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ABSTRACT

The unprecedented rate at which machine learning (ML) models are growing in
size necessitates novel approaches to enable efficient and scalable solutions. We
contribute to this line of work by studying a novel version of the Budgeted Cor-
relation Clustering problem (BCC) where along with a limited number of queries
to an expensive oracle for node similarities (e.g. a large ML model), we have
unlimited access to a cheaper but less accurate second oracle. Our formulation is
inspired by many practical scenarios where coarse approximations of the expen-
sive similarity metric can be efficiently obtained via weaker models. We develop
a theoretically motivated algorithm that leverages the cheap oracle to judiciously
query the strong oracle while maintaining high clustering quality. We empirically
demonstrate gains in query minimization and clustering metrics on a variety of
datasets with diverse strong and cheap oracles. Most notably, we demonstrate
a practical application in text clustering based on expensive cross-attention lan-
guage models by showing that cheaper (but weaker) embedding-based models can
be leveraged to substantially reduce the number of inference calls to the former.

1 INTRODUCTION

Modern ML techniques have made incredible advances at the cost of needing resource-intensive
models (Sharir et al., 2020). Many recent approaches are so resource-intensive that despite amazing
accuracy, they only serve as proof-of-concepts and are infeasible to be scaled as-is in practical usage.
The total effect of all such deployments on energy usage is also a major sustainability concern (Wu
et al., 2022). While the high performance of these models motivates incorporation of their signal,
their high inference cost limits the interactions that any practical algorithm can have with them.

With the increased cost in querying ML models, the cost of obtaining similarities between objects of
different types (texts, images, etc.) has also substantially increased. In this paper, we aim to answer
a challenging question when working with such costly similarity measure models: how can we
group similar objects together when similarities of objects are obtained via expensive queries? This
problem can be naturally cast as a popular and versatile clustering framework, named Correlation
Clustering (CC), which has been extensively studied over the past 15+ years (Bonchi et al., 2022):
given similarities between arbitrary objects represented as a graph, CC minimizes a natural objective
that attempts to cluster together similar vertices while simultaneously separating dissimilar ones.
The high cost of querying large ML models motivates the use of the Budgeted CC (BCC) setting
studied in (Bressan et al., 2019; Garcı́a-Soriano et al., 2020b) where relationships between nodes
are determined by making a limited number of queries to an oracle, e.g. a large ML model.

We posit that in many practical settings, coarse but efficient approximations of an expensive model
can be obtained through substantially cheaper but weaker models. These weaker models can be
used as a guide to spend the query budget for the expensive model more carefully. A motivating
example, which heavily inspires our work, is in text clustering where one wishes to obtain similarity
signals from the latest highly-accurate cross-attention (CA) language models (e.g., (Brown et al.,
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2020; Thoppilan et al., 2022)), but may be hindered by the computational burden as obtaining each
pair-wise similarity between data points requires an inference call to the model, giving rise to a
worse case O(n2) inference calls, where n is the number of data points. Embedding based models
(e.g., (Mikolov et al., 2013; Devlin et al., 2018) can come to the rescue as they require only O(n)
inference calls to obtain embedding vectors for each data point that can then be used for fast similar-
ity computation. While embedding models typically produce substantially lower quality similarity
signals than CA models (see, e.g., Menon et al. (2022)), they can still provide a good approximation
to guide where the budget for the CA model should be spent.

Inspired by the above, we introduce a variant of BCC where, along with a limited number of queries
to an expensive oracle, we also have unlimited access to a cheaper but less accurate second oracle.
This variant of BCC bridges algorithm design and practical considerations. Indeed, a recent book
(Bonchi et al., 2022) on CC states “A further intriguing question is whether one can devise other
graph-querying models that allow for improved theoretical results while being reasonable from a
practical viewpoint.” This is exactly the gap our work fills through the introduction of a query-
efficient setting with access to two oracles with differing quality and cost.

We develop an algorithm dubbed KwikBucks that extends the well-known KwikCluster algorithm
to budgeted CC with cheap-weak and expensive-strong signals. KwikBucks uses the weak signal
as a guide to minimize the number of calls to the strong signal. Under the assumption that the weak
signal returns a strict superset of the strong signal edges, our algorithm can approximately match the
performance of KwikCluster, i.e., a 3-approximation, using only an exceedingly small fraction
of all possible queries to the expensive model (Theorem 2.1). In our experiments, we strengthen our
theoretical modelling with several well-motivated optimizations and demonstrate that KwikBucks
manages to produce high quality clusterings with only a small number of queries to the expensive
oracle even when there is only a weak correlation between the weak and strong signal.

We conduct extensive experiments with multiple well-studied datasets to evaluate the performance
of KwikBucks over natural extensions of previous algorithms for closely-related problems. In
all settings, KwikBucks recovers the best clustering solution with a much smaller strong signal
budget than the alternatives, and in many cases it finds asymptotically better solutions as well. Our
algorithm is also robust to the choice of weak signal oracle across different dataset settings and
obtains significant improvements over five baselines — 64% relative improvement in clustering
quality (measured in terms of F1 score) when averaging over 9 datasets, and over > 3.5x reduction
in query complexity compared to the best baseline.

Lastly, Our contributions can be summarized as follows:

• Introducing a novel formulation of the BCC problem which strengthens the connection between
theory and practice through the interplay between algorithm design and modern ML, where a
cheap-weak signal guides the queries made to the expensive-strong signal,

• Developing an algorithm for this setting with strong theoretical motivations/guarantees,
• Identifying a highly impactful application domain (text clustering) where the introduced formu-

lation and the developed algorithm are effectively applicable,
• A comprehensive empirical analysis showing large gains over extensions of existing algorithms

for closely-related problems.

1.1 RELATED WORK

Our paper spans correlation clustering, clustering with budget constraints, and learning from multi-
ple annotators. For brevity, we focus on the closely related key works in these areas.

Correlation clustering is one of the most well studied graph clustering problems and has been
actively researched over the past 15+ years (see the book (Bonchi et al., 2022)). It has numerous
applications in ML and beyond, including spam detection (Ramachandran et al., 2007; Bonchi et al.,
2014), social network analysis (Bonchi et al., 2015; Tang et al., 2016), entity resolution (Getoor &
Machanavajjhala, 2012), and many others (Gionis et al., 2005; Hassanzadeh et al., 2009; Cohen
& Richman, 2002; Kim et al., 2011). Bansal et al. (2004) introduced and gave the first constant
factor approximation for complete graphs (see Def. 1.1). Variants include incomplete signed graph
(Bansal et al., 2004; Ailon et al., 2008), where the problem is APX-Hard (Demaine et al., 2006), and
weighted graphs (Charikar et al., 2005), where it is Unique-Games hard (Chawla et al., 2006).
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Clustering under budget constraints studies the problem of a limited number of pairwise similarity
queries. In this setting, a line of work looked at spectral clustering on partially sampled matrices:
Fetaya et al. (2015) in general setting, and Shamir & Tishby (2011) and Wauthier et al. (2012) for
bi-partitioning. The most relevant works to our paper are those of Garcı́a-Soriano et al. (2020b)
and Bressan et al. (2021) who devised algorithms for correlation clustering that given a budget of Q
queries attain a solution whose expected number of disagreements is at most 3·OPT +O(n

3

Q ), where
OPT is the optimal cost for the instance. Another closely related line of work studies “same-cluster”
queries for various clustering problems including CC (Ailon et al., 2018; Saha & Subramanian,
2019). The differences between these works and ours are (1) they assume all

(
n
2

)
similarity queries

are already known in advance whereas we must query the strong signal to obtain similarities, (2)
their queries give access to the optimal clustering, whereas we only query for edge signs.

Learning from multiple annotators considers cost-effective learning from multiple annotators
where the cost of a labeler is proportional to its overall quality. The most relevant work to our
setting is (Guha et al., 2015) as it considers hierarchical clustering which uses lightweight similarity
scores to identify candidate pairs with high similarity and they present a near-linear algorithm that
is 8 to 30 times faster than previous algorithms in practice; see Section A for a detailed comparison.
Lastly we survey additional related works on learning from multiple annotators as well as algorithms
with predictions in Section A.

1.2 PRELIMINARIES AND NOTATION

The input of correlation clustering is a complete undirected graph G = (V,E+ ∪ E−) on |V | = n
vertices. E+ and E− represent the partitions of all possible

(
n
2

)
edges where an edge e = (u, v) ∈

E+ indicates that u and v are similar and e = (u, v) ∈ E− indicates that u and v are dissimilar. We
simplify the notation to G = (V,E = E+) so any present edge is a positive edge and any missing
edge is a negative edge. Additionally, we use m to denote the size of |E| and Γ(v) = {u | (v, u) ∈
E} to denote the neighborhood of vertex v.

A clustering is a partitioningC = {C1, C2, · · · } of V into disjoint subsets. LetCv,u denote the indi-
cator variable if the vertices v and u are assigned to the same cluster. We study the min-disagreement
formulation of the correlation clustering problem defined as follows (Bansal et al., 2004).

Definition 1.1 (Correlation Clustering (CC)). Given a graph G = (V,E), the objective of correla-
tion clustering (CC) is to output a clustering C that minimizes:∑

e=(v,u)6∈E

Cv,u +
∑

e=(v,u)∈E

(1− Cv,u). (1)

The most well-known CC algorithm is KwikCluster (Ailon et al., 2008), which proceeds by
successively picking a vertex p, called a pivot, uniformly at random from the graph and forming a
cluster {p}∪Γ(p). The algorithm removes this cluster and recurses on the remaining graph until all
vertices are assigned to clusters. Based on the fact that the set of pivots is a maximal independent set
constructed from a random order of vertices, Bonchi et al. (2013) suggests an equivalent algorithm
that first constructs the independent set and then assigns any non-pivot to its first neighbor in the in-
dependent set. Both algorithms yield 3-approximation in expectation, however the second algorithm
is more efficient as the assignment of non-pivots can be performed in parallel.

Despite practicality and simplicity of KwikCluster (and its variants), the algorithm assumes
access to the full similarity graph G and is not feasible when similarity measures are expensive to
acquire. We consider budget CC studied before by (Garcı́a-Soriano et al., 2020a; Bressan et al.,
2019) where there is a limit (budget) for the number of queries that can be made.

Definition 1.2 (Expensive / Strong Oracle). Given an edge e, the query OS(e) outputs whether
e ∈ E, i.e., e is a positive edge.

Following the motivations provided in Section 1, we also introduce a second weaker oracle which is
cheaper to query.

Definition 1.3 (Cheap / Weak Oracle). Given any vertex v, the query OW (v) outputs a similarity
score in R between v and every other vertex in V , where higher values indicate higher similarity
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We frequently refer to the graphG as the strong signal graph and likewise a strong signal edge refers
to an edge in E. We interchangeably use the terms signal or oracle, the terms strong and expensive
signal, and also the terms weak and cheap signal.

2 THEORETICAL MODELLING FOR ALGORITHM DESIGN

We introduce an algorithm that leverages the cheap signal for strong signal query efficiency. Our
goals are twofold: (1) Design a flexible algorithm paradigm which can adapt to incorporate con-
straints necessitated by practice, i.e., limited access to expensive queries, (2) Analyze the quality of
the produced solution with respect to the CC objective (see equation 1). We first introduce a mod-
elling assumption for the weak oracle for the purpose of theoretical analysis. While this results in
a different but related weak oracle formulation compared to Definition 1.3, it lets us derive a robust
algorithm design which we subsequently adapt to the more realistic setting of Definition 1.3.

First, we introduce a noise factor γ that determines the usefulness of a weak signal. γ = 0 corre-
sponds to a perfect weak signal that exactly matches the strong signal and γ = n corresponds to a
completely uninformative weak signal.

Assumption 2.1. For a fixed noise parameter γ > 0, the query OγW (v) outputs a subset of V such
that Γ(v) ⊆ OγW (v) and |OγW (v)| ≤ (1 + γ)|Γ(v)|.

The existence of such a signal with a small γ, say O(1/n) or γ < 1 might seem like a strong
assumption for most applications. However, our experiments show that weak signal can actually
provide predictive hints about the true underlying strong signal graph. More precisely, given vertex
v, we order V with respect to the weak signal, and observe that true strong signal neighbors of v are
often ranked higher. Thus the simple procedure of returning the most similar vertices for an input
node captures many of the true strong signal neighbors of v and mimics the clean abstraction of
Assumption 2.1 (See Appendix F.6 for further empirical justification).

Using the above characterization, we next explain the high level ideas of our algorithm KwikBucks
(Algorithm 1). It is inspired by a variant of KwikCluster (Bonchi et al., 2013) adapted to our
two oracle setting. In this variant, we first pick pivots by forming a maximal independent set from
a random ordering of vertices, and then assign non-pivots to their first neighbor (which must exist
by maximality of the independent set). A naive extension of this algorithm can result in Ω(n1.5)
queries to the strong signal (see B.1). However, one may argue that by using the weak signal, we
can prune the possible neighborhood of vertices which results in fewer strong signal queries.

While the weak signal can help us make smarter queries to the strong signal, we can still show that
even for a weak signal with a small error rate, i.e., γ = O(1), we still need Ω(n2) queries to the
strong signal when forming a maximal independent set (see B.2). To circumvent this difficulty, we
consider another modification of KwikCluster by Bonchi et al. (2013) where instead of picking
a maximal independent set, we pick t vertices uniformly at random and then pick an independent
set from them. The caveat of this approach is that some non-pivots may not have any neighbor in
the chosen pivot set, and so these non-pivots are returned as singleton clusters. This results in an
algorithm which returns a solution with cost at most 3OPT +O(n2/t). We additionally modify this
algorithm by incorporating the weak signal to further prune possible strong signal queries. While
this algorithm has an additive error for correlation clustering cost, it helps us direct our queries to
“impactful” portions of graph. We now have all the ingredients (and motivation behind them) for
describing our algorithm, KwikBucks.

KwikBucks first picks all pivots via random sampling as shown in GetPivots: each sampled
vertex is added to the pivot set if it is not connected to the current subset of pivots that is trimmed
down by WeakFilter (which uses the weak signal). Then, it continues to assign non-pivots to
clusters, through AssignToClusters, which finds the first vertex (FirstNeighbor) in the
subset of ordered pivots trimmed down by the weak signal via WeakFilter. If no such vertex
exists, then the vertex is assigned to its own cluster, i.e., a singleton cluster. Note that having a small
t (the number of sampled vertices) helps query efficiency by functionally reducing the set of vertices
that the weak signal is applied to (both when selecting pivots and when assigning to pivots) and
then further queried by the strong signal. This comes at the cost of a small additive error. Our next
theorem formally bounds the number of queries and the effect of t (See Appendix B for full proof).
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Algorithm 1 KwikBucks (Our Algorithm)

Require: A bound on sampled vertices, t, the
strong signal budget, Q.

1: P ← GetPivots(t, Q)
2: return AssignToClusters(P, V \P,Q)

Algorithm 2 AssignToClusters(P,U,Q)

Require: List of pivots, P , a vertex set, U , re-
maining strong signal budget, Q.

1: A← ∅ {the set of singletons}
2: Cp ← {p} {cluster for any pivot p ∈ P}
3: while Q > 0 and U 6= ∅ do
4: v ← extract first vertex of U
5: Nv ← WeakFilter(v, P )
6: p← FirstNeighbor(v,Nv, Q)
7: if p 6= ∅ then
8: Cp = Cp ∪ {v}
9: else

10: A← A ∪ {v}
11: A← A ∪ U
12: return ∪p∈PCp ∪v∈A {v}

Algorithm 3 GetPivots(t, Q)

Require: A bound on the number of sampled vertices,
t, the remaining strong signal budget, Q.

1: {v1, . . . , vt} ← t sampled vertices
2: P ← {v1}
3: for i ≥ 2 do
4: Ni ← WeakFilter(vi, P )
5: if FirstNeighbor(vi, Ni, Q) = ∅ then
6: P ← P ∪ {vi}
7: return P

Algorithm 4 FirstNeighbor(v,N,Q)

Require: Input vertex, v, an ordered list of vertices,
N , the remaining strong signal budget, Q.

1: while Q > 0 and N 6= ∅ do
2: u← extract first vertex from N
3: Q← Q− 1
4: if OS(v, u) = 1 then
5: return {u}
6: return ∅

Algorithm 5 WeakFilter(v, S)

1: Return OγW (v) ∩ S

Theorem 2.1. Under Assumption 2.1, KwikBucks uses n+ t+ 2γtm/n+ 2γt2m/n2 queries to
OS to achieve approximation 3OPT + O(n2/t).

Proof Sketch. For a fixed vertex u, the number of vertices incorrectly identified as neighbors of u by
OW (u) is bounded by γ|Γ(u)|, so FirstNeighbor algorithm makes at most γ|Γ(u)|+ 1 queries
to the strong oracle. The additional +1 term for sampled t vertices and non-pivots can be bounded
by n+ t term. So we need to bound γ|Γ(u)| for an arbitrary vertex u. Now for each vertex u, since
we look at intersection of its weak signal neighbors and pivots, on average we expect t/n · γ|Γ(u)|.
Since

∑
v∈V |Γ(v)| = 2m, this means that the total number of calls from non-pivots can be bounded

by 2γtm/n. For randomly chosen vertices, we can again apply the similar argument with additional
information that a vertex is included in this set by probability t/n and hence we get 2γt2m/n2. The
approximation guarantees of our algorithm follow from those of KwikCluster with a caveat: it is
possible that some non-pivots do not connect to any pivot. Picking a suitable value for the number
of initially sampled pivots ensures that such vertices only introduce a small additive error.

Our next corollary, considers the interesting case of a constant-size pivot set, i.e., t = 1/ε, which
will incur an additive error of εn2. This can be thought as the ‘right scale’ as we make a mistake
on only an ε fraction of all edges. We complement our corollary by presenting a matching lower
bound in the appendix (Lemma B.7) showing that Ω(n+ dγ/ε) strong signal queries are necessary
to obtain the guarantees of Corollary 2.2.

Corollary 2.2. Let d be the average degree of the strong signal graph and suppose n is sufficiently
large (n > 1/ε). We can achieve approximation 3·OPT +εn2 with n+O(dγ/ε) queries to OS .

Importantly, our design is modular, i.e. composed of a few fundamental components which can be
individually optimized based on practical constraints. In the next section, we augment some of these
components to address pragmatic considerations to better align the algorithm to practice.

3 THE FINAL EMPIRICAL ALGORITHM

We now extend the algorithm for the idealized setting of Section 2 into a practical version of
KwikBucks for general weak signals, i.e. Definition 1.3. While this version does not satisfy
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Assumption 2.1 and hence does not have similar approximability guarantees, it still retains some
theoretical motivation (sketched below), and is empirically very successful (see Section 4).

The modifications we make for our practical algorithm are based on the following natural inductive
bias: ‘similar’ edges according to the strong signal are likely to have a high weak signal similarity
score. At a high level, we incorporate this assumption throughout our algorithm design by ranking
potential queries to the strong signal according to weak signal similarity values.

Modifying WeakFilter to WeakFilterByRanking. The most noticeable change occurs for
WeakFilter: In our theoretical modelling, it returns a subset of S which intersects with the noisy
neighborhood returned by the cheap oracle. For the general weak signal version (Definition 1.3), we
update the WeakFilter function to instead rank the vertices in S with respect to the weak signal
similarity to v and then output the top k elements in S with the highest similarities (Algorithm
6)). Intuitively, for a suitable parameter k, the top k candidates capture many of the strong signal
neighbors of v in S. Indeed, we empirically verify this in our experiments and show that predictive
weak signals usually rank true strong signal neighbors much higher compared to a random ordering.
For our experiments we fix k = 100 and perform ablation studies on this parameter.

Algorithm 6 WeakFilterByRanking(v, S, k)

Require: Input vertex v; set S ⊆ V
1: wi ← similarity of (v, ui) for all ui ∈ S as computed

by weak signal
2: Sort elements of S in decreasing wi values
3: Return First k elements of new sorted order

To better understand the effect
of this modification, consider
AssignClusters where non-
pivot vertices attempt to connect to
a pivot. In our theoretical modeling
and in the classical KwikCluster
algorithm, each non-pivot vertex
checks for a strong signal edge
among the list of pivots in an ordering which is fixed for all vertices. This ordering can be thought
of as the ordering inherited from GetPivots. In contrast, WeakFilterByRanking introduces
a data adaptive ordering step where each non-pivot vertex can re-rank pivots based on weak signal
similarities. As shown in Section 4, this has a sizeable impact on the empirical performance of our
algorithm. In Section D.1, we explain these gains by introducing a natural data model that makes
some well-motivated assumptions about the relationship between the strong and weak signal, as
well as the inherent clusterability of the underlying graph. Under this model, we prove that the
quality of the clustering after re-ranking is strictly better than for the unranked filter.

Further optimizations. Exploiting the ranking theme further, we make three additional enhance-
ments to KwikBucks. The first one simply sorts the non-pivots based on the maximum weak signal
similarity to the pivots so that ‘easier’ non-pivots are assigned clusters first which improves query
efficiency. The second one modifies the WeakFilterByRanking function slightly by increasing
the weak signal similarity value between a non-pivot v and a pivot p if p has ‘many’ nearest neigh-
bors (in weak signal similarity) of v already in its cluster. Finally, the last enhancement introduces
a post-processing step where we potentially merge some clusters after our algorithm terminates.
As shown in Section D.2, this optimization is motivated by a theoretical worst-case example for
KwikCluster. The merging step proceeds by first curating a list of clusters to consider for merg-
ing based on the average weak signal value between the two clusters and we sample a small number
of strong signal edges between potential clusters to merge to determine if the pair is suitable for
merging. Each of these optimizations is described in detail in Section C.

4 EXPERIMENTS

Datasets. We use 9 datasets, 8 publicly available and 1 proprietary internal. Each dataset exhibits
different properties such as varying strong signal graph densities and diverse strong and weak signals
to demonstrate the versatility of our method. We provide high-level descriptions here and refer to
Section E for more details.

Four public datasets are comprised of text inputs: Stackoverflow (SOF) (Xu et al., 2017), Search-
Snippets (Phan et al., 2008), Tweet (Yin & Wang, 2016) and AgNews (Rakib et al., 2020). For
Stackoverflow and SearchSnippets, we use word2vec embedding similarities (Mikolov et al., 2013)
as the cheap signal and a large cross-attention based language model as the strong signal. For Tweet
and AgNews, BERT embedding similarities (Devlin et al., 2018) are the cheap signal; the strong
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signal of an input pair is the indicator variable of the two examples belonging to the same class
plus a small amount of i.i.d. noise to prevent the formation of disconnected connected components,
which is the ‘easy’ case for KwikCluster 1.

The other four public datasets are comprised of attributed graphs: Cora (Sen et al., 2008), Ama-
zon Photos (Shchur et al., 2018), Citeseer (Sen et al., 2008), and Microsoft Medicine (Shchur &
Günnemann, 2019). For Cora and Amazon photos, node embedding (learned using deep graph
infomax (Velickovic et al., 2019)) similarities are the cheap signal; the strong signal is generated
similarly to those of Tweet and AgNews. For Citeseer and Microsoft Medicine, node attribute simi-
larities are the cheap signal and the existence/absence of edges in the graph is the strong signal.

Moreover, we report results on a large proprietary dataset based on the shopping reviews of a com-
mercial website. We use internally developed (and finetuned) embedding based and cross-attention
based language models for the cheap and expensive signals respectively; both models are based on
the publicly available language models such as BERT and T5 (Raffel et al., 2020).

Baselines. Since our work is the first correlation clustering algorithm which utilizes both strong and
weak signals, we adapt algorithms from prior work, e.g. some which only use a strong signal, to our
setting. In addition we propose several new natural algorithms as baselines.

• Baseline 1: A variant of KwikBucks where we do not use the weak signal ordering computed
in Algorithm 6 when checking for a strong signal edge between a node and a set of pivots. Rather
we use the the order the pivots were picked (each vertex always queries pivots in the same order).
This is the ordering necessary for the theoretical guarantees of the KwikCluster algorithm and
our guarantees of Section 2.

• Baseline 2: Algorithm presented in (Garcı́a-Soriano et al., 2020a; Bressan et al., 2019). It follows
the KwikCluster algorithm and uses the strong signal to query edges. If the query budget is
depleted, the algorithm is terminated and any remaining vertices are returned as singletons.

• Baseline 3 / 4: We compute a k-NN graph based on the weak signal to narrow down the set of
all possible queries to a small set of relevant pairs. Each edge of the k-NN graph is re-weighted
(either 0 or 1) based on the strong signal. Baseline 3 runs the classic spectral clustering algorithm
and baseline 4 runs the vanilla KwikCluster algorithm to completion on this graph.

• Baseline 5: This baseline is inspired by the baseline used in (Garcı́a-Soriano et al., 2020a). We
pick k random vertices and query their complete neighborhood using the strong signal. k is
again chosen as high as possible within the allotted query budget. Instead of running an affinity
propagation algorithm, which was already shown in (Garcı́a-Soriano et al., 2020a) to be inferior
to Baseline 2, we simply run the vanilla KwikCluster algorithm to completion on this graph.

Evaluation metrics. We evaluate our algorithm and baselines based on the correlation clustering
objective (equation 1). For the purpose of evaluating metrics, we use all edges of the strong signal
graph in contrast to the duration of algorithm execution which we limit the access. In addition,
we compute the precision and recall of edges of the strong signal graph. Given a clustering C, its
precision is defined as the ratio between the number of strong signal edges whose endpoints are
together in the same cluster and the total number of pairs of vertices clustered together in C. The
recall is defined as the fraction of all strong signal edges whose vertices are clustered together in
some cluster of C; see equation 2 and 3.

These values represent two extremes which must be balanced: recall is maximized if all vertices
are clustered together whereas precision is maximized if clusters just consist of single edges. These
values are more meaningful than the CC objective alone in cases where the strong signal graph is
sparse (see Section F). It’s not always possible to maximize both precision and recall; Section D.3
provably shows an inherent trade-off between these values. We combine the precision and recall
into a single metric via the standard F1 score and report this value as a function of the query budget.
In our experiments, we plot averages of 25 trials and the standard deviation.

Parameter configurations. Our algorithm has two main parameters to select: t in Algorithm 3
corresponding to the number of vertices we select uniformly at random which is then pruned to
form the set of pivots, and k in Algorithm 6 corresponding to the number of top vertices we select
based on the weak-signal similarity for the strong signal to query. We pick both these parameters
in a data-driven manner. Thorough motivation and trade-offs associated with both parameters are

1One can easily show that in such a case the classical KwikCluster algorithm is able to recover OPT.
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Table 1: F1 values for a fixed budget of 3n to the expensive-strong signal, where n indicates the
dataset size. For Citeseer and Medicine, we use a budget of 50n as they have substantially sparse
graphs. Winners are in bold and second winners are underlined.

SOF Search Tweet AgNews Cora Photos Citeseer Medicine Internal Avg.
B1 .13±.02 .73±.15 .02±.00 .74±.01 .57±.08 .44±.01 .07±.01 .02±.00 .00±.00 .30
B2 .28±.10 .81±.12 .15±.07 .74±.01 .58±.13 .53±.13 .09±.01 .03±.01 .05±.04 .36
B3 .33±.07 .70±.04 .21±.03 .66±.04 .54±.02 .66±.05 .00±.00 .00±.00 - -
B4 .01±.00 .01±.00 .03±.00 .00±.00 .01±.00 .00±.00 .46±.01 .25±.00 .00±.00 .08
B5 .00±.00 .00±.00 .00±.00 .00±.00 .00±.00 .00±.00 .04±.01 .00±.00 .00±.00 .00

KwikBucks .72±.05 .92±.05 .28±.04 .87±.00 .82±.02 .83±.00 .41±.01 .29±.00 .14±.01 .59

presented in Section F.2; ablation studies of these parameters are provided in our empirical results.
Lastly, we always reserve 10% of the query budget for performing the merge post processing step. If
the main algorithm terminates with remaining budget, we correspondingly increase the merge post
processing budget to incorporate this.

Results. We highlight the key experimental themes and defer additional details to Appendix F.

Superior performance over baselines: Table 1 shows that our algorithm outperforms the baselines
in terms of the F1 metric: it consistently has the highest F1 value for the fixed query budget result
displayed in Table 1. For example for the SOF dataset, the best baseline has a 2.2x factor smaller
F1 value. Figures 1(a),(b) show the CC objective and F1 score as a function of the query budget
for the SOF dataset. It shows that our algorithm achieves a higher F1 score and a lower correlation
clustering objective value with only ≈ 7 · 103 queries whereas the baselines require at least 25 · 103

queries to match KwikBucks with 7 · 103 queries, showing the efficacy of our algorithm with
a 3.6x reduction in query complexity. Intuitively, the weak signal allows us to make clustering
progress much faster by directing the query budget to impactful strong signal queries after filtering
using the weak signal. The results for other datasets are deferred to Figures 3 and 4 in the appendix
which display qualitatively similar behaviour. The strong signal graphs of Citeseer and Medicine
are quite sparse. Therefore for these datasets, the trivial clustering of all singletons already achieves
a very low CC objective score. As argued above, in these cases the F1 score is a much more
meaningful measure of cluster quality. As shown in Figures 4, our algorithm achieves superior F1

values compared to the baselines. Lastly we note that the performance of our algorithm stabilizes
once it has exploited sufficiently many strong signal queries. We note that B3 is omitted from the CC
objective value plots for clarity as it always had much higher objective value than other algorithms.

Relative performance of baselines is dataset dependent: As shown in Table 1, for many datasets
such as Cora, Search, and AgNews, B2 is the best among our five baselines. However this does not
generalize across all datasets. As shown in Figures 4, B3 is the best baseline (with respect to the F1

score) for the Tweet and Photos datasets while B4 is the best baseline for the Citeseer and Medicine
datasets. B4 can be a competitive baseline in the case where the strong signal graph is extremely
sparse, such as in Citeseer (see Figure 4). This is because the weak signal k-NN graph is able to
recover many relevant edges of the (sparse) graph if the weak signal is informative.

Varying weak signal performance: We perform addition weak signal ablation studies with the
SOF and Search datasets. We replace the Word2Vec (W2V) embeddings used in our cheap oracle
with tf-idf embeddings and fix all other components of the algorithm. Figure 1(c) and 7 show
the performance of our algorithm on these datasets and in both cases, the algorithm’s performance
noticeably worsens. The intuitive answer for why this is the case is because the alternative weak
similarities computed from tf-idf embeddings are worse than W2V embeddings at ranking strong
signal neighbors. We empirically verify this claim. For every vertex v in the SOF dataset, we rank
all other vertices in decreasing weak signal similarities to v. The average rank of the true strong
signal neighbors of v is then computed and this value is plotted in a histogram for all vertices v
in Figure 1(d). A ‘good’ weak signal should rank actual strong signal neighbors much higher than
non strong signal neighbors. Indeed we observe this to be the case for the W2V embeddings and
this fact is qualitatively captured the aforementioned figures which show that W2V has superior F1
score plots. We also observe that even the weaker tf-idf embeddings still provide significant gains
over not using a weak signal. Overall, these experiments along with Baseline B1 empirically verify
that (1) the quality of the weak signal correlates with the performance of the algorithm, and (2) the
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Figure 1: (a) and (b) represent the CC objective and the F1-scores for the Stackoverflow dataset
across various query budgets. (c) compares performance across weak signals of various strength
(Baseline 1 corresponds to a random weak signal). (d) represents a (normalized) histogram showing
average rank assigned to actual strong signal neighbors by two different weak signals (lower is
better). (e) represents an ablation study on some of the main components of the algorithm. (f)
represents a sensitivity analysis to the parameter corresponding to the number of pivots selected.

two-oracle framework we introduced is superior than the previously studied single-oracle setting
even when the cheap signal is considerably weak.

Ablation studies. We perform ablation studies on all tune-able parameters of our algorithm. A sam-
ple of the ablation studies for SOF is shown in Figure 1(e) and details of other results are presented
in Section F.4. We observe that removing any of the main components of the algorithm (merging,
ordering with respect to weak signal, and ordering with respect to the statistics of the neighbor-
ing nodes) deteriorates the performance of the algorithm, thus all the introduced components are
paramount in KwikBucks. We also verify the role of the parameter t corresponding to the number
of pivots we select for our algorithm in Figure 1(f). We observe that both large and small choices
for this parameters can be harmful, but choosing larger values is a safer option compared to smaller
values as it asymptotically offers a similar performance as the optimal value. Section F.2 provides
more details on the choice of this parameters and the other parameters of KwikBucks.

5 CONCLUSION

We introduced and studied a novel variant of the (budgeted) correlation clustering algorithm where
besides having a limited query budget to an expensive-strong oracle, one also has access to a read-
ily available cheap-weak oracle. We developed an algorithm for this setting with strong theoreti-
cal motivations. We also demonstrated strong practical motivations by showing how the proposed
framework and algorithm can be effectively used for realistic clustering applications, where mas-
sively scaled ML models yield highly accurate signals but cannot be used indiscriminately. We
anticipate the proposed framework could become a standard building block, especially for text clus-
tering strategies, and envision extensions of the framework to several other ML problems where
combinations of expensive-strong and cheap-weak signals are available. For example in commer-
cial recommendation systems, the “standard practice for machine learning-driven recommendations
in industry” (Wong, 2022) is a two-step procedure of cheaply retrieving a set of candidates and then
iterating over them with a more powerful but costlier scoring model (Wong, 2022).
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Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, and Andrea Paudice. On margin-based cluster
recovery with oracle queries. Advances in Neural Information Processing Systems, 34:25231–
25243, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’01, pp. 642–651, USA, 2001. Society for Industrial and Applied
Mathematics. ISBN 0898714907.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative informa-
tion. Journal of Computer and System Sciences, 71(3):360–383, 2005.

Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D Sivakumar. On the hardness
of approximating multicut and sparsest-cut. computational complexity, 15(2):94–114, 2006.

Justin Y. Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld,
Sandeep Silwal, Tal Wagner, David P. Woodruff, and Michael Zhang. Triangle and four cycle
counting with predictions in graph streams. In The Tenth International Conference on Learning
Representations, ICLR, 2022.

William W Cohen and Jacob Richman. Learning to match and cluster large high-dimensional data
sets for data integration. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 475–480, 2002.

Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning from
single and multiple teachers. The Journal of Machine Learning Research, 13(1):2655–2697, 2012.

Erik D Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering in
general weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, and Nikos Zarifis. Learning
online algorithms with distributional advice. In Proceedings of the 38th International Conference
on Machine Learning, ICML, pp. 2687–2696, 2021.

Pinar Donmez. Proactive learning: Towards cost-sensitive active learning with multiple imperfect
oracles. 2008.

Talya Eden, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, and Tal Wagner.
Learning-based support estimation in sublinear time. In 9th International Conference on Learning
Representations, ICLR, 2021.

11

http://arxiv.org/abs/1312.5105
https://doi.org/10.1145/2623330.2630808
https://doi.org/10.1145/2623330.2630808


Published as a conference paper at ICLR 2023

Derek Eder, Jun 2022. URL https://microsoft.github.io/
MSMARCO-Passage-Ranking-Submissions/leaderboard/.

Meng Fang, Xingquan Zhu, Bin Li, Wei Ding, and Xindong Wu. Self-taught active learning from
crowds. In 2012 IEEE 12th international conference on data mining, pp. 858–863. IEEE, 2012.

Ethan Fetaya, Ohad Shamir, and Shimon Ullman. Graph approximation and clustering on a budget.
In Artificial Intelligence and Statistics, pp. 241–249. PMLR, 2015.

David Garcı́a-Soriano, Konstantin Kutzkov, Francesco Bonchi, and Charalampos Tsourakakis.
Query-efficient correlation clustering. In Proceedings of The Web Conference 2020, pp. 1468–
1478, 2020a.

David Garcı́a-Soriano, Konstantin Kutzkov, Francesco Bonchi, and Charalampos Tsourakakis.
Query-efficient correlation clustering. In Proceedings of The Web Conference 2020, pp. 1468–
1478, 2020b.

Lise Getoor and Ashwin Machanavajjhala. Entity resolution: Theory, practice & open challenges.
Proc. VLDB Endow., 5:2018–2019, 2012.

A. Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering aggregation. 21st International
Conference on Data Engineering (ICDE’05), pp. 341–352, 2005.

Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert advice.
In Proceedings of the 36th International Conference on Machine Learning, ICML, pp. 2319–2327,
2019.

Ramanathan Guha, Vineet Gupta, Vivek Raghunathan, and Ramakrishnan Srikant. User modeling
for a personal assistant. In Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, pp. 275–284, 2015.

Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and Hyun Chul Lee. Framework for evaluating
clustering algorithms in duplicate detection. Proc. VLDB Endow., 2(1):1282–1293, 2009. doi: 10.
14778/1687627.1687771. URL http://www.vldb.org/pvldb/vol2/vldb09-1025.
pdf.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations, ICLR, 2019.

Sheng-Jun Huang, Jia-Lve Chen, Xin Mu, and Zhi-Hua Zhou. Cost-effective active learning from
diverse labelers. In IJCAI, pp. 1879–1885, 2017.

Panagiotis G Ipeirotis, Foster Provost, Victor S Sheng, and Jing Wang. Repeated labeling using
multiple noisy labelers. Data Mining and Knowledge Discovery, 28(2):402–441, 2014.

Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff. Learning-augmented data
stream algorithms. In 8th International Conference on Learning Representations, ICLR, 2020.

Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Yoo. Higher-order correlation
clustering for image segmentation. Advances in neural information processing systems, 24:1530–
1538, 2011.

Christopher H Lin, Daniel S Weld, et al. To re (label), or not to re (label). In Second AAAI conference
on human computation and crowdsourcing, 2014.

Christopher H Lin, M Mausam, and Daniel S Weld. Reactive learning: Actively trading off larger
noisier training sets against smaller cleaner ones. In Proceedings of the 32nd International Con-
ference on Machine Learning, Lille, France (ICML), 2015.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. In
Proceedings of the 35th International Conference on Machine Learning, ICML, pp. 3302–3311,
2018.

Luigi Malago, Nicolo Cesa-Bianchi, and J Renders. Online active learning with strong and weak
annotators. In NIPS Workshop on Learning from the Wisdom of Crowds, 2014.

12

https://microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/leaderboard/
https://microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/leaderboard/
http://www.vldb.org/pvldb/vol2/vldb09-1025.pdf
http://www.vldb.org/pvldb/vol2/vldb09-1025.pdf


Published as a conference paper at ICLR 2023

Aditya Menon, Sadeep Jayasumana, Ankit Singh Rawat, Seungyeon Kim, Sashank Reddi, and San-
jiv Kumar. In defense of dual-encoders for neural ranking. In International Conference on Ma-
chine Learning, pp. 15376–15400. PMLR, 2022.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems, NeurIPS, pp. 462–471, 2018.
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A ADDITIONAL RELATED WORKS

In the realm of learning from multiple annotators, there is a long line of work studying these both
empirically and theoretically. Empirical work on this can be divided into two main streams: (1) each
labeler is coming from a different generative model, (2) each labeler is an expert over an unknown
subset of categories, (3) different labelers with quality proportional to their cost. In the first case,
the learning algorithm focuses on learning parameters of each labeler and then for each example
decides which labeler to query (Yan et al., 2011; 2012; Lin et al., 2015; 2014; Fang et al., 2012).
In the second case, it uses data to measure the class-wise expertise in order to optimally place
label queries (Ipeirotis et al., 2014; Donmez, 2008). In the last case, empirical results comparing
designed algorithms to baselines are developed: active learning from noisy data streams (Younesian
et al., 2020), active learning using diverse labelers (Huang et al., 2017), and content segmentation
for personal assistants (Guha et al., 2015). Theoretical work looked at the setting where the weak
labeler made mistakes mostly in heterogeneous regions of space, i.e., correct in label-homogeneous
regions but may deteriorate near classification boundaries. Different formulations were considered
in this setting: non-parametric setting (Urner et al., 2012), fitting classifiers in a hypothesis class
(Zhang & Chaudhuri, 2015), online selective sampling with applications in linear classifiers and
robust regression (Malago et al., 2014; Dekel et al., 2012).

The idea of judiciously utilizing an expensive but accurate strong model with the help of cheaper
but noisier methods have already been successfully used in many practical and important domains.
In nearest neighbor search and information retrieval, the dominant algorithmic paradigm is to re-
turn multiple possible nearest neighbors using scalable methods and then re-rank the returned points
using exact distance calculations (which is prohibitive to perform over the entire input)2. In rec-
ommendation systems, the “standard practice for machine learning-driven recommendations in in-
dustry” (Wong, 2022) is driven by the two-step procedure of cheaply retrieving a set of possible
candidates and iterating over them using a more powerful but costlier ML models (Wong, 2022;
Bergum, 2022; Eder, 2022; goo, 2022; pap, 2022). Similar ideas are also used in question answer-
ing and vision applications (Zhong et al., 2017; Barz & Sonntag, 2021).

There has also been extensive work in incorporating additional predictions in algorithmic design for
online algorithms (Bamas et al., 2020b; Purohit et al., 2018; Lykouris & Vassilvitskii, 2018; Purohit
et al., 2018; Gollapudi & Panigrahi, 2019), sublinear space and time algorithms Chen et al. (2022);
Hsu et al. (2019); Eden et al. (2021), and other algorithmic and data structural problems (Mitzen-
macher, 2018; Bamas et al., 2020b;a; Wei & Zhang, 2020; Jiang et al., 2020; Diakonikolas et al.,
2021; Charikar et al., 2001; Antoniadis et al., 2020a;b; Anand et al., 2022; Nguyen & Dürr, 2021).
We refer to the Algorithms-with-Predictions website3 for comprehensive references. The high level
motivations of these works is to apply predictions to aid in beyond worst-case analysis of algo-
rithmic problems. The prototypical examples of predictions used in these works include algorithm
parameter settings (for example ‘warm starts’ or ‘seeds’ which can be constructed from past inputs).
Thus a common underlying assumption is that many similar inputs are given so that predictions are
meaningful and feasible. Furthermore in many of these works, the predictions are modeled after
particular problem settings in mind and the inputs are always fully specified. In contrast, our predic-
tions are inspired by a particular application domain, e.g. text clustering, which we connect to CC,
rather than motivating the predictions from a purely algorithmic problem perspective. Furthermore,
our predictions (e.g. queries from the weak signal) help us learn about the true underlying input (e.g.
the strong signal graph).

We also give a detailed comparision to the work of (Guha et al., 2015). While at a high level both
(Guha et al., 2015) and our work aggregate information across various signals, the two works differ
in terms of the generality of oracles considered, the formal guarantees given, and the problems
studied. The oracles used in (Guha et al., 2015) are highly specialized to the datasets at hand; for
example, the cheap oracle used in (Guha et al., 2015) is an inverted index model which heavily
relies on the specifics of the datasets used. In contrast, we take a broader view of weak and strong
oracles and present theoretically founded algorithms which only assume query access to the weak
and strong model and not any particular model idiosyncrasies. Therefore, our algorithm has provable

2We refer to http://ann-benchmarks.com/ for a large collection of practical nearest neighbor
search algorithms and Andoni et al. (2018) for a overview of theoretical works.

3https://algorithms-with-predictions.github.io/
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guarantees on both the approximation quality and the query complexity, making it broadly applicable
across different oracles. In terms of problems, we study correlation clustering while the focus of
(Guha et al., 2015) is not on a clustering problem. Rather, they use hierarchical clustering as an
intermediate problem to perform user modeling and do not consider any specific clustering objective
functions. The strong signal queries made by our algorithm are guided through formal reasoning and
they exploit the structure of the clustering problem we are studying. In (Guha et al., 2015) the weak
signal is used at a more intuitive level and serves the informal role of filtering possible strong signal
queries with no formal reasoning.

B OMITTED PROOFS OF SECTION 2

Proposition B.1. There exists a strong signal graph G such that the KwikCluster algorithm
makes Ω(n1.5) strong signal queries.

Proof. Consider the case where the strong signal graph consists of
√
n cliques, all of size

√
n. In

this case, every time KwikCluster picks a pivot, it has to examine an existence of an edge from
this pivot to all the unassigned vertices. So for at least the first

√
n/2 times KwikCluster picks a

pivot, it has to make at least n/2 calls to OS , resulting in Ω(n1.5) calls to OS .

Proposition B.2. Consider a variation of KwikCluster, called KwikClusterγ , which for a
chosen pivot p from uncovered vertices V ′, only queries V ′ ∩ OγW (p) from strong signal. There
exists a graph G such that KwikClusterγ still makes Ω(n2) strong signal queries in expectation
even when γ = O(1).

Proof. Consider the following strong signal graph: the graph G is comprised a fully connected
clique on 0.9n nodes. The graph also has 0.1n nodes, called ‘outside vertices’ which all connect
to the same 0.1n vertices in the fully connected clique but have no edges between them. Suppose
that OγW returns the correct strong signal neighborhood for vertices in the clique but for the outside
vertices, it returns an additional Ω(n) arbitrary vertices among the outside vertices.

Now consider the simulation of KwikClusterγ on G. With constant probability, the first time
a pivot is picked, it comes from the clique vertices which have no neighbors among the outside
vertices. Condition on this event. Now the algorithm still needs to run until the outside vertices
have been selected in a cluster. However, every time each such vertex is picked as a pivot, we need
to check over Ω(n) erroneous vertices. Furthermore, removing an outside vertex v and its neigh-
borhood Γ(v) does not remove any of the other outside vertices. Thus it follows that the expected
number of queries made to OS , while still utilizing OγW in this natural variant of KwikCluster,
is Ω(n2) with constant probability since there are Ω(n) outside vertices, each which requires Ω(n)
queries toOS . Altogether, this natural algorithm can incur Ω(n2) queries, a super linear amount.

Lemma B.3. Let t be the parameter of GetPivots (Algorithm 3). Algorithm 3 uses t+2γt2m/n2

queries to OS .

Proof. Let T = {v1, . . . , vt} denote the set of t sampled vertices in line 1 of Algorithm 3. Fix
a vertex v ∈ T , we show that there are O(γt|E|/n + 1) queries in expectation for such vertex.
Let Pi denote the set of pivots right before we start scanning vertex vi. When we check for the
neighbors of vertex vi, we immediately stop if a strong signal neighbor in Pi is found. Let A(vi) =
OγW (vi) \ Γ(vi) be the vertices which OγW errs on for query vi and can result in needless calls to
OS . The number of expected calls to the strong signal is exactly the expected number of unnecessary
calls E[|A(vi) ∩ Pi|] plus one call that may result in the early stoppage in line 4 of Algorithm 4. So
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for each vi, the expected number of calls to OS can be bounded by

1 + E[|A(vi) ∩ Pi|] ≤ 1 + E[|A(vi) ∩ T |]
= 1 + EviE[|A(vi) ∩ T | | vi]

≤ 1 + 2EviE
[
|A| · t

n
| vi
]

≤ 1 +
2tγ

n
Evi [|Γ(vi)|]

= 1 +
2tγm

n2
.

Summing over all t vertices in T results in the final bound.

Lemma B.4. Let P be the output of GetPivots(t,Q), then AssignToClusters(P, V \P,Q)
makes n+ 2γtm/n queries to OS .

Proof. Consider a fixed vertex u ∈ V \ P . We perform a similar analysis as in Lemma B.3: ideally
S = OγW (u) ∩ P informs us the pivot which u should connect to. However since the cheap oracle
can be noisy, we can have many vertices in (OγW (u) \ Γ(u)) ∩ P . The number of queries to OS is
at most |(OγW (u) \ Γ(u)) ∩ P |+ 1. It remains to calculate the following expected value:

E[|(OγW (u) \ Γ(u)) ∩ P |] ≤ γ |Γ(u)| · t
n
.

Thus the total expected number of queries for non-pivot vertices is∑
u∈V \P

(
1 + γ |Γ(u)| · t

n

)
= |V \ P |+ γt

n

∑
u inV \P

|Γ(u)| ≤ n+
2γtm

n
.

Theorem B.5 ((Bonchi et al., 2013)). Let T ′ be the maximal independent set formed by scanning
randomly sampled t vertices of a graph G. Then the expected number of edges of G not incident
with an element of T ′ union the neighborhood of T ′ in G is at most n2/2t.

Theorem 2.1. Under Assumption 2.1, KwikBucks uses n+ t+ 2γtm/n+ 2γt2m/n2 queries to
OS to achieve approximation 3OPT + O(n2/t).

Proof. The bound on the number of queries to OS . There are two tasks which require calls
to OS : forming the set of pivots in GetPivots and assigning non-pivot vertices to a pivot in
AssignClusters. The expected number of queries forGetPivots is handled by Lemma B.3
and the expected number of queries for AssignClusters is handled by Lemma B.4.

We now need to bound the approximation guarantee. Consider the subgraph G′ of the strong signal
graph which is the union of the pivots returned by GetPivots and their neighborhood. Theorem
B.5 gives us that the number of edges not part of this subgraph is at most O(n2/t) which can be
charged to the additive error incurred by our algorithm (all vertices which do not have a strong signal
edge to any of the pivots are clustered as singletons). Now on this subgraph note that we are exactly
mimicking the KwikCluster algorithm onG′. This is because the pivots of Get-Pivots are chosen
from the same distribution as the KwikCluster algorithm since we ensure that all pivots chosen
are not in the neighborhood of previously chosen pivots. Thus we obtain a 3· OPT guarantee on G′.
To obtain the final guarantee on the original strong signal graph, note that the OPT clustering of G
restricted to G′ cannot be better than the OPT correlation clustering of G′. The result follows from
considering our additive error as well.

We now show a lower bound on the query complexity of our algorithm. First we recast the lower
bound result of (Garcı́a-Soriano et al., 2020a) in the language of strong and weak oracles. They show
that any algorithm which only has access to the strong signal must make Ω(n3/(∆c2)) queries to
obtain a c· OPT +∆ correlation clustering objective guarantee. We can translate their lower bound
into our setting of strong and weak oracles by essentially making the weak oracle useless through
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a suitable choice of γ. The lower bound shows that for constant ε and n large enough, Corollary
2.2 is optimal. First we formally state the guarantees given by (Garcı́a-Soriano et al., 2020a) in our
language of strong and weak signals.

Theorem B.6 ((Garcı́a-Soriano et al., 2020a)). For any c ≥ 1 and ∆ such that 8n < ∆ ≤ n2

2048c2 ,
any algorithm finding a clustering with expected cost at most c· OPT +∆ must make at least
Ω(n3/(∆c2)) adaptive strong signal queries.

Lemma B.7. Let ε ≥ Ω(1/n) be sufficiently small. In the worst case input, any algorithm must
use at least Ω(n + dγ) strong signal queries to obtain a 3· OPT +O(εn2) approximation to the
correlation clustering objective.

Proof. We recall the lower bound example of (Garcı́a-Soriano et al., 2020a) (which is proved in
Theorem 4.1 in (Garcı́a-Soriano et al., 2020a)). Let k = n2/(32c∆) (note that k < n by design).
Their worst case strong signal graph example consists of k equal sized cliques and all vertices
have degree Θ(n/k). Now we consider the case where the weak oracle is completely useless and
always returns the entire set of vertices on any query. This corresponds to the case where γ =
Θ(k) (for γ defined in Assumption 2.1). Now directly applying Theorem 4.1 of (Garcı́a-Soriano
et al., 2020a) gives us that any algorithm which only has access to the strong signal must make at
least Ω(n3/(∆c2)) queries to obtain a c· OPT +∆ correlation clustering objective guarantee. The
theorem follows by noting that if ∆ = εn2 then any algorithm must make Ω(n/ε) = Ω(n + k ·
n/k) = Ω(n+dγ) queries in this worst case example, as desired. Note that the valid range of ε here
follows from the restriction on ∆ so ε ≥ 8/n and cannot be larger than some fixed constant.

C ADDITIONAL ALGORITHMIC DETAILS FOR EMPIRICAL ALGORITHM.

We provide additional details on the algorithm design of Section 3.

Algorithm 7 SortNonPivots(T, V \ T )

Require: T , the set of pivots; V \ T , vertices which are not pivots
1: for vertices v ∈ V \ T do
2: wv ← Maximum weak signal similarity

between v and any vertex in T
3: Return V \ T sorted in decreasing wv values

Optimizing non-pivot order. Continuing on the theme of ranking, once we curate the pivots, we
need to assign the non-pivots to a pivot. To do so, we sort the non-pivots based on ‘easiness’ to assign
to a pivot. Hence we sort the non-pivots by the maximum weak similarity to some pivot. This has
the effect of utilizing our query budget as efficiently as possible as ‘easier’ non-pivots are checked
first. We re-rank the vertices V \ P in SortNonPivots before calling AssignClusters in
KwikBucks.

Utilizing Weak Signal Neighborhood. We can use strong signal queries that we have already
made for vertices in the weak signal neighborhood to further optimize the sorting of the pivots
in WeakFilterByRanking. The inductive bias we are using is that if many vertices in the
immediate weak signal neighborhood of a vertex v connect to the same pivot p, then the likelihood v
having a strong signal edge to p is high. Thus to better utilize our expensive query budget, we should
query (v, p) earlier than later. To make the intuition more precise, we simply update the similarities
to pivots computed by v in WeakFilterByRanking to account for the inductive bias. The new
similarity score w′p of a pivot p is equal to wp, the similarity score between v and p computed by
the weak signal, plus a term for the number of vertices in the k-weak signal neighborhood of v that
are already connected to p:

w′p = wp + λ(# of vertices in k-weak signal neighborhood of v that are already in p’s cluster).

This has the affect of ‘boosting’ some pivots to a higher ranking. See Section F.2 for further details.
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C.1 DETAILS ON POST-PROCESSING MERGING

In this section we provide the details of our post-processing merging strategy outlined in Section 3.

Let C1, . . . , Cr be the clusters outputted by our algorithm. First we curate a list of cluster pairs
to consider for merging. Then we rank the pairs in terms of suitability for merging. Finally we
enumerate over the pairs in the order computed (until we run out of any query budget) and determine
if the pair should be merged. Each of the three steps is described in detail below.

1. Curating pairs of clusters. It is prohibitive to consider all pairs of clusters (which might be
super linear if there are many clusters). We again appeal to the weak signal and construct
a k-nn weak signal similarity graph on the vertices for some small k, such as k = 20.
Then we only consider pairs of clusters which are edges in the graph. More precisely, we
consider the pair (Ci, Cj) for merging if there is some v ∈ Ci and u ∈ Cj such that (v, u)
is an edge in the k-nn graph. This narrows down the number of pairs considerably.

2. Ranking pairs by suitability. For each pair (Ci, Cj) of clusters from the prior step, we
compute the average weak signal value between vertices in Ci and Cj respectively. We
then rank the pairs in decreasing order based on this value.

3. Determining if a pair should be merged. Finally, we enumerate over the pairs in the order
computed previously. Suppose we are deciding if we want to merge the pair (Ci, Cj). We
must ensure the pair has a high number of strong signal edges (more than 0.5 fraction). To
do so we simply sample a small number of random pairs of vertices (say 20), one vertex
from each cluster, and estimate the fraction of these random edges which are strong signal
edges.

D THEORETICALLY MOTIVATING PRACTICAL MODIFICATIONS OF THE
ALGORITHM

In this section we provide theoretical justifications for the practical modifications of our algorithm.

D.1 THEORETICALLY MOTIVATING RAKING PIVOTS BY WEAK SIGNAL

In the classical KwikCluster algorithm and our query efficient variant in the two oracle model of
Section 2, it is imperative that the pivots are selected in a random order to provide theoretical guar-
antees on the quality of the computed clustering. Specifically, the worst case theoretical guarantees
dictate that vertices must connect to the first pivot in the random order which they have a strong
signal edge to.

Nevertheless, in our data driven optimization of the algorithm, we choose an adaptive ordering
of the pivots for each vertex where the order is based on the weak-signal similarity scores. We
empirically observed that this ordering is superior to the random ordering and achieves a higher
clustering quality while utilizing a > 3.5x factor or more less strong signal queries. The explanation
behind this improvement is two fold:

1. Increased query efficiency: fewer strong signal queries are used when a vertex attempts
to connect to a pivot.

2. Maintaining cluster quality: connecting to pivots with larger weak signal similarities are
high quality pivots.

The positive effects of the first point are straightforward to explain. Indeed, making the natural
assumption that higher weak signal similarities are more indicative of a strong signal edge, checking
pivots in the weak signal ordering leads to less queries wasted when a vertex attempts to connect
to a pivot. In addition to the empirical results of Section 4, this point is further expanded upon in
Figure 7 and Section F.6.

Thus the main goal of this section is to provide an intuitive and theoretically motivated understanding
of the second point. While it may not be true that re-ranking pivots according to the weak signal
similarities maintains the worst case guarantees proved in Section 2, we study a natural data set
model where such a re-ranking provably helps. We wish to capture our data driven observations that
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pivots with larger weak signal similarities are of high quality and larger weak signal values indicate
better cluster relationships.

In our experiments, the weak signal scores are mostly computed using distances between embedding
vectors. If a weak signal is useful, then it must have be predicative of the strong signal values, even
if the weak signal is noisy. To mimic this, we consider the following general family of data sets:

• Each vertex v has an associated vector pv ∈ Rd, representing it’s ‘true’ embedding repre-
sentation.

• The weak signal values are computed according to an appropriate distance measure d on the
embedding vectors (for example cosine or Euclidean distances) plus a random noise term
ξ (expanded upon shortly). This models the setting where the weak signals are helpful but
noisy signals as they only have noisy access to the ‘true’ representations.

• There exists a function f : R≥0 → [0, 1] which gives the probability of a strong signal
edge. More precisely, let pv and pu denote the embedding of vertices v and u. Then the
probability of having the strong signal edge (v, u) is given by f(d(v, u)). This is quite a
general formulation as it includes a wide array of geometric or kernel similarity graphs for
appropriate choices of f and d.

For example, if f = exp(−x/σ) and d is the Euclidean distance, then the true strong signal graph is
the Gaussian kernel similarity graph where σ is the scale of the kernel. Intuitively, the closer u and
v are under the metric d, the higher probability f assigns to the edge between u and v.

We additionally impose the following clusterability assumptions on the data set. Our goal is to
capture a natural underlying cluster structure which can be accessed via strong and weak signal
queries. Vertices which are part of the same underlying cluster should have higher weak signal
similarity scores, even if the scores are noisy, and the strong signal edges should be highly accurate.
Our model defined below satisfies these intuitive criteria. Furthermore under our natural model,
there is a ‘true’ pivot for a vertex v, even though v may have strong signal edges to other pivots.

Our cluster assumptions on the data set is the following.

1. The ‘true’ embedding vectors pv ∈ Rd can be partitioned into k clusters such that all
vectors in a cluster are within distance R of each other.

2. All embedding vectors in different clusters are distance at least 2R from each other.
3. The probability of a strong signal edge is at least 1−p for distances at most 2R and at most
p for distances at least 2R. We think of p < 1/2 as a small parameter close to 0.

4. Given inputs u, v, the weak signal outputs d(pu, pv) + ξ where ξ is uniformly random in
[−R,R]. Thus smaller values are interpreted as having higher weak signal similarity.

Note that we only have access to the strong and weak signal values via queries and do not know the
true underlying embedding vectors pv . We now argue that the above assumptions are motivated and
natural.

• The assumption (1) gives a cluster structure to the data and allows us to compare the classi-
cal KwikCluster algorithm and our re-ranking modification under natural clusterability
assumptions. The exact formulation we are employing is inspired by the works of (Awasthi
et al., 2012; Balcan & Liang, 2012; Ashtiani et al., 2016) which study clustering under
similar proximity assumptions. For example, it can be easily checked that the ‘margin’
property assumption of (Ashtiani et al., 2016) directly implies our assumptions (1) and (2).

• Our assumption (3) is a natural and necessary assumption on the function f as it ensures
the true strong signal graph captures the underlying cluster structure of the inputs. This also
corresponds to picking an appropriate scale parameter if f is a kernel function, for example
picking σ in the Gaussian kernel. A judicious choice of σ ensures that the underlying
kernel similarity graph, which corresponds to the strong signal, is able to capture the cluster
structure of the data set. Thus our assumption that p � 1 ensures that the similarity
graph has strong inter-cluster connectivity while having sparse connectivity across different
clusters. Indeed in practice, the kernel scale parameter is often picked using the ‘median’
rule and thus σ = Θ(R) is a natural choice which ensures our choice of p.
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• Our data set construction ensures that the strong signal is ‘more powerful’ than the weak
signal. Indeed, the weak signal only has access to the distances between the true embedding
vectors up to some additive noise as stated in assumption (4). While the exact form of the
random noise is not very consequential, we stick to the uniform noise model as it as several
desirable properties:

1. Given vertices v, u, w where u is in v’s true cluster (according to the true embedding
vectors) and w is not, the weak signal can potentially output a smaller value on query
(v, w) compared to (v, u). Thus the weak signal incorrectly states w is more similar
to v than u due to the additive noise. For example if d(v, u) = R and d(v, w) = 2R,
this happens with probability 1/8. Therefore the weak signal accurately reflects our
desired goal of an indicative but noisy signal.

2. The weak signal can be modeled by fast nearest neighbor search algorithms which
return noisy nearest neighbor estimates. On the other hand, we imagine the strong
signal as being expensive since it needs the true distances among the embedding vec-
tors without any additive noise.

We believe that this natural graph model we examined for our algorithm modification helps explain
and predict the strong empirical performance of our method. Thus our goal is to show that under the
above data set modelling, re-ranking pivots based on weak signal similarity values provably helps.
Assume that we have picked a pivot u from each of the k clusters of Assumption (1). We permute
them randomly to form an ordering u1, . . . , uk. This corresponds to the random ordering used by
the KwikCluster algorithm and our theoretical algorithm of Section 2. Each non-pivot vertex
v re-ranks the pivots forming the ordering uπv(1), . . . , uπv(k) where πv is a permutation depending
on the weak signal similarities from the pivots to v. The weak signal similarities are calculated as
detailed above: the weak signal outputs ‘noisy’ distances based on the true embedding vectors and
smaller distances correspond to higher similarities. Note that each non-pivot vertex v has a ‘true’
pivot u corresponding to the pivot chosen from the cluster that the true embedding vector pv is part
of. We say that a non-pivot vertex v is correctly assigned by a clustering algorithm C if C assigns v
to its ‘true’ pivot. The following lemma shows that assigning vertices to pivots based on weak signal
similarities strictly outperforms using a random order.

Intuitively, if another pivot u′ is ranked higher than u in the random ordering, our proposed medica-
tion of re-ranking asked on weak signal similarities is likely to correct the ordering re-ranking u to
ahead. The lemma below provides theoretical justification of why this is sound and complements our
experimental evaluation which demonstrates the empirical advantage of our re-ranking procedure.

Lemma D.1. Consider the setting above. Let C be the clustering where every non pivot vertex picks
the first pivot in this ordering that it has a strong signal edge to. Let C′ be the clustering where each
non pivot vertex re-ranks the pivots using weak signal similarities then picks the first pivot that it
has a strong signal edge to. Let A be the number of non-pivot vertices that C correctly assigns and
similarly define B. We have E[A] < E[B].

Proof. Fix a non-pivot vertex v. Let X denote the indicator variable for C correctly assigning v and
define Y similarly for C′. It suffices to show that E[X] < E[Y ]. The lemma then follows by linearity
of expectations and summing across all non-pivot vertices v. Note here that the expectation of each
variable is with respect to the randomness used by the respective algorithms.

Let u denote the true pivot of v. If v does not have a strong signal edge to u (according to the strong
signal) then both algorithms will fail. Similarly, if v only has a strong signal edge to u and to no
other pivots, then the performance of either clustering is the same. Now consider the case that v has
at least two strong signal edges to pivots, one to u and rest arbitrary. Then the probability that v is
correctly classified by the random ordering is at most 1/2. This is because if there is at least 1 other
pivot that v as a strong signal edge to, then the probability that the random ordering places u ahead
of it is at most 1/2.

One the other hand, the probability that v is correctly classified by the weak signal ordering is strictly
larger than 1/2. To see this, we calculate the probability that u has the highest weak signal similarity.
Identically, it suffices to calculate the probability that the weak signal outputs the smallest noisy
distance value for u. Recall the modelling assumptions of the data set: we know that d(v, u) ≤ R
whereas d(v, u′) ≥ 2R for all other pivots u′ that are not equal to u. The weak signal outputs
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d(v, u′) plus a uniformly random value in [−R,R]. Let ξu be the random value added for d(v, u).
With probability 1/2, this value is negative so the noisy distance computed by the weak signal
is strictly smaller for u than all other pivots u′ (since in the best case, their distance is at least
2R − R = R). Furthermore, conditioning on the additive noise being positive for u, there is a
non-zero probability that u has the smallest additive noise (in absolute value) among all pivots. u is
again ranked the highest in this case. Altogether, the probability that u is ranked the highest in terms
of the weak signal similarity is strictly larger than 1/2. It follows that E[X] < E[Y ], as desired.

D.2 EXPLAINING WHY MERGING HELPS

We consider a particular worst case example for the KwikCluster algorithm which motivates
why a post processing merging step helps. At a high level, it is possible to pick pivots which do
not have a strong signal edge but nevertheless ‘should’ belong to the same cluster. Then when we a
clustering algorithm is run, these two pivots can possibly lead to two disjoint clusters whereas that
merging them lowers the correlation clustering objective and improves the overall clustering quality.

Concretely, consider the following example: we have a complete graph on n vertices where every
edge is a strong signal edge except a single edge (u, v) which is not. In the classical KwikCluster
algorithm, if u is picked as a pivot then we will form two clusters, one consisting of all vertices
besides u and the the other cluster being the singleton {u}. The same is true if we pick v to be the
pivot. Thus the expected correlation clustering objective of the algorithm is

2

n
· (n− 1) +

(
1− 1

n

)
· 1→ 3.

On the other hand, clustering every vertex to be one cluster has correlation clustering objective value
1. Thus in the case where there are two clusters in the above example, a merging post-processing
improves the overall cluster quality. This crisply captures our motivation.

While the above situation may not be representative, our merging post processing verifies that a
possible merge is sound (after ranking possible cluster candidates to merge using the weak signal)
by querying a (small) number of strong single values and merging only if the average strong single
similarity is sufficiently high. Thus our post processing merge routine can only help the overall
clustering.

D.3 INHERENT TRADE-OFFS BETWEEN PRECISION AND RECALL

The goal of this section is to show that there is an inherent tradeoff between precision and recall of
any clustering algorithm on graphs.We first restate the definitions of precision and recall as defined
in our experimental section. Let G be an unweighted (not necessarily complete) graph and let C be
a clustering of its vertices. The edges of G correspond to the edges in the strong signal graph (i.e.,
the edges are pairs of vertices the strong signal labels as ‘similar.’). Correspondingly, the non-edges
of G represent the negative edges of the strong signal.

We first restate the definitions of precision and recall as defined in our experimental section. The
recall of C is defined as the fraction of edges of G which are together in some cluster given by C.
The precision of C is defined as the fraction whose numerator is the number of edges of G which
are together in some cluster and the denominator is the total number of pairs of vertices that are
clustered together.

We state a natural (random) graph dataset such that with high probability, any clustering C has either
recall or precision bounded away from 1 by a fixed constant. In particular, G will be sampled from
the standard G(n, 1/2) Erdos-Renyi graph distribution. Note the order of the quantifiers: we first
generate a random graph. There is an event E which G satisfies with high probability. Condition on
this event, any clustering of the vertices of G will either have its precision or recall bounded away
from 1, including the OPT correlation clustering.

Note that we have not made an attempt to optimize the constants in the following lemma for clarity.
It is likely that one can optimize our proof and obtain a smaller constant than 0.75.

Lemma D.2. Let G be sampled from the G(n, 1/2) distribution. With probability at least 1 −
1/poly(n), all clusterings of G have recall or precision at most 0.75.
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Proof. Let C > 1 be a fixed constant. We first consider the following event E : for any subset S
of vertices of size at least C log n, there are at most 1.01|S|2/4 and at least 0.99|S|2/4 edges of G
within S.

We now show that E holds with probability at least 1 − 1/poly(n). For a fixed subset S of k
vertices for k ≥ C log n, the expected number of edges within S is

(
k
2

)
/2. Thus the probability that

there are more than 1.01k2/4 and less than 0.99k2/4 edges within S is at most exp(−ck2) by a
standard Chernoff bound for a fixed constant c > 0. There are

(
n
k

)
such choices of S and thus union

bounding over all S and all k ≥ C log n, we have that the probability there exists some set S with
|S| ≥ C log n vertices violating the required number of edges is at most

∑
k≥C logn

(
n

k

)
exp(−ck2) ≤

∑
k≥C logn

2
(ne
k

)k
exp(−ε2k2/6)

=
∑

k≥C logn

exp(log 2 + k log(ne)− k log k − ck2)

≤ n · exp(−Ω(k2))

≤ 1

poly(n)

for k ≥ C log n for a sufficiently large constant C and n large enough. Thus P(E) ≥ 1−1/poly(n)
where we can make the polynomial arbitrarily large by increasing C. We also condition on the
fact that G itself has at least 0.999n2/4 edges with also happens with inverse polynomial failure
probability.

Now consider an arbitrary clustering C. If the recall of C is at most 0.75 then we are done so suppose
the recall is at least 0.75. Given this, we claim that there exist a cluster within C of size at least 0.74n.

To see this, let C1, · · · , Cj be the clusters of C. The clusters of size at most C log n have at most
n · (C log n)2/2 edges of G inside them. All other clusters Ci have at most 1.01|Ci|2/4 edges of G
inside them. Altogether, the number of edges of G inside some cluster is at most

n · (C log n)2/2 +
∑

|Ci|≥C logn

1.01|Ci|2

4

subject to the constraint that |Ci| ≤ 0.74n and
∑
i |Ci| ≤ n. This is a convex function which is

maximized at its boundary, meaning the number of edges of G inside some cluster of C is at most

n · (C log n)2/2 +
1

0.74
· 1.01 · 0.742n2

4
� 0.75 · 0.999n2

2

which contradicts the fact that the recall of C is at least 0.75. Thus there exists a cluster of C of size
at least 0.74n. Now given this, we show that the precision must be at most 0.75.

Towards this end, let Ci be the cluster of C of size at least 0.74n. It has at most 1.01|Ci|2/4 edges
of G inside it and

(|Ci|
2

)
pairs of vertices. Let A be the other edges of G not inside Ci and let B be

the total pairs of vertices where both of the vertices in the pair lie outside of Ci. Then the precision
of Ci is bounded by

1.01|Ci|2/4 +A(|Ci|
2

)
+B

.

Since |Ci| ≥ 0.74n, one can easily verify that

B ≤ (0.26n)2

2
<

1

8
·
(
|Ci|
2

)
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(a) (b) (c)

Figure 2: The propensity for a vertex v to connect to a pivot p given that k of v’s neighbors have
already connected to p.

and thus

1.01|Ci|2/4 +A(|Ci|
2

)
+B

≤ 1.01|Ci|2/4 +B(|Ci|
2

)
+B

≤ 1.01|Ci|2/4(|Ci|
2

) +
B(|Ci|

2

)
+B

≤ 0.51 +
B

9B
< 0.75,

as desired.

D.4 MOTIVATING USING WEAK SIGNAL NEIGHBORHOOD STATISTICS.

In Figure 2, we plot the the fraction of times a vertex v connects to a pivot p in the KwikBucks al-
gorithm as a function of the number of nearest neighbors of v (in terms of the weak signal similarity)
which have already connected to the same pivot p.. We see that the probability increases as a func-
tion of the number of nearest neighbors, empirically justifying our algorithmic design optimization
of ‘Utilizing Weak Signal Neighborhood’ in Section C. Note that this optimization has the affect of
slightly boosting such pivots p (if they exist) to a higher similarity (and thus a better ranking).

E DETAILS FOR DATASET & WEAK/STRONG SIGNALS

We provide a detailed description of the datasets used in the paper as well as the weak and strong
signals used for each of the datasets. Table 2 provides a summary.

Stackoverflow (SOF) and SearchSnippets: Stackoverflow and SearchSnippets are commonly used
for short-text clustering/classification. For stackoverflow, we used a subset collected by Xu et al.
(2017) consisting of of 20,000 question titles associated with 20 different categories obtained from
a dataset released as part of a Kaggle challenge. For SearchSnippets, we used the dataset from
Phan et al. (2008) which consists of 12,340 snippets (extracted from web search snippets) asso-
ciated with 8 groups. For these two datasets, we experimented with two different types of cheap
signals: word2vec embeddings Mikolov et al. (2013) and tf-idf embeddings. In both cases, we
trained/finetuned on the training set of the datasets. We used the Gensim package Rehurek & Sojka
(2011) for word2vec and sklearn Pedregosa et al. (2011) for tf-idf. Word2vec provides a vector rep-
resentation for each English word; to compute the embedding for a sentence/document, we average
the embeddings of each of its words. For the strong signal, for each dataset we finetuned a T5-1.1
XXL model (11B parameters) Raffel et al. (2020) on the training data where given two examples,
the model was finetuned to predict if they belong to the same cluster or not. In both cases, we
sampled 10K positive pairs and 50K negative pairs and finetuned the model for 10 epochs on a 4x4
DragonFish TPU architecture.
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Twitter and AgNews: Twitter and News data are commonly used for short-text cluster-
ing/classification. From Twitter, we use the dataset created by Yin & Wang (2016) consisting of
2,472 tweets with 89 categories. From News, we use the data from Rakib et al. (2020) which is
a subset of the dataset from Zhang & LeCun (2015) containing 4 topics. For the cheap signal, we
use pretrained BERT embeddings Devlin et al. (2018) where we feed each example into the BERT
model, obtain contextual token embeddings, and then average them (ignoring the [CLS] and [SEP]
tokens) to obtain the embedding for each example. We use the 12-layer uncased BERT-Base model
for this experiment. For the strong signal, we first created a graph by connecting two nodes if they
belong to the same category, then added noise to the graph by flipping the existence/non-existence of
an edge for 5% of node pairs selected uniformly at random (note that without adding noise, the prob-
lem becomes much easier as graph of the strong signal becomes composed of multiple connected
components).

Internal: This is a vertical of a large, internal, proprietary text dataset. The weak signal is embed-
ding similarity, and the strong is an indicator variable from a cross-attention model.

Citeseer and Microsoft Medicine: Citeseer Sen et al. (2008) and Microsoft Medicine Shchur &
Günnemann (2019) are attributed graph datasets. Citeseer is a citation network in which nodes rep-
resent papers, edges represent citations, and features are bag-of-word abstracts. Microsoft Medicine
is a subset of the Microsoft Academic graph where the nodes represent authors, edges represent
co-authorship, and node features are a collection of paper keywords from author’s papers. For both
datasets, we used the cosine similarity between the node features as the weak signal and we assume
the edges of the graph correspond to the strong signal.

Cora and Amazon Electronics Photos: Similar to Citeseer and Microsoft Medicine, Cora and
Amazon Electronics Photos are also attributed graph datasets. They are typically used for node
classification but here we adapt them to our problem. Cora Sen et al. (2008) is a citation network
similar to the Citeseer dataset with the node labels corresponding to paper topics. Amazon Elec-
tronics Photos Shchur et al. (2018) is a subgraphs of the Amazon copurchase graph where the nodes
represent goods, an edge between two nodes represents that they have been frequently purchased
together, node features are bag-of-word reviews, and class labels are product categories. For these
two datasets, we used the deep graph infomax (DGI) model Velickovic et al. (2019) to learn un-
supervised node representations and used these representations as the cheap signal. We also used
noisy labels as the strong signal similar to the Twitter dataset.

Total cost analysis: Our work is mostly based on the applications where the weak oracle values
are computed via distances based on embeddings and the strong signal values are the output of a
large cross-attention transformer model. In this case, there are three different factors that comprise
the total cost of the clustering algorithm: 1- the cost of the queries to the strong signal, 2- the cost
of computing embeddings from the cheap signal, and 3- the cost of geometric operations on the
embeddings. So the total cost can be summarized as follows:

Total Cost = ηSζS + ηEζE + ηGζG
where ηS represents the number of calls to the strong signal, ζS represents the cost of making a
call to the strong signal, ηE represents the number of calls needed to compute embeddings, ζE
represents the cost of obtaining one embedding, ηG represents the number of geometric operations
(cosine similarity in our case) we perform on the embeddings, and ζG represents the cost of a single
geometric operation.

The number of calls ηE required to obtain embeddings is n (i.e. the number of data points) which
is smaller than ηS (which, in our case, is typically a linear factor of n) and the cost ζE of obtaining
one embedding is significantly smaller than the cost of obtaining one strong signal similarity ζS .
Therefore, ηEζE can be subsumed in ηSζS .

When using 32 TPU v3 chips for the strong signal and a CPU for the geometric operations, each
call to the strong signal was approximately 104 times slower (i.e. ζS ≈ 104ζG). This gap becomes
even more stark if we use fast geometric algorithms such as nearest neighbor search or use TPUs
for geometric operations. It follows from the analysis of our algorithm that ηG ∈ O(nk) where k
is the parameter defined in Algorithm 6. This is comparable to ηS . Therefore, ηGζG is negligible
compared to ηSζS in our experiments.

Following the above justifications, as well as for theoretical simplicity, in this paper we ignored the
cost of querying the weak signal in our analysis (i.e. assume ηEζE +ηGζG ≈ 0). However, if future
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work considers costlier operations for the cheap signal, these extra terms should also be considered
in determining the total clustering cost.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 PRECISION AND RECALL

The precision and recall (with respect to a clustering C) definitions used in Section 4 are defined as
follows:

Precision(C,OS) =

∑
e=(i,j) Ci,jOS(e)∑

e=(i,j) Ci,j
(2)

where Ci,j is the indicator for if vertices i, j are in the same cluster.

Recall(C,OS) =

∑
e=(i,j) Ci,jOS(e)∑
e=(i,j)OS(e)

. (3)

As stated in (Garcı́a-Soriano et al., 2020a), while our algorithm and baselines have been designed to
minimize the total correlation clustering objective, it is important to consider precision and recall as
they are problem independent measures of cluster quality. Furthermore in cases where the underly-
ing strong signal graph is extremely sparse, the correlation cost objective might not be meaningful.
For example in such a case, returning all vertices as singleton clusters already has low objective value
(equation 1). We use the entire strong signal graph for the purposes of evaluating the experimental
metrics, such as CC objective, precision, and recall.

Table 2: Properties of datasets used in our experiments. n denotes the number of vertices and Non-
zero entries denotes the number of non-zero entries in the adjacency matrix of the strong signal
graph (i.e. twice the number of edges), both rounded to two significant digits.

Name Type Weak Signal Strong Signal n Non-zero entries

SOF Text W2V / tf-idf Cross-attention model 4.9 · 103 2.3 · 106

Search Text W2V / tf-idf Cross-attention model 3.3 · 103 2.0 · 106

Twitter Text BERT Embeddings Noisy label indicator 2.4 · 103 4.7 · 105

AgNews Text BERT Embeddings Noisy label indicator 8.0 · 103 1.8 · 107

Internal Text Embeddings Cross-attention model 1.0 · 105 9.5 · 107

Cora Attributed Graph DGI Embeddings Noisy label indicator 2.7 · 103 1.5 · 106

Photos Attributed Graph DGI Embeddings Noisy label indicator 7.7 · 103 1.2 · 107

Citeseer Attributed Graph Node Features Adjacency matrix 3.3 · 103 104

Med. Attributed Graph Node Features Adjacency matrix 6.3 · 104 1.6 · 106

F.2 PARAMETER SELECTION DETAILS

We first describe how to select the value t in Algorithm 3 and k in Algorithm 6, which selects the
top k vertices in weak-signal similarity for the strong signal to query.

The intuition in picking t is that it must be sufficiently large so that only few vertices do not have a
pivot in their neighborhood (and thus contribute to the additive error of Theorem 2.1). This param-
eter naturally depends on the density of the underlying strong signal graph: for sparser graphs, one
must pick a larger value of t since each vertex on average has a small degree and is thus less likely
to have a pivot chosen in its neighborhood than a vertex with a larger degree. We use the above intu-
ition to design the following data-dependent method to select t: we first sample a sublinear number
of random strong signal edges (

√
n strong signal edges to be exact). This returns an estimate of the

density of the graph up to small additive error (for example via standard Chernoff bounds). We then
set t to be 10 times the inverse of the density. If the density is extremely sparse, i.e. less than 1/1000
fraction of possible edges exist, we simply set t to be equal to n/2.

The second parameter we set is k in WeakFilterByRanking. We can pick a value of k �
n because intuitively, a meaningful weak signal assigns a high similarity score to relevant pivots
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relative to all other pivots and thus such pivots have higher ranking. To understand the trade offs in
selecting k, consider the most prominent place where it is used in our algorithm: when a vertex v
attempts to find a strong signal edge to one of the pivots by iterating through them in the weak signal
ordering. The trade offs are the following: a smaller value of k leads to better query efficiency as
v is guaranteed to only make k strong signal queries in this step. However the clustering quality
can suffer because the first k pivots, for a small k, in the weak signal order might not have a strong
signal edge to v. Conversely a larger value of k leads to increased exploration from v as it attempts
to connect to a pivot. However in the case that v is truly a singleton cluster, i.e. it has no strong
signal edges to any pivot, we potentially waste many strong signal queries. To balance these trade
offs, we pick an ‘intermediate’ value of k = 100 for all our experiments. Ablation studies for both
parameters are given in Section F.

We also always set k = 10 when we use the “Utilizing Weak Signal Neighborhood” optimization
of Section 3. We also always fix λ = 1/10 which appropriately normalizes the second term to be
between 0 and 1 (note the weak signal similarity wp is between−1 and 1). The parameter 10 here is
fairly robust and can likely be replaced by any (small) reasonable value and we also perform ablation
studies on this optimization.

For spectral clustering, we always use k = 25 for the number of clusters. Higher values were
computationally prohibitive to use.

F.3 RESULTS

We present additional experimental results in Figure 3 and 4 which show similar qualitative results as
Figure 1: our algorithm KwikBucks has superior query complexity over the baselines as it achieves
a higher F1 value (and lower CC objective values) while utilizing fewer strong signal queries than
baselines.

Table 3: CC objective values are shown for a fixed budget of 3n. See Table 1 for the corresponding
F1 values. We normalize the smallest CC value to 1.0 so smaller quantities are desirable. See
Figures 3 and 4 for results as a function of query budget. For the sparser graph datasets of Citeseer,
Med., and Internal we use the budget of 50n. Due to their sparsity, the CC objective value is less
meaningful than F1 values for these two datasets.

SOF Search Tweet AgNews Cora Photos Citeseer Medicine Internal
B1 1.9 2.5 1.2 2.0 2.0 2.5 1.3 1.1 1.01
B2 1.8 2.0 1.2 2.0 2.0 2.4 1.3 1.1 1.04
B3 6.4 4.0 6.3 2.5 2.5 2.2 745.1 2550.8 -
B4 2.0 6.0 1.1 4.1 3.0 3.2 1.0 1.0 1.01
B5 2.0 6.0 1.1 4.1 3.0 3.2 1.3 1.3 1.01

KwikBucks 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0

F.4 ADDITIONAL ABLATION RESULTS

In our ablation experiments, we fix all parameter settings except the component we are altering.
We perform ablation studies on 4 representative datasets: Cora, Citeseer, Stackoverflow (SOF), and
Search. Our first observation is that the merge post processing procedure can help return a higher
quality clustering, for example for the Cora, SOF, and Citeseer datasets; see Figures 5 and 6 for
details and Section D.2 for theoretical intuition of why post processing merging helps.

Next we consider removing the SortNonPivots step and replacing it with an using an arbitrary
ordering of non pivot vertices. We see that the positive benefits of removing this component are
more subdued compared to the merge post processing. However, this change never hurts the quality
of the clustering. Overall, we view the different data-driven components introduced in Section 3 and
C as having complementary benefits as each optimize a different part of the algorithm.

We observe that one must choose a sufficiently large value of t in GetPivots which is the initial
number of random vertices sampled which are later processed to be pivots. As argued in Section F.2,
it is important to select a sufficiently large value of t to limit the number of vertices which do not
have a pivot in their strong signal neighborhood (as captured by the additive error term in Theorem
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Figure 3: Empirical results for the Cora, Stackoverflow, Search, and News datasets.

2.1). For our ablation studies, we consider two other settings of t, one which is a factor of 10 smaller
than the choice used in our main experimental results and one which is a factor of 10 larger. They
represent the ‘Small’ and ‘Large’ pivot choices respectively. We see in Figures 5 and 6 for the Cora
and Citeseer datasets, that a smaller choice of t can lead to a decrease in the performance of our
algorithm. Nevertheless, our data driven density based approach outlined in F.2 hits the ‘sweet spot’
and performs comparable to the best choice of pivots in all cases as shown in Figures 5 and 6.

We also perform ablation experiments on the choice of k in WeakSignalFilterPractice by
considering k = 10 and k = 1000 (a ‘small’ and ‘large’ choice respectively as before). Our ablation
experiments also show that a large choice of k in WeakSignalFilterPractice can lead to
many queries wasted as argued in Section F.2. Indeed, we see in the above figures that for the
Citeseer dataset, a large value of k leads to worse performance initially as we waste many strong
signal queries on vertices which have no strong signal edge to any of the pivots. This is due to
the sparse nature of the Citeseer dataset. However as the query budget is increased, the quality of
the clustering improves. The choice of k seems to have negligible impact on the other datasets we
tested on and our choice of k = 100 (which we fixed in the main experimental results) was always
competitive.
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Figure 4: Empirical results on the datasets omitted from Figure 3. The results are qualitatively
similar to that of Figure 3.
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Figure 5: Figures for ablation studies for Cora and Citeseer datasets.
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Figure 6: Figures for ablation studies for SOF and Search datasets.

F.5 MEASURING THE QUALITY OF WEAK SIGNALS

We design a simple and informative experiment to measure the quality of weak signals. For the
Stackoverflow (SO) dataset, we run KwikBucks where we replace the weak signal with a linear
interpolation of the strong signal and a random matrix will all entries i.i.d. from the uniform distri-
bution in [−1, 1]. The purpose of this experiment is to show a higher quality weak signal gives better
clustering results than using a lower quality weak signal. Indeed, Figure 8 shows that KwikBucks
performs the best if we replace the weak signal completely with the strong signal, as naturally ex-
pected. As we vary the amount of randomness in the weak signal, the performance degrades and
the case where the weak signal is a fully random matrix performs the worst as a function of query
budget. It is also interesting to consider the cases where the weak signal are given by the (stronger)
W2V model versus the comparatively weaker tf-idf model: the performance of using the W2V em-
beddings for the weak signal lies between the ‘half-random’ and ‘2/3 random’ case whereas the
tf-idf plot lies between the ‘2/3 random’ and ‘fully random’ cases. The random interpolated weak
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Figure 7: The figure shows a qualitatively similar result as the SOF results shown in Figure 1.

signal cases, while artificial, help us qualitatively access the usefulness of a particular real world
weak signal instance.
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Figure 8: Interpolating the weak signal between uniformly random values and the strong signal.

F.6 AVERAGE RANKINGS OF STRONG SIGNAL NEIGHBORS

In this Section we present additional experiments in the similar spirit as the right figure of the second
row of Figure 1 for the Tweet, Med., and Cora datasets. For every vertex v in these datasets, we
rank all the other vertices in decreasing weak signal similarities to v. The average rank of the true
strong signal neighbors of v is computed and plotted as a histogram (normalized to be a distribution).
Intuitively, a good weak signal should have the property that true strong signal neighbors have much
higher weak signal similarity scores (and thus better rankings) than the an arbitrary vertex. Indeed,
we see that to be the case of the datasets in Figure 9 where the distributions are much more left
shifted and has a much smaller mean compared to the case if the weak signal was fully random.
This validates the connection between our empirical weak signal Definition 1.3 and the theoretical
assumption we made for the weak oracle in Assumption 2.1. Indeed, Figure 9 gives empirical
validation to the claim that returning a top k most similar vertices to a vertex v in terms of weak
signal similarity captures many actual true strong signal neighbors.
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Figure 9: The average weak signal rank of actual strong signal neighbors is shown in orange. The
blue curve shows the average rank if the weak signal was fully random.
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