
Published in Transactions on Machine Learning Research (06/2025)

Spaced Scheduling for
Large Language Model Training

Amine El Hattami amine.elhattami@servicenow.com
ServiceNow Research, Mila, Polytechnique Montréal

Nicolas Chappados
ServiceNow Research

Christoper Pal
ServiceNow Research, Mila, Polytechnique Montréal, Canada CIFAR AI Chair

Reviewed on OpenReview: https: // openreview. net/ forum? id= p0KTYl2B9T

Abstract

Recent breakthroughs in deep learning have accelerated progress toward increasingly capa-
ble large language models (LLMs), even sparking discussions about the path to Artificial
General Intelligence (AGI). Yet, current LLM training pipelines continue to depend on
heuristics and human-driven empirical analysis to curate data. In practice, more sophisti-
cated data selection methods often incur high costs, exhibit limited adaptability, or do not
consistently surpass simple random baselines across various models and datasets. In this
work, we propose Spaced Scheduled Training (Sst), a novel adaptive data selection strategy
that prioritizes training examples based solely on per-example perplexity computed from
the model’s own evolving parameters. By obviating the need for external reference models,
Sst customizes data selection to the model’s unique characteristics, including its pre-training
data composition, and eliminates biases commonly introduced by these external models. Ex-
tensive experiments on seven LLMs (0.5B to 32B parameters) in the instruction-finetuning
(IFT) setting show that Sst consistently outperforms representative state-of-the-art selec-
tion approaches like Deita and InsTag on the Open LLM Leaderboard. For instance,
with Qwen2.5-32B and a 30k examples data budget, Sst achieved a 42.75% Open LLM
Leaderboard score, exceeding a leading data-selection baseline (38.56%) and the full-100k
dataset baseline (39.58%). We further present a theoretical framework to assess compu-
tational overhead of model-based selection methods, showing that Sst remains efficient in
practical scenarios, and propose strategies to mitigate the overhead in worst-case scenarios.
Our findings underscore the potential of model-informed dynamic data selection, offering
an efficient, adaptable, and cost-effective approach. We release our training code, trained
models, and data mixes in our public repository1.

1 Introduction

Recent advances in large language models (LLMs) have transformed natural language processing, enabling
breakthroughs in applications ranging from artificial agents to scientific discovery. While scaling the model
size and the training data has driven much of this progress, data quality is increasingly recognized as a
bottleneck, particularly when hardware and computational budgets constrain further scaling. Data selection
methods can be broadly categorized into two approaches: static and dynamic. Static approaches pre-select
data offline using heuristics or external “oracle” models. These methods often incur substantial computa-
tional cost, either from training specialized evaluation models (Liu et al., 2024; Lu et al., 2023) or from using

1https://github.com/Am1n3e/sst

1

https://openreview.net/forum?id=p0KTYl2B9T
https://github.com/Am1n3e/sst

Published in Transactions on Machine Learning Research (06/2025)

0 100 200 300 400
Training Iteration

34

36

38

40

42

A
ve

ra
ge

O
p

en
L

L
M

L
ea

d
er

b
oa

rd
S

co
re

Sst (ours)

Random Per-Dataset

InsTag

RhoLoss

Deita

Figure 1: Performance comparison on Qwen2.5-32B (30k instruction budget for 2 epochs). Sst significantly
outperforms a strong random baseline, competitive ChatGPT-based methods (InsTag, Deita) and another
adaptive method (Rho-Loss). Despite Qwen2.5-32B often being considered less sensitive to sampling ap-
proaches, Sst achieves higher Open LLM leaderboard2scores throughout training and displays lower variance
across four random seeds. The late-stage uptrend suggests further training may extend Sst’s lead. All meth-
ods draw 30k examples from the same 100k-instruction pool.

costly commercial LLMs for data scoring (Chen et al., 2024). Moreover, oracles can introduce biases in the
evaluation, such as the documented verbosity bias in ChatGPT (Saito et al., 2023). This bias is particularly
problematic when the same oracle is used for benchmarking, as is the case with MT-bench (Zheng et al.,
2023). While these methods can yield reasonable performance, they lack adaptability: the dataset remains
fixed regardless of the trained model’s characteristics (e.g., size, or pre-training data composition). Dynamic
approaches, in contrast, integrate data selection during training (Mindermann et al., 2022; Jiang et al., 2019;
Loshchilov & Hutter, 2015), which can, in principle, adapt the curation to the model’s evolving state. Yet
many of these techniques are expensive to run at scale or fail to provide consistent performance. For instance,
RHO-LOSS (Mindermann et al., 2022) requires training a proxy model, performing a forward pass on the
entire training dataset using this proxy model, and conducting additional forward passes for batch selection.
Further, studies have shown that many dynamic methods fail to consistently outperform simple random
selection baselines (Kaddour et al., 2023; Liu et al., 2024). As a result, recent works like Tülu 3 (Lambert
et al., 2024) still rely on heuristics and large-scale empirical analysis to refine data. Recent research high-
lights additional challenges in data selection, especially when dealing with diverse data sources. Determining
the optimal mixing ratio is difficult and depends on the specific model being trained. Further, relying on
external oracle models can introduce unintended biases, as they may overemphasize data that aligns well
with their own output. For instance, Deita (Liu et al., 2024) sampled a 6k-example subset from a 300k-
example pool comprising three sources (ShareGPT (Chiang et al., 2023), UltraChat (Cui et al., 2024), and
WizardLM (Xu et al., 2023)); however, this subset exclusively contained examples from ShareGPT. Recent
LLM pre-training work, such as Llama 3 (Dubey et al., 2024) suggests that adjusting mixing ratios multiple
times during training is beneficial. This observation highlights the importance of dynamic approaches and
reinforces the need for more adaptive methods.

To address these challenges, we propose a novel adaptive and efficient data selection strategy called Spaced
Scheduled Training (Sst) that dynamically adjusts the training dataset based on a model’s evolving learning
state. Unlike approaches that rely on external scoring models, Sst prioritizes training examples based on
per-example perplexity, a computationally efficient and reliable proxy for example difficulty. Our work builds
on prior work in static selection (Marion et al., 2023) but incorporates dynamic scheduling to continuously
adjust the dataset mix throughout training. Sst also differs from existing work in that it: (i) eliminates the
need for costly external oracle models; (ii) tailors selection to the target model’s unique characteristics (e.g.,
size and pre-training data composition), avoiding biases from external scoring models; and (iii) adapts the
dataset mix continuously through its “spaced scheduling” mechanism, allowing different models to emphasize
data that is most beneficial at each stage of training. We evaluate Sst across seven LLMs with sizes ranging
from 0.5B to 32B parameters from four distinct model families, including Llama 3.1 (Grattafiori et al.,
2024a), Llama 3.2 (Dubey et al., 2024), Gemma 2 (Team et al., 2024), and Qwen 2.5 (Yang et al., 2024). Our

2

Published in Transactions on Machine Learning Research (06/2025)

empirical analysis, using the recent Open LLM Leaderboard (Fourrier et al., 2024) demonstrates that Sst
delivers consistent performance across architectures and model sizes. As illustrated throughout training in
Figure 1, Sst outperforming all selection baselines, including those relying on ChatGPT-based selection (Liu
et al., 2024; Lu et al., 2023). Furthermore, we introduce a theoretical framework, grounded in LLM scaling
laws (Kaplan et al., 2020), to quantify the scaling of overhead for data selection methods, including Sst.
This framework allows for a more principled comparison of different approaches. Through this framework,
we show how inference-optimized backends allow Sst to maintain low computational overhead, enabling
large-scale use. We summarize our key contributions as follows:

• Novel Dynamic Data Selection Algorithm (Sst): We introduce Spaced Scheduled Training (Sst),
a novel approach that relies on per-example perplexity to prioritize training examples and dynamically
adjust the data mix throughout training (§ 4).

• Comprehensive Empirical Evaluation: We demonstrate Sst’s effectiveness in the IFT setting on
seven models (0.5B to 32B parameters). Sst outperforms all baselines on five out of seven models,
including the full 100k dataset baseline. On the remaining two models, Sst achieves average Open LLM
Leaderboard scores within 1.14 absolute points of those from the full 100k baseline (§ 5).

• Scalability and Theoretical Overhead Analysis: We introduce a framework, based on LLM scaling
laws research to analyze the overhead scaling of data selection methods, including Sst. We demonstrate
how to implement Sst efficiently for large-scale training (§ 4.2).

• Practical Insights for LLM Data Selection: We analyze perplexity-based signals to provide foun-
dational insights and guidelines for future work in data selection. Our findings show that perplexity
sampling is influenced by factors such as subset size and pre-training data composition. Furthermore, it
is beneficial to delay perplexity sampling until training stabilizes, and a dynamic policy for selecting data
leads to improved results (§ 3).

2 Related Work

Data selection plays a crucial role in training large language models (LLMs). It aims to prioritize informative
examples or remove non-useful or noisy data that might degrade performance. Data selection approaches fall
into two main categories: static and dynamic methods. This section reviews key research in data selection,
highlighting their strengths and limitations, and motivating our proposed Sst approach.

Static methods pre-select the training data offline, before training begins, independent of the specific
model being trained. Marion et al. (2023) proposed a static pruning method relying on perplexity (PPL)
scores computed with an external reference model. They demonstrated that PPL is more effective than
more complex metrics, such as Error L2-Norm (EL2N). By pruning examples with low PPL, they achieved
similar performance using only 30 % of the data. Sorscher et al. (2022) explored pruning in computer
vision, using proximity to the decision boundary as a difficulty measure in a teacher-student perceptron
setup. They showed that the examples chosen for pruning depend on the initial dataset size and identified
the conditions for aggressive pruning. They emphasized that the success of pruning methods relies on the
quality of the pruning metric, noting that most metrics they tested are costly to compute, making them
impractical for large-scale use. Sachdeva et al. (2024) explored pruning for pre-training T5 models (Raffel
et al., 2020), introducing two scoring methods: (1) Density, which estimates whether similar examples
have been sampled, and tries to maximize coverage; (2) Ask-LLM evaluates example quality by prompting
an instruction-tuned LLM (FLAN-T5; see Chung et al. (2022)) to predict whether it contains informative
signals (a yes/no question). The study demonstrated that Density performs comparably to using the full
dataset. In contrast, Ask-LLM outperforms full-data training by rejecting 90 % of the data and converging
70 % faster. Recent instruction fine-tuning (IFT) work leverages state-of-the-art commercial models to score
and select examples (Chen et al., 2024; Liu et al., 2024; Zhao et al., 2023; Xu et al., 2023). AlpaGasus Chen
et al. (2024) uses ChatGPT with a handcrafted prompt to predict scores from 0 to 5, pruning the examples
below a certain threshold. Deita (Liu et al., 2024), building on Xu et al. (2023), adds diversity as a selection
criterion and proposes a two-level scoring system: Evolve Complexity c and Evolve Quality q, to compute
a single score s = c × q. Initially, ChatGPT is used for scoring, but Liu et al. (2024) later trains a model
to replicate ChatGPT’s scoring, substantially reducing the cost. Deita shows that a mere 10,000 examples
can outperform models trained on ten times as many. Similarly, InsTag (Lu et al., 2023) uses intention

3

Published in Transactions on Machine Learning Research (06/2025)

tags as metrics for instruction diversity and complexity. It utilizes ChatGPT to assign one or more tags to
each instruction example. To ensure high-quality tags, the tags are normalized using frequency filtering and
aggregation (e.g., semantic aggregation). InsTag prioritizes complex queries with the highest number of tags,
while maintaining diversity by selecting examples that expand tag coverage. To reduce the computational
cost of tag assignment, the authors created InsTagger, a distilled LLM that mimics ChatGPT annotation
capabilities. We compare our approach with Deita and InsTag in our experimental work.

Model-based static approaches currently produce the best results. However, despite reducing manual effort
associated with empirical approaches which involve extensive human intervention, they often incur high
computational costs. When training specialized evaluation models, the cost of these models can be offset
by repeated use, but this advantage diminishes in practice. For instance, Deita (Liu et al., 2024) requires
training two specialized scoring models that have a maximum sequence length of 2,048; handling longer
sequences requires re-training a new evaluation model. API-based methods, like AlpaGasus (Chen et al.,
2024), are susceptible to prompt design issues and biases such as the verbosity bias inherent in GPT mod-
els (Saito et al., 2023), leading to imbalanced data selection, as illustrated by the over-representation of
a single source dataset in Deita’s curated 6k examples subset containing 100% of the examples from the
ShareGPT dataset. These issues are particularly problematic when the same models are used for both data
curation and benchmarking (e.g., MT-bench; Zheng et al. (2023)) as performance can be artificially inflated.
Beyond computational overhead, static dataset selection methods suffer from a fundamental limitation: they
fail to account for the model’s unique pre-training data composition. For instance, if a model is pre-trained
on 70% code-related data, an effective selection strategy would need to down-weight code-related tasks. This
also applies to the data complexity categorization, where an example requiring a 10-step chain-of-thought
reasoning process may be considered easy for a 70B model but intractable for a 1B model.

Dynamic methods integrate data refinement directly into the training process. For instance, online batch
selection aims to optimize training by selecting examples for each batch, often by scoring and ranking a
large batch to select the top-k examples (Loshchilov & Hutter, 2015). Jiang et al. (2019) proposed Selective-
Backprop, which prioritizes examples with high loss. However, Mindermann et al. (2022) challenged this
approach, arguing that high-loss examples can be noisy or mislabeled. They introduced the Reducible
Holdout loss selection (RHO-LOSS) (Mindermann et al., 2022) which reduces the impact of noisy data by
weighting down their losses. RHO-LOSS uses a proxy model trained on a holdout set to select examples
that minimize the holdout loss by approximating the reducible holdout loss objective. While RHO-LOSS
improved accuracy and training speed, it incurs significant overhead due to the cost of training the proxy
model, a forward pass on the entire training data using the proxy model, and the additional forward passes
for the batch selection. Dynamic methods attempt to overcome the rigidity of static approaches by selecting
data during training. However, despite their adaptability, these methods often fall short of state-of-the-art
static model-based approaches. For instance, Kaddour et al. (2023), found that RHO-LOSS (Mindermann
et al., 2022) fails to outperform simple random selection baselines consistently. Moreover, dynamic methods
also suffer from algorithmic complexity that prohibits their use at scale. The aforementioned overhead of
RHO-LOSS, for example, makes it impractical at scale.

In both categories, when the initial data pool contains multiple sources or categories, determining the opti-
mal mix ratio creates an additional complexity for any data selection method. Finding the optimal mixture
remains underexplored and currently relies heavily on heuristics and extensive empirical analysis to select
the mixing ratio. Further, recent work in Llama models (Dubey et al., 2024) shows that adjusting the mix
ratio multiple times during pre-training can be beneficial, as it enables the model to better adapt to its
evolving needs. The shortcomings discussed above underscore the necessity for an adaptive data selection
strategy that dynamically tailors the training data to the evolving needs of the model while preserving com-
putational efficiency at scale, forming the foundation for our proposed method, Spaced Scheduled Training
(Sst), detailed in §4. Sst leverages the target model itself to guide the data selection process. By elim-
inating the need for costly external models, Sst adapts both data categorization and selection criteria to
the characteristics of the trained model. Our approach uses per-example perplexity as a computationally
efficient and reliable proxy for example difficulty, a premise we rigorously examine in §3 and Appendix D,
with its overhead further analyzed in §4.2. By extending the static selection method of Marion et al. (2023)
with a dynamic mechanism that continuously adjusts the dataset mix throughout training, Sst overcomes

4

Published in Transactions on Machine Learning Research (06/2025)

the limitations of previous methods and better aligns the training data with the model’s evolving state.
These improvements enable Sst to outperform the best existing methods (InsTag and Deita) and even
baselines utilizing significantly more training data, as shown in §5.

3 Preliminary Analysis

This section presents the key findings of our preliminary analysis of perplexity-based data selection in the
IFT setting. These insights motivate and lay the groundwork for our proposed adaptive method in §4.

We analyze perplexity-based data selection within the Instruction Fine-Tuning (IFT) setting, extending the
approach of Marion et al. (2023) with several key distinctions. IFT Setting: We investigate perplexity-
based data selection in the context of IFT rather than pre-training. Target Model as Reference: Unlike
approaches using external models, we use the target model itself to guide the selection of its training data.
Broad Analysis Scope: We evaluated models ranging from 0.5B to 32B parameters across state-of-the-
art architectures (Llama3.1 (Grattafiori et al., 2024a), Llama3.2 (Grattafiori et al., 2024a), Qwen2.5 (Yang
et al., 2024), and Gemma2 (Team et al., 2024)), offering a significantly broader evaluation than the two
models used in Marion et al. (2023), totaling 248 training runs across different sampling settings and seeds.
We compare static perplexity-based sampling and random selection (using 10%, 30%, and 50% of a pool of
100,000 examples) against a baseline trained on the full dataset, with performance measured using the Open
LLM Leaderboard benchmarks. We sample from a dataset collection D = {Di} where Di is an instruction
dataset. The collection consists of 15 datasets from the Tülu 3 mixture (Lambert et al., 2024). We compute
the per-example perplexity values PPL(e) on the target tokens only, to align with the IFT setting as follows:

PPL(e) = exp
(

1
|e|
∑
tj∈e

NLL(tj)
)

= exp(Le), (1)

where NLL(tj) denotes the negative log likelihood of output token tj , and Le is the target loss of the example
e. Detailed experimental settings and further analysis are provided in Appendix D. The key findings of our
analysis are threefold. First, heuristic-based curation is not sufficient: as illustrated in Figure 2,
simple random sampling can sometimes outperform training on all 100,000 examples, suggesting that even
a carefully curated data mix (Lambert et al., 2024) contains redundant or less beneficial examples.

0.5 1 14 273 328 9

-30%
-25%
-20%
-15%
-10%
-5%
0%
5%

10%
15%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Random Per-Dataset

0.5 1 14 273 328 9

Keep Bottom Per-Dataset

0.5 1 14 273 328 9

Keep Middle Per-Dataset

0.5 1 14 273 328 9

Keep Top Per-Dataset

Subset Size
10k
30k
50k

Model Size (B)Model Size (B)Model Size (B)Model Size (B)

Figure 2: Performance of static per-dataset perplexity sampling: Middle-segment tends to improve smaller
models (<8B), while top-segment benefits larger models (e.g., Qwen2.5-32B). Only certain static perplexity-
based configurations surpass the baselines, motivating the adaptive approach we introduce later. Relative
performance change ∆R is calculated as ∆R = (Smethod − Sbaseline)/Sbaseline (Equation 7), where Smethod
and Sbaseline are the average Open LLM Leaderboard score of the method and 100% baseline. Points below
the red dashed line indicate performance drops compared to baseline. Error bars represent standard error
over two seeds. Detailed experimental setup is provided in Appendix D.

Second, the best-performing perplexity sampling criteria vary with model size and subset size:
smaller models (< 8B) tend to benefit from “middle” perplexity ranges, while larger models (> 14B) often

5

Published in Transactions on Machine Learning Research (06/2025)

gain more from high-perplexity examples (Figure 2). Further, this criterion varies with subset size. Figure 2
shows that using examples from the bottom segment is not beneficial across models. When selecting a large
subset (e.g., 50% of the data) for a model that typically benefits from mid-perplexity examples, choosing
these examples predominantly from the top perplexity segment can be more advantageous than attempting
to draw such a large fraction from only the middle segment. The latter approach could incorporate too
many low-perplexity (easy) examples from the broadened middle segment, thereby negatively impacting
performance. This trade-off also applies when selecting a smaller subset, such as 10% of the examples.
Finally, aligning data complexity with training progress proves beneficial. As shown in Figure 3,
different perplexity segments are most useful at various training stages, where the models benefit from
beginning with easier examples and then transitioning to more challenging ones, which mirrors curriculum
learning principles (Bengio et al., 2009). Further, we found it beneficial to start training with randomly
selected data per dataset until a set training iteration threshold is reached. After this point, we compute the
perplexity values once and initiate perplexity sampling. This delay ensures that perplexity sampling starts
after the model’s data shift adaptation in early training, ensuring that the sampling uses more meaningful
perplexity values. As shown in Figure 4, the delay varies across models and decreases as model size increases,
and delaying beyond this threshold harms performance due to changes in the perplexity distribution, as we
describe in more detail in Appendix D.3.

0% 25% 50% 75% 100%
0%

20%

40%

60%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Keep Bottom Per-Dataset
Keep Middle Per-Dataset

Llama3.1-8BLlama3.1-8B

0% 25% 50% 75% 100%

Keep Top Per-Dataset
Keep Middle Per-Dataset

Qwen2.5-32BQwen2.5-32B

Train Iteration Fraction of a 2 Epoch Training (%)

Figure 3: Performance comparison of static perplexity segments during training for Llama3.1-8B (left)
and Qwen2.5-32B (right). Models benefit from starting with easier examples (lower perplexity) before
transitioning to harder ones (higher perplexity), motivating dynamic selection strategies akin to curriculum
learning (Bengio et al., 2009). The figure displays the best-performing and second-best performing static
configurations identified for each model (Appendix D). Performance is measured as relative change ∆R
(Equation 7) of Open LLM Leaderboard mean scores compared to the base pre-trained model. Standard
error over two seeds shown.

0% 15% 25% 50% 75%

-20%

-10%

0%

10%

20%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Qwen2.5-0.5B

0% 15% 25% 50% 75%

Llama3.1-8B

0% 15% 25% 50% 75%

Qwen2.5-32B

Perplexity Sampling Start Iteration (%)

Figure 4: Effect of delaying static perplexity-based data selection. Delaying perplexity sampling improves
performance up to a threshold that varies by model and generally decreases with model size. Smaller models
(e.g., Qwen2.5-0.5B) benefit from a longer delay (25% of training), while larger models (e.g., Qwen2.5-32B)
degrade as early as 10%. ∆R (Equation 7) is the relative performance change percentage compared to using
no delay (using the pre-trained model for data selection). Results show mean scores and standard error
across two runs with different random seeds.

Together, these results motivate our dynamic data selection strategy that delays perplexity sampling until
the model starts producing meaningful and reliable perplexity values and refines which perplexity segments

6

Published in Transactions on Machine Learning Research (06/2025)

are most beneficial as training progresses, rather than relying on a single static approach. Taken together,
these preliminary findings highlight the limitations of static perplexity-based selection methods, emphasizing
that no single static strategy consistently benefits all models across training stages. Smaller models benefit
from different perplexity segments compared to larger models, and the optimal choice varies dynamically
during training. Furthermore, delaying perplexity-based selection until models stabilize yields significant
performance improvements, underscoring the need for an adaptive approach. Motivated by these observa-
tions, we propose Spaced Scheduled Training (Sst) (§4) to mitigate the limitations of static perplexity-based
selection methods.

4 Spaced Scheduled Training

We propose Spaced Scheduled Training (Sst), an efficient and adaptive method for selecting and scheduling
training examples based on their perplexity. Sst, as shown in Figure 5, builds on insights presented in
§3, where we demonstrate that static selection strategies often fail to deliver consistent improvements. In
contrast, Sst provides a dynamic approach to perplexity-based data selection, tailoring this selection to
the characteristics of the target model (i.e., the model being trained), such as its size and its unique—
and often obscure—pre-training configuration. Sst utilizes dataset-aware selection, unlike methods such as
Deita (Liu et al., 2024) or InsTag (Lu et al., 2023), which disregard implicit dataset categorizations during
the selection process. By focusing on examples most likely to improve the model’s learning, Sst enhances
performance while optimizing resource utilization. It consistently outperforms static and heuristic-based
methods, offering a scalable and practical solution for efficient data selection. Moreover, Sst avoids reliance
on external reference models that are costly or have restrictive data licenses (e.g., ChatGPT), additional
scoring models that become outdated (Lu et al., 2023; Liu et al., 2024), or complex selection techniques that
are impractical at scale (Mindermann et al., 2022; Liu et al., 2024), making it easily adaptable to existing
training pipelines.

...

(a) Initial selection window

Dataset Collection Sampled Collection

Train

Target Model

...

(b) Selection window shifts left
(towards easier examples)

...

(c) Selection window shifts right
(towards harder examples)

...

Loss increasing Loss decreasing

Figure 5: A visualization of the adaptive phase of our Sst algorithm, using a dataset collection D = {Dd},
composed of d = 1 . . . n datasets. (a) Sst initializes the reference perplexity percentiles P ref

d for each dataset
Dd to the 50th percentile. It then selects the initial collection D′ based on the initial dataset ratios βd, such
that the total size of D′ is ρs|D|. Then, Sst trains the model on D′ and monitors the loss curve. (b) If the
loss increases significantly, the selection window shifts toward easier examples (bottom segment), suggesting
that the current data configuration is too difficult for the model’s current state. (c) If the loss decreases
significantly, indicating that the target model can learn from more complex examples, Sst shifts the selection
window toward harder examples (top segment). If the loss curve is stable, Sst continues training without
changes. At each shift, Sst adjusts the dataset ratios using βd (Equation 2), prioritizing datasets with higher
PPLp50(d) values. This process continues until the end of training.

7

Published in Transactions on Machine Learning Research (06/2025)

4.1 Method

Sst dynamically selects and schedules training examples at each stage of training, using per-example per-
plexity as a measure of example utility. Sst operates on two levels: (1) adjusting dataset ratios to prioritize
datasets and (2) filtering examples to focus on the most impactful training examples within each dataset.
This dual-level approach allows Sst to continuously optimize the training process, enhancing convergence
speed and improving generalization for the target model. The algorithm consists of two main phases: a
warm-up phase and an adaptive scheduling phase, as shown in Algorithm 1.

Algorithm 1 Spaced Scheduled Training (Sst) (full version in Algorithm 2).
Require: θ: initial model parameters; D = {D1, . . . , Dd}: collection of d datasets; tmax: maximum training iterations; kw ∈ (0, 1]:

warm-up slope window ratio; rw: maximum warm-up slope evaluation retry count. ρs ∈ (0, 1]: global subset ratio; τ ∈ (0, 1]:
window-shift ratio; ε > 0: slope threshold for loss slope evaluation;

Ensure: Updated model parameters θ.
1: Warm-up phase
2: θ, tw ←WarmUp(θ,D, tmax, rw, kw)

3: Adaptive Scheduling Phase
4: k ← tw/tmax
5: P ← ComputePPL(θtw ,D) ▷ Compute per-example perplexities PPL(e) for each example e ∈ D
6: Compute βd for each dataset Dd using Equation 2
7: P

ref
d ← 50 for each dataset Dd ▷ Initialize window reference to the 50th percentile

8: D′ ← SelectPerDatasetSubset(D, ρs, βd, P ref
d)

9: Initialize loss buffer Lbuf ← [] (capacity ⌊k · tmax⌋)
10: ▷ Main training loop
11: for t = tw + 1 to tmax do
12: θ, LB , P ← TrainStep

(
θ, SampleBatch(D′)

)
▷ Train model on a batch, and update batch perplexities

13: Append LB to Lbuf
14: if |Lbuf| = ⌊k · tmax⌋ then
15: slope← ComputeSlope(Lbuf) ▷ e.g., via simple linear regression
16: Clear Lbuf
17: ▷ 1- Recompute dataset mixing ratios
18: Update βd for each dataset Dd using Equation 2
19: ▷ 2- Decide if window shifts to harder or easier examples
20: if slope < −ε then
21: P ref

d ← min
(

P ref
d × (1 + τ), 100− βd×100

2

)
▷ Loss is decreasing, shift to more complex examples

22: else if slope > ε then
23: P ref

d ← max
(

P ref
d × (1− τ),

βd×100
2

)
▷ Loss is increasing, shift to easier examples

24: else
25: no change to P ref

d ▷ Loss is stable, keep the current window
26: end if
27: ▷ 3- Select updated subset based on new mixing ratios and reference perplexity percentiles
28: D′ ← SelectPerDatasetSubset(D, ρs, βd, P ref

d)
29: end if
30: end for
31: return θ ▷ Final trained model parameters

Table 1: Overview of SST-specific hyperparameters used during the warm-up phase. Values are based on
empirical observations (§3). Generic hyperparameters (e.g., tmax or ρs) common to data filtering methods
are omitted.

Description Value

kw Warm-up slope evaluation window size (fraction of tmax). Used to detect early loss trend stabilization. 0.1
rw Warm-up maximum retry count for slope evaluation. Safeguard to prevent an overly long warm-up phase. 3
ε Slope evaluation threshold. Ensures robustness to minor fluctuations. 10−3

τ Selection window adjustment factor. Controls the magnitude of the selection window shift. 0.1

Warm-up phase: The warm-up phase stabilizes training dynamics and ensures the model generates mean-
ingful perplexity values before transitioning to adaptive scheduling. During this phase, the model trains
on uniformly sampled data across all datasets, while Sst monitors the training loss curve using a rolling
window of size kw · tmax, where tmax is the maximum training iterations and kw ∈ (0, 1] is a hyperparameter
controlling the window’s proportion relative to the training duration. The warm-up ends when one of the
following conditions is met: (1) the loss curve stabilizes, indicated by a nearly constant slope after the initial
sharp decline in loss typical of early training; (2) a maximum retry count rw is reached, which acts as a

8

Published in Transactions on Machine Learning Research (06/2025)

safeguard to limit the duration of the warm-up phase. The hyperparameter rw is particularly useful for
smaller models (fewer than 8B parameters), as they may not exhibit a clearly identifiable loss stabilization
point. Choosing appropriate values for kw and rw is critical: kw should allow sufficient iterations to detect
changes in the loss trend, while rw prevents the warm-up from taking a significant proportion of the overall
training, reducing the benefits of Sst. Based on empirical observations (§3), we found setting kw ≤ 0.25
and rw so that the warm-up phase takes no more than 30% of the total training duration to be effective.
In our experimentation, we set kw = 0.1 and rw = 3. This phase helps Sst converge more rapidly toward
a better selection window by deferring the start of adaptive scheduling until the model produces reliable
perplexity values, which might otherwise be unstable during early training due to data distribution shifts or
chat template adaptation in IFT.

Adaptive Scheduling Phase: Sst performs the following during its adaptive scheduling phase: (1) Com-
pute the example perplexity values PPL(e) (Equation 1) across the entire dataset collection D a single time.
(2) Compute the dataset mix ratios βd. For each dataset d ∈ D, the ratio is given by:

βd = ρs × PPLp50(d)∑
d′∈D PPLp50(d′) , (2)

where PPLp50(d) is the 50th percentile (median) of the perplexity distribution of dataset d, and ρs is the
global subset ratio. These ratios satisfy

∑
d∈D βd = ρs and are used to form the initial dataset collection

D′ for training, prioritizing datasets with higher median perplexity values. During training, the PPLp50(d)
values are efficiently updated using examples from the current batch, avoiding additional forward passes.
The updated values adjust the dataset ratios βd, increasing the proportion of datasets with higher PPLp50(d)
and thereby shifting Sst’s focus towards more challenging tasks. (3) Define selection window parameters and
initialize reference percentiles. For each dataset Dd in the collection D, the reference perplexity percentile,
P ref

d , is initialized to the 50th percentile. This P ref
d denotes the center of the dynamic selection window for

Dd. The width of this selection window, in percentile points of that dataset’s perplexity distribution, is
given by Wd = βd × 100. Consequently, Sst selects examples from Dd whose perplexities fall within the
percentile range [P ref

d − Wd/2, P ref
d + Wd/2]. During training, P ref

d is adaptively modified. It is constrained
by the bounds [Wd/2, 100 − Wd/2] (i.e., [βd×100

2 , 100 − βd×100
2]) to ensure the selection window remains

entirely within the 0–100th percentile range. This initialization strategy ensures that, at the beginning of
the adaptive phase, the selection window focuses on the median difficulty examples within each dataset
before any dynamic adjustments are made based on the training loss. (4) Set k = tw/tmax, where tw is
the actual number of iterations completed during the warm-up phase. This value k determines the rolling
window size (k ·tmax iterations) for monitoring the loss curve during the adaptive scheduling phase. (5) Select
a subset collection D′ from D using βd and the reference perplexity percentiles P ref

d . The main training loop
runs for the remaining tmax − tw iterations, ensuring that the total number of training iterations is tmax,
which also allows for a fair comparison with other methods and baselines. During this loop, Sst tracks the
training loss using a rolling window of size k · tmax and updates the perplexity values of the examples in the
current batch. Then, at every k · tmax steps, Sst carries out: (1) Recalculate βd (Equation 2). (2) Adjust the
selection window based on the slope of the training loss curve. If the slope is negative (indicating decreasing
loss), the current data configuration is likely not challenging enough. In this case, Sst updates P ref

d by
multiplying it by (1 + τ) (subject to the upper bound), shifting focus to harder examples. Conversely, if
the slope is positive (indicating increasing loss), Sst updates P ref

d by multiplying it by (1 − τ) (subject to
the lower bound), shifting focus to easier examples. Otherwise, Sst continues training without making any
changes. (3) When P ref

d and βd change, Sst samples D′ using the updated values. When evaluating the
slope, Sst uses a small ε = 10−3 to account for numerical instability. Further, Sst caps P ref

d to ensure
it remains within valid ranges. The value τ balances adaptability and stability. It is similar to a learning
rate in optimization algorithms, controlling the rate of change in the selection window. In our experiments,
we find τ = 0.1 effective. We use a weighted sampler to dynamically prune examples by assigning their
weight to 0. This approach enables the efficient exclusion and reintegration of examples into the training
pool without incurring additional overhead from data loading. We present the Spaced Scheduled Training
(Sst) algorithm, providing a simplified overview in Algorithm 1 and the complete version in Algorithm 2.
Key hyperparameters are listed in Table 1, and Table 5 summarizes the notations used throughout the
description.

9

Published in Transactions on Machine Learning Research (06/2025)

4.2 Overhead Analysis and Mitigation

As with any model-based data selection method, Sst introduces a computational overhead required to score
the data. This overhead is often a concern in practice, especially at scale, as it can diminish a method’s
real-world usefulness. Training time alone is an insufficient metric for comparing overhead across methods
because it depends on specific hardware and implementation details and may not fully capture scaling
behavior related to the cost of scoring examples. Here, we propose a theoretical framework based on LLM
scaling laws (Kaplan et al., 2020) to quantify the scaling of the overhead with the data and model sizes as a
principled way to compare model-based data selection methods, and provide time measurements to provide
a practical guideline for using Sst.

Following (Kaplan et al., 2020), given a dataset D, the computational cost C(Πrand) of training a model
under a random sampling policy Πrand for N epochs can be approximated as

C(Πrand) ≈ N · |D| · (Cforward + Cbackward) ≈ N · |D| · 3 Cforward, where Cbackward ≈ 2 Cforward, (3)

with Cforward and Cbackward being respectively the computational costs of a single forward and backward pass.
Next, consider a model-based data selection method Πselect requiring a single forward pass to evaluate the
data for filtering (e.g., static pruning or Sst). Its training cost C(Πselect) can be written as:

C(Πselect) ≈
(
|D| · C′forward + C′misc

)︸ ︷︷ ︸
selection cost

+
(
ρs N · |D| · 3 Cforward

)︸ ︷︷ ︸
training cost on filtered data

≈ C′(Πselect) + ρs C(Πrand), (4)

where ρs ∈ [0, 1) is the subset ratio, C′forward is the forward-pass cost of the reference model used for evaluation,
C′misc covers any additional overhead such as adjusting selection windows when using Sst, and C′(Πselect)
is the overhead cost when using a model-based method Πselect. A data selection method is considered
computationally efficient if its overhead (the first term in Equation 4) is offset by the reduced training cost
from using only ρs|D| examples. Contrasting Equations 3 and 4, we conclude that Πselect is efficient if
C(Πselect) ≤ C(Πrand). Therefore, Sst is computationally efficient provided that

C′(Πselect) + ρs C(Πrand) ≤ C(Πrand) ⇐⇒ ρs ≤ 1 − 1
3N

with C′misc ≈ 0. (5)

Sst uses the same model for reference and training, so C′forward = Cforward. For simplicity, we assume
C′misc ≈ 0. This is because the miscellaneous costs (e.g., calculating the loss slope, updating dataset ratios
βd) are typically negligible compared to the cost of the initial perplexity computation for the entire dataset
(|D| · C ′forward). Equation 5 also incorporates the warm-up phase (§ 4) (cf. Algorithm 2). Under these
assumptions, we choose ρs = 0.3 for the experiments in § 5, comfortably satisfying Equation 5 for N = 2,
ensuring Sst is computationally efficient. In Sst, the selection cost C′(ΠSST) representing the overhead of
the method, scales with the target model size, unlike methods relying on a constant-sized reference model
(Πconst), such as InsTag (Lu et al., 2023), where the selection cost C′(Πconst) is constant regardless of the
target model size. To mitigate this overhead, inference-optimized frameworks can be used to accelerate
perplexity computation.

To evaluate the potential speedup, we experimented with vLLM (Kwon et al., 2023) which provides a 1.8×
to 2.7× speedup with Bfloat16, and further speedups with 8-bit or 4-bit quantization using model sizes
from 0.5B to 32B and contrasted the speedup with InsTag using an 8B reference model using the ratio
C′(ΠSST)/C′(ΠInsTag). Since the downstream performance is likely to be affected when using lower precision,
we also evaluate the performance using the evaluation setup described in §3 and contrasted each with the
performance when using Bfloat16 precision without vLLM. We provide the details of the experimental setup
in Appendix C.2. The results of this study in Figure 6 show that using an optimized inference framework
like vLLM is able to offset the overhead introduced by Sst at larger model sizes. Specifically, we observe
that when C′(ΠSST)/C′(ΠInsTag) ≥ 1 it becomes beneficial to use vLLM with 8-bit precision (Sst+ vLLM
8-bit) as it balances the overhead and performance trade-off. In contrast, using 4-bit precision (Sst+ vLLM
4-bit) introduces a non-negligible performance degradation. The main experimental results use a baseline
environment (no vLLM) for fairness since some of the performance speedup in vLLM are highly dependent
on the hardware configuration, but Figure 6 is an additional ablation.

10

Published in Transactions on Machine Learning Research (06/2025)

0.5B 3B 7B 14B 32B
Model Size (B) (log scale)

0

1

2

3

4
Se

le
ct

io
n

C
os

t R
el

at
iv

e
to

 In
sT

ag
InsTag (Reference)
SST Bf16
SST + vLLM Bf16
SST + vLLM 8-bit
SST + vLLM 4-bit

0.5B 3B 7B 14B 32B
Model Size (B) (log scale)

0

1.25

0.94

0.78

Pe
rf

or
m

an
ce

 R
el

at
iv

e
to

 In
sT

ag

Figure 6: Overhead and performance analysis of Sst using vLLM with different floating-point precisions
Sst compared to InsTag using a fixed 8B parameters reference model: Sst introduces significantly lower
overhead for models smaller than 8B parameters even without vLLM (green region). For larger models
(orange region), vLLM effectively offsets Sst’s overhead, with 8-bit precision (in red) providing the best
balance between overhead reduction and performance retention. (Left) Shows the scaling of the selection
cost ratio (C′(ΠSST)/C′(ΠInsTag), defined above) with the model size. (Right) Shows the performance ratio
of Sst with vLLM at different precision levels relative to InsTag.

Finally, we compare wall-clock times for training with and without Sst across three runs on three different
model sizes (Appendix C). For instance, training the Qwen2.5-32B model on 100k examples takes about
36 hours, whereas using Sst to evaluate the 100k then train on only 30k examples takes about 17 hours.
This 17-hour runtime includes approximately 34% overhead from Sst. Yet, it still cuts total training time
by approximately 50% compared to the 36-hour baseline. These figures provide a rough estimate of the
overhead introduced by Sst in practice. Moreover, the overhead is acceptable when ρs satisfies the condition
in Equation 5 and the performance Q(θΠSST

) is either significantly better than Q(θΠrand
) (as shown in

§5) or remains comparable if compute resources are limited. In addition to the computational overhead,
Sst requires storage for perplexity values over the dataset, i.e. O(|D|). In our experimental setup (100k
examples, Bfloat16 precision), this memory footprint is under 0.2MB.

5 Experiments

This section outlines the experimental design used to evaluate Sst’s effectiveness in the IFT setting. We de-
scribe the experimental setup (§5.1), present the results and discussion (§5.2), and conclude with limitations
(§5.3).

5.1 Experimental Setup

We use the data, training settings, and evaluation procedures described in §3, consistent with the method-
ology of Lambert et al. (2024) (see Appendix A for details). Each method selects 30k examples from a 100k
data pool, as our findings in §3 indicate that this subset is sufficient to match the performance of using the full
dataset. We compare our method to Deita and InsTag, the current best-performing methods. We exclude
methods like AlpaGasus, which require commercial models that prohibit rigorous experimentation due to
cost constraints. Additionally, we do not compare against dynamic methods, as prior work (Liu et al., 2024;
Lu et al., 2023; Kaddour et al., 2023) demonstrated that LLM-based static methods outperform existing
dynamic methods in the IFT setting explored here. To ensure fairness, we restrict the pool to examples with
fewer than 2048 tokens, as Deita and InsTag baselines rely on external tagging models with this token
limit. We compare our method (Sst30k) against: (1) Uniform30k, which samples data uniformly across
the dataset; (2) InsTag30k, which uses the instruction-tagging method of Lu et al. (2023); (3) Deita30k,
which follows Liu et al. (2024) with complexity and quality scoring, and embedding-based diversity selection;
(4) Rho-Loss30k, which follows Mindermann et al. (2022); (5) Full100k, which uses the entire pool without
selection. For Sst30k, we set rw = 3, ρs = 0.3, τ = 0.1, and kw = 0.1 in all experiments, and compute
perplexity only on target tokens to align with the IFT setting. For InsTag30k and Deita30k, we use the

11

Published in Transactions on Machine Learning Research (06/2025)

Table 2: Performance comparison of Sst30k with baseline methods across various model sizes and bench-
marks. Results demonstrate that Sst consistently outperforms baseline methods, including those using
significantly more training data (Full100k), in most scenarios. Notably, Sst achieves superior performance
on larger models (e.g., Qwen2.5-32B) and challenging benchmarks (e.g., MMLU-PRO), while maintaining
competitive results on smaller models and diverse tasks.

Method Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Qwen2.5-32B

Full100k 39.58 34.67 73.9 48.03 16.33 16.52 48.06
Uniform30k 40.84 35.8 74.02 49.24 19.35 19.14 47.51
InsTag30k 38.21 35.42 70.01 46.51 17.11 15.43 44.74
Deita30k 36.49 34.44 71.78 48.29 9.06 20.7 34.67
Rho-Loss30k 38.56 30.31 72.10 48.03 16.00 16.93 48.00
Sst30k (ours) 42.75 36.1 75.03 53.25 18.46 24.79 48.85

G2-27b

Full100k 32.34 21.68 72.26 32.18 11.41 16.84 39.68
Uniform30k 30.63 19.86 70.16 28.8 12.08 15.24 37.63
InsTag30k 31.24 22.66 68.01 31.38 10.63 17.77 36.98
Deita30k 32.07 23.11 71.93 35.97 8.5 16.78 36.11
Rho-Loss30k 27.48 20.45 67.93 26.89 4.50 12.47 32.66
Sst30k (ours) 32.89 20.92 70.28 34.28 12.64 19.66 39.55

G2-9b

Full100k 28.43 15.26 66.74 29.52 8.95 18.58 31.56
Uniform30k 28.85 11.93 65.36 30.8 9.96 21.56 33.47
InsTag30k 28.58 12.39 66.97 29.14 10.85 17.59 34.54
Deita30k 28.08 14.27 67.58 28.3 8.95 17.26 32.11
Rho-Loss30k 26.79 13.00 64.11 26.56 10.41 14.42 32.22
Sst30k (ours) 29.17 11.48 66.39 30.5 10.29 23.33 33.02

Llama3.1-8B

Full100k 23.59 5.44 62.41 23.39 4.81 15.97 29.53
Uniform30k 21.11 5.29 61.85 21.8 5.7 15.32 16.71
InsTag30k 21.61 5.06 55.54 24.75 4.81 14.31 25.2
Deita30k 18.02 4.91 59.27 20.77 0.0 9.0 14.15
Rho-Loss30k 19.77 4.76 48.89 22.93 4.60 14.17 23.27
Sst30k (ours) 22.45 4.53 59.28 23.84 4.25 14.63 28.19

Llama3.2-3B

Full100k 14.88 1.44 46.93 15.58 2.01 6.5 16.8
Uniform30k 15.52 1.89 49.95 14.33 3.91 9.03 13.99
InsTag30k 13.08 1.81 43.43 13.24 1.23 9.16 9.62
Deita30k 11.73 1.66 46.54 12.08 0.0 2.73 7.36
Rho-Loss30k 10.73 2.00 39.39 9.13 2.68 3.17 8.03
Sst30k (ours) 16.33 1.59 49.13 16.26 3.58 11.24 16.2

Llama3.2-1B

Full100k 7.45 0.45 34.96 1.66 0.0 3.62 4.01
Uniform30k 6.59 0.08 33.56 1.0 0.0 2.38 2.55
InsTag30k 6.8 0.23 31.61 1.52 0.0 3.17 4.3
Deita30k 6.46 0.38 29.51 1.22 0.0 2.93 4.76
Rho-Loss30k 5.74 0.60 27.64 1.29 0.0 2.14 2.76
Sst30k (ours) 6.56 0.15 29.18 1.49 0.0 3.52 5.01

Qwen2.5-0.5B

Full100k 7.32 0.91 31.07 5.88 0.22 1.27 4.56
Uniform30k 7.05 0.91 29.09 6.65 0.11 1.43 4.14
InsTag30k 6.94 1.21 28.88 6.37 0.45 1.11 3.66
Deita30k 6.81 1.21 28.61 6.83 0.0 1.43 2.76
Rho-Loss30k 5.92 1.81 24.00 5.00 0.00 1.02 3.67
Sst30k (ours) 7.52 0.98 29.18 6.56 3.02 1.27 4.12

original scoring models from the respective works. For Rho-Loss30k, we adapt the original method3 to the
IFT setting and set the number of training iterations to match the number of training steps in Sst30k. We
report all results in Table 2.

3https://github.com/OATML/RHO-Loss

12

Published in Transactions on Machine Learning Research (06/2025)

5.2 Results and Discussion

The results in Table 2 demonstrate the clear advantages of our proposed method over baseline approaches.
Using only 30% of the training data, Sst30k achieves significant performance improvements across different
models. It surpasses other baselines, including the one trained on the full 100k dataset in five out of seven
tested models and closely matches the performance on the remaining model (Llama3.2-1B) compared to
methods utilizing the same amount of data. These results highlight Sst’s effectiveness in optimizing com-
putational resources. The observation that Sst, utilizing only a data subset (e.g., Sst30k), can outperform
baselines trained on the full dataset (Full100k) in several cases (Table 2) extends beyond merely filter-
ing erroneous examples and relates to data efficiency. Even curated instruction mixtures like the Tülu 3
mixture (Lambert et al., 2024) may contain redundancies or examples offering diminishing returns, making
subsets potentially more compute-effective. Indeed, Lambert et al. (2024) demonstrated that subsets (e.g.,
25-75%) of this mix often performed comparably to the full set within a fixed budget, echoing findings where
smaller, highly curated sets proved highly effective (Zhou et al., 2023a). Furthermore, Sst’s adaptive na-
ture allows it to tailor data selection to the target model’s specific pre-training composition and evolving
state, unlike static mixes which might oversample topics already mastered during pre-training. Sst may also
implicitly filter examples that are overly complex relative to a model’s capabilities (e.g., complex reason-
ing for smaller models) or out-of-distribution relative to pre-training or evaluation data (e.g., low-resource
languages not present in benchmarks, cf. Table 4.), thereby focusing training on more learnable and rele-
vant content. Our dynamic data scheduling approach ensures a balanced exposure to examples of varying
complexity tailored to the target model, enabling robust generalization across diverse tasks and models. In
contrast, methods like Deita30k, which involve an elaborate data selection process or InsTag30k, which
tries to replicate state-of-the-art models filtering behavior, fail to adapt to the model’s evolving needs during
training. These methods produce inconsistent results across the different model sizes and families. The
results indicate that the adaptive baseline (Rho-Loss30k) exhibits inconsistent performance across different
models and benchmarks compared to other methods. This general inconsistency aligns with previous find-
ings regarding RHO-Loss (Kaddour et al., 2023). Interestingly, on the Math Lvl 5 benchmark specifically,
it displays a noticeable trend of achieving higher scores on smaller models (Llama3.2-3B, Llama3.2-1B, and
Qwen2.5-0.5B). Despite this specific strength, Rho-Loss30k is significantly outperformed by the proposed
by Sst30k on average across all models and benchmarks. It is worth noting that while the RHO-Loss method
was adapted for the IFT setting in this study, its observed inconsistency echoes the performance limitations
reported by Kaddour et al. (2023) in the original context.

Full100K InsTag30k Deita30k

0

20

40

60

80

100

P
er

ce
n
ta

ge
(%

)

(a) Static Methods

0% 25% 50% 75% 100%

(b) RhoLoss30k

0% 25% 50% 75% 100%

(c) Sst30k

Aya

Evol CodeAlpaca

FLANv2

NoRobots

NuminaMath-TIR

OpenAssistant

OpenMathInstruct2

SciRIFF

TableGPT

Tülu3 Persona Algebra

Tülu3 Persona Code

Tülu3 Persona GSM

Tülu3 Persona IF

Tülu3 Persona MATH

WildChat

Other

Figure 7: Comparison of data mixture composition for static and dynamic selection methods using Qwen2.5-
32B. The figure shows the percentage distribution of datasets within the training data mixture for different
selection baselines. Other represents the datasets that account for less than 1% of the total data. (a)
Illustrates the fixed composition for static methods. (b) and (c) Depict the evolving data mixture composition
for the dynamic methods Rho-Loss30k and Sst30k, respectively, at various training progress points (0%,
25%, 50%, 75%, and 100%).

13

Published in Transactions on Machine Learning Research (06/2025)

Figure 7 reveals distinct dynamic data selection patterns. Rho-Loss (7b) increasingly sacrifices diversity,
becoming heavily dominated by OpenMathInstruct2 and Tulu3 Persona MATH towards the end; this skewed
focus potentially links to its overall inconsistency despite its observed tendency for better Math Lvl 5 per-
formance specifically on smaller models. In contrast, Sst (7c) appears to maintain a broader representation
of datasets throughout training. This sustained diversity likely contributes to Sst’s more robust and consis-
tently superior performance (Figure 1, Table 2)), contrasting with Rho-Loss’s inconsistency stemming from
its lack of diversity, a crucial factor in IFT as shown in Deita and InsTag. Conversely, Sst’s mid-training
shift towards Aya and FLAN V2 coincides with the temporary performance dip seen in Figure 1. Crucially,
Sst’s subsequent recovery from this dip highlights its strong adaptability, demonstrating its ability to navi-
gate transiently challenging data mixes and effectively refine selection away from the initial static distribution
towards a more tailored mix, which likely underlies its sustained upward performance trend towards the end
of training, reinforcing the Sst’s argument that adaptive selection based on the model’s state leads to more
effective data compositions than static approaches.

Sst shows significant improvement using large models: In §3, we showed that models with more than
20B parameters are less sensitive to static data selection methods. In contrast, our results show the efficacy of
Sst in leveraging smaller, carefully scheduled data subsets to maximize performance even for larger models.
Using Qwen2.5-32B, Sst30k delivers an average performance of 42.75%, surpassing all baselines including
the one using more than threefold the amount of data (Full100k). Notably, the method improves results
on challenging tasks such as MMLU-PRO, where it achieves a score of 53.25%, outperforming the Full100k

baseline by 5.22%. The G2-27B model further illustrates the benefits of our method, where Sst30k achieves
an average performance of 32.89%, outperforming Deita30k and InsTag30k while maintaining competitive
results against Full100k. This trend persists across multiple tasks, with Sst30k showing resilience and
adaptability in both general benchmarks like GPQA and domain-specific tasks such as MATH LvL 5. Using
Llama3.1-8B, Sst30k outperforms all baselines with comparable data sizes but falls behind Full100k. This
gap may be due to the model’s weaker instruction-following abilities, as seen in its lower IFEval benchmark
scores. The earlier Llama3.1 likely lacked sufficient exposure to instruction-like examples during late-stage
pre-training—a strategy used in newer models like Llama3.2 and Qwen2.5. To test this hypothesis, we
increased the sample size from 30k to 50k examples. As shown in Table 3, Sst50k outperforms all methods,
including Full100k. This suggests that Llama3.1-8B benefits from additional data for optimal performance.
While increasing the subset size improves results, an ideal approach would determine the optimal subset size
rather than treating it as a fixed hyperparameter. We leave this exploration for future work.

Figure 1 shows the performance of Sst30k compared to other methods on Qwen2.5-32B throughout the
training process across four random seeds (42, 123, 456, 789), using a multi-seed evaluation strategy similar
to Lambert et al. (2024). The figure highlights that the performance advantage of Sst30k is not merely
a final outcome but is maintained consistently throughout the training process compared to all baseline
methods. Notably, Sst30k exhibits lower variance compared to the other methods, indicating more stable
and reliable training dynamics. Furthermore, the distinct upward trend observed for Sst30k in the later
training stages suggests that its lead might increase further with extended training beyond the two epochs
evaluated. Further examination of the data mixture compositions, as depicted in Figure 7, reveals distinct
behaviors among the selection strategies. Static methods like Deita exhibit a fixed, less diverse subset,
dominated by a few datasets compared to the Full

In analyzing the Llama-3.1-8B results (Table 2, Table 3), we note that while Sst significantly improves
the average leaderboard score compared to the base model, its performance on specific knowledge-intensive
benchmarks (GPQA, MMLU-PRO) is lower. This aligns with the known challenge of knowledge degradation
or "catastrophic forgetting" sometimes observed after SFT (Zheng et al., 2025). SFT may inadvertently
overwrite pre-trained knowledge, particularly if the SFT dataset lacks sufficient explicit reinforcement of
that knowledge. Supporting this, degradation on knowledge benchmarks (e.g., TruthfulQA, MMLU, GPQA)
was observed when using larger SFT data fractions in Lambert et al. (2024). While Sst exhibits this effect,
similar degradation occurs with other sampling methods, and it may be pronounced here as our initial data
pool did not specifically include tasks designed to reinforce this type of pre-trained knowledge.

14

Published in Transactions on Machine Learning Research (06/2025)

Table 3: Performance comparison of Sst50k with the same baselines as in Table 2 on Llama3.1-8B using 50k
examples instead of 30k. Sst50k outperforms all baselines, including Full100k. This suggests that, for some
models, the subset size is a critical hyperparameter for data selection.

Method Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Full100k 23.59 5.44 62.41 23.39 4.81 15.97 29.53
Uniform50k 21.35 5.37 61.23 22.22 5.70 15.00 18.55
InsTag50k 22.08 5.00 57.90 24.12 4.41 14.96 26.10
Deita50k 18.07 4.76 60.12 21.78 0.00 8.00 13.77
Sst50k (ours) 23.85 5.37 62.71 24.82 5.64 14.97 29.60

Using intermediate tagger models can be detrimental: Both Deita and InsTag rely on tagger models
to select data to replicate the behavior of much larger models (e.g., ChatGPT). While this reduces evaluation
costs, our results reveal significant performance drawbacks. For instance, Deita30k and InsTag30k lag
behind the simple Uniform30k baseline on Qwen2.5-32B, because their tagger models struggle with highly
complex examples (e.g., NuminaMath datasets) or sequences approaching the 2048-token limit—the limit of
all tagging models proposed by Deita and InsTag. This limitation is more noticeable for Deita30k with
Qwen2.5-32B, likely because it relies on two taggers and an embedding model as opposed to a single tagger
used by InsTag, which can further exacerbate the issue. On G2-27B, both methods show a comparable
performance to other baselines, however, our results in §3 show that this model is particularly less sensitive
to data selection methods, suggesting, in this setup, that the performance decreases with the complexity of
the data selection approach, matching the findings of Marion et al. (2023) in the context of pre-training. This
effect is also noticeable on smaller models such as Llama3.2-3B, where Uniform30k outperforms InsTag30k

and Deita30k by 2.44 and 3.79 points, respectively. Our analysis suggests that the data selected by Deita30k

and InsTag30k contains a significant number of complex examples for such models when contrasting their
selection with perplexity-based categorization.

Table 4: FLAN V2 example in Malayalam selected by Deita. While the example is of a good quality, it may
be detrimental for models not exposed to Malayalam data during pre-training, where such an example falls
within the high-perplexity range. Sst dynamically adjusts the selection window away from these examples.

Inst: You are given a statement written in Malayalam. (...) Output the word from the correct option.

Further, tagger models face other limitations, such as their context window limitation, or when the tagger
training data distribution differs from the distribution of the data that needs to be selected. The latter is
particularly problematic in our experiment when evaluating multi-lingual data, as shown in Table 4. In both
cases, the tagger weaknesses introduce additional noise in the data selection process, leading to suboptimal
performance. Solving the issues would require training newer tagging models, inducing a significant cost,
which questions the practicality of such methods.

5.3 Limitations and Future Work

Sst remains effective as long as each dataset’s perplexity distribution has a nontrivial overlap with the
selection window. However, if the data is extremely unbalanced, simpler approaches (e.g., per-dataset
random sampling) may perform better. Observations in § 3 show that a skewed perplexity distribution can
lead to many noisy examples in the selection, and excluding them improved performance. Therefore, one
could develop an Sst variant that ignores these outliers or uses a different usefulness metric along with our
modulation method. We did not explore such variations, leaving them for future research. Although we
focused on IFT, Sst could benefit pre-training as well. In this context, two challenges arise: (1) it is unclear
if our warm-up triggers are suitable for pre-training, and (2) the overhead may be prohibitive with larger

15

Published in Transactions on Machine Learning Research (06/2025)

datasets. A potential solution is to pre-compute perplexities offline using an external model—a standard
approach in pre-training data cleaning (Penedo et al., 2023)—and then apply adaptive selection after a
warm-up phase. Using 4-bit precision for perplexity evaluation could further reduce scoring costs, but its
impact on selection quality in pre-training remains unclear. Nonetheless, the results of Marion et al. (2023)
in pre-training, alongside our own findings in IFT, suggest that Sst may offer significant gains in pre-training
as well. We leave an in-depth investigation of these trade-offs to future work. In § 4.2, we assumed Cmisc ≈ 0
since we found this term negligible in our single-node experiments by syncing the gathering of perplexity
values with gradient updates, to avoid additional inter-GPU synchronization. However, communication and
synchronization overhead can grow significantly especially if high-speed interconnects like InfiniBand are not
available or if the implementation does not take into account these factors.

6 Conclusion

Our proposed Spaced Scheduled Training (Sst) framework provides an adaptive, efficient, and model-specific
approach to data selection, eliminating reliance on external oracle models. We demonstrate that continuously
adjusting the dataset composition based on real-time perplexity signals improves performance. Through
extensive evaluations on seven LLMs (0.5B–32B) and a theoretical overhead analysis grounded in scaling
laws, Sst consistently achieves performance gains across architectures and scales efficiently to large training
regimes. These results offer robust empirical evidence and practical insights for enhancing data quality in
LLM instruction fine-tuning.

Broader Impact Statement

Data selection methods like Spaced Scheduled Training (Sst) enhance Large Language Model (LLM) per-
formance and efficiency. However, any data sampling method, including Sst, carries the risk of introduc-
ing or amplifying biases and ethical concerns (Mehrabi et al., 2022; Wang et al., 2025; Guo et al., 2024).
LLMs are trained on extensive text datasets that often reflect societal biases (e.g., gender, race). Sampling
methods, even those based on model confidence, may inadvertently favor or reinforce patterns from domi-
nant groups in the data, potentially amplifying these biases (Wang et al., 2025). This can result in unfair
outcomes, such as marginalizing perspectives in content generation or producing discriminatory results in
decision-making systems. Defining and measuring fairness and bias remains challenging (Wang et al., 2025),
particularly since bias is often deeply embedded in training data (Guo et al., 2024). Benchmarks like Helm
Safety (Liang et al., 2023) can identify some issues but have limitations. Model performance is sensitive to
benchmark design choices (e.g., prompt format, example order) (Grattafiori et al., 2024b), and evaluation
data may be contaminated by pre-training data, potentially inflating scores and complicating accurate bias
assessment (Grattafiori et al., 2024b). Effectively analyzing data contamination remains an open research
challenge (Grattafiori et al., 2024b). In practice, LLMs are components of larger systems. Practitioners
should implement system-level safety measures alongside existing benchmarks, often using external models
to supplement model-level safeguards like Llama Guard (Grattafiori et al., 2024b). We acknowledge the
importance of conducting a dedicated, large-scale analysis of the fairness implications and potential biases
introduced or mitigated by perplexity-based sampling. We leave this exploration for future work.

References
Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar

Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard (2023-2024). https://huggingface.
co/spaces/open-llm-leaderboard-old/open_llm_leaderboard, 2023.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vi-
jay Srinivasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca
with fewer data. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=FdVXgSJhvz.

16

https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://openreview.net/forum?id=FdVXgSJhvz

Published in Transactions on Machine Learning Research (06/2025)

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/
2023-03-30-vicuna/.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun
Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. Scaling instruction-finetuned language models, 2022. URL https://arxiv.org/abs/2210.11416.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2024. URL https:
//openreview.net/forum?id=pNkOx3IVWI.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In International
Conference on Learning Representations (ICLR), 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open llm leader-
board v2. https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard, 2024.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, September
2021. URL https://doi.org/10.5281/zenodo.5371628.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra,
Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic,
Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind
Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,
Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evti-
mov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen,
Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke
de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria
Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si,
Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev,
Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Peng-
wei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura,
Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Sil-
veira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain

17

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2210.11416
https://openreview.net/forum?id=pNkOx3IVWI
https://openreview.net/forum?id=pNkOx3IVWI
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://doi.org/10.5281/zenodo.5371628

Published in Transactions on Machine Learning Research (06/2025)

Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hos-
seini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang
Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ra-
manathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic,
Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh
Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain,
Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay
Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton,
Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arka-
bandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James,
Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing
Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim,
Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine,
Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Ed-
ward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan
Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian,
Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi,
Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan,
Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weiss-
man, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang,
Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus,
Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan
Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Moham-
mad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa,
Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Nor-
man Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh,
Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyag-
ina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub,
Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh
Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng
Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang,
Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve
Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny
Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked,
Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla,

18

Published in Transactions on Machine Learning Research (06/2025)

Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen
Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao,
Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of
models, 2024a. URL https://arxiv.org/abs/2407.21783.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024b.

Yufei Guo, Muzhe Guo, Juntao Su, Zhou Yang, Mengqiu Zhu, Hongfei Li, Mengyang Qiu, and Shuo Shuo
Liu. Bias in large language models: Origin, evaluation, and mitigation, 2024. URL https://arxiv.org/
abs/2411.10915.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL https:
//arxiv.org/abs/2103.03874.

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R Ganger, Gauri
Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating deep learning by focusing
on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt Kusner. No train no gain: Revisiting
efficient training algorithms for transformer-based language models. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=thbXgJ8gNK.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens, Abdul-
lah Barhoum, Duc Minh Nguyen, Oliver Stanley, Richárd Nagyfi, Shahul Es, Sameer Suri, David Alexan-
drovich Glushkov, Arnav Varma Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
Alexander Julian Mattick. OpenAssistant Conversations - Democratizing Large Language Model Align-
ment. In Thirty-Seventh Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, November 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, pp. 611–626,
2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D.
Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith,
Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3: Pushing frontiers in open language
model post-training. 2024.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif
Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume
Lample, and Stanislas Polu. Numinamath dataset and report. https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf, 2024.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman, Dongmei
Zhang, and Surajit Chaudhuri. Table-GPT: Table-tuned GPT for Diverse Table Tasks, October 2023.

19

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2411.10915
https://arxiv.org/abs/2411.10915
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://openreview.net/forum?id=thbXgJ8gNK
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf

Published in Transactions on Machine Learning Research (06/2025)

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Alexander Cosgrove, Christopher D Manning, Christopher Re, Diana Acosta-Navas,
Drew Arad Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao,
Jue WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan
Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Andrew Chi,
Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang,
Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic
evaluation of language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=iO4LZibEqW. Featured Certification, Expert Certification.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for alignment?
a comprehensive study of automatic data selection in instruction tuning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=BTKAeLqLMw.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods for effective
instruction tuning, 2023.

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks. arXiv
preprint arXiv:1511.06343, 2015.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. #InsTag: Instruction Tagging for Analyzing Supervised Fine-tuning of Large Language Models.
2023. URL https://openreview.net/forum?id=pszewhybU9.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei
Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with evol-instruct, 2023.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker. When less is
more: Investigating data pruning for pretraining llms at scale. arXiv preprint arXiv:2309.04564, 2023.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey on
bias and fairness in machine learning, 2022. URL https://arxiv.org/abs/1908.09635.

Sören Mindermann, Muhammed Razzak, Mrinank Sharma, Jan M. Brauner, Winnie Xu, Andreas Kirsch,
Aidan Gomez, Benedikt Höltgen, Sebastian Farquhar, and Yarin Gal. Prioritized training on points that
are learnable, worth learning, and not yet learned, 2022. URL https://openreview.net/forum?id=
Y0cGpgUhSvp.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon
llm: outperforming curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116,
2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

Nazneen Rajani, Lewis Tunstall, Edward Beeching, Nathan Lambert, Alexander M. Rush, and Thomas Wolf.
No robots. https://huggingface.co/datasets/HuggingFaceH4/no_robots, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimization towards
training A trillion parameter models. CoRR, abs/1910.02054, 2019. URL http://arxiv.org/abs/1910.
02054.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark, 2023.
URL https://arxiv.org/abs/2311.12022.

20

https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=pszewhybU9
https://arxiv.org/abs/1908.09635
https://openreview.net/forum?id=Y0cGpgUhSvp
https://openreview.net/forum?id=Y0cGpgUhSvp
https://huggingface.co/datasets/HuggingFaceH4/no_robots
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2311.12022

Published in Transactions on Machine Learning Research (06/2025)

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H. Chi, James
Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms, 2024. URL
https://arxiv.org/abs/2402.09668.

Keita Saito, Akifumi Wachi, Koki Wataoka, and Youhei Akimoto. Verbosity bias in preference labeling by
large language models. arXiv preprint arXiv:2310.10076, 2023.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin Ko,
Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, Mike Zhang, Ramith Hettiarachchi,
Joseph Wilson, Marina Machado, Luisa Souza Moura, Dominik Krzemiński, Hakimeh Fadaei, Irem Ergün,
Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai, Vu Minh Chien, Sebastian Ruder, Surya
Guthikonda, Emad A. Alghamdi, Sebastian Gehrmann, Niklas Muennighoff, Max Bartolo, Julia Kreutzer,
Ahmet Üstün, Marzieh Fadaee, and Sara Hooker. Aya dataset: An open-access collection for multilingual
instruction tuning, 2024.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural scaling
laws: beating power law scaling via data pruning. Advances in Neural Information Processing Systems,
35:19523–19536, 2022.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits of
chain-of-thought with multistep soft reasoning, 2024. URL https://arxiv.org/abs/2310.16049.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-bench
tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/abs/2210.09261.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang
Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language understanding
benchmark, 2024. URL https://arxiv.org/abs/2406.01574.

Ze Wang, Zekun Wu, Jeremy Zhang, Xin Guan, Navya Jain, Skylar Lu, Saloni Gupta, and Adriano
Koshiyama. Bias amplification: Large language models as increasingly biased media, 2025. URL
https://arxiv.org/abs/2410.15234.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,
Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat: 1m chatGPT
interaction logs in the wild. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=Bl8u7ZRlbM.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu, Fei Huang, Yongbin Li, and Nevin L Zhang.
A preliminary study of the intrinsic relationship between complexity and alignment. arXiv preprint
arXiv:2308.05696, 2023.

21

https://arxiv.org/abs/2402.09668
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2410.15234
https://openreview.net/forum?id=Bl8u7ZRlbM

Published in Transactions on Machine Learning Research (06/2025)

Junhao Zheng, Xidi Cai, Shengjie Qiu, and Qianli Ma. Spurious forgetting in continual learning of language
models. In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=ScI7IlKGdI.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena,
arxiv abs/2306.05685 (2023). URL: https://api. semanticscholar. org/CorpusID, 259129398, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206, 2023a.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. Instruction-following evaluation for large language models, 2023b. URL https://arxiv.org/
abs/2311.07911.

22

https://openreview.net/forum?id=ScI7IlKGdI
https://openreview.net/forum?id=ScI7IlKGdI
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

Published in Transactions on Machine Learning Research (06/2025)

A Experimental Setup Details

Training Data Mixture: We use a stratified subsample of 100k examples from the recent Tulu 3 SFT
Mix(Lambert et al., 2024) containing 15 datasets across diverse tasks and domains. These include FLAN
v2 (Longpre et al., 2023), No Robots (Rajani et al., 2023), OpenAssistant (Köpf et al., 2023), Tulu 3 Persona
MATH, Tulu 3 Persona GSM, Tulu 3 Persona Python, Tulu 3 Persona Algebra, Tulu 3 Persona IF (Lambert
et al., 2024), NuminaMath-TIR (LI et al., 2024), Aya (Singh et al., 2024), WildChat GPT-4 (Zhao et al.,
2024), TableGPT (Li et al., 2023), SciRIFF (Köpf et al., 2023), Evol CodeAlpaca (Luo et al., 2023). Using
10% of the full mixture allows us to perform rigorous experimentation across multiple models while requiring
reasonable amount of compute, allowing for reproducibility by future research. Further, (Lambert et al.,
2024) showed minimal average performance drop even with a 5% subset of the Tulu 3 mixture.

Training and Evaluation Setup: We use the same training setup and code base proposed by (Lambert
et al., 2024). We perform full parameter training for two epochs with an effective batch size of 128, a learning
rate (LR) of 5e − 06 using a linear LR scheduler with a 3% warm-up ratio. We set the maximum sequence
length to 2048. All models were trained on 8 NVIDIA H100 GPUs using FlashAttention 2 (Dao, 2024) and
DeepSpeed Zero-Stage 3 (Rajbhandari et al., 2019). For models larger than 20B we use the 32bit paged
Adam optimizer. We provide the full training setup in our public repository4. We evaluate our models
using the Open LLM Leaderboard 2 (Fourrier et al., 2024) tasks. It addresses performance saturation issues
from the earlier version (Beeching et al., 2023) by introducing harder and less contaminated benchmarks.
This update enables more meaningful evaluation result, particularly for recent LLMs which is crucial for our
experiment. It includes IFEval (Zhou et al., 2023b), BBH (Suzgun et al., 2022), MATH LvL 5 (Hendrycks
et al., 2021), GPQA (Rein et al., 2023), MuSR (Sprague et al., 2024), and MMLU-PRO (Wang et al., 2024).
We ensure reproducibility by using the same lm-evaluation-harness (Gao et al., 2021) version and report the
average normalized scores across all benchmarks as in (Fourrier et al., 2024).

Methods and Baselines: Similar to Marion et al. (2023), we train models on 10%, 30%, and 50% of the
data from the bottom, middle, and top segments of the per-example perplexity distribution. For instance, to
create a 10% middle subsample, we select examples between the 45th and 55th percentiles. For each subset
size, we create two datasets one using the overall perplexity distribution of the mixture and the other using
the per-dataset perplexity distribution. To select data, we use either the pre-trained version of the target
model as a reference, or checkpoints of the same model trained on same subset at different train iteration.
Specifically, we select data using checkpoints at 0.25, 0.5, 1, and 2 epochs. When using the pre-trained model
as reference, we use a simple chat template proposed by (Lambert et al., 2024) to encode the chat data,
where we prepend each turn content with its role (e.g., “User: ”) and separate the turn with a new line. This
allows us to avoid adding special tokens to the tokenizer which will require resizing the model’s embedding
layer. We compare the methods to various baselines where we train the same pre-trained model on: (1) the
full data mixture (100%), (2) a random subset of the same size (Random), (3) and a random subset drawn
uniformly for each dataset (Uniform). For the random and uniform baselines, show the average performance
across the two random seeds (123, and 42) and report the standard error.

Models: To better study the impact of the perplexity-based data selection across different model charac-
teristics, and to ensure that our findings are generalizable, we use a diverse set of models. Specifically, we use
different model families including Llama3.1 (L3.1), Llama3.2 (L3.2), Qwen2.5 (Q2.5), and Gemma2 (G2).
This allows us to study how pre-training factors, such as the pre-training data composition and training
setting affect the data selection performance. Further, we compare our models a cross different models sizes
ranging from 0.5B to 32B parameters, to study the influence of model size. In total, we trained seven models
each with 31 different training configurations, resulting in 248 training runs for this experiment.

4Available after double-blind review.

23

Published in Transactions on Machine Learning Research (06/2025)

B Method Details

Algorithm 2 Spaced Scheduled Training (Sst)
Require: θ: initial model parameters; D = {D1, . . . , Dd}: collection of d datasets; tmax: maximum training iterations; kw ∈ (0, 1]:

warm-up slope window ratio; rw: maximum warm-up slope evaluation retry count. ρs ∈ (0, 1]: global subset ratio; τ ∈ (0, 1]:
window-shift ratio; ε > 0: slope threshold for loss slope evaluation;

Ensure: Updated model parameters θ.

1: Algorithm: Sst(θ,D, tmax, ρs, τ, ε, rw, kw)

2: Warm-up phase
3: θ, tw ←WarmUp(θ,D, tmax, rw, kw)

4: Adaptive Scheduling Phase
5: k ← tw/tmax
6: P ← ComputePPL(θtw ,D) ▷ Compute per-example perplexities PPL(e) for each example e ∈ D
7: Compute βd for each dataset Dd using Equation 2
8: P

ref
d ← 50 for each dataset Dd ▷ Initialize window reference to the 50th percentile

9: D′ ← SelectPerDatasetSubset(D, ρs, {βd}, {P ref
d })

10: Initialize loss buffer Lbuf ← [] (capacity ⌊k · tmax⌋)
11: ▷ Main training loop
12: for t = tw + 1 to tmax do
13: θ, LB , P ← TrainStep

(
θ, SampleBatch(D′)

)
▷ Train model on a batch, and update perplexities

14: Append LB to Lbuf
15: if |Lbuf| = ⌊k · tmax⌋ then
16: slope← ComputeSlope(Lbuf) ▷ e.g., via simple linear regression
17: Clear Lbuf
18: ▷ 1) Recompute dataset mixing ratios
19: Update βd for each dataset Dd using Equation 2
20: ▷ 2) Decide if window shifts to harder or easier examples
21: if slope < −ε then
22: P ref

d ← min
(

P ref
d × (1 + τ), 100− βd×100

2

)
▷ Loss is decreasing, shift to more complex examples

23: else if slope > ε then
24: P ref

d ← max
(

P ref
d × (1− τ),

βd×100
2

)
▷ Loss is increasing, shift to easier examples

25: else
26: no change to P ref

d ▷ Loss is stable, keep the current window
27: end if
28: ▷ 3) Select updated subset based on new mixing ratios and reference perplexity percentiles
29: D′ ← SelectPerDatasetSubset(D, ρs, βd, P ref

d)
30: end if
31: end for
32: return θ ▷ Final trained model parameters

33: function WarmUp(θ,D, tmax, rw, kw)
34: tw ← 0
35: r ← 0
36: Initialize a loss buffer Lbuf ← [] (capacity ⌊kw · tmax⌋)
37: while retry < rw do
38: θ, LB ← TrainStep

(
θ, UniformSample(D)

)
39: Append LB to Lbuf
40: if |Lbuf| = ⌊kw · tmax⌋ then
41: slope← ComputeSlope(Lbuf)
42: Clear Lbuf
43: if −ε ≤ slope ≤ ε then ▷ Loss stabilized
44: break ▷ End warm-up early
45: end if
46: end if
47: tw ← tw + 1
48: r ← r + 1
49: end while
50: return θ, tw

51: end function

52: function SelectPerDatasetSubset(D, ρs, βd, P ref
d)

53: for d = 1 to m do
54: Plow ← P ref

d − βd×100
2 , P high← P ref

d + βd×100
2

55: D′
d ← { e ∈ Dd : Plow ≤ PPL(e) ≤ Phigh} ▷ Keep examples whose perplexities fall within [low, high]-th percentile

56: end for

57: D′ ←
m⋃

d=1

D′
d

58: return D’
59: end function

24

Published in Transactions on Machine Learning Research (06/2025)

To clarify the methodology presented, we now define the key notations used throughout our description of
the Spaced Scheduled Training (SST) algorithm in Table 5 which provides a comprehensive summary of
these symbols and their corresponding definitions for easy reference.

Table 5: Summary of key notations and symbols used in the Spaced Scheduled Training (SST) algorithm.

Notation Description

General Training Parameters

tmax Maximum number of training iterations.
ρs Global subset ratio (fraction of data to select).
D Collection of datasets {D1, . . . , Dd}.
D′ Selected subset collection from D used for training.

Perplexity Calculation

P P L(e) Per-example perplexity for example e.
P P Lp50(d) The 50th percentile (median) perplexity for dataset Dd.

Warm-up Phase Parameters

tw Number of iterations spent in the warm-up phase.
kw Warm-up slope evaluation window size ratio (fraction of tmax).
rw Maximum warm-up retry count for slope evaluation.

Adaptive Phase - Selection Window Control

βd Dataset mix ratio for dataset Dd.
P ref

d Reference perplexity percentile for dataset Dd.
Plow, Phigh Lower/upper percentile bounds for selection window.
τ Selection window adjustment factor (shift ratio).
k Rolling window size ratio for loss monitoring (fraction of tmax).
ϵ Slope threshold for loss stability evaluation.

C Overhead

C.1 Wall-Clock Time Comparison

In this section, we present empirical measurements of the overhead introduced by Sst compared to random
sampling. We use the 100k dataset described in Section 3. For random sampling, we train on all 100k
examples, whereas for Sst, we select a 30k subset out of the same 100k examples and train on that subset
following the same training setup as in Section 3. To quantify the overhead, we define the wall-clock time
for each method as T (·) and estimate the relative overhead ratio

Toverhead = T (ΠSST30k
) − T (Πrand30k

)
T (ΠSST30k

) , (6)

where T (ΠSST30k
) is the measured time to train using Sst on the 30k subset, and T (Πrand30k

) =
0.3T (Πrand100k

) is the time taken by random sampling on 30k examples. We approximate T (Πrand30k
)

by scaling down the measured 100k run time, assuming per-example costs remain roughly constant.

Table 6 compares the training times on 100k examples (random sampling) versus Sst on a 30k subset.
Although the overhead of evaluating and filtering the data is significant, the training time reduction is
substantial: for instance, training Qwen2.5-32B is reduced from 36.7 hours to 16.8 hours on our hardware.
These numbers are highly dependent on hardware configuration and implementation details, but they provide
a rough estimate of Sst’s overall savings. On a multi-node setup, this overhead may increase due to additional
communication costs required to synchronize tensor updates across nodes, but the exact impact will vary
based on specific infrastructure and networking capabilities (e.g., whether InfiniBand is used).

25

Published in Transactions on Machine Learning Research (06/2025)

Table 6: Wall-clock time comparison between Sst and random sampling on different model sizes. Although
Sst introduces evaluation overhead, the overall time reduction remains substantial because of the smaller
training subset (30k vs. 100k). The values are averaged over 3 runs, and the standard error is shown.

Time (hrs)
Method Num GPUs Random 100k Sst Sst Overhead
Q2.5-0.5B 8 2.15 ± 0.05 1.20 ± 0.07 40%
L3.1-8B 8 2.70 ± 0.06 2.10 ± 0.04 60%
Qwen2.5-32B 8 36.70 ± 0.01 16.80 ± 0.03 34%

C.2 Optimized Inference

This sections describes the experimental setup used to analyze how inference-optimized backends, such as
vLLM, can reduce the overhead introduced by Sst, as presented in §4.2. The experiments follow the same
setup detailed in §3. However, we restrict the models to the ones from the Qwen 2.5 family to ensure
a consistent comparison across different settings. To evaluate the improvement, we track any additional
overhead introduced by Sst during training. To use vLLM (Kwon et al., 2023), we implemented a custom
training loop based on (Lambert et al., 2024) where, we pause training, save the training state (model,
optimizer, dataloader, etc.), unload the model and optimizer to free GPU memory, and then evaluate the
100k dataset with vLLM. Once evaluation is complete, the training state is reloaded to resume training.
This approach introduces overhead from saving and loading the trainer state that is non-negligible for large
model states, but it is used solely for this analysis and not in the main experiments in §5. We evaluated
vLLM with Bfloat16, 8-bit, and 4-bit precision, using the results to Bfloat16 without vLLM as comparison
reference. The findings are presented in Figure 6.

D Detailed Analysis on Static Perplexity Sampling

We start by introducing results on the effectiveness and limitations of static perplexity-based data selection
in IFT. These findings motivate and lay the groundwork for our proposed adaptive method, introduced in
§4.

The work of Marion et al. (2023) demonstrates that simple perplexity-based data selection outperforms
more complex metrics. However, that analysis is limited to pre-training, with no comment on its broader
applicability to downstream tasks. Additionally, their study was limited to two models (124M and 1.5B
parameters), leaving open questions about the generality of these findings across different model sizes and
architectures (e.g., Llama vs. Gemma). Building on their methodology, we extend the analysis with several
key distinctions: IFT Setting: We investigate perplexity-based data selection in the context of IFT rather
than pre-training. Target Model as Reference: We don’t rely on external reference models and use the
target model to guide the selection of its training data. Broad Analysis Scope: We evaluated models
ranging from 0.5B to 32B parameters across three state-of-the-art architectures, offering a significantly
broader evaluation than the two models used in Marion et al. (2023). Through this analysis, we aim to
address the following key questions:

• Performance and Consistency: Does perplexity-based data selection perform well in the IFT
setting, and how does its effectiveness vary across model sizes and architectures?

• Impact of Training on Selection Performance: Does the performance of perplexity-based data
selection improve with training?

• Selection Criteria Across Training Stages: Is the criteria for selecting data based on perplexity
consistent throughout training, or does it need to be adapted to achieve consistent performance?

26

Published in Transactions on Machine Learning Research (06/2025)

D.1 Experimental Setup

We conduct experiments using a stratified 100k subsample of the Tulu 3 SFT Mix dataset (Lambert et al.,
2024), which spans 15 diverse and recent datasets (e.g., No Robots (Rajani et al., 2023), Aya (Singh et al.,
2024), NuminaMath-TIR (LI et al., 2024)). We chose this subsample to allow for rigorous experimentation
given the computational resources available, while ensuring it represents the full mixture, informed by the
sampling analysis in (Lambert et al., 2024). We use models from different architectures (Llama3.1 (Grattafiori
et al., 2024a), Llama3.2 (Grattafiori et al., 2024a), Qwen2.5 (Yang et al., 2024), and Gemma2 (Team et al.,
2024)), ranging from 0.5B to 32B parameters to better understand the impact of different model charac-
teristics (e.g., pre-training data composition, size) on perplexity-based data selection performance. We use
full-parameter training for two epochs using the setup proposed by (Lambert et al., 2024). We assess per-
formance on the newer Open LLM Leaderboard 2 (Fourrier et al., 2024), which includes more challenging
benchmarks compared to the earlier version (Beeching et al., 2023), including IFEval (Zhou et al., 2023b),
BBH (Suzgun et al., 2022), MATH LvL 5 (Hendrycks et al., 2021), GPQA (Rein et al., 2023), MuSR (Sprague
et al., 2024), and MMLU-PRO (Wang et al., 2024). We provide detailed data, training, evaluation, and data
selection setups in Appendix A, and in subsequent sections, provide the methods and baselines used to
address each key questions outlined above.

D.2 Performance and Consistency

This section investigates the effectiveness of static perplexity-based data selection for IFT across diverse
models architectures and sizes. The primary objective is to assess the effectiveness of static perplexity-based
selection for IFT and to analyze how its impact changes with model size and pre-training characteristics.

Methods: For this analysis we consider four data selection strategies. Random: from (1) the full 100k
mixture or (2) per-dataset (Random, Random Per-Dataset). Static perplexity-based: from the bottom,
middle, and top segments of (3) the overall mixture (Keep Bottom, Keep Middle, Keep Top) or (4) per-
dataset (Keep Bottom Per-Dataset, Keep Middle Per-Dataset, Keep Top Per-Dataset). For each method,
we select subsets of 10%, 30%, and 50% of the full 100k mixture, following (Marion et al., 2023). Given
the large-scale nature of our experiments (248 training runs), we limit the evaluation of random selection
strategies to two independent runs with different seeds (123 and 42)—shown to be effective by (Lambert
et al., 2024). This maintains computational practicality while still capturing some measure of variance. Each
method is compared against the full 100k data mixture baseline using its average score across all benchmarks
(§D.1). Baseline: We contrast the above strategies against a baseline that uses the full 100k data mixture
(100%). Models: To ensure the generalizability of our findings, we evaluate a diverse set of models varying
in size, pre-training data composition, and architectural design. Specifically, we use Qwen2.5 0.5B, Llama3.2
1B, Llama3.2 3B, Llama3.1 8B, Gemma2 9B, Qwen2.5 14B, Gemma2 27B, and Qwen2.5 32B. We selected
these models to study the impact of unique model characteristics on static perplexity-based data selection
performance. In total, we trained 8 models, each with 31 different training configurations, resulting in 248
training runs for this experiment alone.

Figure 2 shows the strongest-performing baseline, Random Per-Dataset with the top-performing static
perplexity-based strategies: Keep Bottom Per-Dataset, Keep Middle Per-Dataset, and Keep Top Per-
Dataset. Full results, including all methods and baselines, and per-benchmark results, are detailed in
Appendix F. The relative performance change ∆R is calculated as:

∆R = Smethod − Sbaseline

Sbaseline
(7)

where Smethod and Sbaseline are the average Open LLM Leaderboard score of the method’s and the baseline
respectively. This metric allows consistent evaluation across models with varying baseline performance.
These results highlight several key insights:

Heuristic-based data selection is insufficient for consistent performance. Some models, even
with naive random selection, outperform the 100% baseline, indicating that while the extensive heuristic
and empirical-based approach of Lambert et al. (2024) is effective, further refinements could yield even
greater performance gains simply by optimizing training resource allocation. It also suggests opportunities

27

Published in Transactions on Machine Learning Research (06/2025)

0.5 1 273 328 9

-30%
-25%
-20%
-15%
-10%
-5%
0%
5%

10%
15%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Random

0.5 1 273 328 9

Keep Bottom

0.5 1 273 328 9

Keep Middle

0.5 1 273 328 9

Keep Top

Subset Size
10k
30k
50k

Model Size (B)Model Size (B)Model Size (B)Model Size (B)

Figure 8: Performance of static perplexity sampling compared to random selection from all the mixutre.
Relative performance change ∆R is calculated as ∆R = (Smethod − Sbaseline)/Sbaseline, where Smethod and
Sbaseline are the average Open LLM Leaderboard score of the method’s and 100% baseline. Points below
the red dashed line indicate performance drops compared to the baseline, and error bars show the standard
error over two random seeds.

to enhance computational efficiency, reduce training costs, and improve scalability for larger models.
Dataset-aware selection produces the best results. Per-dataset selection consistently outperforms
full-mix sampling across all models for both the random baseline and perplexity-based strategies. This effect
is particularly evident in varied-complexity datasets like ours, where FLAN v2 examples are easier than more
reasoning-intensive tasks such as NuminaMath. This issue is amplified when selecting from the overall mix
using a complexity-aware method, like Deita, InsTag, or static perplexity-based strategies, as they skew
the subset toward harder examples. However, IFT models require exposure to a diverse range datasets or
domains, including easier ones, and dataset-aware sampling preserves this balance.
Static perplexity sampling improves on baseline but lacks consistency. In Figure 2, we observe that
keeping the bottom segment consistently underperforms naive random selection, suggesting that the most
useful data lies in the top 50% of the perplexity distribution. This is likely due to data leakage (Lambert
et al., 2024), where models may have encountered these examples during pre-training, which could explain
why the effect is more pronounced in some models (e.g., Llama3.2 1B and 3B) than others. Another possible
explanation is that modern LLMs, like those in our study, are more capable due to training on trillions of
tokens (Yang et al., 2024). In both cases, training compute is allocated inefficiently leading to suboptimal
performance. In contrast, per-dataset middle-segment selection tends to improve performance for models
smaller than 14B parameters, while keeping the top segment benefits larger models, such as, Qwen2.5-32B,
which matches the performance of the 100% baseline using only 10% of the data. However, for models smaller
than 27B, Random Per-Dataset remains a strong baseline, suggesting that static perplexity sampling alone
is insufficient for consistent performance. Moreover, the best-performing configuration varies across models
and subset sizes, highlighting the need for an adaptive data selection strategy for robust results.

D.3 Impact of Training on Selection Performance

The work of Marion et al. (2023) showed that data selection performance improves with better reference
models, either larger in size or trained on better data. In this section, we investigate whether similar behavior
occurs when using the target model as the reference as it trains on more data. Specifically, we aim to identify
when in the training process data selection performance peaks and how it evolves with additional training.

Methods: We select three models (Qwen2.5-0.5B, Llama3.1-8B, and Qwen2.5-32B) and use the perplexity
sampling configurations from the previous section: Keep Top Per-Dataset for Qwen2.5-32B and Keep Middle
Per-Dataset for the other two models. We first train each model on data randomly sampled per dataset,
following the best-performing random strategy from the previous section (Random Per-Dataset). At specific
points during the two-epoch training process (5%, 10%, 15%, 25%, 50%, and 75%), we compute the perplexity
values and apply perplexity sampling to select 30% of the 100k dataset. We then continue training the model

28

Published in Transactions on Machine Learning Research (06/2025)

for the remaining iterations to complete two full epochs. For each method, we conduct two runs with different
random seeds (123, 42), and report the average score and standard error across the runs. Baseline: We
use results from the previous experiment, where we selected 30% of the 100k mixture using the pre-trained
model as the reference at the start of training. Figure 4 shows the results of this analysis.

Data selection performance does not always improve with training. As shown in Figure 4, per-
formance improves when perplexity sampling is delayed to a certain point in training but degrades beyond
this threshold, which varies across models we tested and generally decreases with model size. For instance,
Qwen2.5-0.5B benefits from delaying selection until 25% of the training process, while Qwen2.5-32B starts
to degrade as early as 10%. Llama3.1-8B and Qwen2.5-32B exhibit significant performance drops after the
performance peak, with Qwen2.5-32B being particularly affected. Our analysis (Figure 9) attributes this
behavior to changes in the perplexity distribution. For Llama3.1-8B, the distribution becomes heavy-tailed
as the model trains on more data, which shifts focus toward overly challenging examples. For Qwen2.5-32B,
the distribution becomes narrower and skews toward the top segment, emphasizing overly complex (e.g.,
Table 7) and noisy examples (e.g., Table 8). In contrast, Qwen2.5-0.5B is less influenced by these distribu-
tional changes as we show in Figure 9, where the distribution remains relatively stable, explaining why it
benefits from a longer delay in perplexity-based selection. We also observe that these changes also aligns
approximately with major trends changes in the overall training loss (Figure 9) that we describe in more
details in §4. These findings suggest that an adaptive data selection strategy, which delays perplexity-based
selection to an optimal point that varies by model, is essential for achieving consistent performance.

D.4 Selection Criteria Across Training Stages

In this section, we investigate whether using different segments of the perplexity distribution at various
training stages can improve the final performance of perplexity-based data selection. The goal is to determine
if modulating the selection window is necessary to achieve consistent performance.

Methods: For this experiment, we use Llama3.1-8B and Qwen2.5-32B and compare the performance of the
best and second-best static perplexity sampling configuration from the previous section. We use Keep Middle
and Bottom Per-Dataset for Llama3.1-8B, and Keep Top and Middle Per-Dataset for Qwen2.5-32B. We omit
Qwen2.5-0.5B from this analysis, as its performance variation does not show meaningful comparisons.

The best perplexity distribution segment varies during training. Figure 3 shows that using dif-
ferent perplexity segments at different training stages affects performance. For example, both Qwen2.5-32B
and Llama3.1-8B benefit from starting with easier examples (i.e., using a lower perplexity segment) before
transitioning to more challenging examples. When contrasting this behavior in Figure 3 to the performance
peaks observed in Figure 4, we find that these transitions align approximately with the performance peaks.
Our analysis suggests that using easy examples earlier in training (i.e., lower perplexity segments) stabilizes
learning by allowing enough training iterations to adapt to the data distribution shift that occurs early in
training before handling more complex examples effectively. This aligns with early research on curriculum
learning (Bengio et al., 2009), which demonstrated that starting with easier examples can enhance learning
efficiency. These results raise the question of whether an adaptive selection strategy, capable of modulat-
ing the selection window dynamically, can offset the initial performance drop and perhaps improve final
performance (we show in Table 2 that it does).

29

Published in Transactions on Machine Learning Research (06/2025)

0% 15% 25% 50% 75%

-20%

-10%

0%

10%

20%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Qwen2.5-0.5B

0% 15% 25% 50% 75%

Llama3.1-8B

0% 15% 25% 50% 75%

Qwen2.5-32B

Perplexity Sampling Start Iteration (%)

(a)

0% 15% 25% 50% 75%
Progress

0.6

0.8

1.0

1.2

1.4

Lo
ss

Q2.5-0.5B (EMA)

0% 15% 25% 50% 75%
Progress

0.6

0.8

1.0

1.2

1.4

Lo
ss

L3.1-8B (EMA)

0% 15% 25% 50% 75%
Progress

0.6

0.8

1.0

1.2

1.4

Lo
ss

Q2.5-32B (EMA)

(b)

100
0.0
0.2
0.4
0.6
0.8
1.0
1.2

De
ns

ity

Qwen2.5-0.5BQwen2.5-0.5B

100 101

Llama3.1-8BLlama3.1-8B

100 101 102

Qwen2.5-32B

0%
25%
50%
75%

0%
25%
50%
75%

Perplexity (log scale)

(c)

Figure 9: Effect of delaying perplexity sampling on model learning. Performance peaks (a) approximately
when the loss begins to flatten (b). Further delay in perplexity sampling degrades performance due to a long-
tail perplexity distribution, causing the subset to include disproportionately many complex or noisy examples
(high perplexity). (a) Repeats Figure4 for easy comparison of training loss and distribution behaviors. (b)
Displays overall training loss over time. (c) Shows perplexity distribution at different training iterations.

30

Published in Transactions on Machine Learning Research (06/2025)

E Detailed Results

E.1 Intractable Examples

In this sections, we present examples of intractable examples that represent mislabeled or noisy data that
we identified during our analysis.

31

Published in Transactions on Machine Learning Research (06/2025)

Table 7: First 50 out of 133 lines from an extremely hard example found during our analysis

Instruction Create a program to evaluate a postfix expression.

Output

Python program to evaluate value of a postfix expression

Class to convert the expression
class Conversion :

Constructor to initialize the class variables
def __init__ (self , capacity):

self.top = -1
self. capacity = capacity
This array is used a stack
self.array = []
Precedence setting
self. output = []
self. precedence = {’+’:1, ’-’:1, ’*’:2, ’/’:2, ’^’:3}

check if the stack is empty
def isEmpty (self):

return True if self.top == -1 else False

Return the value of the top of the stack
def peek(self):

return self.array [-1]

Pop the element from the stack
def pop(self):

if not self. isEmpty ():
self.top -= 1
return self. array.pop ()

else:
return "$"

Push the element to the stack
def push(self , op):

self.top += 1
self.array. append (op)

A utility function to check is the given character
is operand
def isOperand (self , ch):

return ch. isalpha ()

Check if the precedence of operator is strictly
less than top of stack or not
def notGreater (self , i):

try:
a = self. precedence
b = self. precedence
return True if a <= b else False

except KeyError :
return False

32

Published in Transactions on Machine Learning Research (06/2025)

Table 8: Ambiguous example found during our analysis. The target output contains place holders (_____),
suggesting ChatGPT generated data.

Inst: Gen a summary of an article containing more than 500 words.
Out: The article is about _____. It discusses the subject in depth,
exploring various aspects of the topic. It provides a comprehensive
overview of different perspectives on the topic and presents evidence
to support its conclusions. In conclusion, the article provides a
comprehensive evaluation of _____ by offering a balanced and
unbiased assessment of the subject.

33

Published in Transactions on Machine Learning Research (06/2025)

Table 9: Performance of static perplexity sampling compared to random selection and 100% baseline for
Qwen2.5-0.5B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Random Per-Dataset 42 0.5 0.12 8.79 1.59 33.05 4.98 2.57 1.76 4.46
Keep Middle 42 0.5 0.06 8.31 1.21 30.01 4.89 4.03 1.43 3.42
Keep Middle Per-Dataset 42 0.5 0.04 8.2 0.98 29.18 6.56 3.02 1.27 4.12
Random Per-Dataset 123 0.5 0.04 8.19 1.36 30.71 7.03 0.56 1.27 4.33
Random Per-Dataset 123 0.3 0.02 8.05 1.59 30.15 5.35 0.89 2.25 5.17
Keep Top 42 0.5 0.01 7.94 0.98 29.61 5.32 1.79 2.02 4.71
Baseline 42 1.0 0.0 7.87 0.91 31.07 5.88 0.22 1.27 4.56
Random 123 0.1 0.0 7.85 1.81 26.59 7.03 1.9 1.92 3.09
Keep Middle Per-Dataset 42 0.3 −0.01 7.76 1.96 25.63 3.9 6.04 1.27 6.22
Random Per-Dataset 42 0.3 −0.03 7.64 0.91 29.09 6.65 0.11 1.43 4.14
Keep Top Per-Dataset 42 0.5 −0.03 7.64 0.91 28.86 6.55 0.45 1.43 4.6
Random 42 0.1 −0.03 7.6 2.04 24.94 6.33 1.9 2.78 3.28
Random 123 0.3 −0.06 7.36 1.28 27.03 5.03 0.56 2.9 6.04
Keep Middle 42 0.3 −0.06 7.42 1.66 26.94 3.69 2.57 2.23 5.64
Random Per-Dataset 42 0.1 −0.06 7.43 1.59 26.09 6.68 1.01 1.76 4.56
Keep Middle 42 0.1 −0.06 7.37 1.66 25.06 5.29 1.68 3.15 2.96
Keep Top Per-Dataset 42 0.3 −0.07 7.32 1.51 25.73 5.99 1.45 1.92 4.57
Keep Top 42 0.3 −0.07 7.29 1.36 27.25 5.7 0.89 1.27 4.5
Keep Bottom 42 0.5 −0.07 7.34 1.36 27.46 6.78 0.0 1.11 5.62
Random 123 0.5 −0.08 7.27 1.44 27.54 5.66 0.0 1.7 3.82
Keep Bottom 42 0.1 −0.08 7.22 2.19 24.75 6.65 0.89 1.6 3.3
Keep Bottom 42 0.3 −0.08 7.21 1.66 26.84 6.43 0.0 1.11 6.09
Keep Top Per-Dataset 42 0.1 −0.08 7.22 2.19 25.41 5.22 1.34 1.92 3.62
Keep Bottom Per-Dataset 42 0.5 −0.08 7.23 0.98 28.49 5.55 0.0 1.11 5.58
Keep Bottom Per-Dataset 42 0.1 −0.08 7.25 1.36 26.97 6.38 0.11 1.43 3.58
Random 42 0.5 −0.09 7.17 1.28 27.27 4.74 1.12 1.43 4.79
Keep Middle Per-Dataset 42 0.1 −0.09 7.19 1.59 24.6 6.67 1.34 1.76 3.97
Keep Bottom Per-Dataset 42 0.3 −0.11 7.03 1.51 26.45 6.24 0.0 0.94 4.22
Random 42 0.3 −0.14 6.79 1.06 25.08 4.75 1.45 1.6 4.23
Random Per-Dataset 123 0.1 −0.15 6.68 1.96 24.78 5.73 0.0 0.94 3.61
Keep Top 42 0.1 −0.16 6.62 0.98 25.36 4.92 0.22 1.6 3.53

Table 10: Performance of static perplexity sampling compared to random selection and 100% baseline for
Llama3.2-1B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Random Per-Dataset 123 0.5 0.08 8.57 0.45 36.29 1.71 0.0 4.39 3.24
Baseline 42 1.0 0.0 7.94 0.45 33.96 1.66 0.0 3.62 4.01
Random Per-Dataset 42 0.5 0.0 7.93 0.38 34.68 1.31 0.0 3.29 4.82
Keep Middle Per-Dataset 42 0.5 0.0 7.92 0.39 34.18 1.49 0.0 3.52 5.01
Keep Bottom 42 0.5 −0.03 7.72 0.38 32.75 1.43 0.0 4.05 4.2
Random 42 0.5 −0.04 7.61 0.3 30.67 1.36 0.0 5.73 3.36
Random Per-Dataset 123 0.3 −0.04 7.65 0.3 33.5 1.45 0.0 3.0 3.13
Keep Bottom Per-Dataset 42 0.5 −0.05 7.55 0.3 34.14 2.15 0.0 1.15 4.72
Random 123 0.5 −0.06 7.43 0.08 34.51 1.68 0.0 0.89 3.3
Keep Middle 42 0.5 −0.07 7.37 0.6 31.82 1.61 0.0 2.81 5.82
Keep Top 42 0.5 −0.08 7.26 0.3 32.16 1.27 0.0 2.59 4.25
Keep Bottom 42 0.3 −0.08 7.29 0.68 30.06 2.43 0.0 3.3 4.45
Keep Top 42 0.3 −0.09 7.25 0.53 31.67 1.22 0.0 2.81 3.54
Keep Middle Per-Dataset 42 0.3 −0.09 7.22 0.43 30.91 1.41 0.0 3.34 3.48
Random Per-Dataset 42 0.3 −0.1 7.13 0.3 31.2 1.14 0.0 3.0 3.12
Random 123 0.3 −0.1 7.16 0.45 32.62 1.44 0.0 1.31 3.34
Keep Bottom Per-Dataset 42 0.3 −0.11 7.04 0.53 30.28 1.93 0.0 2.45 3.82
Keep Middle 42 0.3 −0.14 6.83 0.38 29.19 0.88 0.0 3.7 2.95
Keep Top Per-Dataset 42 0.3 −0.15 6.72 0.15 29.81 1.35 0.0 2.29 3.72
Keep Top Per-Dataset 42 0.5 −0.16 6.69 0.23 30.81 1.23 0.0 1.2 3.44
Random Per-Dataset 123 0.1 −0.17 6.58 0.53 28.14 1.91 0.0 2.32 3.05
Random 42 0.3 −0.18 6.54 0.3 29.6 1.39 0.0 1.43 3.62
Random 42 0.1 −0.19 6.42 0.45 26.66 0.92 0.0 4.05 3.16
Random Per-Dataset 42 0.1 −0.2 6.38 0.53 27.54 1.86 0.0 1.95 2.84
Random 123 0.1 −0.23 6.1 0.6 26.11 1.42 0.0 2.35 2.89
Keep Top 42 0.1 −0.24 6.02 0.53 25.26 1.26 0.0 3.06 2.57
Keep Top Per-Dataset 42 0.1 −0.24 6.07 0.6 25.29 1.38 0.0 3.09 3.44
Keep Bottom Per-Dataset 42 0.1 −0.25 5.93 0.6 26.2 2.11 0.0 0.72 3.97
Keep Bottom 42 0.1 −0.27 5.78 0.38 24.62 1.75 0.0 2.17 2.84
Keep Middle Per-Dataset 42 0.1 −0.28 5.68 0.53 23.17 1.55 0.0 3.14 3.5
Keep Middle 42 0.1 −0.32 5.38 0.38 22.35 1.53 0.0 2.66 3.13

F Additional Results for Static Perplexity Data Selection

In the section we present additional results for the static perplexity-based data selection experiment described
in §3.

34

Published in Transactions on Machine Learning Research (06/2025)

Table 11: Performance of static perplexity sampling compared to random selection and 100% baseline for
Llama3.2-3B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Middle Per-Dataset 42 0.5 0.02 16.36 1.59 49.13 16.26 3.58 11.24 16.2
Baseline 42 1.0 0.0 16.08 1.44 49.93 15.58 2.01 11.42 16.8
Random Per-Dataset 123 0.3 −0.01 15.86 1.59 49.68 13.99 2.13 11.93 11.38
Random Per-Dataset 42 0.5 −0.02 15.72 1.81 47.03 16.18 2.24 11.32 17.07
Keep Top 42 0.5 −0.02 15.81 1.74 47.84 15.27 3.36 10.82 14.7
Random Per-Dataset 42 0.3 −0.03 15.55 1.5 49.23 13.12 2.13 11.78 11.64
Random Per-Dataset 123 0.5 −0.03 15.6 1.51 49.95 15.91 0.78 9.83 14.98
Keep Middle 42 0.5 −0.06 15.04 1.66 47.84 15.11 1.12 9.46 12.02
Random 42 0.3 −0.07 14.88 1.81 45.02 13.33 4.03 10.21 14.62
Keep Bottom 42 0.5 −0.07 14.93 1.44 47.7 14.44 2.8 8.28 15.6
Keep Top 42 0.3 −0.08 14.72 2.27 47.76 14.94 1.79 6.85 13.94
Keep Bottom Per-Dataset 42 0.5 −0.08 14.8 1.66 47.94 15.87 0.45 8.1 13.53
Random 42 0.5 −0.09 14.62 1.89 47.3 13.31 1.12 9.47 15.52
Keep Top Per-Dataset 42 0.5 −0.09 14.67 1.59 46.54 15.72 2.8 6.72 10.17
Random 123 0.5 −0.1 14.55 1.89 48.31 14.39 1.23 6.91 17.74
Keep Bottom Per-Dataset 42 0.3 −0.12 14.22 1.28 47.04 14.26 2.01 6.5 11.95
Keep Middle 42 0.3 −0.12 14.21 1.74 46.54 10.9 1.45 10.43 13.0
Keep Middle Per-Dataset 42 0.3 −0.13 13.92 1.36 46.1 10.29 3.02 8.85 14.02
Random Per-Dataset 123 0.1 −0.15 13.74 0.91 44.78 11.26 3.02 8.74 10.31
Keep Top Per-Dataset 42 0.3 −0.16 13.54 1.59 44.41 12.01 3.58 6.12 12.49
Keep Bottom 42 0.3 −0.17 13.39 1.51 42.54 12.97 2.24 7.67 12.47
Keep Middle 42 0.1 −0.21 12.74 1.51 39.98 11.4 3.13 7.69 9.61
Random Per-Dataset 42 0.1 −0.21 12.73 1.89 43.29 9.2 3.13 6.12 10.97
Keep Top 42 0.1 −0.22 12.47 0.83 40.67 12.72 2.8 5.33 12.24
Random 123 0.3 −0.23 12.32 1.51 43.01 9.9 3.13 4.04 11.45
Keep Top Per-Dataset 42 0.1 −0.23 12.41 2.19 38.88 12.35 2.35 6.27 12.87
Keep Middle Per-Dataset 42 0.1 −0.26 11.96 2.42 41.29 10.79 1.34 3.98 13.1
Keep Bottom 42 0.1 −0.27 11.69 1.28 37.64 9.15 2.91 7.48 9.67
Random 123 0.1 −0.3 11.22 2.04 39.02 9.56 2.24 3.22 8.03
Keep Bottom Per-Dataset 42 0.1 −0.3 11.32 1.36 38.07 9.49 2.35 5.31 8.77
Random 42 0.1 −0.31 11.09 1.44 38.65 7.56 1.9 5.92 9.53

Table 12: Performance of static perplexity sampling compared to random selection and 100% baseline for
Llama3.1-8B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Top Per-Dataset 42 0.3 0.03 22.72 5.06 60.74 24.52 7.38 15.91 28.61
Keep Middle Per-Dataset 42 0.5 0.03 22.9 6.23 60.28 23.84 4.25 14.63 28.19
Keep Middle 42 0.5 0.03 22.86 5.59 61.29 24.36 5.15 17.91 27.95
Keep Middle Per-Dataset 42 0.3 0.01 22.31 5.74 60.9 23.26 5.96 15.7 29.39
Keep Top 42 0.5 0.01 22.29 4.38 62.04 22.84 4.36 17.81 25.92
Baseline 42 1.0 0.0 22.14 5.44 61.11 23.39 4.81 15.97 29.53
Random 42 0.3 −0.01 22.01 5.51 57.85 22.0 3.8 20.9 28.13
Random Per-Dataset 123 0.3 −0.01 21.99 5.29 61.85 21.8 5.7 15.32 16.71
Random Per-Dataset 42 0.5 −0.01 22.03 6.19 60.78 23.08 6.6 13.48 24.25
Keep Bottom Per-Dataset 42 0.5 −0.02 21.62 5.36 61.28 21.9 4.59 14.99 24.52
Random Per-Dataset 42 0.3 −0.02 21.73 5.01 61.65 21.41 5.6 14.98 16.12
Random 42 0.5 −0.02 21.59 6.19 58.73 24.17 4.7 14.18 24.35
Keep Top 42 0.3 −0.02 21.78 4.83 60.07 24.66 5.7 13.66 24.47
Keep Bottom Per-Dataset 42 0.3 −0.03 21.46 5.21 57.03 24.4 4.25 16.42 26.57
Random 123 0.3 −0.03 21.47 6.12 60.28 22.64 3.91 14.39 28.09
Random Per-Dataset 123 0.1 −0.03 21.47 6.34 56.73 22.77 5.37 16.13 24.54
Keep Bottom 42 0.5 −0.03 21.46 7.02 58.89 21.65 4.14 15.59 25.79
Random Per-Dataset 42 0.1 −0.04 21.27 4.76 54.42 24.55 6.26 16.37 23.33
Random 123 0.5 −0.05 21.15 5.82 58.83 21.2 5.37 14.51 27.26
Keep Top 42 0.1 −0.05 21.13 5.44 51.52 24.25 6.71 17.72 20.74
Keep Top Per-Dataset 42 0.5 −0.05 21.05 4.38 58.28 21.04 6.38 15.16 22.7
Keep Top Per-Dataset 42 0.1 −0.06 20.74 5.36 55.51 21.89 6.82 14.1 23.28
Keep Middle 42 0.3 −0.06 20.85 4.53 53.17 25.43 6.6 14.51 27.32
Random Per-Dataset 123 0.5 −0.07 20.58 5.44 60.53 23.03 2.46 11.45 28.98
Random 42 0.1 −0.08 20.47 5.29 47.58 22.89 6.15 20.42 22.53
Keep Middle 42 0.1 −0.08 20.45 5.36 51.89 22.55 5.03 17.44 22.31
Keep Middle Per-Dataset 42 0.1 −0.11 19.74 6.5 50.77 22.15 2.24 17.02 22.84
Random 123 0.1 −0.12 19.46 4.46 48.21 22.77 6.6 15.25 23.25
Keep Bottom 42 0.3 −0.12 19.48 6.42 51.89 20.94 5.15 12.98 26.31
Keep Bottom 42 0.1 −0.12 19.52 5.36 45.88 23.48 8.28 14.62 26.2
Keep Bottom Per-Dataset 42 0.1 −0.13 19.16 5.29 48.67 22.08 5.15 14.62 28.08

35

Published in Transactions on Machine Learning Research (06/2025)

Table 13: Performance of static perplexity sampling compared to random selection and 100% baseline for
Gemma2-9B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Random Per-Dataset 42 0.5 0.05 29.19 12.99 66.95 29.64 10.4 25.97 35.37
Keep Top 42 0.3 0.03 28.51 10.5 69.46 33.34 11.74 17.53 36.8
Keep Top Per-Dataset 42 0.3 0.03 28.55 12.16 67.95 31.06 7.83 23.75 30.59
Random 123 0.5 0.02 28.38 13.07 69.47 30.41 10.4 18.56 35.93
Keep Middle Per-Dataset 42 0.5 0.02 28.4 11.48 66.39 30.5 10.29 23.33 33.02
Keep Bottom 42 0.3 0.02 28.44 20.17 61.43 32.15 8.95 19.49 32.54
Random 123 0.1 0.01 28.04 16.16 62.9 31.09 13.09 16.96 35.39
Keep Top Per-Dataset 42 0.1 0.0 27.86 13.44 61.84 35.27 6.71 22.06 34.09
Baseline 42 1.0 0.0 27.81 15.26 66.74 29.52 8.95 18.58 31.56
Random Per-Dataset 42 0.3 0.0 27.92 11.93 65.36 30.8 9.96 21.56 33.47
Keep Middle Per-Dataset 42 0.3 0.0 27.94 14.95 65.4 29.21 12.3 17.86 33.58
Keep Top 42 0.5 −0.01 27.54 10.5 67.61 29.42 12.64 17.55 36.71
Random Per-Dataset 123 0.5 −0.01 27.57 14.65 68.61 29.26 7.61 17.73 32.93
Random Per-Dataset 123 0.3 −0.02 27.28 14.2 66.39 30.33 9.28 16.2 33.74
Random Per-Dataset 123 0.1 −0.03 27.04 16.39 62.6 29.48 8.72 18.03 33.94
Random 42 0.3 −0.03 26.87 12.76 65.63 32.77 8.95 14.23 33.67
Keep Bottom Per-Dataset 42 0.5 −0.03 26.96 14.27 61.74 31.01 9.96 17.84 35.12
Keep Bottom Per-Dataset 42 0.3 −0.03 27.05 16.69 64.97 29.59 8.28 15.73 32.41
Random 42 0.5 −0.04 26.8 13.29 69.04 31.23 8.61 11.85 33.59
Random Per-Dataset 42 0.1 −0.04 26.58 15.48 58.72 26.05 7.72 24.92 32.42
Keep Bottom 42 0.1 −0.04 26.56 18.43 53.02 30.53 12.08 18.75 35.51
Keep Bottom Per-Dataset 42 0.1 −0.04 26.82 15.63 59.04 33.8 12.08 13.54 36.11
Keep Middle 42 0.5 −0.04 26.67 12.54 66.54 27.96 9.51 16.81 34.97
Random 42 0.1 −0.05 26.44 15.71 59.67 30.88 9.62 16.33 32.78
Keep Middle Per-Dataset 42 0.1 −0.06 26.24 12.92 60.86 31.76 8.5 17.18 33.43
Keep Top Per-Dataset 42 0.5 −0.07 25.77 10.8 68.19 26.12 7.49 16.25 31.76
Random 123 0.3 −0.08 25.52 12.54 64.38 26.71 9.28 14.68 32.33
Keep Top 42 0.1 −0.1 25.16 8.84 56.32 33.72 11.74 15.18 36.06
Keep Middle 42 0.3 −0.11 24.81 11.1 60.56 29.01 11.52 11.84 33.46
Keep Bottom 42 0.5 −0.13 24.21 17.15 57.12 28.12 4.7 13.97 33.45
Keep Middle 42 0.1 −0.15 23.64 9.52 55.29 30.86 9.4 13.15 34.31

Table 14: Performance of static perplexity sampling compared to random selection and 100% baseline for
Gemma2-9B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Top Per-Dataset 42 0.5 0.01 36.14 25.72 67.93 45.38 17.44 24.23 45.31
Baseline 42 1.0 0.0 35.68 24.06 70.41 45.93 14.54 23.48 42.29
Random Per-Dataset 42 0.5 0.0 35.63 24.55 68.65 44.65 16.11 24.19 42.3
Keep Top Per-Dataset 42 0.3 −0.02 34.91 23.22 67.59 44.49 17.53 21.72 42.81
Random Per-Dataset 123 0.5 −0.03 34.6 25.6 66.98 46.26 16.0 18.16 44.39
Random Per-Dataset 123 0.3 −0.03 34.75 23.79 67.03 44.64 15.1 23.21 43.58
Random Per-Dataset 42 0.3 −0.04 34.43 20.32 67.43 45.43 17.0 21.96 44.67
Random 42 0.1 −0.05 34.07 29.38 60.81 42.7 15.66 21.79 42.36
Random 42 0.3 −0.05 33.86 25.15 65.18 46.4 16.33 16.23 42.33
Random 123 0.5 −0.05 33.96 25.0 68.13 43.81 15.21 17.67 40.42
Random 123 0.1 −0.06 33.41 29.76 60.47 42.33 13.87 20.6 35.24
Random 42 0.5 −0.06 33.56 26.51 64.4 44.76 15.55 16.6 45.36
Random Per-Dataset 123 0.1 −0.07 33.18 23.19 63.89 43.73 14.21 20.9 38.05
Keep Top Per-Dataset 42 0.1 −0.07 33.36 28.1 65.77 41.82 15.55 15.57 40.52
Random Per-Dataset 42 0.1 −0.08 32.96 20.47 65.42 43.53 14.09 21.3 38.76
Random 123 0.3 −0.08 32.95 23.87 64.6 45.11 15.1 16.05 43.24
Keep Middle Per-Dataset 42 0.1 −0.08 32.98 28.02 58.48 44.53 17.56 16.29 41.78
Keep Bottom Per-Dataset 42 0.5 −0.08 32.93 28.4 63.81 44.4 17.0 11.06 42.45
Keep Bottom Per-Dataset 42 0.3 −0.1 32.29 28.4 62.78 44.98 15.1 10.19 39.77
Keep Middle Per-Dataset 42 0.5 −0.1 31.95 22.66 65.39 42.67 14.88 14.14 41.35
Keep Middle Per-Dataset 42 0.3 −0.11 31.72 27.04 62.74 41.96 14.21 12.64 42.23
Keep Bottom Per-Dataset 42 0.1 −0.11 31.68 24.85 63.05 45.36 14.77 10.38 36.06

36

Published in Transactions on Machine Learning Research (06/2025)

Table 15: Performance of static perplexity sampling compared to random selection and 100% baseline for
Gemma2-27B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Top Per-Dataset 42 0.5 0.08 32.93 19.92 70.28 34.28 12.64 20.66 39.78
Random Per-Dataset 123 0.3 0.06 32.4 20.98 68.37 38.56 10.96 21.12 41.23
Random Per-Dataset 42 0.3 0.04 31.59 20.0 68.79 37.86 10.0 21.32 41.3
Keep Top Per-Dataset 42 0.3 0.03 31.27 20.97 69.7 33.58 12.21 19.89 39.55
Keep Top 42 0.5 0.02 31.09 16.47 71.53 33.99 11.41 22.06 42.13
Random Per-Dataset 123 0.5 0.02 30.95 22.43 72.51 30.89 9.51 19.43 38.11
Random Per-Dataset 123 0.1 0.01 30.69 20.62 67.58 35.16 11.19 18.92 38.98
Random 42 0.3 0.01 30.77 22.73 68.39 35.63 11.41 15.71 38.23
Keep Top Per-Dataset 42 0.1 0.0 30.51 21.3 66.3 32.41 11.52 21.0 40.05
Baseline 42 1.0 0.0 30.47 21.68 70.26 32.18 11.41 16.84 39.68
Keep Middle Per-Dataset 42 0.3 −0.01 30.05 19.18 67.85 33.64 12.53 17.06 33.95
Random 123 0.1 −0.01 30.32 20.47 69.26 32.19 12.75 16.93 38.83
Keep Bottom Per-Dataset 42 0.3 −0.01 30.26 22.51 71.04 33.32 13.53 10.92 40.86
Random 42 0.1 −0.01 30.29 21.71 68.31 32.0 12.24 17.21 39.1
Keep Bottom 42 0.5 −0.02 29.92 23.87 67.55 31.77 8.72 17.7 41.13
Keep Bottom Per-Dataset 42 0.5 −0.03 29.52 20.69 70.68 31.67 11.97 12.58 37.18
Keep Middle 42 0.5 −0.03 29.51 17.07 73.38 31.76 11.41 13.95 38.52
Random Per-Dataset 42 0.1 −0.04 29.27 20.62 61.98 32.97 12.3 18.47 38.39
Keep Bottom 42 0.1 −0.04 29.38 24.85 55.32 37.19 12.19 17.34 40.44
Keep Middle 42 0.3 −0.04 29.38 19.79 73.15 31.21 8.72 14.05 40.48
Random 123 0.3 −0.05 28.84 19.49 70.92 28.08 11.74 13.98 35.83
Keep Bottom 42 0.3 −0.05 28.98 22.89 63.5 35.45 12.98 10.1 43.08
Random 42 0.5 −0.06 28.6 20.85 68.77 30.55 10.63 12.2 33.84
Keep Bottom Per-Dataset 42 0.1 −0.07 28.34 21.22 64.38 34.54 11.07 10.5 42.87
Keep Top 42 0.1 −0.07 28.36 11.71 60.81 36.69 12.19 20.38 41.0
Keep Middle Per-Dataset 42 0.5 −0.08 28.16 19.86 67.0 27.72 13.65 12.59 31.19
Keep Middle Per-Dataset 42 0.1 −0.09 27.77 19.18 62.05 29.69 13.31 14.6 38.6
Keep Top 42 0.3 −0.11 27.18 12.24 66.64 28.82 9.4 18.82 33.47
Random 123 0.5 −0.12 26.89 21.07 65.7 25.35 9.28 13.06 32.2
Random Per-Dataset 42 0.5 −0.14 26.31 19.86 67.56 27.21 4.47 12.47 32.08
Keep Middle 42 0.1 −0.16 25.58 12.08 63.54 27.77 7.61 16.9 38.89

Table 16: Performance of static perplexity sampling compared to random selection and 100% baseline for
Qwen2.5-32B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Top Per-Dataset 42 0.5 0.1 41.53 36.1 75.03 53.25 18.46 24.79 48.85
Random Per-Dataset 42 0.3 0.07 40.37 35.27 74.67 51.82 20.47 19.63 50.29
Random 42 0.5 0.06 40.22 36.1 74.67 51.86 18.12 20.37 52.74
Random 123 0.3 0.05 39.64 35.27 72.3 50.35 17.9 22.36 49.55
Random Per-Dataset 123 0.3 0.05 39.75 36.56 74.58 48.11 18.12 21.38 49.13
Random Per-Dataset 42 0.5 0.04 39.45 33.69 73.42 49.76 18.57 21.8 47.12
Random 42 0.3 0.04 39.26 33.91 71.25 52.15 19.02 19.98 50.24
Random 123 0.5 0.03 39.15 33.91 74.39 51.45 18.23 17.78 45.45
Keep Top 42 0.5 0.03 39.05 33.16 74.03 48.77 19.69 19.61 49.87
Random Per-Dataset 123 0.1 0.03 39.07 32.25 70.23 49.81 17.23 25.84 44.37
Random Per-Dataset 123 0.5 0.03 38.95 35.57 75.61 46.2 16.22 21.17 49.33
Random 42 0.1 0.02 38.83 35.05 68.49 47.65 17.9 25.04 46.85
Keep Middle Per-Dataset 42 0.5 0.02 38.6 33.38 71.68 49.81 18.46 19.69 50.09
Keep Top Per-Dataset 42 0.3 0.02 38.78 33.61 73.23 51.32 19.02 16.71 49.68
Random Per-Dataset 42 0.1 0.02 38.51 31.8 72.53 49.81 16.33 22.06 46.09
Keep Top Per-Dataset 42 0.1 0.01 38.32 34.52 67.64 50.59 18.57 20.28 44.01
Keep Top 42 0.3 0.01 38.43 32.18 73.06 51.77 17.45 17.69 49.51
Keep Top 42 0.1 0.0 37.73 30.29 66.01 51.61 17.79 22.94 49.85
Baseline 42 1.0 0.0 37.89 34.67 73.9 48.03 16.33 16.52 48.06
Keep Middle 42 0.5 −0.01 37.35 30.89 75.58 46.67 17.79 15.81 46.16
Keep Middle Per-Dataset 42 0.3 −0.02 37.04 33.99 69.01 47.66 18.46 16.09 45.72
Keep Middle 42 0.3 −0.02 37.14 31.34 73.57 46.94 17.56 16.31 44.67
Keep Middle Per-Dataset 42 0.1 −0.03 36.58 31.42 64.87 51.99 17.11 17.52 45.36
Keep Bottom Per-Dataset 42 0.5 −0.03 36.94 33.84 69.37 47.47 16.44 17.57 46.6
Random 123 0.1 −0.04 36.29 34.44 63.2 48.88 15.55 19.4 42.08
Keep Bottom Per-Dataset 42 0.3 −0.04 36.44 32.33 68.28 47.44 17.67 16.46 46.5
Keep Bottom Per-Dataset 42 0.1 −0.05 36.05 31.19 65.23 50.2 17.34 16.27 46.05
Keep Bottom 42 0.5 −0.05 36.05 29.46 67.3 46.39 16.78 20.34 45.78
Keep Middle 42 0.1 −0.07 35.2 31.5 65.23 45.62 17.23 16.41 40.25
Keep Bottom 42 0.1 −0.07 35.12 25.23 61.92 49.09 17.67 21.71 45.69
Keep Bottom 42 0.3 −0.14 32.52 15.94 64.65 46.37 16.67 18.96 45.24

37

	Introduction
	Related Work
	Preliminary Analysis
	Spaced Scheduled Training
	Method
	Overhead Analysis and Mitigation

	Experiments
	Experimental Setup
	Results and Discussion
	Limitations and Future Work

	Conclusion
	Experimental Setup Details
	Method Details
	Overhead
	Wall-Clock Time Comparison
	Optimized Inference

	Detailed Analysis on Static Perplexity Sampling
	Experimental Setup
	Performance and Consistency
	Impact of Training on Selection Performance
	Selection Criteria Across Training Stages

	Detailed Results
	Intractable Examples

	Additional Results for Static Perplexity Data Selection

