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Abstract

Accurately estimating personalized treatment effects often demands substantial
data, incurring high costs across diverse applications such as personalized adver-
tisement delivery and clinical trials. Existing methodologies employ deep models
to estimate treatment effects in high-dimensional data, often relying on randomly
selected experiments. We explore the potential of active learning techniques to
enhance the efficiency of experimentation. Our focus centers on a relatively un-
derexplored yet common scenario where each unit is subject to experimentation
only once. We build upon the Bayesian active learning framework, to select units,
and a treatment to apply to the unit, that maximize the information gain from
each experiment. Our approach is flexible, accommodating both discrete and
continuous treatment settings. Furthermore, we address the inefficiencies in batch
experimentation by employing a greedy and a policy gradient-based optimization
strategy. We validate the effectiveness of our proposed method on synthetic and
high-dimensional semi-synthetic datasets (based on IHDP and TCGA). Our results
show significant improvements in experimentation efficiency over the baseline
methods.

1 Introduction

Experimentation often incurs significant costs in terms of resources, time, and funding. This necessi-
tates the development of more efficient and targeted experimental designs. Adaptive trial design is a
promising paradigm for conducting experiments, allowing more efficient use of scarce resources (Fos-
ter et al., 2020). Given a pool of samples and a set of (possibly continuous) interventions or treatments
we wish to study, our goal is to construct an experiment that yields the most informative results about
the effects of the interventions on a predefined outcome, while minimizing costs and resources used.

The majority of experimental design literature has primarily focused on a setting in which one may
conduct experiments on the same object multiple times, usually with differing actions (also known as
treatments, or interventions) (Rainforth, 2017). A somewhat less explored scenario is where one can
actively select a unit from a pool of available units, and then select only a single action to apply to
this unit. This scenario has been referred to as active learning for trials (Deng et al., 2011) or adaptive
trials (Chen et al., 2021). This scenario is relevant in clinical trials, animal studies, and any other
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scenario where the units are heterogeneous and can change after being subjected to the intervention,
or can only be treated once for ethical or cost reasons.

Our paper makes several contributions to the field of active learning for experimentation:

1. We propose a new setting for active learning in which the objective is to efficiently select
the most informative unit-treatment combinations for experimentation (Section 2).

2. We utilize deep learning methods enabling us to model units with high-dimensional co-
variates and explore a wide range of treatment options (binary, discrete, and continuous
options). We select unit-treatment combinations with the highest Expected Information Gain
by introducing both a greedy algorithm and novel gradient-based algorithm to optimize the
joint mutual information between all experiments selected in each batch (Section 3).

3. We demonstrate the efficacy of our methods on synthetic and high-dimensional semi-
synthetic datasets, resulting in significant improvements in efficiency (Section 4).

2 Problem Formulation

Within the Neyman-Rubin causal model (Rubin, 1974), each unit u has a potential outcome Yt(u)
associated with every intervention t ∈ T , where T is the (possibly infinite) set of interventions under
consideration. We are interested in efficiently learning the conditional average potential outcome
(CAPO) function, E[Yt | X = x]. In the regime of continuous interventions, this is often referred to
as the (conditional) ”dose response function.”

The expectation of the potential outcome given a set of covariates X = x describing u is identifiable
from data where T is directly intervened on, assuming that X and T are causal parents of Y, that
the observed outcome corresponds to the potential outcome of the assigned treatment, and that the
treatment assigned to one unit, u, does not effect the outcome observed for any other unit, u′. Under
these conditions, the CAPO takes the form of the expectation

µ(x, t) := E [Y | X = x,T = t] . (1)

We are specifically interested in a k-round, hybrid, ”pool based” setting, consisting of a non-
replenishable pool of units, U = {ui}ni=1 ⊆ U , and a set of possible interventions T ⊆ T . This is a
common setting, where experimenters will do sequential experiments either in batch or non-batch
setting and have access to each unit once. A common example is preclinical trials, done in stages
on animals to study safety, efficacy, and biological activity of a drug. Each unit, described by
high-dimensional covariates, is unique and non-replenishable.

We consider both discrete and continuous intervention spaces, T . At each round i ∈ [k], the
experimenter uses a policy, π : U × T → S ⊆ X × T , to select a b-sized batch of unit-intervention
pairs, s = {X(uj) = xj , tj}bi=j . The experiments are then run and the experimenter observes the
outcomes, {yj}bj=1, for each.

At the end of each round, the experimenter fits an estimator, µ(x, t;θ), of the CAPO, µ(x, t), to the
data accumulated, Dtrain = ∪ki=1

{
{xj , tj , yj}bj=1

}
i
.

3 Method

This section outlines our proposed selection policies which aim to maximize the Expected Information
Gain over a set of experiment designs in a batch of size b, denoted by ξi=1:b = (xi, ti).

In contrast to traditional experimental design, we need to acquire units, x ∈ U, without replacement
and select the treatment, t ∈ T , with replacement. Furthermore, while units are discrete and drawn
from a pool set, treatments can be discrete or continuous.

The problem is defined as selecting a batch of experiments that maximize the EIG objective:

{(x, t)1:b}∗ = argmax
{(x,t)1:b}

EIG({(x, t)1:b}) (2)

where the utility set function is defined as the EIG objective EIG(·) ≜ I(Y ;Θ | ·,Dpool).
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We propose several acquisition policies for both discrete and continuous treatment settings:

Top-K. This strategy selects the top-k design with the highest estimated EIG per design. However,
this does not maximize the EIG of the batch, as it does not take into account how other experiments
in the batch affect the mutual information of each individual score. This can result in redundant
experiments being conducted and results in inefficient experimentation (Foster et al., 2021; Kirsch
et al., 2019).

Softmax Top-K. Kirsch et al. (2022) note this inefficiency and propose sampling the top-k exper-
iments from a Softmax distribution, with temperature β, to the EIG scores. This selection policy
has shown superior performance in terms of efficiency. It is hypothesized that this is due to the
perturbation of the distribution taking into account that the mutual information changes when other
experiments are selected.

Greedy Optimization. When the set function we wish to optimize is known to be submodular and
non-monotonic, then a greedy optimization-based algorithm can be used to maximize the set, which
enjoys 1− 1

ϵ approximation guarantees (Nemhauser et al., 1978). As shown in (Tigas et al., 2022;
Kirsch et al., 2019), Expected Information Gain over continuous outcomes (i.e. regression problems)
is both submodular and non-monotonic thus it is suitable for applying a Greedy optimization-based
algorithm.

Policy-Gradient Based Optimization. To alleviate the approximation shortcomings of the greedy
optimization-based algorithm, we notice that the objectives are differentiable with respect to the trial
parameters (units and dosages), thus we can employ gradient-based methods to design experiments
that maximize our objectives. We parametrize the policy πϕ(X,T ) as joint distribution over units X
and dosages T .

We provide a more details on each method in Appendix B.

4 Experiments

We evaluate our acquisition policies on synthetic and semi-synthetic datasets, and show significant
improvements over the baseline.

Datasets. We evaluate on 3 datasets: a synthetic dataset, and two semi-synthetic datasets based
on the features/covariates in the IHDP (Hill, 2011; Shalit et al., 2017) and TCGA datasets (Cancer
Genome Atlas Research Network et al., 2013). For the synthetic dataset, suitable for discrete and
continuous treatments, we develop a dose-response function based on the generalized dose response
function developed in Taleb & West (2023). The covariates of the units are 1-dimensional and
normally distributed, with the treatment being either a continuous range or discrete values. For the
two semi-synthetic datasets, we obtain covariates from two standard benchmark datasets in causal
inference, IHDP and TCGA. The units in IHDP dataset contain 25 features, while the units in the
TCGA dataset contain 4000 features. Further details are provided in Appendix C.

Model. Our objectives rely on methods that are capable of modelling uncertainty and handling
high-dimensional data modalities. For this we rely upon Deep Bayesian Neural Networks (BNNs).
We utilize Deep Ensembles (Lakshminarayanan et al., 2017) which can be seen as approximate
Bayesian Inference (Wilson & Izmailov, 2020). We utilize a simple multi-layer perceptron S-learner
(Rumelhart et al., 1986; Künzel et al., 2019). We provide the hyperparameters in Appendix D.

Metrics. The Mean Integrated Square Error (MISE) measures how well the model estimates the
conditional average potential outcome (CAPO) across the entire dosage space:

MISE =
1

N

1

k

∑
u∈U

N∑
i=1

∫
Dt

(
yi(u, t)− ŷi(u, t)

)2

dt . (3)

The metric is computed over a held-out test-set. This metric reflects our objective: to efficiently
build an understanding of the entire unit-treatment-response function, through as few experiments as
necessary.
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Table 1: MISE for proposed acquisition functions on the continuous synthetic dataset, for various
acquisition sizes and number of experiments conducted.

Acquisition Size 4 8 16

Experiments Conducted 26 34 42 26 42 74 26 42 74

Random 0.2786 ± 0.0268 0.1814 ± 0.0125 0.1519 ± 0.0109 0.2651 ± 0.0055 0.1794 ± 0.0156 0.1482 ± 0.0082 0.259 ± 0.0125 0.1802 ± 0.0161 0.1416 ± 0.0108
Soft Top-K 0.2727 ± 0.0427 0.0393 ± 0.0159 0.0354 ± 0.0132 0.3139 ± 0.1524 0.0685 ± 0.0289 0.0142 ± 0.0091 0.4877 ± 0.1829 0.1503 ± 0.0976 0.0167 ± 0.0113

Greedy 0.1922 ± 0.0601 0.0727 ± 0.0166 0.0487 ± 0.0265 0.1433 ± 0.0737 0.0841 ± 0.0372 0.0261 ± 0.0112 0.1137 ± 0.0532 0.1075 ± 0.0387 0.0159 ± 0.0079
Policy 0.013 ± 0.0032 0.0077 ± 0.0051 0.0456 ± 0.0109 0.2268 ± 0.1666 0.0322 ± 0.0021 0.0473 ± 0.0336 0.2306 ± 0.1397 0.0071 ± 0.0003 0.0061 ± 0.0025

Table 2: MISE for proposed acquisition functions on the IHDP dataset, for various acquisition sizes
and number of experiments conducted.

Acquisition Size 4 8 16
Experiments Conducted 64 128 192 64 128 192 64 128 192

Random 0.2786 ± 0.0268 0.1814 ± 0.0125 0.1519 ± 0.0109 0.2651 ± 0.0055 0.1794 ± 0.0156 0.1482 ± 0.0082 0.259 ± 0.0125 0.1802 ± 0.0161 0.1416 ± 0.0108
Soft Top-K 0.2727 ± 0.0427 0.1895 ± 0.0185 0.1369 ± 0.0146 0.2784 ± 0.0314 0.1615 ± 0.0074 0.1233 ± 0.002 0.3241 ± 0.0393 0.1626 ± 0.0073 0.1271 ± 0.0096

Greedy 0.2814 ± 0.0367 0.1434 ± 0.0125 0.1107 ± 0.0055 0.2444 ± 0.0149 0.1456 ± 0.0075 0.1204 ± 0.0091 0.2755 ± 0.0186 0.169 ± 0.0203 0.1296 ± 0.0113
Policy 0.25 ± 0.0138 0.1531 ± 0.0107 0.1393 ± 0.0042 0.2023 ± 0.0043 0.1389 ± 0.0088 0.1274 ± 0.0167 0.2682 ± 0.0054 0.1446 ± 0.0062 0.1264 ± 0.0083

Results. Table 1 shows the MISE for proposed acquisition functions on the continuous synthetic
dataset, for various acquisition sizes and number of experiments conducted. We provide further
discussion and results in Appendix A.

Our experiments demonstrate several key findings:

EIG optimization Enhances Covariate Coverage and Counterfactual Estimation. We investi-
gate how designing experiments for high EIG changes the covariate and treatment training density, on
the discrete synthetic dataset. As illustrated in Figure 1 (in A.1), the use of the EIG objective resulted
in a more strategic distribution of the covariate space, with a higher density in regions where the
outcome is more uncertain or variable. In the treatment space, we find a level of overlap that allows
for more accurate estimation of the counterfactuals (Jesson et al., 2021). This improved coverage
and estimation leads to a reduction in MISE, as evidenced by the more accurate covariate-response
curves shown in the figure.

Synthetic Dataset Performance. The Greedy and Soft Top-K acquisition functions demonstrate
strong performance on the discrete synthetic dataset. Notably, the Greedy method consistently
achieves the lowest MISE values across various acquisition sizes and numbers of experiments
conducted, making it the best-performing method for discrete treatments. When comparing the
performance on the continuous synthetic dataset to the discrete synthetic dataset, we observe that
the MISE values are generally lower for the discrete case. The policy gradient method begins to
outperform the other acquisition functions as the acquisition size increases.

Policy-gradient offers robust and scalable performance on high-dimensional data. We evaluate
our acquisition functions’ performance on two semi-synthetic datasets: IHDP (Table 3 and TCGA
(Table 4 in Appendix A). These datasets are designed to test the efficiency of our methods in high-
dimensional settings, the primary focus of our work. The Greedy and Policy methods consistently
achieve the lowest MISE values. For instance, on the IHDP dataset, Greedy achieves a MISE value
of 0.1107 for the smallest acquisition size (4) when conducting 192 experiments, outperforming the
random baseline by 27.1%. The Policy method performs well, particularly for larger acquisition
sizes and a higher number of experiments conducted.

The results on these datasets demonstrate that our methods and acquisition functions are scalable, ver-
satile, and effective in real-world scenarios. The greedy and policy-gradient acquisition functions, in
combination with deep learning for effective representation learning, provide an effective framework
for efficient experimentation and estimation of conditional treatment effects.

5 Conclusion

In this paper, we have proposed a novel framework for efficiently estimating treatment effects. We
provided theoretical justification for our information-theoretic based objective functions, along with
our combinatorial optimization. We demonstrated our methods on both synthetic and semi-synthetic
datasets, showing significant gains in efficiency over the standard baseline. Future work could
include extending our methods to handle larger batch sizes, and incorporating additional objectives
for additional utility.
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A Additional Results

A.1 Detailed Analysis of EIG Optimization Effects

Figure 1: Comparison of data density (top) and covariate response (bottom) using random selection
(left) and our method (Soft Top-K) (right) after 80 points were acquired, on our synthetic dataset,
with discrete treatments. Our method results in a more evenly distributed point density and a more
accurate covariate-response curve.

A.2 IHDP Dataset Results

Table 3 shows the MISE for proposed acquisition functions on the IHDP dataset, for various acquisi-
tion sizes and number of experiments conducted.

Table 3: MISE for proposed acquisition functions on the IHDP dataset, for various acquisition sizes
and number of experiments conducted.

Acquisition Size 4 8 16
Experiments Conducted 64 128 192 64 128 192 64 128 192

Random 0.2786 ± 0.0268 0.1814 ± 0.0125 0.1519 ± 0.0109 0.2651 ± 0.0055 0.1794 ± 0.0156 0.1482 ± 0.0082 0.259 ± 0.0125 0.1802 ± 0.0161 0.1416 ± 0.0108
Soft Top-K 0.2727 ± 0.0427 0.1895 ± 0.0185 0.1369 ± 0.0146 0.2784 ± 0.0314 0.1615 ± 0.0074 0.1233 ± 0.002 0.3241 ± 0.0393 0.1626 ± 0.0073 0.1271 ± 0.0096

Greedy 0.2814 ± 0.0367 0.1434 ± 0.0125 0.1107 ± 0.0055 0.2444 ± 0.0149 0.1456 ± 0.0075 0.1204 ± 0.0091 0.2755 ± 0.0186 0.169 ± 0.0203 0.1296 ± 0.0113
Policy 0.25 ± 0.0138 0.1531 ± 0.0107 0.1393 ± 0.0042 0.2023 ± 0.0043 0.1389 ± 0.0088 0.1274 ± 0.0167 0.2682 ± 0.0054 0.1446 ± 0.0062 0.1264 ± 0.0083
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A.3 TCGA Dataset Results

Table 4 shows the MISE for proposed acquisition functions on the TCGA dataset, for various
acquisition sizes and number of experiments conducted.

Table 4: MISE for proposed acquisition functions on the TCGA dataset, for various acquisition sizes
and number of experiments conducted.

Acquisition Size 4 8 16
Experiments Conducted 64 128 192 64 128 192 64 128 192

Random 0.2768 ± 0.032 0.1968 ± 0.0154 0.1701 ± 0.0166 0.2778 ± 0.0206 0.1988 ± 0.0182 0.1734 ± 0.0067 0.3019 ± 0.0252 0.2058 ± 0.0099 0.1523 ± 0.0049
Soft Top-K 0.2401 ± 0.0175 0.1415 ± 0.0064 0.1106 ± 0.0035 0.2602 ± 0.0185 0.1654 ± 0.0169 0.1301 ± 0.0043 0.2756 ± 0.0128 0.1725 ± 0.0098 0.1329 ± 0.0143

Policy 0.237 ± 0.0102 0.1326 ± 0.0119 0.1204 ± 0.0044 0.2686 ± 0.0263 0.1643 ± 0.0088 0.1543 ± 0.0107 0.2531 ± 0.0078 0.1544 ± 0.0053 0.1103 ± 0.0105

A.4 Discussion of Additional Results

The results on both IHDP and TCGA datasets demonstrate the effectiveness of our proposed methods
in high-dimensional settings. For the IHDP dataset, we observe that the Greedy method performs
particularly well for smaller acquisition sizes, while the Policy method shows strengths in larger
acquisition sizes and with more experiments conducted.

On the TCGA dataset, which has a much higher dimensionality (4000 features), we see that both
Soft Top-K and Policy methods outperform the random baseline consistently. The Policy method, in
particular, shows robust performance across different acquisition sizes and number of experiments,
highlighting its effectiveness in handling high-dimensional data.

These additional results further support our main findings that our proposed methods, especially the
Policy-gradient based approach, offer robust and scalable performance on high-dimensional data,
providing significant improvements over random experimentation in estimating conditional treatment
effects.

B Detailed Algorithm Descriptions

This section provides more detailed descriptions of the algorithms used in our study.

B.1 Top-K Algorithm

The Top-K algorithm selects the top-k designs with the highest estimated Expected Information Gain
(EIG) per design. Here’s a more detailed description of the algorithm:

Algorithm 1: Top-K batch selection
1 for b = 1 to B do
2 x∗, t∗ = argmaxx∈Dpool,t∈T EIG({(x, t)})
3 Add (x∗, t∗) to the batch
4 Dpool ← Dpool \ {x∗} ▷ Remove selected unit from pool

5 end

B.2 Softmax Top-K Algorithm

The Softmax Top-K algorithm introduces stochasticity to the selection process by sampling from a
softmax distribution of the EIG scores:

Algorithm 2: Softmax top-k batch selection
1 for update step c = 1 . . . B do
2 x∗, t∗ = argmaxx∈Dpool,t∈T EIG({(x, t)}) + ϵ

▷ Select unit without replacement
3 Dpool ← Dpool − x∗
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B.3 Greedy Optimization Algorithm

The Greedy Optimization algorithm iteratively selects the experiment that maximizes the marginal
gain in EIG:

Algorithm 3: 1− 1
ϵ Greedy batch selection

1 A← ∅
2 for update step c = 1 . . . B do
3 x∗, t∗ = argmaxx∈Dpool,t∈T EIG(A ∪ {(x, t)})
4 A← A ∪ {x∗, t∗}

▷ Select unit without replacement
5 Dpool ← Dpool − x∗

B.4 Policy-Gradient Based Optimization Algorithm

The Policy-Gradient Based Optimization algorithm uses gradient ascent to optimize a parameterized
policy for selecting experiments:

Algorithm 4: Policy-Gradient Based Optimization batch selection
1 Initialize policy parameters ϕx for units and ϕt for treatments
2 for c = 1 to C do
3 Sample batch {(x, t)1:B} ∼ πϕ(X,T )
4 Calculate EIG({(x, t)1:B})
5 Update ϕx ← ϕx + αx∇ϕx

EIG({(x, t)1:B})
6 Update ϕt ← ϕt + αt∇ϕt

EIG({(x, t)1:B})
7 end
8 Sample final batch {(x∗, t∗)1:B} ∼ πϕ(X,T )

B.5 Expected Information Gain (EIG) Calculation

The Expected Information Gain is calculated using a Monte Carlo estimation:

EIG({(x, t)1:B}) ≈
1

M

M∑
m=1

log
p(ym|x, t, θm)

1
N

∑N
n=1 p(ym|x, t, θn)

(4)

where θm ∼ p(θ|D) are samples from the posterior distribution over model parameters, ym ∼
p(y|x, t, θm) are samples from the predictive distribution, and M and N are the number of Monte
Carlo samples used.

These algorithms form the core of our approach to efficient experimentation for estimating conditional
treatment effects. Each algorithm offers different trade-offs between computational complexity and
the quality of selected experiments, as discussed in the main text.

C Datasets

C.1 Synthetic Dataset

The synthetic dataset is designed to be suitable for both discrete and continuous treatments. We
develop a dose-response function based on the generalized dose response function introduced in
Taleb & West (2023).

The covariate x is generated from a normal distribution reflecting some underlying continuous
variable:

x ∼ N(70, 20)
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Treatments t are continuous and normally distributed:

t ∼ N(15, 5)

The outcome Y for each unit is computed through a response function that depends on both the
covariate x and treatment t. The function is defined as:

Y = min(f1, f2)

where
f1 =

1

1 + e−t+offset−5

f2 = − 2

1 + e(−t+offset+2)·3 + 1

and
offset =

x− 20

4

We standardize the covariates, treatments, and output to enable the model to learn the function more
easily.
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Figure 2: The dose response from which our datasets are constructed, visualized for 3 different
covariate values.

For the discrete version of this dataset, we simply choose two values for t, 10 and 20, and use the
above dose-response function.

C.2 IHDP Semi-Synthetic Dataset

The Infant Health and Development Program (IHDP) is a semi-synthetic dataset (Shalit et al., 2017)
commonly used in literature to study the performance of causal effect estimation methods. Each unit
is represented by 25 covariates describing different aspects of the infants and their mothers.

The covariate x is a normalized 25-dimensional feature vector derived from the IHDP dataset.
We produce a response function from it by projecting it into a 1-D space, using the parametric
Uniform Manifold Approximation and Projection (UMAP) Sainburg et al. (2020) algorithm. We then
normalize it to a normal distribution reflecting the following distribution:

x ∼ N(70, 20)

Treatments t are continuous and normally distributed:

t ∼ N(15, 5)
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The outcome Y for each unit is computed using the same response function as in the synthetic
dataset.

This semi-synthetic dataset uses high-dimensional covariates seen by the model, but the underlying
dose-response function is based on the 1-D projection.

C.3 TCGA Semi-Synthetic Dataset

The TCGA dataset consists of gene expression measurements for cancer patients (Cancer Genome
Atlas Research Network et al., 2013). There are 9659 samples for which we used the measurements
from the 4000 most variable genes. The gene expression data was log-normalized and each feature
was scaled in the [0, 1] interval. For each patient, the features were scaled to have norm 1. We used
the same version of the TCGA dataset as used by DRNet (Schwab et al., 2020).

The construction of this semi-synthetic dataset follows the construction of the IHDP Semi-Synthetic
Dataset, except for the parametric UMAP algorithm reducing the dimensionality of the covariates
from 4000 to 1, as an input to the dose-response function. Again, the model sees the high-dimensional
covariates.

D Training S-Learners

For all experiments, we use Deep Ensembles (Lakshminarayanan et al., 2017) as our model, which
can be seen as an approximate Bayesian inference method (Wilson & Izmailov, 2020). The specific
architectures and training details for each dataset are as follows:

D.1 Synthetic Dataset

• MLP with 2 hidden layers and 512 hidden units

• Optimizer: Adam, with a learning rate of 0.001

• Deep ensemble of 10 MLPs

• Trained for a maximum of 200 epochs per round

D.2 IHDP Dataset

• MLP with 2 hidden layers and 1024 hidden units

• Optimizer: Adam, with a learning rate of 0.001

• Deep ensemble of 10 MLPs

• Trained for a maximum of 200 epochs per round

D.3 TCGA Dataset

• MLP with 3 hidden layers and 1024 hidden units

• Optimizer: Adam, with a learning rate of 0.0005

• Deep ensemble of 10 MLPs

• Trained for a maximum of 200 epochs per round

E Policy-Gradient Hyperparameters

The policy-gradient method requires two additional hyperparameters: learning rates for variables that
describe the unit and treatment. We performed a simple sweep over the parameters and found that
learning rates of 0.01 and 0.001 for the unit and treatment, respectively, are relatively robust. We
optimize these parameters using Adam.
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F Compute Used

We used an internal cluster of 24 Nvidia Titan RTX cards for our experiments. The running time of
individual experiments was relatively short, typically less than 4 hours each. However, an attempt to
use the greedy algorithm on the TCGA dataset exceeded 14 hours before it was cancelled due to time
constraints.

In total, we estimate that across 4 datasets (synthetic discrete and continuous, IHDP, and TCGA),
4 methods, 3 acquisition sizes, and 10 seeds, approximately 480 experiments were conducted for
this paper. With an average running time of 2 hours, this amounts to approximately 960 GPU-hours,
along with associated CPU usage.

G Related Work

This section provides a more detailed overview of related work in the fields of Bayesian Optimisation,
Bayesian Optimal Experimental Design, Contextual Bandits, and Active Learning.

G.1 Bayesian Optimisation

Our setting is related to contextual Bayesian optimisation. Some of the more closely related methods
include Profile Expected Improvement (Ginsbourger et al., 2014), Multi-task Thompson Sampling
(Char et al., 2019), and conditional Bayesian optimization (Pearce et al., 2020). All of these
methods are, however, restricted to GPs and the criteria they use to choose optimal designs are not
information-based. Our work differs from this family of methods, in that we aim to estimate the
entire treatment-effect relationship, rather than merely the optimal treatment. Furthermore, Bayesian
Optimisation typically operates in the setting in which one can repeat experiments on the unit of
interest, whereas our work assumes that each unit can only be experimented on once.

G.2 Bayesian Optimal Experimental Design

Our objective of selecting units/treatments bears the greatest similarity to experimental design.
Experimental design aims to select the most informative experiments to conduct, given a limited
budget. The difference in setting between experimental design and our work is that experimental
design assumes that one can repeat experiments on the same unit, whereas our work assumes that
each unit can only be experimented on once. The most closely related to our EIG objective function
in the context of sequential experimental design is Ivanova et al. (2022). However, Ivanova et al.
(2022) are primarily interested in a secondary utility objective added in the EIG. Similar methods
for obtaining variational EIG objectives have been used in implicit likelihood BED methods for
parameter learning, but not for contextual optimisation. Gradient-based methods for large batch
experimentation include SG-BOED (Foster et al., 2020) and MINEBED (Kleinegesse & Gutmann,
2020), while the policy-based iDAD (Ivanova et al., 2021) applies to batch and adaptive settings. Our
ability to handle discrete designs is another important distinction of our framework.

G.3 Contextual Bandits

Contextual bandits is another broad framework that our work is related to. An extensive line of
research is focused on online linear bandits and discrete actions chosen using (variations of) UCB,
Thompson sampling or ϵ-greedy strategy (Auer, 2002; Chu et al., 2011; Agrawal & Goyal, 2013; Han
et al., 2020). Krause & Ong (2011) instead model the reward as a GP defined over the context-action
space and develop CGP-UCB. More recently, Zanette et al. (2021) proposed designing a batch of
experiments offline to collect a good dataset from which to learn a policy.

G.4 Active Learning

Deng et al. (2011) propose the use of Active Learning for recruiting patients to assign treatments
that will reduce the uncertainty of an Individual Treatment Effect model. They focused on a small
number of heterogeneous groups rather than individuals, with discrete treatments. As such, they
tackle their setting through multi-armed bandits. While their objective remains the same as ours, in
part our work could be seen as an extension of this work, with this work focusing on the individual
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Table 5: Comparison between various Adaptive Trial Methods and Active Learning.
Methods Non-replaceable Units High-Dimensional Covariates Discrete Treatments Continuous Treatments Batch Acquisition
Deng et al. (2011) ✓ ✓
Atan et al. (2019) ✓ ✓ ✓

Gal et al. (2017) ✓ ✓
Kirsch et al. (2019) ✓ ✓ ✓
Jesson et al. (2021) ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

level and operating in a setting with high-dimensional covariates. Atan et al. (2019) similarly focus
on small heterogeneous groups with discrete treatments, and propose using Knowledge-Gradients to
optimize the allocation process.

G.5 Comparison of Methods

Table 5 provides a comparison between various Adaptive Trial Methods and Active Learning ap-
proaches, highlighting the unique features of our proposed method.

As shown in Table 5, our framework is uniquely positioned to handle non-replaceable units, high-
dimensional covariates, both discrete and continuous treatments, and batch acquisition. This com-
bination of features allows our approach to be more flexible and applicable to a wider range of
experimental design scenarios compared to existing methods.
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