual design
tasks. These tasks commonly fall into two broad categories: (i) Text-rich Image Generation. Tasks
such as poster generation [3, 17, 11, 33] have greatly benefited from diffusion-based approaches [11,
10, 31], which enable the synthesis of detailed visuals conditioned on natural language descriptions.
However, ensuring the quality and fidelity of embedded textual content via an end-to-end pixel
generative model remains a major challenge, as generated text at the pixel level appears blurry and
hard to read. (ii) Complex Visual Layouts. Tasks like website designing [7, 27, 16, 23] or slide
generation [37, 2, 8, 18, 26, 29] involve intricate visual structures and require integrating diverse
components. To handle such complexity, mainstream approaches [37, 5] often employ agentic
workflows that rely heavily on code generation and tool usage to assemble complete visual outputs.
In contrast, our Paper2Poster addresses a more demanding yet highly practical setting: scientific
visual design based on academic papers. This involves long-context, interleaved multi-modal, inputs
and outputs, posing substantial challenges in both effectiveness and computational efficiency.
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2.2 Vision-Language Agents

Recent progress has revealed the promising potential of LLMs beyond pure language understanding.
Techniques such as ReAct [36, 35] have demonstrated that LLMs can serve as autonomous agents,
capable of solving complex tasks through step-by-step reasoning and dynamic interaction via coding
[32, 34], API function calling [25, 15], or UI interface interaction [13, 22, 19]. Despite these advances,
general-purpose agents still struggle with professional tasks [12] as they require serious, accurate
interaction and domain-specific knowledge. One closely related application is slide automation [5, 37],
where agents translate brief textual queries into executable Python code (e.g., via python-pptx)
to render presentation slides. However, our Paper2Poster setting is significantly more challenging:
instead of a text prompt, we take full-length academic papers as inputs and generate compact, well-
structured posters as output. This novel task requires careful design of both evaluation metrics and an
effective, practical automation workflow.

3 Paper2Poster Benchmark

3.1 Task Definition

Given a scientific paper composed of interleaved text, figures, and tables, the goal is to automatically
generate a single-page academic poster that faithfully conveys the paper’s core content in a visually
coherent and spatially efficient format. This task presents several unique challenges: a. Long-Context
Long-Horizon Task: Scientific papers span multiple pages and thousands of words. Summarizing
key insights while preserving coherence demands hierarchical understanding and selective abstraction.
The complexity further necessitates long-horizon reasoning and multiple iterative interactions, making
the task especially challenging. b. Interleaved Multimodal Inputs: Papers integrate numerous
figures, tables, and charts, each semantically linked to the surrounding text. Successful poster
generation demands the ability to extract, interpret, and align these multimodal elements in a
contextually appropriate manner. c. Layout-Aware Multimodal Outputs: Unlike tasks focused
solely on text (e.g., blog) or vision, poster generation requires producing interleaved text–image
outputs within a constrained spatial layout. This necessitates joint reasoning over language, visual
content, and layout to prevent overflow, imbalance, and logical misalignment.

3.2 Data Curation

Data Source. We focus exclusively on AI papers for three key reasons: (1) they are relatively recent
and undergo rigorous peer review, ensuring high scientific quality; (2) they offer diverse content
across subfields—such as image-rich computer vision, text-centric NLP, and theory papers with
numerous equations—providing a broad range of input modalities. To support this, we adopt the
POSTERSUM dataset [24], which contains a large collection of paper–poster pairs from recent AI
conferences including ICML, NeurIPS, and ICLR (2022–2024). We specifically use the test split to
reduce the risk of overlap with training data.

Diverse Sampling. Based on the initial candidate set, we apply two filtering criteria to curate high-
quality data: (1) Length Control: We deliberately include longer papers, including supplementary
material, selecting PDFs that exceed 15 pages and extend up to 50 pages. (2) Latest Version:
We manually retrieve the most recent PDF version for each paper to ensure the dataset reflects
final camera-ready submissions. From the filtered set, we construct the final Paper2Poster dataset
consisting of 100 paper–poster pairs, stratified by publication year to ensure temporal balance: 33
pairs from 2022, 33 from 2023, and 34 from 2024. To further enhance diversity, we also stratify by
source venue—selecting 35 papers from NeurIPS, 37 from ICML, and 28 from ICLR, ensuring broad
coverage across these leading conferences.

Data Statistics. Overall, Paper2Poster comprises 100 paper-poster pairs spanning 280 distinct
topics across domains such as Computer Vision (19%), Natural Language Processing (17%), and
Reinforcement Learning (10%), ensuring comprehensive coverage across subfields. As illustrated
in Fig. 2 (a-b), the input papers contain an average of 12155.7 words across 22.6 pages, amounting
to approximately 20370.3 tokens, with an average of 22.59 figures per paper. In Fig. 2 (c-d), the
corresponding author-designed posters include an average of 774.1 words (1416.2 tokens) and 8.7
figures. This reflects a textual compression ratio of approximately 14.4× and a figure reduction ratio
of about 2.6× from paper to poster.
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(a) Word cloud of topics (b) # of tokens (c) # of figures

Figure 2: Data Statistics of Paper2Poster. (a) Word cloud illustrating the diversity of research
topics. (b) Textual Token statistics and Figure count statistics for input papers vs. posters provided by
authors. Overall, these statistics highlight that Paper2Poster is a multimodal context compression
task, requiring effective abstraction of both textual and visual content.

3.3 Evaluation Metrics

To systematically measure the quality of generated posters, we establish a comprehensive evaluation
framework that covers four essential dimensions as shown in Fig. 3 (left): (i) visual quality, (ii)
textual coherence, (iii) quality assessment via VLM (i.e.,VLM-as-judge), and notably our proposed
(iv) PaperQuiz which measures how effectively the poster conveys the paper’s core knowledge.

PaperQuiz
Q1: What shared codebook size V is 
used across all scales in the VAR 
tokenizer?
A: 4096; B: 2048; C: 8192; D: 3072 

Q2: What is a limitation of the current 
VAR model?
A: Incompatible with current 
hardware;
B: Cannot scale beyond 1B 
parameters;
C: Does not support video generation;
D: Requires extensive manual tuning.
…

Paper

Let me create 
multiple choices 

QA for this 
paper.

LLM as
Examiner

Quiz for Readers

Quiz

96👍

Quiz

58👎

Better!
Junior student
e.g.,LLaVA-OV

Senior student
e.g.,Phi-4-MM

Professor
e.g., GPT-o3

VLM as Diverse 
Readers

QA
VLM as 
Judge

Visual Quality

TextualCoherence

Verbatim

Interpretive
Aesthetic 
Quality

Information
Quality

Visual Similarity

Figure Relevance

PPL

Figure 3: Left: Overview of the evaluation framework in Paper2Poster. Middle: We automatically
generate multiple-choice questions from each paper using an LLM (o3), forming the our PaperQuiz
evaluation. Right: In PaperQuiz, we simulate multiple reader by allowing VLMs—representing
different expertise levels (e.g., student, professor)—to read each generated poster and answer the
quiz. The poster that achieves the highest average score is considered the most effective in conveying
the paper’s content.

(i) Visual Quality. The visual presentation of a poster directly impacts reader comprehension
and engagement. To evaluate visual quality from both global and local perspectives, we employ
two metrics: (1) We measure "Visual Similarity" between the generated and the author-designed
posters as ground-truth using CLIP image embeddings. This metric captures high-level visual–textual
correspondence to assess whether outputs are truly "poster-like" rather than article-like layouts,
though it is not a direct measure of aesthetic quality. This approach is favored over traditional
distribution-based metrics (such as FID used in prior works [5, 37]), as it assesses instance-level
semantic consistency. (2) We measure "Figure Relevance" by computing the average CLIP similarity
between figures and their corresponding text sections in the original paper. This metric ensures
figures are contextually appropriate and effectively integrated, assigning zero relevance to posters
lacking visual content. For both metrics, we employ AltCLIP [4] due to its robustness in handling
longer sequences alignment. We complement CLIP with aspect-level VLM-as-Judge evaluation (see
below) to capture fine-grained visual quality that CLIP may not fully capture. Detailed definition of
both metrics can be found in Appendix F.1.

(ii) Textual Coherence. Clear and fluent text is essential for poster readability and comprehension.
We therefore quantify textual coherence by computing the standard "Perplexity" (PPL) of the entire
poster text under Llama-2-7b-hf. Lower PPL indicates more predictable, coherent language.
Importantly, PPL assesses fluency and local coherence rather than semantic similarity to a reference,
making it well-suited for our abstractive poster generation task where content should be reorganized
and compressed rather than copied. A detailed definition is provided in Appendix F.2.
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Figure 4: Illustration of the PosterAgent pipeline. Given an input paper, PosterAgent generates a
structured academic poster through three modules: 1. Parser: Extracts key textual and visual assets
using a combination of tools and LLM-based summarization, resulting in a structured asset library. 2.
Planner: Matches assets and arranges them into coherent layouts, iteratively generating panels with
a zoom-in operation. 3. Painter–Commenter: The Painter generates panel-level bullet-content along
with executable code, and renders the visual output, while the Commenter—a VLM with in-context
reference—provides feedback to ensure layout coherence and prevent content overflow.

(iii) Holistic Assessment (VLM-as-Judge). To evaluate overall poster effectiveness in fine-grained
dimension, we prompt a VLM (e.g., GPT-4o) as an automated judge by outputting score (1–5). For
each poster image, the model assigns 6 criterion-level scores: 3 under “Aesthetic Score”—{Element
Quality, Layout Balance, Engagement}, and 3 under “Information Score”—{Clarity, Content Com-
pleteness, Logical Flow}. This direct, image-centric evaluation preserves fidelity to both visual
design and content, while also capturing informativeness. It provides fine-grained feedback to guide
future poster design. Full prompt templates and scoring protocols are detailed in Appendix F.3.

(iv) PaperQuiz. Given the poster’s central role in communicating the content of its source pa-
per—serving as a bridge between authors and readers—we design an evaluation protocol that simu-
lates this communication scenario. As shown in Fig. 3 (middle), each paper PDF is first submitted to
o3 as examiner to generate 100 multiple-choice questions per paper: 50 verbatim questions (directly
answerable from the text, spanning 13 content aspects) and 50 interpretive questions (targeting
high-level comprehension across 10 conceptual dimensions). Next, as illustrated in Fig. 3 (right),
we present each poster image to six VLMs (both open- and closed-source), simulating a range of
reader standards from casual to expert. These models then answer the quiz based solely on the poster
content. By comparing their quiz scores across different poster variants, we identify which poster
best conveys the original paper content. Given that a poster is a visual medium rather than plain
text like a note, we further adjust the raw Quiz scores sr ∈ [0, 100] by incorporating a length-based
penalty, resulting in a penalized score sa ∈ [0, 200]:

sa = sr

(
1 + 1

max(1, L/W )

)
,

where L denotes the total text length of the poster, and W is the median text length of human-designed
(ground-truth) posters. This penalty function is designed with three goals: (i) discourage overly long
posters (L ≫ W yields sa → sr, losing the bonus), (ii) avoid harsh punishment (as L → ∞, sa
remains at sr, not approaching zero), and (iii) prevent rewarding extreme brevity (when L ≤ W , the
bonus is capped at sa = 2sr, so further shortening provides no additional gain). By anchoring the
penalty to human-designed poster lengths, we ensure that posters are neither excessively verbose
nor sacrifice informative content for brevity. Further details on metric design, question curation,
evaluation workflow, and scoring procedures can be found in Appendix F.4.
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4 PosterAgent
Overview. Identifying the challenges posed by the Paper2Poster, we formulate it as a problem of
multimodal context compression, and introduce PosterAgent, a multi-agent pipeline that adopts
a “Top-down” design philosophy: it first globally restructures the entire document into concise,
coherent sections, followed by local refinements for fine-grained, panel-level control. As shown in
Fig. 4. The pipeline consists of three key components: 1. Parser: Extracts key textual and visual
content by tools and LLM-based summarization to build an asset library. 2. Planner: Aligns assets
and arranges them into coherent layouts, generating panels iteratively with a zoom-in mechanism.
3. Painter–Commenter: The Painter produces panel-level bullet points and executable code for
rendering, while a VLM as Commenter—ensures layout coherence and avoids overflow.

4.1 Parser: global organization
Given a paper, the first step is to globally organize the information into a structured format to support
subsequent processing. This is handled by the Parser, which performs a coarse-grained compression
by ingesting the raw PDF and producing an asset library across two modalities: (1) Text assets
that capture the document hierarchy like human first glance focus on section heading—each key
is a section heading and the associated value a paragraph-level synopsis; (2) Visual assets built in
parallel, where figure or table captions serve as keys and the extracted image files are stored as values.
We leverage MARKER[21] and DOCLING[14] to convert each page into Markdown, which is then
processed by an LLM to generate a structured, JSON-like outline. This transformation compresses the
raw text into a compact asset library that preserves essential semantics while significantly reducing
size, enabling more efficient downstream iteration and layout generation.

4.2 Planner: local organization
With the visual and text assets collected by the Parser, the next step is to select the relevant content
and begin constructing the poster. Rather than generating the entire poster in one shot, we empha-
size the importance of layout configuration and adopt an iterative, section-by-section completion
process—mirroring how humans typically start with a template and sequentially fill in each section.

Asset matching. This step aims to associate visual assets with corresponding textual content—for
example, matching a teaser image to the introduction paragraph. We employ an LLM to semantically
align each visual asset with its most relevant section from the asset library, resulting in a set of
(section, figure) pairs.

Layout generation. An essential step is determining the panel-level layout, which requires precise
absolute coordinates while accounting for the relative informativeness of each section. We found
that directly predicting numerical coordinates using an LLM was unstable. Therefore, we adopt the
binary-tree layout strategy [30], which reliably translates hierarchical constraints into panel bounding
boxes by estimating content length (e.g.,, word number, figure size), maintaining reading order, and
preserving aspect ratio—ensuring each poster section corresponds to a well-defined panel.

Panel iteration. Once the paper layout is configured, the next stage is to populate each panel with
content. To ensure precise control, the Planner iterates over each section’s synopsis and condenses it
into concise, hierarchically structured bullet points—creating a compact format well-suited for poster
panels. Inspired by how humans design posters—initially filling in content and iteratively refining
it based on visual feedback—we introduce the Painter-Commenter loop (Sec. 4.3), which mimics
this process while maintaining visual clarity and appeal. After all panels undergo this process, the
finalized poster is produced.

4.3 Painter–Commenter: local refinement
For each panel, the Painter converts its asset pair i.e., (section, figure) into executable code instruc-
tions and invokes the runtime environment to render a draft panel image. Particularly, the Painter
comprises two modules: (i) an LLM that ingests the section synopsis and distills it into a concise set of
bullet points, and (ii) a deterministic code generator that leverages the python-pptx library together
with predefined helper functions to generate presentation code, which is subsequently executed and
rendered into an image of the current panel.

However, in practice, a single pass rarely produces a flawless panel. To address this, we pair the
Painter with a Commenter—a VLM that evaluates the quality of the rendered panel image. While
VLMs are promising, they often hallucinate in visual design tasks, leading to unreliable judgments. To
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mitigate this, we employ a Zoom-in strategy that focuses attention on the panel region. Additionally,
we enhance the Commenter with an in-context reference prompt containing two examples: one with
severe overflow and one with an ideal layout. Guided by these references, the Commenter provides
targeted visual feedback—such as “overflow,” “too blank,” or “good to go”—which informs the
Painter’s next revision. This loop continues until the Commenter signals success or a maximum
number of iterations is reached, ensuring each panel is accurate, readable, and visually well-balanced.

5 Experiments
5.1 Baselines and Settings
We evaluate four categories of baselines: (i) Oracle methods, which serve as upper bounds—"Paper"
(the original PDF with maximum informativeness) for content fidelity, and "GT Poster" (the
author-designed poster from Paper2Poster) as the best possible presentation in terms of human
understanding and layout quality; (ii) End-to-end methods, where GPT-4o directly generates
posters either through text-based rendering—"4o-HTML" (Markdown-to-HTML)—or image genera-
tion—"4o-Image" (poster graphics produced via GPT-4o’s web interface); (iii) Multi-agent work-
flows, which decompose the task using specialized toolkits—"OWL"[6], a general-purpose PDF-to-
HTML converter, and "PPTAgent"[37], a Python-pptx-based slide generator, where candidate posters
are selected via manual inspection; (iv) PosterAgent, our proposed approach—PosterAgent-4o
uses GPT-4o for both internal LLM and VLM commenter, while PosterAgent-Qwen is a purely
open-source solution, employs Qwen-2.5-7B for text generation and Qwen-2.5-VL-7B for commenter.
Additional backbones are evaluated to study the generalizability of our method, which is detailed in
Appendix E.4.

5.2 Main Results

Visual Quality & Text Coherence. In the left part of Tab. 1, we evaluate visual quality
and textual coherence. Interestingly, while 4o-Image achieves the highest visual similarity,
it also records the worst perplexity, suggesting that although the generated posters may ap-
pear visually appealing at first glance, they often contain noisy or incoherent text. As ex-
pected, the original paper performs best in terms of textual coherence. Notably, the author-
designed poster (GT) still shows relatively high PPL, indicating that authors often prioritize vi-
sual appeal and reader engagement by conveying information through visual rather than tex-
tual means. Our PosterAgent achieves the highest figure relevance compared to PPTAgent,

Figure 5: PaperQuiz’s Avg. scores
across different Reader VLMs (x-axis)
for each poster type (legend lines). Refer
to Append. Tab. 3 for full model names.

primarily due to our visual-semantic-aware asset library
construction and asset matching. It also ranks second in vi-
sual similarity, closely following the human-designed poster.
Above results highlight that each metric captures only a spe-
cific aspect of quality and has its limitations. Therefore, we
turn to the VLM-as-Judge and PaperQuiz next.

VLM as Judge Metrics. In the right part of Tab. 1, we
conduct a comprehensive evaluation using a suite of metrics.
We find that both the Paper and GT Poster achieve the high-
est aesthetic and information scores. In contrast, 4o-Image
performs poorly in terms of information, aligning with find-
ings from previous PPL studies. Overall, PosterAgent-4o
achieves an average score of 3.72, reaching a level compa-
rable to that of human-designed posters. Variants of Poster-
Agent that use GPT-4o as the visual commenter outperform

those using Qwen2.5-VL-7B, highlighting the superior visual perception capabilities of 4o, particu-
larly in panel refinement tasks such as preventing text overflow.

PPTAgent frequently fails to replace placeholder content or fill templates properly, leading to mean-
ingless text or large blank areas, and thus receives low scores in both aesthetics and informativeness.
Despite not generating images, 4o-HTML yields the highest aesthetic score among baselines, ow-
ing to its clean and structured layout. Overall, we found that the primary bottleneck in existing
poster generation lies in Engagement, where all variants score below 3. In contrast, most variants
achieve good Information scores, likely due to the robust long-context handling capabilities of
GPT-4o. All PosterAgent variants—even those using Qwen2.5-7B—surpass baselines in information
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Model

Vis. quality & Txt. coherence VLM-as-Judge

Vis. Sim. ↑ PPL ↓ Fig. Rel. ↑
Aesthetic score ↑ Information score ↑

Overall ↑
Element Layout Engage. Avg. Clarity Content Logic Avg.

Oracle methods
Paper 0.53 4.60 0.22 4.05 3.89 2.80 3.58 4.00 4.68 3.98 4.22 3.90
GT Poster 1.00 11.26 0.21 4.07 3.90 2.70 3.56 4.09 3.96 3.89 3.98 3.77

End-to-end methods
4o-HTML 0.52 9.86 – 3.53 3.82 2.72 3.36 3.94 3.64 3.47 3.68 3.52

4o-Image 0.76 77.13 0.21 2.93 3.02 2.75 2.90 1.05 2.04 2.22 1.77 2.33

Multi-Agent methods
OWL-4o 0.54 11.46 – 2.76 3.62 2.56 2.98 3.92 2.89 3.36 3.39 3.19

PPTAgent-4o 0.50 6.20 0.16 2.49 3.05 2.45 2.66 2.05 1.26 1.38 1.56 2.11

PosterAgent variants
PosterAgent-4o 0.75 8.31 0.24 3.95 3.86 2.93 3.58 4.03 3.96 3.60 3.86 3.72

PosterAgent-Qwen 0.75 8.81 0.24 3.93 3.67 2.89 3.50 3.95 3.85 3.68 3.83 3.66

Table 1: Detailed evaluation of Paper2Poster across four categories of baselines, including Visual
Quality & Text Coherence and VLM-as-Judge for fine-grained assessments. Oracle methods together
(Paper or author-designed poster) serve as upper bounds in theory and strong baselines empirically.

quality, demonstrating the effectiveness of our content planning and generation framework in miti-
gating limitations of less capable LLMs. Although PPTAgent is also powered by GPT-4o, its rigid
template-filling mechanism often fails to properly populate content, leading to poor performance.

PaperQuiz. As shown in Tab. 2, we draw several key observations: (i) Verbatim questions are
generally more challenging than those assessing broader understanding and interpretation. (ii)
Without textual brevity penalties, Paper achieves the highest overall score. When the penalty is
applied, the GT Poster performs best. This highlights both the comprehensiveness of the full paper
and the value of concise, well-designed posters. It also reinforces how the PaperQuiz setup reflects
poster generation as a process of effective context compression, where careful condensation rather
than sheer content volume is rewarded. (iii) GPT-4o supplies strong base ability. Its 4o-HTML variant
outperforms OWL-4o, and even its purely visual 4o-Image generation surpasses PPTAgent-4o.
Our proposed PosterAgent variants consistently achieve the best scores. (iv) Across all methods,
performance on open-source reader models is consistently lower than on closed-source ones. This
suggests that stronger perceptual ability correlates with better poster comprehension. (v) Notably,
both 4o-HTML and OWL-4o, despite leveraging GPT-4o and generating lengthy, figure-free, blog-style
outputs, are outperformed in raw accuracy by our PosterAgent-Qwen variant, even though they are
exempt from brevity penalties. This result further affirms that PaperQuiz evaluates more than content
volume; presentation quality matters. Our PosterAgent-Qwen surpasses more resource-intensive
baselines despite relying on the relatively weaker Qwen-2.5-VL-7B, due to two key design choices:
(a) a structured, multi-step compression process that enables even weaker LMs to distill information
with minimal loss; and (b) a layout that presents information clearly and with a logical reading order,
making it easy for VLM-based readers to locate and interpret key points, similar to how clear visual
structure supports efficient comprehension for human poster readers.

Figure 6: PaperQuiz’s Avg scores
across different types of posters
(x-axis) for readers (colored lines)
on human evaluation subset.

PaperQuiz readers comparison. In Fig. 5, we compare the
PaperQuiz scores of different readers on four baseline posters.
On GT and PosterAgent’s posters, we observe that as model
reasoning capabilities improve, their ability to interpret struc-
tured content also increases, leading to higher QA accuracy.
In contrast, this trend is not evident for 4o-Image and Paper,
suggesting that more capable models benefit more from poster
layouts and condensed information than from information-dense
papers, thereby improving their comprehension and response
quality.

Human evaluation. To assess our method with human judgment,
we recruited a PhD student to complete the PaperQuiz on 5
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Raw Accuracy Density-Augmented Score

Model Verbatim ↑ Interpretive ↑ Overall ↑ V-Avg ↑ I-Avg ↑ Overall ↑
open-source closed-source V-Avg open-source closed-source I-Avg

Oracle methods
Paper 51.45 82.95 67.20 48.48 81.61 65.05 66.12 72.69 70.34 71.52

GT Poster 51.75 58.10 54.93 49.19 77.55 63.37 59.15 103.56 120.00 111.78

End-to-end methods
4o-HTML 52.45 48.00 50.23 50.78 75.14 62.96 56.59 95.72 120.55 108.13

4o-Image 48.97 30.89 39.93 50.19 70.67 60.43 50.18 79.86 120.86 100.36

Multi-Agent methods
OWL-4o 47.87 31.96 39.92 49.94 74.38 62.16 51.04 78.69 122.91 100.80

PPTAgent-4o 39.63 11.99 25.81 36.22 37.15 36.68 31.25 51.62 73.37 62.49

PosterAgent variants
PosterAgent-4o 52.95 49.17 51.06 52.29 78.42 65.35 58.21 101.87 130.39 116.13
PosterAgent-Qwen 51.81 48.79 50.30 52.57 76.66 64.62 57.46 100.35 128.94 114.65

Table 2: PaperQuiz Evaluation on Paper2Poster based on 6 different Readers, including open-
source and closed-source VLMs. Both Raw Accuracy and Density-Augmented Score are included for
Verbatim and Interpretive settings. Oracle methods together (Paper or author-designed poster) serve
as upper bounds empirically.

randomly selected papers from the Paper2Poster dataset, covering 4 baselines, 2 ground-truth variants,
and 2 PosterAgent variants, following the setup in Section 5.1. Details of the human evaluation
protocol are provided in Appendix G. Figure 6 demonstrates the average PaperQuiz scores across
different types of posters (x-axis) for each reader (colored lines). PaperQuiz scores across different
posters exhibit good consistency across both human and VLMs evaluations. This alignment
supports the use of reader models as effective proxies to simulate human judgment.

5.3 Qualitative Analysis

Figure 7: Average token consumptions
for different methods. Details are pro-
vided in Appendix E.1.

In Figure 8, we present a quantitative comparison across
different poster baselines for a paper [20]. GPT-4o’s pixel-
based generation produces visually acceptable layouts at
first glance, but closer inspection (zoom-in region) reveals
impaired text rendering, leading to poor readability of
fine-grained details. 4o-HTML and OWL generate blog-like,
text-dense posters that suffer from low visual readability.
PPTAgent struggles with layout control, often resulting in
missing panels. In contrast, our PosterAgent generates struc-
turally coherent and readable posters, achieving the highest
scores while using significantly fewer words than (c) and (f).
However, there is still room for improvements compared to
human-designed versions.

5.4 Efficiency Analysis

Figure 7 presents the average token cost per poster across different methods. Our PosterAgent
achieves great token efficiency, using only 101.1K (4o-based) and 47.6K (Qwen-based) to-
kens—reducing cost by 60%–87% compared to OWL-4o [6]. This translates to just $0.55 for 4o and
$0.0045 for Qwen per poster, highlighting its effectiveness. Additionally, through parallelization
of panel generation, we further reduced runtime by 40.7%, making PosterAgent-4o-Parallel
even more competitive in speed (see Append. E.1 for token details and Append. E.1.1 for runtime
breakdown).

6 Conclusions

We present a new benchmark, Paper2Poster, for poster generation from academic papers, and we high-
light the challenges and limitations of current generative models or agents in handling long-context,
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(a) Human Poster; PaperQuiz: 121.46 (b) PosterAgent (Ours); PaperQuiz: 122.67 (c) OWL; PaperQuiz: 120.67

(d) PPTAgent; PaperQuiz: 57.33 (e) 4o-Image; PaperQuiz: 107.67 (f) 4o-HTML; PaperQuiz: 116.02

Figure 8: Illustration of poster variants for the paper generated by different methods, including
(a) Author designed, (b) Our PosterAgent, multi-agent methods (c) OWL [6] and (d) PPTAgent [37],
pixel generative method (e) 4o-Image and website generative method (f) 4o-HTML. We provide the
PaperQuiz’s augmented score for each method.

layout-sensitive tasks. Our proposed solution, the PosterAgent framework, leverages structured
parsing, hierarchical planning, and visual feedback to enhance generation quality significantly. Poster-
Agent not only narrows the performance gap with human-designed posters but also establishes a new
efficiency standard, offering a practical and scalable approach to scientific communication.
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A Limitations and Future Work

We spot a limitation in the current design: the sequential execution of panel refinements constitutes
the primary efficiency bottleneck. Each panel’s generate–revise cycle is structurally independent and
could be parallelized, yet our implementation processes them serially to preserve modularity and
output quality. As a result, end-to-end poster creation takes approximately 4.5 minutes per docu-
ment—acceptable for isolated use but restrictive for large-scale or interactive workflows. Introducing
panel-level parallelism is a clear avenue for future work, with the potential to dramatically reduce
runtime and improve scalability in batch generation and real-time editing contexts.

Future works. (i) a well-considered poster should integrate external knowledge beyond paper such
as community feedback—such as OpenReview comments and social media reactions—and leverage
external assets like institutional icons and conference logos; and (ii) an improved workflow would
involve human–AI collaboration, where the agent produces an initial draft, solicits user feedback,
and iteratively refines its output to meet requirements. We leave these explorations in future.

B Example Visualization

We present representative examples from our Paper2Poster dataset, which comprises 100 pairs of
full-length research papers and their corresponding author-designed posters. For each selected paper,
we show (a) the original poster created by the authors—designed to convey the paper’s abstract,
methodology, results, and key visuals in a single coherent layout—and (b) the poster automatically
generated by our PosterAgent framework, demonstrating its ability to extract, summarize, and arrange
multimodal content into a visually balanced single-page design. These examples span a range of
subfields (reinforcement learning, anomaly detection, neuroscience) and illustrate how PosterAgent
handles diverse layouts, content compression ratios, and figure-to-text integration.

(a) Author-designed poster.

Bisimulation Makes Analogies in Goal-Conditioned Reinforcement Learning

Philippe Hansen-Estruch¹, Amy Zhang², Ashvin Nair², Patrick Yin¹, Sergey Levine¹

¹University of California, Berkeley, ²Facebook AI Research

Abstract

•Building generalizable goal-conditioned agents is crucial for RL.

•Traditional RL provides exact goals, often unrealistic.
•Propose goal-conditioned bisimulation for skill reuse.

•Captures functional equivariance for new goals.
•Generalizes to new goals in simulation tasks.
•Sufficient for downstream tasks with state-only reward.

Introduction

•Goal-conditioned RL enables training agents for diverse tasks.

•Goal representation is crucial for policy interpretation.
•Functional equivariance aids in generalizing across tasks.
•Agents can specify goals without exact goal images.
•Functionally equivariant representations capture state-goal 

changes.

Related Work

•Our approach enhances goal-conditioned RL with general-purpose 

representations.

•Focus on representation learning, comparing state abstractions 
and self-supervised learning.

•Bisimulation metrics help measure behavioral similarity for control 
tasks.

Preliminaries

•Goal-conditioned Markov Decision Process (GCMDP) includes 

state space, action space, dynamics model, goal space, and 

sparse reward function.

•Bisimulation groups states with equivalent behaviors, 
preserving reward sequences.

Functional Equivariance

•Extends bisimulation to goal-conditioned metrics.

•Defines equivalence over tasks for compositional 
generalization.

•Constructs state abstraction using arithmetic in latent space.

•Enables reasoning about unseen goals via analogous tasks.
•Frees agents from traditional goal-conditioned structures.

•Facilitates analogies between state-goal pairs.

GCB: Embedding Spaces

•Combines representation learning with downstream control.
•Pairs with any goal-conditioned RL method.

•Focuses on offline settings to decouple exploration difficulties.
•Learns an approximation of the policy-dependent GCB metric.

Experiments and Results

•GCB evaluated against other representation learning 
methods.

•Captures functional equivariance using state-goal pairs.

•Strong performance on offline goal-conditioned tasks.

•Comparison with contrastive and reconstruction-based 

methods.

•GCB excels in capturing task analogies.
•Superior generalization capabilities demonstrated.

Discussion

•GCB introduces goal-conditioned bisimulation for functional 

equivariance.

•Enables agents to achieve unseen goals with analogous task 
representations.

•Outperforms existing methods in goal-conditioned tasks.

•Structured representations bound value differences across 
states and tasks.

(b) PosterAgent-generated poster.

Figure 9: Posters for Bisimulation Makes Analogies in Goal-Conditioned Reinforcement Learning.

(a) Author-designed poster.

Xurui Li¹, Ziming Huang¹, Feng Xue², Yu Zhou³

¹Huazhong University of Science and Technology, ²Wuhan JingCe Electronic Group Co.,LTD, ³University of Trento

MUSC: ZERO-SHOT INDUSTRIAL ANOMALY CLASSIFICATION AND SEGMENTATION WITH MUTUAL SCORING OF THE UNLABELED 

IMAGES

Abstract

•Introduces a zero-shot anomaly classification and 

segmentation method for industrial vision.

•Method named MuSc leverages unlabeled test images 
without training or prompts.

•Utilizes Local Neighborhood Aggregation with Multiple 
Degrees (LNAMD) for patch features.

•Employs a Mutual Scoring Mechanism (MSM) for anomaly 
scoring.

Introduction

•Industrial anomaly classification and segmentation 
face challenges due to anomaly diversity.

•Existing methods often depend on normal datasets for 
training.

•Zero-shot methods like WinCLIP and APRIL-GAN utilize 

text prompts.

•Our approach, MuSc, uses only unlabeled test images 
for anomaly detection.

Related Works

•Vision transformers like ViT and Swin 
Transformer are used for feature extraction.

•Industrial anomaly detection often requires 
normal reference images.

•Zero-shot methods like WinCLIP and APRIL-

GAN utilize text prompts.

•Few-shot methods such as RegAD and 

GraphCore focus on data augmentation.

Method

•MuSc is tailored for unlabeled test images.
•ViT features are extracted and LNAMD is applied to patch tokens.
•MSM assigns anomaly scores using unlabeled images.

•RsCIN optimizes classification with image-level features.

•LNAMD aggregates patch tokens to detect anomalies of various sizes.
•RsCIN refines classification using neighborhood relationships.

Experiments

•MuSc uses ViT-L/14-336 as the backbone.

•Tested on MVTec AD and VisA datasets.

•Ablation studies show effectiveness of LNAMD, MSM, and RsCIN.
•Efficient in terms of inference time and memory cost.
•Handles large datasets effectively.
•Compared to zero-shot and few-shot methods, MuSc excels.

Conclusion

•MuSc is a novel zero-shot industrial anomaly 

framework.

•Utilizes normal and abnormal cues in unlabeled test 
images.

•Surpasses existing zero-shot and many few-shot 

methods.

Acknowledgments

•Supported by the National Natural 
Science Foundation of China.

◦Grant No. 62176098.

•Computation completed on the HPC 
Platform of Huazhong University of 

Science and Technology.

(b) PosterAgent-generated poster.
Figure 10: Posters for MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with
Mutual Scoring of the Unlabeled Images.
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(a) Author-designed poster.

NEUROFORMER: MULTIMODAL AND MULTITASK GENERATIVE PRETRAINING FOR BRAIN DATA

Antonis Antoniades¹, Yiyi Yu¹, Joseph Canzano¹, William Wang¹, Spencer LaVere Smith¹

¹University of California, Santa Barbara

Abstract

•Neuroformer reframes neuronal spiking data analysis as an 
autoregressive spatiotemporal generation problem.

•It is a multimodal, multitask generative pretrained transformer 
model for systems neuroscience data.

Introduction

•Systems neuroscience experiments are increasingly 
complex.

•Recordings involve multiple brain areas and behavioral 
data.

•Deep neural networks (DNNs) show potential in 
modeling neural activity.

•DNNs often entail inductive biases.
•Transformers are flexible for modeling data from various 
domains.

Related Work

•DNNs and mammalian brains share hierarchical 
representation similarities.

•Parallel-path networks trained with contrastive-

predictive objectives reflect mouse visual cortex 

specializations.

Model

•Neuroformer uses contrastive matching for efficient 
representations.

•Inputs include neural activity, stimuli, and other 
modalities.

•Feature encoders process inputs for multimodal 
contrastive alignment.

•Cross-modal transformer fuses neural responses with 

other features.

•Video frames undergo 3D Convolutions before cross-

modal layers.

•Contrastive learning aligns modalities with pairwise 
similarities.

•Feature fusion uses cascading cross-attention 

modules.

•Causal spike modeling predicts neuron firing and sub-

intervals.

•Model optimized with contrastive and cross-entropy 

loss.

Results

•Neuroformer evaluated on artificial and real neural 
datasets.

•Accurately predicted neuronal activity and inferred 
connectivity.

•Attention mechanisms revealed functional 
connectivity.

•Simulated datasets used spiking neural networks.
•Real datasets included neuronal activity from mice.
•Realistic autoregressive simulation achieved.
•Attention parameters provided stimulus-response 

insights.

•Pretraining enabled rapid adaptation to new tasks.

Ablations

•Explored impact of each Neuroformer component.
•Incorporated Past State, Video, Behavioral modalities, and 
Alignment.

•Enhanced model's ability to generate realistic neuronal 
responses.

•Lateral dataset showed improved performance with eye 
position.

•Performance fluctuations help examine input modalities' 
relevance.

•Developing modular models opens new avenues for exploring 
intelligence.

Conclusion

•Developed a generative pretraining method for multimodal 
neural data.

•Enhanced performance in downstream applications by 
mirroring causal neuronal patterns.

•Neuroformer outperformed conventional methods with 
minimal inductive biases.

(b) PosterAgent-generated poster.
Figure 11: Posters for Neuroformer: Multimodal and Multitask Generative Pretraining for Brain
Data.

(a) Author-designed poster. (b) PosterAgent-generated poster.
Figure 12: Posters for Conformal Semantic Keypoint Detection with Statistical Guarantees.

(a) Author-designed poster. (b) PosterAgent-generated poster.
Figure 13: Posters for Neural Tangent Kernels for Axis-Aligned Tree Ensembles.

C Ablation Study

We conduct ablation studies to evaluate three key design choices in PosterAgent: (1) the binary-tree
layout strategy for layout planning; (2) the inclusion of a commenter module as a visual critic; and
(3) the use of in-context examples to enhance the visual perception capabilities of the commenter.

We define the following variants:

• Direct: replacing the binary-tree layout with direct layout generation by an LLM;
• Tree: using the binary-tree layout strategy but removing the commenter module;
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(a) Author-designed poster. (b) PosterAgent-generated poster.
Figure 14: Posters for Sparse Parameterization for Epitomic Dataset Distillation.

(a) Author-designed poster. (b) PosterAgent-generated poster.
Figure 15: Posters for Truly Scale-Equivariant Deep Nets with Fourier Layers.

(a) Author-designed poster. (b) PosterAgent-generated poster.
Figure 16: Posters for Identifying the Context Shift between Test Benchmarks and Production Data.
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• Tree + Commenter: including the commenter module but without in-context examples;
• Tree + Commenter + IC: the full system, with both the commenter and in-context examples.

All ablation variants are implemented using PosterAgent-4o, keeping all other components un-
changed to isolate the effect of each factor. We visualize and compare results across five randomly
selected papers from Paper2Poster, as shown in Figures 17 to 21.

When prompting the LLM to directly generate poster layouts (Direct), the results are often structurally
compromised (e.g., Figures 17a–19a), or resemble blog-style layouts that lack visual hierarchy and
appeal (Figures 20a,21a). Fine-grained layout components, such as text boxes and figures, are
especially challenging to synthesize in this setting: for instance, Figures17a–20a exhibit missing text
boxes that leave noticeable blank areas, and Figure 20a fails to preserve the correct aspect ratio of
figures.

The Tree variant, which omits the commenter module, leads to severe layout defects across all test
cases (Figures 17b–21b), primarily manifesting as text overflow—where content spills outside its
designated textbox or section panel—resulting in overlaps with other text or visual elements.

Using Tree + Commenter, which includes the commenter but without in-context examples, yields
improved results compared to the variant without the commenter, but still exhibits noticeable issues.
As shown in Figures 17c,18c,20c, and 21c, some degree of text overflow remains. Furthermore,
Figures 19c and 20c highlight substantial unused white space that the commenter fails to flag in the
absence of in-context guidance.

Finally, the full Tree+Commenter+IC system achieves the best results, as detailed throughout the
main paper and demonstrated in Fig. 17d,18d,19d,20d,21d.

(a) Direct. (b) Tree.

(c) Tree + Commenter. (d) Tree + Commenter + IC.

Figure 17: Ablation study on Neuro-Symbolic Language Modeling with Automaton-augmented
Retrieval. Text overflow areas are highlighted with red bounding boxes.
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(a) Direct. (b) Tree.

(c) Tree + Commenter. (d) Tree + Commenter + IC.

Figure 18: Ablation study on Visual Correspondence Hallucination. Text overflow areas are high-
lighted with red bounding boxes.
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(a) Direct. (b) Tree.

(c) Tree + Commenter. (d) Tree + Commenter + IC.

Figure 19: Ablation study on DARTFormer: Finding The Best Type Of Attention. Text overflow areas
are highlighted with red bounding boxes, large blank regions are highlighted with purple bounding
boxes.
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(a) Direct. (b) Tree.

(c) Tree + Commenter. (d) Tree + Commenter + IC.

Figure 20: Ablation study on CW-ERM: Improving Autonomous Driving Planning with Closed-loop
Weighted Empirical Risk Minimization. Text overflow areas are highlighted with red bounding boxes,
and large blank regions are highlighted with purple bounding boxes.
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(a) Direct. (b) Tree.

(c) Tree + Commenter. (d) Tree + Commenter + IC.

Figure 21: Ablation study on DeepJoint: Robust Survival Modelling Under Clinical Presence Shift.
Text overflow areas are highlighted with red bounding boxes.
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D Abbreviations

We provide a reference for the abbreviations of models used in this paper in Tab. 3.
Abbreviation Full Name
llava-ov-7b LLaVA-OneVision-Qwen2-7b-ov-hf [9]
phi4 Phi-4-multimodal-instruct [1]
gemini-2.0 Gemini-2.0-Flash
llama4-17b Llama-4-Scout-17B-16E-Instruct
4o-mini GPT-4o-mini

Table 3: List of abbreviations and their full names.

E More Analysis

E.1 Efficiency Analysis

In Tab. 4, we evaluate the efficiency of PosterAgent against both direct generation and multi-agent
baselines. While 4o-Image achieves the highest efficiency by avoiding multi-turn reasoning, it lacks
layout-awareness. PosterAgent-Qwen-2.5-7B strikes a strong balance, significantly reducing token
usage and runtime (47.6K, 192.0s) compared to PPTAgent (255.7K, 230.7s), while maintaining
output quality. This highlights the challenge, as well as the efficiency issue of Paper2Poster.

E.1.1 Runtime Analysis and Parallelization

While PosterAgent-4o achieves superior quality and token efficiency compared to baselines, its
sequential panel-by-panel content generation initially resulted in longer runtime (281.48s on average)
compared to OWL-4o (158.97s). To address this efficiency bottleneck, we implemented a parallelized
version that generates content for all panels simultaneously, as panels are independent and can be
processed concurrently.

Table 5 provides a fine-grained breakdown of runtime across six major procedures: (i) PDF parsing,
(ii) figure filtering, (iii) outline generation, (iv) layout generation, (v) content generation (panel
iteration), and (vi) rendering. The analysis reveals two primary bottlenecks in the original sequential
implementation: PDF parsing (81.08s) and content generation (176.69s).

While PDF parsing relies on established off-the-shelf parsers (Docling and Marker) with limited
room for optimization, content generation offers significant parallelization opportunities. Our par-
allelized implementation reduces content generation time from 176.69s to 54.16s—a 69.3% re-
duction—bringing the overall runtime to 166.80s. This represents a 40.7% improvement over
the sequential version and makes PosterAgent-4o-Parallel highly competitive with OWL-4o
(166.80s vs. 158.97s), while maintaining superior output quality across all metrics. The small
increase in other procedures (Parser, Filter, Outline, Layout) is due to measurement variance and
system load, as these steps remain unchanged between versions.

E.2 Cost Analysis

Token consumptions are depicted in Figure 7 and Table 4. Using GPT-4o as the backbone for both the
LLM and VLM components, the average cost of generating a single paper with PosterAgent-4o is
approximately:

98.1× 1000

1, 000, 000
× 5 +

3× 1000

1, 000, 000
× 20 = 0.55 USD,

based on OpenAI’s GPT-4o API pricing as of May 22, 2025.

Using Qwen-2.5-7B as the backbone for LLM and Qwen-2.5-VL-7B as VLM, the average cost of
generating a single paper with PosterAgent-4o is approximately:

29.22× 1000

1, 000, 000
× 0.04 +

3.56× 1000

1, 000, 000
× 0.1 +

14.78× 1000

1, 000, 000
× 0.2 = 0.0045 USD,

based on OpenRouter’s API pricing as of May 26, 2025.
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Model in_t (K) ↓ out_t (K) ↓ in_v (K) ↓ out_v (K) ↓ total_t (K) ↓ total_v (K) ↓ Input Tokens (K) ↓ Output Tokens (K) ↓ Total Tokens (K) ↓ Time (s) ↓ Cost ($) ↓

End-to-end methods
4o-HTML 18.53 2.15 0 0 20.67 0 18.53 2.15 20.67 62.26 0.14

Multi-Agent methods
OWL-4o 356.48 4.62 0 0 361.00 0 356.48 4.62 361.10 124.29 1.87

PPTAgent-4o 202.46 33.42 18.98 0.87 235.88 19.85 221.43 34.29 255.73 230.70 1.79

PosterAgent variants
PosterAgent-4o 28.85 2.95 69.25 0.05 31.80 69.30 98.10 3.00 101.10 281.55 0.55

PosterAgent-Qwen 29.22 3.56 14.75 0.02 32.78 14.78 43.97 3.58 47.55 124.29 0.0045

Table 4: Efficiency Analysis in terms of text and vision tokens, and computation times. Prices of
GPT-4o are based on OpenAI’s GPT-4o API pricing as of May 22, 2025 ($5 / MTok for input and
$20 / MTok for output). Prices of Qwen-2.5-7B ($0.04 / MTok input and $0.1 / MTok for output) and
Qwen-2.5-VL-7B ($0.2 / MTok for both) are based on the ones offered by OpenRouter on May 26,
2025. Best scores in each column are bolded and second best are underlined.

Model (i) Parser (s) ↓ (ii) Filter (s) ↓ (iii) Outline (s) ↓ (iv) Layout (s) ↓ (v) Content (s) ↓ (vi) Render (s) ↓ Total (s) ↓

OWL-4o (reference) (no fine-grained breakdown available) 158.97

PosterAgent-4o (sequential) 81.08 17.42 3.47 0.15 176.69 2.67 281.48

PosterAgent-4o-Parallel 87.45 18.29 4.09 0.17 54.16 2.65 166.80 (↓40.7%)

Table 5: Fine-grained runtime breakdown across six major procedures. Results are averaged
over a random subset of 10 papers. The parallelized implementation achieves a 40.7% reduction in
total runtime by concurrently generating content for all panels.

E.3 Impact of Backbone Choices

Table 6 compares four PosterAgent variants obtained by crossing two language models
(LMs)—GPT-4o and Qwen-2.5-7B—with the same two models used as vision–language backbones
(VLMs).

Overall robustness. All configurations perform similarly. The PaperQuiz metric spans only 114.09
(Qwen–4o) to 118.25 (4o–Qwen), a spread approximately 4, indicating that PosterAgent is largely
insensitive to the specific backbone combination.

Open-source competitiveness. The fully open-source stack (Qwen–Qwen) achieves a PaperQuiz
score of 114.65, trailing the best closed-source variant by merely 3.6. Strong performance is therefore
attainable without proprietary APIs.

Stable multimodal quality. Visual similarity and figure relevance vary by less than 0.01 across
variants, underscoring the stability of our multimodal generation pipeline.

LLM vs. VLM trade-off. Holding the LLM fixed, substituting Qwen for the VLM consistently
improves PaperQuiz (4o-Qwen: +2.1 over 4o-4o; Qwen-Qwen: +0.56 over Qwen-4o). We attribute
this to GPT-4o acting as a stricter layout critic, trimming overflow text and modestly reducing
information volume. Conversely, the stricter VLM raises aesthetic scores, yielding higher VLM-
as-judge ratings (4o-4o: 3.72 vs. 4o-Qwen: 3.58). The 4o-4o configuration thus offers the best
balance between informativeness and visual appeal.

E.4 Additional Backbone Evaluations

To further evaluate the generalizability of PosterAgent, we conducted experiments with two addi-
tional backbones: o4-mini and Qwen-2.5-72B.

Table 7 presents the complete evaluation across all metrics for the new backbones, alongside the
original 4o-Image baseline for reference. Table 8 provides detailed PaperQuiz scores broken down by
question type (Verbatim vs. Interpretive) and reader model categories (open-source vs. closed-source).
Finally, Table 9 offers a concise comparison of the key metrics.

Key observations: (i) All PosterAgent variants substantially outperform the 4o-Image baseline
across nearly all metrics, with overall VLM-as-Judge scores ranging from 3.56–3.72 vs. 2.33
(+1.23–1.39 absolute, ∼53–60% relative improvement). (ii) Visual similarity remains high and
stable (0.75–0.78) across all backbones, with PosterAgent-Qwen-72B achieving the highest score
(0.78). (iii) PosterAgent-o4-mini achieves the highest raw PaperQuiz overall score (61.33) and
augmented score (121.91), demonstrating that reasoning models can produce highly informative
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LLM VLM
Vis. quality & Txt. coherence VLM-as-Judge Density-augmented Score

Visual Similarity PPL Figure Relevance Aesthetic Information Overall V-Avg I-Avg Overall

GPT-4o GPT-4o 0.75 8.31 0.24 3.58 3.86 3.72 101.87 130.39 116.13

GPT-4o Qwen-2.5-7B 0.75 9.25 0.24 3.33 3.82 3.58 105.61 130.88 118.25
Qwen-2.5-7B GPT-4o 0.76 9.12 0.25 3.57 3.82 3.70 100.09 128.09 114.09

Qwen-2.5-7B Qwen-2.5-7B 0.75 8.81 0.24 3.50 3.83 3.66 100.35 128.94 114.65

Table 6: Ablation studies of our PosterAgent variants. Best scores in each column are bolded and
second best are underlined.

Model

Vis. quality & Txt. coherence VLM-as-Judge

Vis. Sim. ↑ PPL ↓ Fig. Rel. ↑
Aesthetic score ↑ Information score ↑

Overall ↑
Element Layout Engage. Avg. Clarity Content Logic Avg.

Baseline
4o-Image 0.76 77.13 0.21 2.93 3.02 2.75 2.90 1.05 2.04 2.22 1.77 2.33

PosterAgent with additional backbones
PosterAgent-4o 0.75 8.31 0.24 3.95 3.86 2.93 3.58 4.03 3.96 3.60 3.86 3.72
PosterAgent-o4-mini 0.76 14.00 0.23 3.79 3.38 2.64 3.27 3.98 3.98 3.64 3.87 3.57

PosterAgent-Qwen-7B 0.75 8.81 0.24 3.93 3.67 2.89 3.50 3.95 3.85 3.68 3.83 3.66

PosterAgent-Qwen-72B 0.78 8.81 0.25 3.76 3.39 2.63 3.26 3.88 3.96 3.74 3.86 3.56

Table 7: Detailed evaluation with additional backbones. All PosterAgent variants substantially
outperform the 4o-Image baseline. Best scores in each column are bolded and second best are
underlined.

posters. (iv) Information scores cluster at 3.83–3.87 (vs. 1.77 for baseline), and Aesthetic scores
at 3.26–3.58 (vs. 2.90), indicating backbone-insensitive improvements in both informativeness and
visual quality.

These results confirm that PosterAgent’s multi-agent design generalizes well across different
backbone choices, maintaining strong performance with both reasoning closed-source models and
larger open-source alternatives.

E.5 Poster Generation Paradigm Comparison

To clarify our design choices, we provide a systematic comparison of different poster generation
paradigms in Table 10. PosterAgent adopts a hybrid approach that combines the strengths of
multiple paradigms: we generate code for precise layout control (coordinates, sizes, layering), then
render to PPTX to obtain visual feedback, which the system uses to iteratively refine both layout and
content.

Coding-only approaches (e.g., direct HTML/code synthesis or general coding agents) offer exact
placement and reproducibility but produce artifacts that are cumbersome for users to edit and cannot
naturally "see" the rendered result to correct visual issues like text overflow or alignment problems.

GUI-only pipelines make editing easy and support feedback from the rendered poster. Still, pre-
cise, large-scale adjustments require many low-level operations (e.g., clicking, dragging) and are
computationally inefficient for automated generation.

Template retrieval can be efficient and produce editable outputs, but it is not true generation from
scratch and depends critically on the availability and suitability of templates. For scientific posters,
high-quality, non-proprietary, and diverse templates are scarce. Even when strong templates are
available, our experiments show that PPTAgent-4o—given six human-designed poster templates with
manual selection of the best match—performed noticeably worse than PosterAgent, underscoring
the limitation of template dependence for this task.

By generating code and iterating with rendered visual feedback in PPTX, PosterAgent inherits
precise control, editable outputs, true from-scratch generation, efficient global changes, and feedback-
driven refinement—properties we found necessary to meet the dual demands of content accuracy and
visual layout quality.
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Raw Accuracy Density-Augmented Score

Model Verbatim ↑ Interpretive ↑ Overall ↑ V-Avg ↑ I-Avg ↑ Overall ↑
open-source closed-source V-Avg open-source closed-source I-Avg

Baseline
4o-Image 48.97 30.89 39.93 50.19 70.67 60.43 50.18 79.86 120.86 100.36

PosterAgent with additional backbones
PosterAgent-4o 52.95 49.17 51.06 52.29 78.42 65.35 58.21 101.87 130.39 116.13

PosterAgent-o4-mini 54.21 60.27 57.24 51.99 78.87 65.43 61.33 113.76 130.05 121.91
PosterAgent-Qwen-7B 51.81 48.79 50.30 52.57 76.66 64.62 57.46 100.35 128.94 114.65

PosterAgent-Qwen-72B 53.65 54.61 54.13 52.69 78.01 65.35 59.74 107.76 130.10 118.93

Table 8: PaperQuiz evaluation with additional backbones. PosterAgent-o4-mini achieves the
highest overall scores, while all variants substantially outperform the baseline. Best scores in each
column are bolded and second best are underlined.

Model Visual Sim ↑ Overall VLM-as-Judge ↑ PaperQuiz Raw Overall ↑ PaperQuiz Aug Overall ↑

Baseline
4o-Image 0.76 2.33 50.18 100.36

PosterAgent with additional backbones
PosterAgent-4o 0.75 3.72 58.21 116.13

PosterAgent-o4-mini 0.76 3.57 61.33 121.91
PosterAgent-Qwen-7B 0.75 3.66 57.46 114.65

PosterAgent-Qwen-72B 0.78 3.56 59.74 118.93

Table 9: Summary comparison of key metrics with additional backbones. All PosterAgent
variants demonstrate strong performance across metrics. Best scores in each column are bolded and
second best are underlined.

E.6 VLM-as-Judge Robustness Analysis

To verify the stability and reliability of our VLM-as-Judge evaluation, we conducted five independent
runs of the complete evaluation on PosterAgent-4o across the entire dataset (100 samples).

Table 11 presents the results across all six fine-grained criteria (three aesthetic and three information
dimensions), along with the averaged scores. The results demonstrate exceptional stability: standard
deviations are minimal (std < 0.024) across all metrics, with the overall average showing particularly
low variance (std = 0.005). The 95% confidence intervals are extremely narrow.

Key observations: (i) All metrics exhibit high consistency across runs, with a coefficient of variation
< 1% for most measures. (ii) The narrow confidence intervals indicate that a single evaluation run
provides reliable estimates for model comparison. (iii) The stability validates our VLM-as-Judge
approach as a robust automatic evaluation method for poster generation.

Given the observed stability, we conclude that single-run evaluations are sufficient for practical model
comparison, with periodic multi-run audits recommended to verify continued metric stability.

F Detailed Definition of Evaluation Metrics

We elaborate on the details of all four types of evaluation metrics applied in this study in this section.

F.1 Visual Quality Metrics

Two metrics fall into this type, namely Visual Similarity and Figure Relevance.

• Visual Similarity is computed as the cosine similarity between the CLIP image embeddings of the
generated poster P̂ and the ground-truth poster P ∗. Concretely, letting

zI(X) = CLIPimage(X)

denote the CLIP image encoder, we set

sVS = cosine_similarity
(
zI(P̂ ), zI(P

∗)
)

∈ [−1, 1]. (1)
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Paradigm Precise Control Easy User Editing Generate from Scratch Uses Visual Feedback Efficient Generation

Coding-only ✓ ✗ ✓ ✗ ✓
(e.g., HTML synthesis) (exact placement) (code is hard to edit visually)

GUI-only ✗ ✓ ✓ ✓ ✗
(e.g., UI automation) (fine placement is difficult) (many fine-grained actions)

Template retrieval ✗ ✓ ✗ ✓ ✓
(e.g., PPTAgent w/ templates) (constrained by template) (depends on template pool)

PosterAgent (hybrid) ✓ ✓ ✓ ✓ ✓
(code gen + PPTX render) (code-based precision) (editable PPTX output) (no template required) (visual-in-the-loop) (parallelizable)

Table 10: Comparison of poster generation paradigms. PosterAgent’s hybrid approach com-
bines code generation (for precise control) with PPTX rendering (for visual feedback and editability),
achieving all desired properties: precise control, easy editing, from-scratch generation, visual feed-
back integration, and efficient generation. ✓ indicates the paradigm supports the property well; ✗
indicates significant limitations.

Run Aesthetic Information Aesthetic Information Overall

Element Layout Engagement Clarity Content Logic Avg Avg Avg

Run 1 3.95 3.86 2.93 4.03 3.96 3.60 3.58 3.86 3.72

Run 2 3.95 3.90 2.96 4.02 3.96 3.59 3.60 3.86 3.73

Run 3 3.91 3.88 2.97 4.04 3.99 3.59 3.59 3.87 3.73

Run 4 3.93 3.84 2.95 4.03 3.97 3.58 3.57 3.86 3.72

Run 5 3.93 3.85 2.93 4.01 3.95 3.64 3.57 3.87 3.72

Mean 3.934 3.866 2.948 4.026 3.966 3.600 3.582 3.864 3.724

Std 0.017 0.024 0.018 0.011 0.015 0.023 0.013 0.005 0.005

95% CI [3.913, [3.836, [2.926, [4.012, [3.947, [3.571, [3.566, [3.857, [3.717,
3.955] 3.896] 2.970] 4.040] 3.985] 3.629] 3.598] 3.871] 3.731]

Table 11: Five-run robustness analysis of VLM-as-Judge evaluation for PosterAgent-4o.
Results show exceptional stability with minimal variance (std < 0.024) across all metrics.

By operating at the instance level rather than comparing distributional statistics (e.g., FID [? ]), this
measure directly captures semantic alignment and overall content fidelity between individual poster
images.

• Figure Relevance assesses whether each figure in the generated poster is contextually appropriate.
For a set of N figure crops {fi}Ni=1 extracted from P̂ and their corresponding section text {ti}Ni=1
from the original paper, we compute image and text embeddings

zI(fi) = CLIPimage(fi), zT (ti) = CLIPtext(ti).

We then define

sFR =


1

N

N∑
i=1

cosine_similarity
(
zI(fi), zT (ti)

)
, N > 0,

0, N = 0.

F.2 Textual Coherence Metrics

We quantify textual coherence by computing the standard perplexity (PPL) of the poster text under
the Llama-2-7b-hf language model. Specifically, let the poster be tokenized into a sequence w1:n.
The model assigns each token a conditional probability p(wi | w<i). We then define perplexity as

PPL = exp
(
− 1

n

n∑
i=1

log p(wi | w<i)
)
.

Lower values of PPL correspond to more predictable and then more coherent text. We employ
full-sequence PPL for its simplicity and direct interpretability in capturing overall textual fluency.
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F.3 Holistic Quality Assessment via VLMs (VLM-as-Judge)

Each poster is scored on six criteria by a vision–language model. For each criterion we supply a
dedicated prompt in a tcolorbox using the prompt_func style; the model returns:

{"reason": "<justification>", "score": <1–5>}

Element Quality. This criterion evaluates the visual clarity, resolution, and stylistic consistency of
individual graphic elements (figures, charts, icons).

õ Prompt: Element Quality Judge

System Prompt: You are an extremely discerning visual-element judge. Scrutinize every figure,
chart, and image for any visual or stylistic issue. Always look for even subtle flaws: low contrast,
imperfect resolutions, slightly inconsistent styles, crowded or mislabeled legends, etc. Be wary
of awarding high scores unless the visuals truly meet the strictest standards.

Instructions: Five-Point Scale

1 Point:
• Graphics are blurry, pixelated, or illegible.
• Color choices severely hinder interpretation.
• Visuals may significantly detract from comprehension.

2 Points:
• At least one graphic is clear, while others suffer from poor resolution or style.
• Legends or labels are missing or too small to read comfortably.
• Color schemes create some confusion or difficulty.

3 Points:
• Most graphics are legible and relevant, but have notable issues with consistency, sizing, or

clarity.
• Some mismatches in style or color usage detract from cohesion.
• Minor but noticeable labeling/legend shortcomings.

4 Points:
• High-quality graphics with generally consistent styling.
• Clear legends and color schemes aid interpretation.
• Any remaining flaws are slight and do not significantly hinder understanding.

5 Points:
• Rarely awarded; strictly reserved for publication-grade visuals.
• Crisp resolution with no instances of blurriness.
• Harmonious color palette, impeccable labeling, and an exceptionally consistent style.

Example Output:
{"reason": "...", "score": int}
Think step by step and be conservative with your rating.

Layout Balance. This criterion assesses the overall arrangement, alignment, and spacing of text and
graphics to ensure a coherent and readable poster structure.
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õ Prompt: Layout Balance Judge

System Prompt: You are an uncompromising poster-layout judge. Critique the overall
arrangement of all visual components (text blocks, headings, figures, white-space, alignment)
that affect readability. Always scan for subtle alignment issues, uneven spacing, or any layout
feature that might disrupt reader comprehension. Resist giving high scores unless the layout is
exceptionally polished.

Instructions: Five-Point Scale

1 Point:
• Highly disorganized layout; elements overlap, making text or graphics illegible.
• Margins are violated or reading path is nearly impossible to follow.
• Severely hinders comprehension.

2 Points:
• Some semblance of structure (columns/rows) but marred by inconsistent alignment or over-

crowded sections.
• White-space distribution may be haphazard or insufficient.
• Reading flow is interrupted, though one can still piece it together.

3 Points:
• Recognizable structure with mostly consistent alignment and spacing.
• Some minor layout distractions remain (e.g., slightly cramped text, uneven spacing, small

alignment slips).
• Generally readable but not particularly polished.

4 Points:
• Well-organized grid or arrangement; logical reading path that mostly flows.
• Appropriate font sizes, spacing, and alignment; only subtle layout imperfections.
• White-space usage clean and deliberate; nearly professional.

5 Points:
• Very rarely granted; must be a pristine, professional-grade layout.
• Seamless alignment, balanced spacing, and expertly guided reading path.
• Flawless design synergy that maximizes readability and comprehension.

Example Output:
{"reason": "...", "score": int}
Think step by step and be tough on small alignment/spacing issues.

Engagement. This criterion judges how effectively the poster’s design elements—color, typography,
and composition—capture and sustain viewer attention.

õ Prompt: Engagement Judge

System Prompt: You are an uncompromising poster-aesthetics judge focusing on engagement.
Be extremely critical of color harmony, typography, visual balance, and the poster’s ability
to grab and hold attention. Always look for subtle issues—color clashes, overly busy or dull
designs, inappropriate font choices, awkward spacing, or anything that might reduce engagement.
Reserve high scores for truly exemplary work.

Instructions: Five-Point Scale
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1 Point:
• Visually off-putting; clashing colors or crowded design repel viewers.
• Typography choice is jarring or illegible at a glance.
• Overall fails to engage or entice.

2 Points:
• Some visually appealing elements exist but are overshadowed by dull or inconsistent design

moments.
• Font sizes or styles reduce accessibility or attractiveness.
• Limited capacity to draw an audience’s focus.

3 Points:
• Shows generally pleasing color scheme and typography, though lacking a “wow” factor.
• Balance and visual flow are acceptable but reveal minor weaknesses (e.g., slightly crowded

or sparse areas).
• Engagement is average; neither strong nor particularly weak.

4 Points:
• Eye-catching design using mostly harmonious colors and effective typography.
• Good use of negative space; the layout guides the viewer’s eye effectively.
• Only minor flaws or bland spots prevent it from being top-tier.

5 Points:
• Rarely awarded—reserved for truly striking, magazine-cover-caliber visuals.
• Flawless color palette and typography; everything works together seamlessly.
• Immediately captivating design that retains audience interest without any noticeable weakness.

Example Output:
{"reason": "...", "score": int}
Think step by step and be very conservative when scoring.

Clarity. This criterion evaluates sentence-level readability, grammar, and phrasing to ensure the text
is polished and error-free.

õ Prompt: Clarity Judge

System Prompt: You are an uncompromising micro-text judge. Critically evaluate sentence-level
clarity, grammar, phrasing, and intra-section coherence. Look for even subtle grammatical slips,
confusing jargon, or clumsy phrasing. Be slow to award top marks unless the text is impeccably
polished.

Instructions: Five-Point Scale

1 Point:
• Rampant grammatical or spelling errors; sentences may be unreadable.
• Overly technical jargon without explanations; fragments or run-ons predominate.
• Overall, text quality severely impedes understanding.

2 Points:
• Meaning is generally discernible, but multiple grammar or syntax problems appear in each

section.
• Awkward or unclear phrasing disrupts the flow of reading.
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• Only partial clarity is achieved.

3 Points:
• Overall readable text with a few noticeable grammar or wording missteps.
• Occasional awkward phrasing or redundancies appear, but readers can follow without major

confusion.
• Average clarity.

4 Points:
• Well-written, mostly free of grammatical or spelling errors.
• Terminology is used properly; text flows smoothly within paragraphs.
• Minor slip-ups can be present but do not disrupt understanding.

5 Points:
• Exceptional text quality, error-free, and elegantly phrased.
• Complex ideas conveyed with clear, concise language.
• Granted only if absolutely no grammatical, spelling, or stylistic flaws are detected.

Example Output:
{"reason": "...", "score": int}
Think step by step.

Content Completeness. This criterion measures whether all key sections are included and richly
detailed, reflecting comprehensive coverage of the paper’s main contributions.

õ Prompt: Content Completeness Judge

System Prompt: You are an uncompromising content-depth judge. Assess whether the poster
includes all essential sections and whether each section presents sufficient detail. Look for any
missing or under-developed segments; do not hesitate to penalize for insufficient depth. Award
the highest scores only if the poster expertly covers every necessary aspect.

Instructions: Five-Point Scale

1 Point:
• Critical sections (e.g., objectives or results) are completely missing or trivial.
• Data grossly insufficient to comprehend the study or conclusions.
• Very poor depth that fails to convey essential information.

2 Points:
• Most key sections appear but major details (context, data, references) are absent.
• Lack of elaboration on methods or results leaves big gaps.
• Overall content too shallow to properly inform.

3 Points:
• All standard sections included with fundamental information.
• Some omissions or scant detail in certain areas (e.g., results or methodology).
• Only moderate depth; the reader must fill many gaps themselves.

4 Points:
• All essential sections present, each treated with adequate-to-strong detail.
• Robust description of objectives, methods, results, and references.
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• Only minor improvements needed.

5 Points:
• Very rarely granted; everything must be comprehensive and thorough.
• Exhaustive detail on methodology, results (with statistics), interpretation, references, and

future work.
• Leaves readers with minimal unanswered questions.

Example Output:
{"reason": "...", "score": int}
Think step by step.

Logical Flow. This criterion examines the coherence and progression of ideas across poster sections,
ensuring a seamless narrative from introduction to conclusion.

õ Prompt: Logical Flow Judge

System Prompt: You are an uncompromising macro-logic judge. Examine how well the poster’s
major sections (Introduction, Methods, Results, Conclusions, etc.) connect to form a coherent
narrative. Pay attention to continuity, how logically each section flows from the previous, and
whether there are any abrupt gaps. Only award the highest marks if the storyline is perfectly
seamless.

Instructions: Five-Point Scale

1 Point:
• Sections are disjointed; little to no logical connection between them.
• Key transitions or the central rationale is missing, creating confusion.

2 Points:
• General sequence recognizable but important logical steps are weak or missing.
• Readers must infer key links.

3 Points:
• Mostly coherent narrative with minor gaps.
• Transitions exist but some logical steps are lightly justified.

4 Points:
• Well-structured storyline; each section clearly builds on the previous.
• Transitions are stated, rationale is mostly strong.

5 Points:
• Extremely rare; flawless logical flow from introduction to conclusion.
• Seamless transitions; no inferential leaps.

Example Output:
{"reason": "...", "score": int}
Think step by step and penalize any noticeable logical gap or awkward transition.

For each poster, we record all six criterion scores and compute two aggregated metrics:
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Aesthetic Score =
Element Quality + Layout Balance + Engagement

3
,

Information Score =
Clarity + Content Completeness + Logical Flow

3
.

F.4 PaperQuiz

QA Dataset Curation. Each paper PDF is converted to markdown via our PDF parser. We then
prompt o3 to generate 100 multiple-choice questions per paper, where we have 50 verbatim and 50
interpretive questions as follows:

• Verbatim questions (50): directly answerable from the paper text, covering 13 orthogonal
content aspects (e.g., objectives, methodology, key results).

• Interpretive questions (50): requires high-level comprehension beyond verbatim text, span-
ning 10 conceptual dimensions (e.g., motivation, contribution synthesis, implication analy-
sis).

The exact prompts that are applied to generate the questions are given below, for verbatim and
interpretive questions, respectively.

õ Prompt: Generate Verbatim QA

System Prompt: You are a Question-Generation agent for academic posters. Your task is to read
the supplied Markdown text (document_markdown) and produce exactly 50 multiple-choice
QA items whose answers can be located verbatim or nearly verbatim in that text. The questions
must be suitable for conference-poster readers: avoid deep theoretical proofs, reference lists, or
citation minutiae. Follow all guidelines below precisely.

Instructions:
1. Carefully read the Markdown in document_markdown.

• Each question must map to one clear sentence or phrase in the poster text.
• No duplicate or near-duplicate wording.

2. Write 50 factual, answerable-from-text questions.
• Vary difficulty from easy “headline” facts to specific numeric or procedural details.

3. Distribute the 50 questions across the following poster-friendly aspects, aiming for 2–5
questions per aspect and ensuring each aspect appears at least once:

A. Title & authorship (title, author names, affiliations, keywords)
B. Motivation / problem statement / research gap
C. Objectives or hypotheses
D. Dataset(s) or experimental materials
E. Methodology (algorithms, model architecture, workflow steps)
F. Key parameters or hyper-parameters (values, settings)
G. Evaluation metrics or criteria
H. Quantitative results (numbers in tables, charts)
I. Qualitative findings, figures, or illustrative examples J. Comparative or ablation study

results
K. Conclusions, implications, or contributions
L. Limitations or future work
M. Definitions of domain-specific terms or abbreviations

4. EXCLUDE references, citations, author acknowledgements, and any text that would not
appear on a standard poster.
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5. Use the following JSON-for-each format (exact spelling & casing):
{

"Question X": {
"aspect": "<A-M>",
"question": "<single sentence>",
"options": [

"A. <choice 1>",
"B. <choice 2>",
"C. <choice 3>",
"D. <choice 4>"

],
"answer": "<Letter>. <exact correct option text>"

},
...

}
6. Output **only** the final JSON object containing 50 items—no additional commentary.

7. Balance the correct answers roughly equally among options A–D.

Example Output:
{"Question 1": {...}, "Question 2": {...}, ..., "Question 50": {...}}
Think step by step and ensure full compliance with every guideline.

õ Prompt: Generate Interpretive QA

System Prompt: You are a Question-Generation agent. Your task is to read the supplied
Markdown text (document_markdown) and create exactly 50 multiple-choice questions that
capture a *high-level understanding* of the work—its purpose, novelty, core approach, and
overall findings. Every question must still be answerable by locating explicit sentences or phrases
in the text; do not require inference that is absent from the poster-style content.

Instructions:
1. Read the Markdown in document_markdown closely.

• Each question must map to explicit content in the text.
• Do not require inference beyond presented poster-level information.

2. Draft 50 factual questions probing the reader’s global grasp (e.g., “What problem does the
study address?”).

• Avoid low-level numeric settings, code snippets, or reference lists.
• Vary wording and avoid duplicates.

3. Cover all of the following *high-level* aspects—each must appear at least twice to guarantee
breadth:

A. Research domain & background context
B. Central problem / motivation / research gap
C. Primary goal, hypothesis, or research question
D. Key contributions or novelty statements
E. Overall methodology or workflow (summarized)
F. Principal findings or headline quantitative results
G. Qualitative insights or illustrative examples
H. Implications, applications, or significance
I. Limitations or future-work directions
J. Main conclusions or take-home messages
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4. EXCLUDE citations, granular hyper-parameters, precise numeric tables, and acknowledge-
ments—stick to poster-level overview content.

5. Return the questions in the following *strict* JSON schema:
{

"Question X": {
"aspect": "<A-J>",
"question": "<one concise sentence>",
"options": [

"A. <choice 1>",
"B. <choice 2>",
"C. <choice 3>",
"D. <choice 4>"

],
"answer": "<Letter>. <exact correct option text>"

},
...

}
6. Produce **only** the final JSON object with 50 entries—no commentary, headers, or extra
lines.

7. The number of correct answers should be approximately balanced across A–D.

Document Markdown: {{ document_markdown }}

Output ONLY the JSON with 50 questions below

Evaluation Workflow. For each poster image, we query six VLM reader models to answer curated
questions. These models include three open-source models (LLaVA-OneVision-Qwen2-7B-ov-hf,
Phi-4-multimodal-instruct, and Llama-4-Scout-17B-16E-Instruct) and three closed-source models
(o3, GPT-4o mini, and Gemini 2.0 Flash). Their outputs are evaluated according to two enforced
rules:

• No external knowledge. Models must base answers solely on information present in the
poster image.

• Visual citation. Each answer must include a reference to the poster region supporting it
(e.g., “See Figure 2 caption”); if no region contains the answer, the model responds “NA.”

õ Prompt: Answer Questions

System Prompt: You are an answering agent. You will be provided with:
1. An image of a poster.
2. A JSON object called “questions” which contains multiple questions. Each question has four
possible answers: A, B, C, or D.
Your goal is to analyze the poster thoroughly and answer each question based on the information
it provides. You should **NOT** use any external knowledge or context beyond the poster
image. You must rely solely on the content of the poster to answer the questions.
For each question:

• If you find enough evidence in the poster to decide on a specific option (A, B, C, or D), then
choose that option and include a brief reference to the part of the poster that supports your answer
(e.g., “Top-left text”, “Event date section”, etc.).

• If the poster does not offer sufficient information to confidently choose any of the options,
respond with "NA" for both the answer and the reference.
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Instructions: 1. Study the poster image along with the “questions” provided.

2. For each question:
• Decide if the poster clearly supports one of the four options (A, B, C, or D). If so, pick that

answer.
• Otherwise, if the poster does not have adequate information, use "NA" for the answer.

3. Provide a brief reference indicating where in the poster you found the answer. If no reference
is available (i.e., your answer is "NA"), use "NA" for the reference too.

4. Format your output strictly as a JSON object with this pattern:
{

"Question 1": {
"answer": "X",
"reference": "some reference or ’NA’"

},
"Question 2": {

"answer": "X",
"reference": "some reference or ’NA’"

},
...

}
5. Do not include any explanations or extra keys beyond the specified structure.

6. You must provide an answer entry for all questions in the “questions” object.

Example Output:
{

"Question 1": {
"answer": "B",
"reference": "Description on the top-right of the poster"

},
"Question 2": {

"answer": "NA",
"reference": "NA"

}
}

Scoring Metrics. Let sR be the raw accuracy (fraction of correctly answered questions) and l the
token count of the poster text. We define the density-augmented score

sA = sR

(
1 +

1

max(1, l/w)

)
,

where w is the median text length of ground-truth posters. The density multiplier is capped at 2 to
penalize verbosity and reward concise, information-dense designs.

G Human Evaluation Protocol

Instructions. Each human evaluator follows the instructions as follow,

• You will be given a poster, as well as 6 text files containing the criteria to judge the poster.
• You need to read the poster and provide your scores according to the 6 text files’ criteria.

Criteria. The criteria are the same as those outlined in PaperQuiz F.4.
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H Error Analysis

Generating a scientific poster requires tight coupling of language understanding, visual synthesis,
and spatial layout reasoning. Across the five pipelines we evaluate—4o-Image, 4o-HTML, OWL-4o,
PPTAgent, and our proposed PosterAgent—we consistently observe four high-level failure modes:
text integrity issues, visual / layout flaws, missing visuals, and overflow issues. Below, we describe
each class of error and highlight representative examples.

H.1 Text Integrity Issues

Legible text is crucial for conveying a paper’s content. In image–only generation (4o-Image), posters
often contain garbled or unreadable text (Fig.22a) because pixel-level synthesis struggles with high-
resolution typography, underscores the fragility of text rendering when no explicit semantic control is
applied. PPTAgent, as a template-based method, exhibits a different variant: placeholders are left
intact or partly overwritten (Fig.22b), producing semantically “corrupted” content.

H.2 Visual / Layout Flaws

Pipelines without robust visual feedback frequently misplace or distort content. 4o-Image outputs
can be truncated horizontally or vertically (Fig.23a, 23b) because the generator lacks hard spatial
constraints. The same model sometimes hallucinates nonsensical figures (Fig.24a). Even with
a predefined template, PPTAgent may insert figures at unusably small scales (Fig.24b), or leave
substantial blank regions when text or images are partially generated (Fig.25b). HTML-based agents
such as OWL-4o also suffer from large empty areas (Fig. 25a) when their sequential code lacks
iterative, visual validation.

H.3 Missing Visuals

Although OWL-4o is, in principle, able to invoke external toolkits for figure extraction, it fails to
complete the full retrieval-insert cycle; the resulting posters remain purely textual (Fig. 26a) On the
other hand, 4o-HTML 26b) by design is text-only, leading to similar issues.

H.4 Overflow Issues

Unlike HTML, where nested boxes naturally clip overflow, the PPTX format lacks strict parent–child
containment. Consequently, both PPTAgent and PosterAgent sometimes produce text that spills
beyond panel boundaries (Fig. 27b, 27a). Among the PosterAgent variants, the problem is relatively
more pronounced in the Qwen variant, whose backbone (Qwen2.5-VL-7b) provides weaker visual
grounding than GPT-4o, making its visual-feedback loop less reliable.
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(a) A poster generated by 4o-Image, where substan-
tial corrupted text is generated.

(b) A poster generated by PPTAgent, where meaning-
less template placeholder text is remained.

Figure 22: Examples of posters with corrupted text.

(a) A poster generated by 4o-Image, where the poster
is cutoff horizontally due to incomplete generation.

(b) A poster generated by 4o-Image, where the poster
is cutoff vertically due to incomplete generation.

Figure 23: Examples of posters with cutoff.
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(a) A poster produced by 4o-Image, featuring a figure
that is low-resolution, visually corrupted, and unintel-
ligible.

(b) A poster generated by PPTAgent, where figures
are rendered too small to be legible.

Figure 24: Examples of posters with obscure figures.

(a) A poster generated by OWL-4o, where there are
large blanks on the poster.

(b) A poster generated by PPTAgent, where there are
large blanks on the poster.

Figure 25: Examples of posters with large blanks.
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(a) A poster generated by OWL-4o, where no figures
are inserted into poster.

(b) A poster generated by 4o-HTML, where no figures
are inserted into poster.

Figure 26: Examples of posters without figures.

(a) A poster generated by PosterAgent-Qwen, where
there is text overflowing outside textbox.

(b) A poster generated by PPTAgent, where there is
text overflowing outside textbox.

Figure 27: Examples of posters with textual overflow.
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I Prompt Templates

I.1 Baseline Prompts

We exhibit the prompt templates used to generate baselines: 4o-Image, 4o-HTML, and OWL-4o.

õ Prompt: 4o-Image

Carefully analyze the provided research paper and design a professional, visually appealing
academic conference poster. Include clear, informative text summaries, relevant figures, and
tables that are neatly arranged and aligned. The poster should accurately represent the key findings,
methods, and conclusions as if created by the original authors for presentation at a scientific
conference. Ensure the design includes all essential elements commonly found in academic
posters. The layout should be engaging, easy to follow, and visually attractive, balancing textual
clarity with graphic effectiveness. The poster should be of width widthpx and height heightpx.
Generate through image generation.

õ Prompt: OWL-4o

Read the PDF file from:
paper_path/paper.pdf

Carefully analyze the provided research paper and design a professional, visually appealing
academic conference poster. Include clear, informative text summaries, relevant figures, and
tables that are neatly arranged and aligned. The poster should accurately represent the key findings,
methods, and conclusions as if created by the original authors for presentation at a scientific
conference. Ensure the design includes all essential elements commonly found in academic
posters. The layout should be engaging, easy to follow, and visually attractive, balancing textual
clarity with graphic effectiveness.
You should approach the task by generating and executing python-pptx code to create a single-
slide PowerPoint presentation. You should save your code, as well as the generated PowerPoint
file.

õ Prompt: 4o-HTML

System Prompt:

You are a document-to-poster generation agent. Your task is to read the supplied Mark-
down text (document_markdown) and design a professional, visually appealing academic
conference poster by generating an HTML file. Follow the guidelines below precisely.

Instructions

1. Carefully read the Markdown in document_markdown.
2. Design a full-page academic conference poster in HTML + CSS:

• Include a prominent header with title, authors, and affiliations. [1ex]
• Break content into logical sections (Introduction, Methods, Results, Conclusions, etc.).
• Provide clear, informative text summaries.
• Embed relevant figures and tables, neatly arranged and aligned.
• Accurately represent key findings, methods, and conclusions.
• Ensure the layout is engaging, easy to follow, and visually attractive.
• Include all essential poster elements commonly found at scientific conferences.

3. Write complete HTML code (with inline or embedded CSS) that, when rendered, produces the
poster layout.
5. The poster width should be poster_width px and height should be poster_height px.
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4. **Output only** a JSON object with a single key "HTML", whose value is the entire HTML
code for the poster.

I.2 Parser Prompts

We exhibit prompt templates used for parser: (1) The LLM summarization prompt; (2) The figure
filtering prompt.

õ Prompt: Paper Summarizer

System Prompt:

You are a document content divider and extractor specialist, expert in dividing and extracting
content from various types of documents and reorganizing it into a two-level json format for later
poster generation.

Instruction:

Based on given markdown document, generate a JSON output for later poster generation, make
sure the output is concise and focused. Step-by-Step Instructions: 1. Identify Sections and
Subsections in document and identify sections and subsections based on the heading levels and
logical structure.
2. Divide Content: Reorganize the content into sections and subsections, ensuring that each
subsection contains approximately 500 words.
3. Refine Titles: Create titles for each section with at most 3 words.
4. Remove Unwanted Elements: Eliminate any unwanted elements such as headers, footers, text
surrounded by "∼∼" indicating deletion.
5. Refine Text: For content, you should keep as much raw text as possible. Do not include
citations.
6. Length: you should control the length of each section, according to their importance according
to your understanding of the paper. For important sections, their content should be long.
7. Make sure there is a poster title section at the beginning, and it should contain information like
paper title, author, organization etc.
8. The "meta" key contains the meta information of the poster, where the title should be the raw
title of the paper and is not summarized.
9. Ther **must** be a section for the poster title.
Example Output:
{

"meta": {
"poster_title": "raw title of the paper",
"authors": "authors of the paper",
"affiliations": "affiliations of the authors"

},
"sections": [

{
"title": "Poster Title & Author",
"content": "content of poster title and author"

},
{

"title": "title of section1",
"content": "content of section 1"

},
{

"title": "title of section2",
"content": "content of section 2"

}
]
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}

õ Prompt: Figure Filter

System Prompt:

You are an assistant that reviews a poster’s JSON layout (json_content), along with
corresponding image_information and table_information. Your task is to filter out any
image or table entries that are irrelevant to the content described in json_content (for instance,
if their captions or any provided details do not align with the topics, sections, or content in the
poster).

Specifically: 1. Read through the full poster data described in json_content.

2. Examine each entry within image_information and table_information.

3. Decide if each entry is relevant based on its caption, path, or any other information provided.

- For example, if an image has a caption that obviously does not fit into any section or does not
relate to the poster’s content outline, deem it “unimportant.”

4. Keep only those images/tables you consider "important" for the poster (i.e., relevant to the
topics, sections, or discussions mentioned in json_content).

5. Produce an output containing just two keys:
"image_information" for the filtered images, and "table_information" for the filtered
tables. Each of these keys should map to an array of filtered objects.

You must output valid JSON containing only:
{

"image_information": {...},
"table_information": {...}

}

Instructions:

The user will provide JSON:

1. "json_content": The content of the poster (sections, text, etc.).

2. "image_information": A dict of images (each with caption, path, size constraints).

3. "table_information": A dict of tables (each with caption, path, size constraints).

Your task:

1. Read the poster outline (json_content).

2. Filter image_information and table_information so that only entries relevant to the
poster content remain.

• Relevance is determined by matching or relating their captions to the poster’s sections or
content.

• If an image or table does not clearly match or support any content in json_content, remove
it.
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3. Return a JSON with the structure:
{

"image_information": <filtered image information JSON>,
"table_information": <filtered table information JSON>

}

Output Format:

Just return a JSON object with the two keys:

"image_information" and "table_information" — each containing the filtered data. No
additional keys or text. Both "image_information" and "table_information" should
present even if they are empty.

Note:

• If no entries remain for either images or tables, just return an empty dict for that key.

• Keep at most 5 entries in image_information and table_information respectively.

• Make sure the JSON you output is valid.

Please provide only the JSON object as your final output.

J Planner Prompts

We present the prompts used by the planner module, covering three components: (1) the asset
matching prompt; (2) the painter prompt; and (3) the commenter prompt.

õ Prompt: Asset Matching

System Prompt:
You are an expert assistant tasked with assigning images or tables to the most relevant poster
sections. You will be given:

• JSON content of the poster outline, including each section’s title and a brief description.
• A list of images (image_information) with captions and size constraints.
• A list of tables (table_information) with captions and size constraints.

Your goal is to produce a JSON mapping of each top-level section to exactly zero or one
image/table that best fits that section’s content. For each top-level section (named in the provided
JSON “json_content”), decide:

• Whether an image or table (or none) is most relevant to the section’s theme or description.
• If relevant, select the single most appropriate image or table to assign.
• Base this selection on the conceptual content described in the section (“research meth-

ods”, “results”, “conclusion”, etc.) and compare it with the captions of the provided
images or tables, choosing whichever fits best.

• If assigning an image, specify “image”: <id>, where <id>is the identifier of the chosen
image from “image_information”.

• If assigning a table, specify “table”: <id>, where <id>is the identifier of the chosen table
from “table_information”.

• Include an additional “reason” field briefly explaining why this assignment was made
(e.g., how the image/table relates to the section content).

• If no image or table is assigned to a given section, omit that section from the final JSON
(i.e., only list sections where you actually assign something).
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Important Notes:
• The assignment should not be arbitrary. It must be logically consistent with the section’s

description and the provided caption for the image or table.
• Do not produce any layout properties or subsections here.
• The final output must be a single JSON object, mapping from section names to the

chosen image/table ID plus the “reason” field.
• If multiple images or tables are suitable, select the single best one and assign only that.
• If “image_information” or “table_information” is empty, you may end up assigning

nothing to any section.
Instructions:

1. Read and analyze the poster’s top-level sections from {{ json_content }}.
2. Look at {{ image_information }} and {{ table_information }}. Determine content-fit:

• If a section’s description or subject matter matches well with a given image/table
caption, consider assigning it.

• If multiple images or tables seem relevant, choose the single best fit.
• If none of the images or tables are relevant, or if none are provided, do not assign

anything for that section.
3. Produce a single JSON object. Each key is the exact name of a top-level section (e.g.,

"Introduction", "Methods", "Results"), and the value is an object with:
• "image": image_id or "table": table_id
• "reason": short explanation describing why the image/table is
assigned

4. If no assignment is made for a section, exclude that section from the JSON.
5. No image can be reused for multiple sections. Each image/table can only be assigned to

one section.
6. Ensure your final response strictly follows JSON syntax with no extra commentary.

Example Output Format:
{

"Introduction": {
"image": 1,
"reason": "Image 1 depicts the central concept introduced
in this section."

},
"Results": {

"table": 2,
"reason": "Table 2 summarizes the key metrics discussed
in the results."

}
}

õ Prompt: Painter

System Prompt:
You are an expert assistant tasked with producing bullet-point summaries for a given poster
section. You will be given:

• A JSON object summary_of_section that contains:

{
"title": "<section title>",
"content": "<full text description>"

}
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• An integer number_of_textboxes, which can only be 1 or 2.
Your goal is to produce a JSON object representing the bullet-point text for this poster section.
Each “textbox” key (textbox1 or textbox2) maps to a list of bullet-point entries. Each bullet-
point entry must be a JSON object of the form:
{

"alignment": "left",
"bullet": true,
"level": <indent_level>,
"font_size": <integer>,
"runs": [

{
"text": "<bullet point text>"
# optionally "bold": true or "italic": true if needed

}
]

}
Instructions:

1. If number_of_textboxes = 1, your final output must only have:

{
"title": [ section title ],
"textbox1": [ ... array of bullet items ... ]

}

2. If number_of_textboxes = 2, then you must produce two keys: textbox1 and
textbox2, and each must have the same number of bullet items. For example:

{
"title": [ section title ],
"textbox1": [... N bullet items ...],
"textbox2": [... N bullet items ...]

}

where both arrays have identical length.
3. Each bullet point is a JSON object with the structure shown above; you can create as

many bullet points as needed (following the constraint about textbox count).
4. Make sure your final output is valid JSON, with no extra keys or additional formatting.
5. Return only the JSON object, nothing else.

Example Output:
Example when number_of_textboxes = 1:

{
"title": [

{
"alignment": "left",
"bullet": false,
"level": 0,
"font_size": 60,
"runs": [

{
"text": "Methodology",
"bold": true

}
]

}
],
"textbox1": [
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{
"alignment": "left",
"bullet": true,
"level": 0,
"font_size": 48,
"runs": [

{
"text": "Key point about domain-invariant component analysis."

}
]

},
{

"alignment": "left",
"bullet": true,
"level": 1,
"font_size": 48,
"runs": [

{
"text": "Supporting detail.",
"bold": true

}
]

}
]

}

Example when number_of_textboxes = 2:

{
"title": [

{
"alignment": "left",
"bullet": false,
"level": 0,
"font_size": 60,
"runs": [

{
"text": "Experimental results",
"bold": true

}
]

}
],
"textbox1": [

{
"alignment": "left",
"bullet": true,
"level": 0,
"font_size": 48,
"runs": [

{
"text": "Primary finding, bullet 1."

}
]

},
{

"alignment": "left",
"bullet": true,
"level": 0,
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"font_size": 48,
"runs": [

{
"text": "Primary finding, bullet 2."

}
]

}
],
"textbox2": [

{
"alignment": "left",
"bullet": true,
"level": 0,
"font_size": 48,
"runs": [

{
"text": "Additional commentary, bullet 1."

}
]

},
{

"alignment": "left",
"bullet": true,
"level": 0,
"font_size": 48,
"runs": [

{
"text": "Additional commentary, bullet 2."

}
]

}
]

}

õ Prompt: Commenter

System Prompt: You are an agent that is given three images:
• Negative Example: This image shows a bounding box with text overflowing outside it

(i.e., text crossing or cut off by the box).
• Positive Example: This image shows a bounding box with text that fits completely (i.e.,

no text crossing or cut off).
• Target Image: This is the final image you must analyze.

From the first two images, you learn to interpret:
1. Whether text is overflowing (text crossing, cut off, or otherwise cannot fully fit in the

box).
2. Whether there is too much blank space in the bounding box (i.e., the text is significantly

smaller than the box, leaving large unused space).
3. Whether the text and bounding box are generally well-aligned (no overflow, no large

blank space).
Then, for the Target Image, you must:

• If there is any overflow text, return "1".
• If there is too much blank space, return "2".
• If the text fits well (no overflow, no large blank space), return "3".
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Instructions:
1. You are provided three images (negative example, positive example, and target).
2. Refer to the first two images (negative and positive examples) to understand:

• What text overflow looks like
• What too much blank space in a bounding box means
• How a generally well-fitted bounding box appears

3. Analyze the third (Target) image’s bounding box to check:
• If there is overflow text, return "1".
• If there is too much blank space, return "2".
• Otherwise (if everything looks good), return "3".

K Failure by Diffusion Models

In Fig. 28, we illustrate failure cases of Stable Diffusion Ultra [28]. We found that diffusion models
suffer from the issues listed below and remain far from adequate for academic poster generation: (i)
Severely inaccurate text rendering – Generated text often appears blurry, misspelled, or semantically
incoherent, failing to meet title, body, and caption requirements. (ii) Unpredictable layouts – Models
cannot reliably partition the page or align content blocks, resulting in a disorganized visual hierarchy.
(iii) Inconsistent styling – Fonts sizes, spacing lack controllable parameters, making it impossible to
conform to template guidelines.

L Illustration of In-context reference for Commenter

In Fig. 29, we illustrate the in-context references used by our commenter during panel refinement to
avoid undesirable cases such as “overflow,” “too blank,”. These examples are highlighted by a red
box as a visual prompt.
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Figure 28: Failure generation examples by Stable Diffusion Ultra model [28].

(a) Negative examples (b) Positive examples

Figure 29: In-context references for the commenter help the VLM better identify whether the current
panel falls into a failure case.
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