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Abstract

Transporting between arbitrary distributions is a fundamental goal in generative
modeling. Recently proposed diffusion bridge models provide a potential solution,
but they rely on a joint distribution that is difficult to obtain in practice. Further-
more, formulations based on continuous domains limit their applicability to discrete
domains such as graphs. To overcome these limitations, we propose Discrete Dif-
fusion Schrödinger Bridge Matching (DDSBM), a novel framework that utilizes
continuous-time Markov chains to solve the SB problem in a high-dimensional
discrete state space. Our approach extends Iterative Markovian Fitting to discrete
domains, and we have proved its convergence to the SB. Furthermore, we adapt our
framework for the graph transformation and show that our design choice of under-
lying dynamics characterized by independent modifications of nodes and edges can
be interpreted as the entropy-regularized version of optimal transport with a cost
function described by the graph edit distance. To demonstrate the effectiveness of
our framework, we have applied DDSBM to molecular optimization in the field of
chemistry. Experimental results demonstrate that DDSBM effectively optimizes
molecules’ property-of-interest with minimal graph transformation, successfully
retaining other features.

1 Introduction

Transporting an initial distribution to a target distribution is a foundational concept in modern
generative modeling. Denoising diffusion models (DDMs) have been highly influential in this area,
with a primary focus on generating data distributions from simple prior [1, 2, 3, 4, 5]. Despite their
promising results, setting the initial distribution as a simple prior makes DDMs hard to work in
tasks where the initial distribution becomes a data distribution, such as image-to-image translation.
To tackle this, diffusion bridge models (DBMs) extend DDMs to transport data between arbitrary
distributions [6, 7, 8]. However, training DBMs requires a coupling between the initial and target
distributions, which is often difficult to obtain in practice. The Schrödinger Bridge (SB) provides an
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Figure 1: A schematic illustration of DDSBM transforming (a) bridge process to (b) Schrödinger
Bridge in discrete spaces.

attractive framework for constructing a joint distribution of two data distributions while aligning with
the underlying stochastic dynamics [9, 10, 11].

Formally, the SB problem seeks the stochastic process that connects two distributions and is closest to
a reference process, measured by the Kullback-Leibler (KL) divergence [12]. The SB problem can be
described as an entropy-regularized optimal transport (EOT) problem, which introduces an entropy
term to the optimal transport (OT) objective, resulting in randomness in the transport process [13].
Here, the transportation cost is determined by the system’s natural dynamics; for example, in the
case of Brownian motion, the transportation cost becomes L2 [14]. The SB/EOT can be computed
efficiently using the Sinkhorn algorithm, though high-dimensional or large-scale data applications
remain challenging [15, 16]. In recent, many methods have been proposed to approximate SB via
distribution learning, utilizing techniques developed in DBM and DDM [14, 17, 18, 7, 19, 20, 21].

Despite the progress, most of the methods focus on the continuous spaces, where diffusion processes
are represented by Brownian motion, and SB problems in discrete domains are less explored. It is
particularly significant in fields that handle discrete state data, such as graphs or natural language
[22, 23]. Directly applying frameworks for approximating SB formulated in continuous spaces to
these domains limits its potential since it does not reflect the intrinsic properties of discrete data space.
To bridge the gap, we propose a novel framework called Discrete Diffusion Schrödinger Bridge
Matching (DDSBM) utilizing the continuous-time Markov chains (CTMCs) to solve the SB problem
in a high-dimensional discrete setting. Our approach leverages Iterative Markovian Fitting (IMF),
which was originally proposed for the SB problem in a continuous domain [19, 20].

We then extend our formulation to the graph domain, where the underlying process can be interpreted
as independent modifications to both the nodes and edges [23]. In this case, the cost function of
the corresponding EOT can then be regarded as the graph edit distance (GED), which is especially
suited for systems where preserving graph similarity is crucial [24]. The molecular optimization in
drug/material discovery is such a case in that molecules are represented as graphs. In addition, the
goal is to obtain the molecules with desired molecular properties while retaining favorable properties
in acclaimed molecules. Since molecular structures are closely related to their properties, it is highly
advantageous to minimize structural changes (or graph editing) during the optimization.

To validate our framework, we evaluated the performance of DDSBM on molecular optimization
tasks, with criteria of demonstrating optimal structural modifications to achieve desired property.
DDSBM shows promising results in molecular distribution shift with minimum structural change
compared to the previous graph-to-graph translation models. As a direct result of this, DDSBM
retains multiple properties of the initial molecules, along with desired property. Lastly, we applied
DDSBM for a more challenging task, where proper joint pairing between two molecular spaces can
not be defined properly.

Our contributions are as follows:

• We propose a novel framework, DDSBM, for the SB problem in discrete state spaces by
exploiting the IMF procedure and prove its convergence to the SB solution.

• We extend our framework to the graph domain, demonstrating a connection between the
objective function and the GED.
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• By reformulating molecular optimization as the SB problem, we show that our approach
successfully addresses molecular optimization tasks.

2 Theoretical Background

Notations. We consider the sample space Ω = D([0, τ ],X ), which is set of all left limited and right
continuous (càdlàg) paths over the finite metric space (X , dX ). The space of path measures is denoted
by P(Ω) = P(D([0, τ ],X )). The subset of Markov measures of which the transition probability
are continuous and differentiable for time is denoted by M. The transition probability from state
x at time s to state y at time t will be represented by Ps:t(x, y). Similarly, the transition rate or
generator of a Markov measure as As(x, y). For any M ∈ M, the reciprocal class of M is denoted
by R(M) (see Definition 2.1). For any P ∈ P(Ω), Pt denotes the marginal distribution at time t, Ps,t

as the joint distribution at time s and t, Pt|s the conditional distribution at time t given state at time
s. X = (Xt)t∈[0,τ ] denotes the canonical process given by Xt(ω) = ωt for ω = (ωs)s∈[0,τ ] ∈ Ω.
The reference measure Q ∈ M is an irreducible Markov measure on Ω with its associated canonical
filtration. We will denote the transition rate (or probability) of any Markov measures M other than Q,
using a superscript notation.

2.1 Schrödinger Bridge Problem

Schrödinger Bridge (SB) problem is finding a stochastic process that most closely resembles a given
reference process, with a condition that initial and final marginal distributions are fixed as Γ and Ξ.
Specifically, the reference process with the law Q is given, the optimality is achieved by minimizing
Kullback-Leibler (KL) divergence to the reference process, DKL(P∥Q). Thus the definition of the
SB solution is as below:

PSB = argmin
P

{DKL(P∥Q) : P0 = Γ,Pτ = Ξ}. (1)

If we additionally fix the initial and terminal coupling P0,τ , the optimality can be found easily as
a mixture of bridges P0,τQ·|0,τ , which implies that finding the SB solution is equivalent to finding
optimal coupling PSB

0,τ [13]. In particular, such optimal coupling is called static SB solution, which
could be defined as follows:

PSB
0,τ = argmin

P0,τ

{DKL(P0,τ∥Q0,τ ) : P0 = Γ,Pτ = Ξ}. (2)

Note that the KL-divergence is decomposed into the entropy term H(P0,τ ) and the cross-entropy
term EP0,τ

[− log q(xτ |x0)], where q denotes the density function of Q. The cross-entropy term is
represented as L2 distance when the Q is associated with the reversible Brownian motion. In general,
the static SB problem is equivalent to the entropy-regularized optimal transport (EOT) problem
with the cost function c(x, y) = − log qτ |0(y|x) [13]. While previous approaches have primarily
focused on solving SB problems in continuous spaces, typically involving Brownian motion, our
work differs by addressing SB solutions in discrete spaces, specifically dealing with cádlág paths.
Despite this distinction, the core idea remains rooted in the intrinsic properties of the SB solution
(see Theorem A.1).

2.2 Solution Method

To solve the SB problem, we adopted the Iterative Markovian Fitting (IMF) method, a technique that
has been proposed in various studies [19, 20]. These works primarily address diffusion processes in
Euclidean space, whereas our approach differs slightly as we focus on a continuous-time Markov
chain over finite state space. Applying IMF to càdlàg paths in discrete spaces requires additional
theoretical developments or modifications to ensure proper convergence and stability in this new
context, which is described in Appendix A.

The SB solution is a mixture of pinned-down measures of Q(·|X0 = x0, Xτ = xτ ), where the
pair (x0, xτ ) is drawn from the coupling PSB

0,τ . Based on this, the projection method first constructs
a reciprocal measure, which is mixture of pinned-down processes from a given initial coupling.
Although each pinned-down process is Markov, the mixture generally loses the Markov property
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in general as collection of Markov process is non-convex [25]. Thus, it then identifies the Markov
measure that is closest to the mixture. This yields an improved coupling, and the process is iterated
to obtain a measure that is both the mixture of pinned-down measures and Markov– the desired SB
solution.

In this context, we define the reciprocal projection to describe the construction of a reciprocal mixture
from a given coupling (see Definition 2.1). Similarly, the term Markov projection is used to describe
the approximation of a reciprocal process with a Markov process (see Definition 2.2).
Definition 2.1. (Reciprocal Projection)
Λ ∈ P(Ω) is in the reciprocal class R(Q) with respect to a Markov measure Q if Λ = Λ0,τQ|0,τ .
For a measure Λ ∈ P(Ω), its reciprocal projection with respect to Q is

ΠR(Q)(Λ)(·) :=
∫∫

(·)
Λ(dx0, dxτ )Q(dxt|x0, xτ ).

Among the measures with the coupling Λ0,τ ̸= PSB
0,τ , the minimizer of the KL-divergence to the

reference process is the (non-Markov) reciprocal projection ΠR(Λ). The reciprocal projection
consists of a mixture of bridges, where each bridge is derived from Doob’s h-transform with the
realization of an end-point pair (x, y) ∼ Λ0,τ [26]. Obviously, it preserves the initial-terminal
coupling. Although each pinned-down bridge is Markov (see Lemma A.4), the mixture is generally
not Markov.
Definition 2.2. (Markov Projection)
Given a path measure Λ ∈ R(Q), a Markov path measure that minimizes the reverse KL-divergence
to Λ is called as Markov projection of Λ,

ΠM(Λ) = argmin
M

{DKL(Λ∥M) : M ∈ M} .

The Markov projection preserves the marginal distribution at all times t, but does not preserve the
coupling. Furthermore, the generator and the reverse KL-divergence of the Markov projection over
cádlág paths are explicitly derived in the Proposition A.2.

For a given reciprocal process Λ(0) ∈ R(Q), we consider a sequence (Λ(n))n∈N which is defined by
the recurrence relation:

Λ(2n+1) = ΠM(Λ(2n)), (3)

Λ(2n+2) = ΠR(Q)(Λ
(2n+1)),

where Λ
(0)
0 = Γ and Λ

(0)
τ = Ξ. Under mild assumptions, the resulting sequence of measures of

iterative projection converges to PSB in law (see Theorem 2.3 and Appendix A.5).
Theorem 2.3. (Convergence of Iteration)
Assume that DKL(Λ

(0)
0,τ∥PSB

0,τ ) < ∞, Λ(n) ≪ PSB for all n ∈ N. Then the sequence of KL-divergence
to PSB non-increasing,

DKL(Λ
(2n)∥PSB) ≥ DKL(Λ

(2n+1)∥PSB) ≥ DKL(Λ
(2n+2)∥PSB).

DKL(Λ
(2n)∥PSB) = DKL(Λ

(2n+1)∥PSB) if and only if Λ(2n) = Λ(2n+1) = PSB. Moreover, Λ(n)

converges to PSB in law as n → ∞.

3 Methods

Here, we propose the Discrete Diffusion Schrödinger Bridge Matching (DDSBM) framework, which
focuses on solving the SB problem in discrete state spaces. Approaches to the SB problem in
continuous spaces model probability flows through stochastic differential equations, while our
method uses continuous-time Markov chains (CTMCs) in discrete state spaces, governed by the
Kolmogorov equation Equation (9). We first provide the algorithm of DDSBM (Section 3.1) to
apply Iterative Markovian Fitting (IMF) to càdlàg paths in discrete spaces, of which the convergence
is ensured theoretically by Theorem 2.3. We then discuss how DDSBM can be implemented in
the graph transformation (Section 3.2) and introduce a graph permutation matching algorithm for
efficiency (Section 3.3).
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3.1 Algorithm for Solving the Schrödinger Bridge Problem

In this section, we present the framework for solving the SB problem in discrete state spaces based
on the IMF algorithm proposed by Shi et al. [20]. We refer to it as the DDSBM framework. The
framework iteratively applies Markov and reciprocal projections to update the sequence of measures,
as described in Equation (3).

It begins with an initial random coupling π such that π0 = Γ and πτ = Ξ. Following the definition of
the reciprocal class in Definition 2.1, we construct the initial reciprocal bridge to obtain the measure
Λ(0).

Given a reciprocal measure Λ(2n) ∈ R(Q), the next step is to compute its Markov projection
M (2n+1) := ΠM(Λ(2n)). The exact form of the transition rate for M (2n+1) is provided in Proposi-
tion A.2. In practice, the transition rate is approximated by a neural network.

To achieve this, it first samples pairs (x0, xτ ) from Λ
(2n)
0,τ and samples intermediate states xt by

constructing the bridge Q(·|X0, Xτ ). The sampled pairs (xt, xτ ) are distributed according to Λ
(2n)
t,τ .

Using these realizations, the rate matrix of M (2n+1) is approximated by parameterized Markov
measure Mθ, by minimizing the following loss function:

L(θ) =
∫ τ

0

E
Λ

(2n)
t,τ

(AQ·|τ
t −AMθ

t )(Xt, Xt) +
∑
y ̸=Xt

A
Q·|τ
t log

A
Q·|τ
t

AMθ

t

(Xt, y)

 dt, (4)

where A
Q·|τ
t denotes the generator of pinned down process of Q(·|Xτ ). From the approximated

generator AMθ

t , we can sample xτ given x0, where (x0, xτ ) ∼ Mθ
0,τ ≈ M

(2n+1)
0,τ . Note that, until

the sequence of measures converges, the new joint coupling Mθ
0,τ ≈ M

(2n+1)
0,τ will differ from the

previous one Λ
(2n)
0,τ .

Once the Markov measure M (2n+1) is obtained, we proceed to compute the corresponding reciprocal
measure Λ(2n+1) through reciprocal projection, Λ(2n+1) := ΠR(Q)(M

(2n+1)). In theory, as shown in
Proposition A.2, the time marginal distributions are preserved under Markov projection, meaning that
Λ
(2n)
t = M

(2n+1)
t for all t ∈ [0, τ ]. However, in practice, since the Markov projection is approximated

using a neural network, repeatedly applying this approximation can lead to an accumulation of errors
in the time marginals. Such accumulated errors may violate the marginal condition of the SB problem,
particularly leading to a potential failure in satisfying the terminal condition Pτ = Ξ.

To compensate these errors, the next Markov measure M (2n+2) := ΠM(Λ(2n+1)) is approximated in
a time-reversal way (see Proposition A.8). Based on the time-symmetric nature of Markov measures,
we can leverage the time-reversed generator ÃM(2n+2)

t , which enables the sampling of x0 conditioned
on xτ , where (x0, xτ ) ∼ M

(2n+2)
0,τ . The approximation of ÃM(2n+2)

t is achieved by minimizing the
following loss function:

L(ϕ) =
∫ τ

0

EΛ0,t

(ÃQ·|0
t − ÃMϕ

t )(Xt, Xt) +
∑
y ̸=Xt

Ã
Q·|0
t log

Ã
Q·|0
t

ÃMϕ

t

(Xt, y)

 dt, (5)

where Ã
Q·|0
t denotes the time-reversal generator of pinned down process of Q(·|X0), and ϕ represents

the parameters of the neural network approximating the time-reversed generator ÃMϕ

t .

In this manner, the iterative Markov projection following the reciprocal projection is performed
alternately in a forward and backward (time-reversal) fashion. Finally, this process yields a sequence
of measures (Λ(n))n∈N and (M (n))n∈N+ , which converges to PSB in theory.

3.2 Process on the Graph

We present a method for applying the previously described solution to a graph transformation. A
graph is represented as G = (V,E), where V = (v(i))i and E = (e(ij))ij denote node and edge
features, respectively. In a molecular graph, for example, the node and edge features correspond to
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atomic types and edge features, respectively. Here, V and E are modeled as products of categorical
random variables.

As the reference process, we define a jump process in which the nodes and edges of the graph change
discretely, assuming that all nodes and edges are independent. Therefore, the transition probability P
and the rate A of the reference process is described as follows:

PG
s:t(G1,G2) =

∏
i

PV
s:t(v

(i)
1 , v

(i)
2 )
∏
i,j

PE
s:t(e

(ij)
1 , e

(ij)
2 ),

∂tP
(·)
s:t (x, y) =

∑
z∈X (·)

P
(·)
s:t (x, z)A

(·)
t (z, y), (6)

A(·)
s (x, y) = ∂tP

(·)
s:t (x, y)

∣∣
t=s

,

where · denotes V or E, G1 denotes (V1,E1) =
(
(v

(i)
1 ), (e

(ij)
1 )

)
, G2 denotes (V2,E2) =(

(v
(i)
2 ), (e

(ij)
2 )

)
, and X V and XE denote the state space of the nodes and edges, respectively. More

specifically, we use a monotonically decreasing function for signal to noise ratio, ᾱ : [0, τ ] → (0, 1],
in which the transition rate is defined as:

A
(·)
t (x, y) = ∂t(ln ᾱ(t))

(
δxy −m(·)(y)

)
, (7)

where δxy denotes the Kronecker delta, and m(V ) and m(E) denote the prior distribution of nodes
and edges as proposed in the previous discrete diffusion work [23]. According to the Kolmogorov
equation, we get the transition probability as,

P
(·)
s:t (x, y) =

ᾱ(t)

ᾱ(s)
δxy +

(
1− ᾱ(t)

ᾱ(s)

)
m(·)(y). (8)

Note that the choice of m(·) as uniform is associated to the diffusion on the state space X , where the X
is considered fully-connected graph. Moreover, the stationary distribution of the associated generator
always becomes m(·). Although non-uniform choice of m(·) breaks the diffusion formulation on X ,
it does not harm SB formulation.

3.3 Graph Permutation Matching

The transition probability of the reference process depends on graph permutations (see Equation (6)),
so graph permutation matching must be considered beforehand. Although this issue does not affect
the sampling phase, it becomes problematic when computing the likelihood of the reference process
for two given graphs G and G′, or when constructing a reciprocal process, which is a mixture of
Markov bridges between the two graphs (see Appendix B).

One way to handle this is selecting a graph permutation that maximizes the likelihood under the
reference process. Finding the optimal permutation can be formulated as a quadratic assignment
problem (QAP), where the objective is to minimize the negative log-likelihood (NLL), consisting of
the sum of the NLLs for both the nodes and edges. While exact solutions are possible through mixed
integer programming, the problem is NP-hard, so alternative methods are preferred. Specifically,
we employ a max-pooling algorithm by [27], which is an approximation method categorized by
continuous relaxation. After obtaining an approximate solution, we use the Hungarian algorithm to
discretize the assignment vector to the final solution. We observed that the graph matching is highly
accurate in molecular graph matching (see Appendix B.5). The details of the algorithm are described
in Appendix B.4. We utilized the graph matching algorithm for every reciprocal bridge construction
and likelihood computation.

Recall that the SB problem could be interpreted to the EOT problem, where the cost function
corresponds to the NLL. Thus, defining the reference process can be interpreted as defining a distance
(cost) on the set of graphs. Interestingly, we found that the likelihood of optimal permutation is
interpreted as the graph edit distance (see Appendix B.6). This leads to the conclusion that the SB
problem, with the Q as Equation (8), is analogous to an OT problem over the metric space of graphs
equipped with graph edit distance as metric (GED), where the GED computation is well known to be
NP-hard problem.
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4 Related Works

Diffusion Bridge Models. Diffusion bridge models (DBMs) have recently shown state-of-the-art
results in a variety of continuous domains, such as images, biology, and chemistry [6, 7, 18, 8, 21].
While Igashov et al. [28], Yang et al. [29] have extended these models to discrete domains, they
focused on settings where well-defined data pairs exist. To the best of our knowledge, we are the
first to study DBM in discrete domains where proper joint distributions between data points are not
provided or well-defined.

Schrödinger Bridge Problem. The Schrödinger Bridge (SB) problem is an important concept in
recent generative modeling [17, 18, 19, 20]. In particular, incorporating the SB problem into DBM
can address scenarios where no appropriate joint distribution is available, as demonstrated by recent
works [9, 10, 11]. For example, Somnath et al. [18] proposed learning an SB based on an assumed
(partial) true coupling, while Shi et al. [20] showed that it is possible to generate high-quality samples
from arbitrary couplings that are well-aligned with the initial data. However, most existing approaches
focus on continuous spaces. To the best of our knowledge, we are the first to propose a framework
for solving the SB problem in high-dimensional discrete spaces.

Molecular Optimization. Molecular optimization is a promising strategy in drug/material discovery
that aims to improve acclaimed molecules to satisfy multiple domain-specific properties. One major
approach to the molecular optimization problem is to formulate it as a graph transformation problem,
which can be categorized into latent-based and graph-editing approach. The latent based approaches
such as JT-VAE by Jin et al. [30] and HierG2G by Jin et al. [31] encode an input graph into a single
latent vector and then decode it into a whole graph that follows a certain data distribution. The graph-
editing approaches such as Modof by Chen et al. [32] and DeepBioisostere by Kim et al. [33] learn a
graph editing procedure to transport a given molecule to another. Despite their promising results in
optimizing molecular graphs, their training schemes rely on paired data created by predefined rules,
which limits not only the general applicability but also the optimality of the transformations. In this
work, we propose a more flexible framework for molecular optimization by formulating it as a graph
SB problem, leading to more optimal graph transformation accompanying less structural changes.

5 Results and Discussions

Here, we demonstrate the effectiveness of the Discrete Diffusion Schrödinger Bridge Matching
(DDSBM) framework on graph transformation tasks. Specifically, we apply DDSBM to a chemical
domain, where the graph transformation task is nontrivial due to additional constraints imposed
by molecular graphs and their associated properties. We conducted experiments on two different
molecule datasets: ZINC250K [34] and Polymer [35]. Throughout this section, we first elaborate on
the common experimental setups and metrics for evaluation. The second and third sections provide a
detailed analysis of ZINC250K and Polymer experiments.

5.1 Experimental setup and metrics

Experimental Setup. To train the models on graph transformation problems, an initial coupling
between two distributions is necessary. We randomly coupled the data of initial and terminal
distributions to obtain paired data. The molecular pairs are divided into training and test datasets
in a ratio of 8:2. The effect of different initial couplings is discussed in Appendix D.3. Detailed
explanations about model architectures and hyperparameters can be found in Appendix C.

Metrics. By definition of SB (see Equation (1)), both joint distribution and marginal distributions at
each side must be examined to assess the degree to which the SB has been successfully achieved.
Specifically, we evaluate these distributions from two perspectives: graph structure and molecular
properties. While graph structure provides valuable insights, it alone may not be sufficient for
molecular optimization tasks. Therefore, the assessment of molecular properties is essential for a
more comprehensive validation of the models, as these properties might exhibit weak correlations
with the graph structures.

In the context of graph structure, we calculate Fréchet ChemNet Distance (FCD) score [36] between
the target molecule distribution and the generated molecules from each model, which focuses on
the marginal distribution of the molecules. As the metric for evaluating the quality of the joint
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Table 1: Distribution shift performance on ZINC. Reference refers to metrics from the initial
coupling, used as a standard to evaluate each model’s graph translation. For both AtomG2G and
HierG2G, we’ve excluded the generated molecules that are too large with more atoms than the
maximum number of atoms in our dataset for computing metrics other than validity. ↑ and ↓ denote
higher and lower values are better, respectively. The best performance is highlighted in bold.

Model Type Validity(↑) FCD(↓) NLL(↓) LogP W1(↓) QED MAD(↓) SAscore MAD(↓)
Reference1 - - 4.807 / 0.279 360.862 2.007 0.153 0.595

AtomG2G Latent 100.0 5.480 347.280 0.222 0.135 0.742
HierG2G Latent 100.0 4.413 344.208 0.053 0.135 0.657

DBM Bridge 89.5 1.038 285.576 0.161 0.145 0.611
DDSBM Schrödinger Bridge 95.3 0.896 162.228 0.134 0.118 0.398
1 NLL, W1, and MADs were calculated using random pairs from the test set. Two FCD values are provided: the first compares the initial molecules

in the test set with the terminal molecules in the training set, and the second compares the terminal molecules in both sets.

distribution, we report the negative log-likelihood (NLL), which measures the cost of transforming
one graph into another based on the reference process, aligning with the graph edit distance (GED)
(see Appendix B.6).

For molecular properties, we measure the Wasserstein-1 distance (W1) between the property dis-
tributions of the target and generated molecules representing the properties to be modified, which
corresponds to the marginal distribution. In terms of the joint distribution, we calculate the mean
absolute difference (MAD) of other key properties between the initial and generated molecules that
should be retained, where drug-likeness (QED) [37] and synthetic accessibility score (SAscore) [38]
are typical examples in optimizing drug candidates.

5.2 Small molecule transformation

First, we validate our proposed methods on the SB problem between two molecule distributions
constructed from the standard ZINC250K dataset. We constructed two sets of molecules whose
logP values are largely different. Molecules from the ZINC250K dataset were randomly selected
and divided into two sets whose logP values follow the Gaussian distributions centered at 2 and 4
with variance of 0.5, respectively (For more details, see Appendix D.1). We compared our methods
with three baseline models that perform graph-to-graph translation. AtomG2G and HierG2G are
latent-based models that encode an input graph into a latent vector and decode it into another graph
[31]. Diffusion Bridge Model (DBM) is a bridge model trained with the same reference process
as DDSBM, which is equivalent to the first Markov projection in DDSBM. We refer readers to
Appendix C.2 for more details about the baselines and implementation of our models. We note that,
for these three baseline models, the initial coupling is utilized during the whole training procedure
without change, while DDSBM dynamically alters the training data pair by Iterative Markovian
Fitting (IMF).

Table 1 shows overall results of our method compared to the three baseline models. From Table 1, we
find that DDSBM constantly outperforms the other models in terms of both FCD and NLL. The lower
FCD suggests that DDSBM-generated molecules are more similar to those in the target dataset, while
the minimal NLL indicates that DDSBM applies minimal structural change on initial graphs. This
result demonstrates that DDSBM achieves more optimal graph transformation between fixed initial
and terminal distributions. When it comes to the model type, bridge models achieved lower FCD
and NLL compared to the latent-based models. The bridge models, DBM and DDSBM, dynamically
transform a graph based on the reference dynamics, favoring the retention of the given structure,
whereas whole-graph reconstruction using a latent vector does not. This leads to lower NLL values
for the bridge models, which is ensured by the Definition 2.2. Additionally, the lower FCD values of
the bridge models highlight that constructing a dynamic bridge within the graph domain enhances the
performance of distribution learning for the target distribution. Furthermore, we attribute the best
performance of DDSBM to the gradual updating of training pairs, which become more similar than
the random initial pairs, simplifying the graph transportation process.

Next, we analyze molecular properties of the source and generated molecules. DDSBM resulted in the
lowest MAD in QED and SAscore, meaning deviation of molecular properties other than logP is the
smallest for DDSBM. It is noteworthy that DDSBM achieves minimal changes in various molecular
properties despite being trained solely to optimize graph transformations with minimal structural
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alterations, without explicit knowledge on molecular properties. Meanwhile, the latent-based models
exhibited larger MAD values in QED and SAscore, indicating they are vulnerable to losing other
properties of the initial molecules. This can be inferred from the result of HierG2G; although
HierG2G achieves the lowest W1 value in logP so that it modulates logP the best to the desired
degree, its much larger NLL value suggests that it might generate a graph with less consideration of
the initial graph constraint, as illustrated in Figure 3. For a better understanding of overall results, we
provide the corresponding distributions of properties of the models in Figure 5.

Despite the promising results, we observe that all models except DDSBM have a high reliance on a
pre-defined initial coupling. Thus, we conducted additional experiments using pseudo-optimal initial
coupling based on Tanimoto similarity, which is detailed in Appendix D.3. Interestingly, we found
that introducing the pseudo-optimal initial coupling not only accelerated the training of DDSBM in
practice but also allowed it to achieve performance on par with the previous results.

5.3 Polymer graph transformation

The Polymer dataset [35] consists of 91,000 monomer molecules with their optical excitation energies
(GAPs) obtained by time-dependent density functional theory calculations. We reconstructed the
Polymer dataset for a transport problem between two sets of molecules with distinct GAPs, corre-
sponding to green and blue optical colors, respectively. The reconstructed dataset contains 7,603
molecular pairs. This task is considered as a more challenging application because the relationship
between the graph structure and the target GAP property is highly non-linear, making it hard to
predict the effect of specific structural changes on the GAP. In this context, we apply our DDSBM
model to find the optimal transformation between the two sets of molecules.

The performance of DDSBM is compared to DBM, which serves as a baseline. The GAPs of
the molecules generated by the models were obtained using the pre-trained MolCLR model [39],
which has a mean absolute error (MAE) of 0.027 eV for the GAP prediction. Table 2 shows the
overall results of our method on the Polymer dataset. Apparently, DDSBM outperforms DBM on
all evaluated metrics, which is consistent with the results from the experiments on ZINC250K. In
terms of validity, DBM shows significantly lower scores, which contrasts with the results observed on
the ZINC250K dataset. This can be attributed to the characteristics of the molecules in the Polymer
dataset, which have relatively large sizes and multiple ring structures. In this context, minimal
transformations are advantageous for achieving high validity, and DBM may have struggled to learn
these changes from the randomly paired data. Examples of the generated molecular graphs are
visualized in Figure 4.

Table 2: Distribution shift performance on Polymer. Reference refers to metrics from the initial
coupling, used as a standard to evaluate each model’s graph translation. ↑ and ↓ denote higher and
lower values are better, respectively. The best performance is highlighted in bold.

Model Type Validity(↑) FCD(↓) NLL(↓) GAP W1(↓)
Reference1 - - 1.469 / 0.384 749.800 0.312

DBM Bridge 35.7 2.803 585.043 0.258
DDSBM Schrödinger Bridge 96.6 1.101 215.590 0.136
1 NLL and W1 were calculated using random pairs from the test set. Two FCD values are provided: the first compares the initial

molecules in the test set with the terminal molecules in the training set, and the second compares the terminal molecules in both
sets.

6 Discussion

In this paper, we propose Discrete Diffusion Schrödinger Bridge Matching (DDSBM), a novel
framework utilizing continuous-time Markov chains to solve the SB problem in a high-dimensional
discrete state space. To this end, we extend Iterative Markovian Fitting (IMF), proving its convergence
to SB. We successfully apply our framework to graph transformation, specifically for molecular
optimization. Experimental results demonstrate that DDSBM effectively transforms molecules to
achieve the desired property with minimal graph transformation, while retaining other features.

However, our method has several limitations. The IMF requires iterative sampling from the learned
Markov process, which can be more computationally intensive than simple bridge matching. Addi-
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tionally, the graph permutation matching may introduce challenges for wider applicability in general
graph tasks.

Acknowledgments and Disclosure of Funding

This work was supported by the Korea Environmental Industry and Technology Institute (Grant No.
RS202300219144), the Technology Innovation Program funded by the Ministry of Trade, Industry
& Energy, MOTIE, Korea (Grant No. 20016007), and Basic Science Research Programs through
the National Research Foundation of Korea funded by the Ministry of Science and ICT (Grant No.
RS-2023-00257479 and Grant No. 2018R1A5A1025208).

References
[1] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-

vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[2] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[3] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[4] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[5] Seonghwan Kim, Jeheon Woo, and Woo Youn Kim. Diffusion-based generative ai for exploring
transition states from 2d molecular graphs. Nature Communications, 15(1):341, 2024.

[6] Xingchao Liu and Lemeng Wu. Learning diffusion bridges on constrained domains. In
international conference on learning representations (ICLR), 2023.

[7] Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A. Theodorou, Weili Nie, and Anima
Anandkumar. I2sb: Image-to-image schrödinger bridge. arXiv preprint arxiv:2302.05872,
2023.

[8] Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models.
arXiv preprint arXiv:2309.16948, 2023.

[9] Matteo Pariset, Ya-Ping Hsieh, Charlotte Bunne, Andreas Krause, and Valentin De Bortoli.
Unbalanced diffusion schr\" odinger bridge. arXiv preprint arXiv:2306.09099, 2023.

[10] Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, and Jong Chul Ye. Unpaired image-to-image
translation via neural schr\" odinger bridge. arXiv preprint arXiv:2305.15086, 2023.

[11] Xuanzhao Dong, Vamsi Krishna Vasa, Wenhui Zhu, Peijie Qiu, Xiwen Chen, Yi Su, Yu-
jian Xiong, Zhangsihao Yang, Yanxi Chen, and Yalin Wang. Cunsb-rfie: Context-aware
unpaired neural schr"{o} dinger bridge in retinal fundus image enhancement. arXiv preprint
arXiv:2409.10966, 2024.

[12] Erwin Schrödinger. Sur la théorie relativiste de l’électron et l’interprétation de la mécanique
quantique. In Annales de l’institut Henri Poincaré, volume 2, pages 269–310, 1932.

[13] Christian Léonard. A survey of the schr\" odinger problem and some of its connections with
optimal transport. arXiv preprint arXiv:1308.0215, 2013.

[14] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

[15] Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums.
The American Mathematical Monthly, 74(4):402–405, 1967.

10



[16] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26, 2013.

[17] Guan-Horng Liu, Tianrong Chen, Oswin So, and Evangelos Theodorou. Deep generalized
schrödinger bridge. Advances in Neural Information Processing Systems, 35:9374–9388, 2022.

[18] Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, An-
dreas Krause, and Charlotte Bunne. Aligned diffusion schrödinger bridges. arXiv preprint
arxiv:2302.11419, 2023.

[19] Stefano Peluchetti. Diffusion bridge mixture transports, schrödinger bridge problems and
generative modeling. Journal of Machine Learning Research, 24(374):1–51, 2023.

[20] Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
bridge matching. Advances in Neural Information Processing Systems, 36, 2024.

[21] Danyeong Lee, Dohoon Lee, Dongmin Bang, and Sun Kim. Disco: Diffusion schrödinger
bridge for molecular conformer optimization. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(12):13365–13373, March 2024. ISSN 2159-5399. doi: 10.1609/aaai.v38i12.
29238. URL http://dx.doi.org/10.1609/aaai.v38i12.29238.

[22] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

[23] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

[24] Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs for
pattern recognition. IEEE transactions on systems, man, and cybernetics, (3):353–362, 1983.

[25] Christian Léonard, Sylvie Rœlly, and Jean-Claude Zambrini. Reciprocal processes. a measure-
theoretical point of view. 2014.

[26] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

[27] Minsu Cho, Jian Sun, Olivier Duchenne, and Jean Ponce. Finding matches in a haystack: A
max-pooling strategy for graph matching in the presence of outliers. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2083–2090, 2014.

[28] Ilia Igashov, Arne Schneuing, Marwin Segler, Michael Bronstein, and Bruno Correia. Retro-
bridge: Modeling retrosynthesis with markov bridges. arXiv preprint arXiv:2308.16212, 2023.

[29] Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
Diffsound: Discrete diffusion model for text-to-sound generation. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 31:1720–1733, 2023.

[30] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018.

[31] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular
graphs using structural motifs. In International conference on machine learning, pages 4839–
4848. PMLR, 2020.

[32] Ziqi Chen, Martin Renqiang Min, Srinivasan Parthasarathy, and Xia Ning. A deep generative
model for molecule optimization via one fragment modification. Nature machine intelligence, 3
(12):1040–1049, 2021.

[33] Hyeongwoo Kim, Seokhyun Moon, Wonho Zhung, Jaechang Lim, and Woo Youn Kim. Deep-
bioisostere: Discovering bioisosteres with deep learning for a fine control of multiple molecular
properties. arXiv preprint arXiv:2403.02706, 2024.

11

http://dx.doi.org/10.1609/aaai.v38i12.29238


[34] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In International conference on machine learning, pages 1945–1954. PMLR, 2017.

[35] Peter C. St. John, Caleb Phillips, Travis W. Kemper, A. Nolan Wilson, Yanfei Guan, Michael F.
Crowley, Mark R. Nimlos, and Ross E. Larsen. Message-passing neural networks for high-
throughput polymer screening. The Journal of Chemical Physics, 150(23), June 2019. ISSN
1089-7690.

[36] Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
Fréchet chemnet distance: a metric for generative models for molecules in drug discovery.
Journal of chemical information and modeling, 58(9):1736–1741, 2018.

[37] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

[38] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1:1–11, 2009.

[39] Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):
279–287, 2022.

[40] Jean-René Chazottes, Cristian Giardina, and Frank Redig. Relative entropy and waiting times
for continuous-time markov processes. 2006.

[41] Claude Kipnis and Claudio Landim. Scaling limits of interacting particle systems, volume 320.
Springer Science & Business Media, 2013.

[42] Benton Jamison. Reciprocal processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete, 30(1):65–86, 1974.

[43] Stefano Peluchetti. Non-denoising forward-time diffusions. arXiv preprint arXiv:2312.14589,
2023.

[44] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.

[45] Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and convergence.
John Wiley & Sons, 2009.

[46] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. Journal of the ACM
(JACM), 23(3):555–565, 1976.

[47] Kurt M Anstreicher. Recent advances in the solution of quadratic assignment problems. Mathe-
matical Programming, 97:27–42, 2003.

[48] Paul C Gilmore. Optimal and suboptimal algorithms for the quadratic assignment problem.
Journal of the society for industrial and applied mathematics, 10(2):305–313, 1962.

[49] Eliane Maria Loiola, Nair Maria Maia De Abreu, Paulo Oswaldo Boaventura-Netto, Peter Hahn,
and Tania Querido. A survey for the quadratic assignment problem. European journal of
operational research, 176(2):657–690, 2007.

[50] Yong Xia. Gilmore-lawler bound of quadratic assignment problem. Frontiers of Mathematics
in China, 3:109–118, 2008.

[51] Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems using
pairwise constraints. In Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, volume 2, pages 1482–1489. IEEE, 2005.

[52] Sébastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit Gaüzere, and
Mario Vento. A quadratic assignment formulation of the graph edit distance. arXiv preprint
arXiv:1512.07494, 2015.

12



[53] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

[54] Peter Willett, John M Barnard, and Geoffrey M Downs. Chemical similarity searching. Journal
of chemical information and computer sciences, 38(6):983–996, 1998.

13



A Propositions and proof

A.1 Notations

In this section, we introduce the notations that will be used throughout the proofs of the propositions.
Ω = D([0, τ ],X ) denotes the space of all left-limited and right-continuous (càdlàg) paths over a
finite space X . We assume the state space X has connected finite graph structure (fully-connected
graph), which imply it becomes metric space with graph distance metric dX (·, ·). Accordingly, the
sample space Ω is equipped with Skorokhod topology with Skorokhod metric dΩ(·, ·), and associated
Borel σ-algebra. X = (Xt)t∈[0,τ ] denotes the canonical process given by:

Xt(ω) = ωt, t ∈ [0, τ ], ω = (ωs)s∈[0,τ ].

The reference measure Q is an irreducible Markov measure on Ω with its associated canonical
filtration. Assume that the transition probability of Q, denoted by Ps:t(x, y), from (s, x) ∈ [0, τ ]×X
to (t, y) ∈ [0, τ ]× X , is continuous and differentiable over time. The measure is generated by the
transition rate function As(x, y), which gives the rate of transition from x ∈ X to y ∈ X at time
s ∈ (0, τ), and satisfies the Kolmogorov forward equation:

∂Ps:t(x, y)

∂t
=
∑
z∈X

Ps:t(x, z)At(z, y), (9)

As(x, y) =

[
∂Ps:t(x, y)

∂t

]
t=s

.

We also assume that Q can construct a bridge Q(·|X0 = x,Xτ = y) for all x, y ∈ X . For any
Markov measure M , the corresponding generator is denoted as A(M).

A.2 Theorem A.1

Theorem A.1. (Uniqueness of the Schrödinger Bridge Solution)
If the reference process Q is Markov, then under mild conditions the Schrödinger Bridge solution PSB

exists and is unique. Furthermore, the solution is mixture with static Schrödinger Bridge solution
represented as PSB = PSB

0,τQ·|0,τ ∈ R(Q), and also it is in M. Conversely, a process P = P0,τQ·|0,τ
is Markov if and only if P = PSB.

Proof. This is direct consequence of Theorem 2.12 of [13].

A.3 Markov projection

Proposition A.2. (solution of Markov projection)
Let M∗ = ΠM(Λ), Λ ∈ R(Q) and the generator of Q be At(x, y) with transition probability
Ps:t(x, y). Under mild assumptions, the generator of the Markov measure M∗ becomes

A
(M∗)
t (Xt, y) = EΛτ|t

[
At(Xt, y;Xτ )

∣∣∣∣Xt

]
At(x, y; z) = At(x, y)

Ps:τ (y, z)

Ps:τ (x, z)
− δxy

∑
u

At(y, u)
Pt:τ (u, z)

Pt:τ (x, z)

, where z ∈ X
The reverse KL-divergence is

DKL(Λ∥M∗) =

∫ τ

0

EΛ0,t

(A(Λ|0)
t −A

(M∗)
t )(Xt, Xt) +

∑
y ̸=Xt

A
(Λ|0)
t log

A
(Λ|0)
t

A
(M∗)
t

(Xt, y)

 dt,

where the AΛ|0 is the generator for the conditioned measure Λ|0 which is defined as

A
Λ|0
t (Xt, y) = EΛτ|0,t

[
At(Xt, y;Xτ )

∣∣∣∣Xt, X0

]
.

Moreover, for any t ∈ [0, τ ],Λt = M∗
t .
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A.3.1 KL-divergence of Markov measure

Consider two Markov path measure M̃ ≪ M . Based on the Girsanov’s formula, we can express the
Radon-Nikodym derivative as follow:

dM

dM̃
(ω) =

dM0

dM̃0

(ω0) exp

(∫ τ

0

log
AM

t

AM̃
t

(ωt−, ωt)dNt(ω) +

∫ τ

0

(AM
t −AM̃

t )(ωt, ωt)dt

)
,

where Nt(ω) is the number of jumps of the path ω up to time t and ωt− is the left limit of the path
at time t (see [40] or Appendix 1 of [41]). Note that, due to the compactness of time interval, the
number of jumps of each path in Ω is at most finite, and thus Nt(ω) is bounded. Also, the escape rate
of the state x associated to M is −AM

t (x, x). Thus, we can construct a natural martingale (Lemma
5.1 of [41])

Nt +

∫ t

0

As(ωs, ωs)ds,

which is zero-mean process.

For any continuous and bounded function ϕ : X → R, we can change the integrator dNt as follow:

EM

[∫ t

0

ϕ(ωs)dNs

]
= EM

[∫ t

0

−ϕ(ωs)A
M
s (ωs, ωs)ds

]
=

∫ t

0

Ex∼Ms

[
−ϕ(x)AM

s (x, x)
]
ds.

The KL-divergence is expectation of logarithm of Radon-Nikodym derivative, which leads to:

DKL(M∥M̃) = DKL(M0∥M̃0) + EM

[∫ τ

0

log
AM

t

AM̃
t

(ωt−, ωt)dNt(ω) +

∫ τ

0

(AM
t −AM̃

t )(ωt, ωt)dt

]
,

= DKL(M0∥M̃0) +

∫ τ

0

Ex∼Ms

−AM
s (x, x)

∑
y ̸=x

ps(x, y) log
AM

s

AM̃
s

(x, y)

 ds

+

∫ τ

0

Ex∼Ms

[
(AM

t − ÃM̃
t )(x, x)

]
ds,

where ps(x, y) is the probability of jump from x to y given that a jump occurs, which is AM
s (x,y)

−AM
s (x,x)

By

applying this, we obtain KL-divergence represented solely in terms of transition rate AM and AM̃ :

DKL(M∥M̃) = DKL(M0∥M̃0)+

∫ τ

0

Ex∼Ms

∑
y ̸=x

AM
s (x, y) log

AM
s

AM̃
s

(x, y) + (AM
t −AM̃

t )(x, x)

 ds.

(10)

A.3.2 KL-divergence of reciprocal measure to Markov measure

Lemma A.3. If a reciprocal measure Λ ∈ R(Q) is conditioned on X0 being a.s. constant, then
the corresponding measure Λ·|0 is Markov. For any M ∈ M such that M0 = Λ0 and Λ ≪ M , the
KL-divergence DKL(Λ∥M) disintegrates as follow:

DKL(Λ∥M) = EΛ0

[
DKL(Λ·|0∥M·|0)

]
.

Proof. According to proposition 2.5 of [25] and lemma 1.4 of [42], conditioning Λ on X0 not only
preserves its reciprocal property, but also transforms it into a Markov process. Due to the absolute
continuity together with |X | < ∞, the KL-divergence is finite. Then, the KL-divergence can be
reformulated as follows:

DKL(Λ∥M) = EΛ

[
dΛ

dM

]
,

= EΛ

[
dΛ·|0

dM·|0

]
,

= EΛ0
EΛ·|0

[
dΛ·|0

dM·|0

]
,

= EΛ0

[
DKL(Λ·|0∥M·|0)

]
.
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According to Lemma A.3, while a reciprocal measure Λ ∈ R(Q) is in general non-Markov, the
conditional measure Λ·|0 is Markov. Note that we can compute the KL-divergence between two
Markov measure based on Equation (10).

A.3.3 Generator of conditioned process

To compute DKL(Λ∥M) based on Lemma A.3, Equation (10), we need the generator of the condi-
tioned process Λ·|0. Before deriving the generator of Λ·|0, we first consider the pinned process of Q
conditioned on Xτ = z in prior.

Lemma A.4. Let (Xt)0≤t≤τ be a Markov process under the reference measure Q with transition
probability Ps:t(·, ·), (s ≤ t), and generator As(·, ·). Consider the process conditioned on Xτ = z
with corresponding measure denoted by Q(z). Then, the conditioned process is also Markov, and its
generator is given by:

As(x, y; z) = As(x, y)
Ps:τ (y, z)

Ps:τ (x, z)
− δxy

[∑
u

As(x, u)
Ps:τ (u, z)

Ps:τ (x, z)

]
.

Proof. The conditional probability of Xt given the natural filtration Fu and Xs with u ≤ s ≤ t ≤ τ
under the measure Q(z) is as follows:

Q(z)(Xt = y|Xs = x,Fu) = Q(Xt = y|Xs = x,Xτ = z,Fu),

= Q(Xt = y|Xs = x,Xτ = z), (∵ Q ∈ M)

= Q(z)(Xt = y|Xs = x),

which confirms Q(z) is Markov.

Next, the transition probability of Q(z), denoted by Ps:t(x, y; z), is derived as:

Ps:t(x, y; z) = Q(z)(Xt = y|Xs = x),

= Q(Xt = y|Xs = x)
Q(Xτ = z|Xt = y)

Q(Xτ = z|Xs = x)
,

= Ps:t(x, y)
Pt:τ (y, z)

Ps:τ (x, z)
.

Note that, we assumed the measure Q construct bridge everywhere, the probability ratio has finite
value.

Finally, the corresponding generator As(x, y; z) is obtained using the Kolmogorov forward equation:

As(x, y; z) =
∂

∂t
Ps:t(x, y; z)

∣∣∣∣
t=s

,

= As(x, y)
Ps:τ (y, z)

Ps:τ (x, z)
+ δxy

[
∂sPs:τ (y, z)

Ps:τ (x, z)

]
,

= As(x, y)
Ps:τ (y, z)

Ps:τ (x, z)
− δxy

[∑
u

As(x, u)
Ps:τ (u, z)

Ps:τ (x, z)

]
.

We now consider the transition probability and generator of conditioned measure Λ·|0 of Λ ∈ R(Q).

Lemma A.5. For a reciprocal measure Λ ∈ R(Q), the conditioned process with X0 = x0 is denoted
by Λ·|0=x0

. The generator of Λ·|0=x0
is given by the conditional expectation:

A
Λ|0=x0
s (x, y) = Ez∼Λτ|0,s [As(x, y; z)|X0 = x0, Xs = x] ,

where As(x, y; z) is the generator of the conditioned process of Q with Xτ = z.
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Proof. We denote the transition probability conditioned on X0 = x0 by P
Λ·|0=x0
s:t , which is computed

as follows:

P
Λ·|0=x0
s:t (x, y) =

∫
X
Λ·|0=x0

(Xτ = z|Xs = x)Λ·|0=x0
(Xt = y|Xs = x,Xτ = z)dz.

The first term in the integrand is

Λ·|0=x0
(Xτ = z|Xs = x) = Λ(Xτ = z|X0 = x0, Xs = x),

=
Λ(Xτ = z|X0 = x0)Λ(Xs = x|X0 = x0, Xτ = z)

Λ(Xs = x|X0 = x0)
,

=
ντ (z;x0)

νs(x;x0)
P0:s(x0, x; z),

=
ντ (z;x0)

νs(x;x0)
P0:s(x0, x)

Ps:τ (x, z)

P0:τ (x0, z)
,

=
ντ (z;x0)

νs(x;x0)

µs(x;x0)

µτ (z;x0)
Ps:τ (x, z),

where νs(·;x0), µs(·;x0) are the probability mass functions of Λs|0,Qs|0, respectively, with X0 = x0.
Given the initial-terminal condition, Λ is equivalent to the reference Q based on the definition of
reciprocal class Definition 2.1. Similarly, the second term is same as Q(Xt = y|X0 = x0, Xs =
x,Xτ = z), which can be expressed as Ps:t(x, y; z) due to the Markov property of Q. Therefore, the
transition probability is:

P
Λ·|0=x0
s:t (x, y) =

µs(x;x0)

νs(x;x0)
Ps:t(x, y)

∫
X
Pt:τ (y, z)

ντ (z;x0)

µτ (z;x0)
dz.

Accordingly, the generator is derived as:

A
Λ·|0=x0
s (x, y) = ∂tP

Λ·|0=x0
s:t (x, y)

∣∣∣∣
t=s

,

=
µs(x;x0)

νs(x;x0)
∂tPs:t(x, y)

∣∣∣∣
t=s

∫
X
Pt:τ (y, z)

ντ (z;x0)

µτ (z;x0)
dz

+
µs(x;x0)

νs(x;x0)
Ps:t(x, y)

∫
X
∂tPt:τ (y, z)

∣∣∣∣
t=s

ντ (z;x0)

µτ (z;x0)
dz,

=
µs(x;x0)

νs(x;x0)
As(x, y)

∫
X
Ps:τ (y, z)

ντ (z;x0)

µτ (z;x0)
dz

− δxy
µs(x;x0)

νs(x;x0)

∫
X

∑
u

[As(y, u)Ps:τ (u, z)]
ντ (z;x0)

µτ (z;x0)
dz,

=

∫
X

µs(x;x0)

νs(x;x0)

[
As(x, y)Ps:τ (y, z)− δxy

∑
u

As(y, u)Ps:τ (u, z)

]
ντ (z;x0)

µτ (z;x0)
dz,

=

∫
X

ντ (z;x0)

µτ (z;x0)

µs(x;x0)

νs(x;x0)
Ps:τ (x, z)As(x, y; z)dz,

=

∫
X
Λ|0(Xτ = z|Xs = x)As(x, y; z)dz,

= Ez∼Λτ|0,s [As(x, y; z)|X0 = x0, Xs = x].

In conclusion, the generator of Λ·|0 is given as the conditional expectation,

A
Λ·|0
s (x, y) = EΛτ|0,s [As(x, y;Xτ )|X0, Xs = x].
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A.3.4 Marginal distribution of mixture of Markov chains

A reciprocal process Λ ∈ R(Q) can be represented as a mixture of Markov chains as:

Λ(·) =
∑
x,y

Q(·|X0 = x,Xτ = y)Λ0,τ (x, y).

We here propose the mixture representation of Markov chain similar to theorem 2 of [43] which
describing mixture of diffusion process over Euclidean space.

Proposition A.6. Consider a family of Markov measures on Ω indexed by u ∈ I

∂tP
u
s:t(x, y) =

∑
z

Pu
s:t(x, z)A

u
t (z, y),

Au
s (x, y) = ∂tP

u
s,t(x, y)

∣∣∣∣
t=s

,

where Pu and Au is the transition probability and generator for each measure associated to the
process Xu = (Xu

t )t∈[0,τ ]. We here assume that Au
s is finite for every u. Let the corresponding

Markov measure be Mu, and µu
t be the density of Mu

t , the marginal distribution of Xu
t . Let a mixture

of Mu with the index distribution U over I be Λ,

Λ(·) =
∫
I
Mu(·)U(du).

We denote mixture marginal density µt and mixture initial distribution Λ0 as:

µt(x) =

∫
I
µu
t (x)U(du),

Λ0(·) =
∫
I
Mu

0 (·)U(du).

Let X = (Xt)t∈[0,τ ] be another Markov chain generated by:

∂tPs:t(x, y) =
∑
z

Ps:t(x, z)At(z, y),

At(x, y) =
1

µt(x)

∫
I
Au

t (x, y)µ
u
t (x)U(du),

X0 ∼ Λ0.

Then, the marginal density of Xt is µt. It is assumed that exchange of ∂t and
∫
I U(du) is justified.

Proof. We start from verifying At(x, y) admits conditions of transition rate function. For x ̸= y it is
trivial that At(x, y) is finite and non-negative. Also,

∑
y∈X At(x, y) becomes zeros for all x and t

as: ∑
y∈X

At(x, y) =
∑
y∈X

1

µt(y)

∫
I
Au

t (x, y)µ
u
t (x)U(du),

=
1

µt(y)

∫
I

∑
y∈X

Au
t (x, y)µ

u
t (x)U(du),

= 0.

Thus, mixture of generators At(x, y) holds the condition for a generator of Markov measures.
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Next, for t ∈ (0, τ),

∂tµt(x) = ∂t

∫
I
µu
t (x)U(du),

=

∫
I
∂tµ

u
t (x)U(du), (assumption)

=

∫
I

∑
y∈X

Au
t (y, x)µ

u
t (y)U(du), (∵ Kolmogorov equation)

=
∑
y∈X

(∫
I
Au

t (y, x)µ
u
t (y)U(du)

)
,

=
∑
y∈X

At(y, x)µt(y).

The equality of the left-hand side and the final line corresponds to the Kolmogorov equation for the
process X generated by At. This shows that µt is the marginal distribution of Xt.

A.3.5 Minimizer of the KL-divergence

The Markov projection of a reciprocal process Λ, denoted ΠM(Λ), is a Markov process M∗ which
minimizes the reverse KL-divergence DKL(Λ,M). We here characterize M∗ by specifying its
generator. While the generator A

Λ·|0
t of Λ·|0 represented as a conditional expectation given X0, Xt

as noted in Lemma A.5, that of the M∗ is supposed to be represented as the conditional expectation
without X0 condition. The following lemma says that EΛ0|t

[
A

Λ·|0
t (Xt, y)

]
is the generator.

Lemma A.7. Let the Markov projection of a reciprocal process Λ ∈ R(Q) be M∗ = ΠM(Λ). Then

the generator of M∗ is AM∗

t (Xt, y) = EΛτ|t

[
At(Xt, y;Xτ )

∣∣∣∣Xt

]
.

Proof. Because Q is assumed to be able to construct bridge everywhere, At(x, y; z) = 0 ⇐⇒
At(x, y) = 0 ∀x ̸= y, z ∈ X , t ∈ [0, τ).

We claim that the Markov measure M generated by AM
t (x, y) = EΛτ|t

[
At(Xt, y;Xτ )

∣∣Xt = x
]

with M0 = Λ0 is a.s. M∗. We can re-formulate the generator as:

AM
t (Xt, y) = EΛτ|t

[
At(Xt, y;Xτ )

∣∣Xt

]
,

=
∑
xτ

Λ(Xτ = xτ |Xt)At(Xt, y;xτ ),

=
∑
xτ

∑
x0

Λ(X0 = x0, Xτ = xτ |Xt)At(Xt, y;xτ ),

=
∑
x0

Λ(X0 = x0|Xt)
∑
xτ

Λ(Xτ = xτ |X0 = x0, Xt)At(Xt, y;xτ ),

=
∑
x0

Λ(X0 = x0|Xt)A
Λ·|0
t (Xt, y),

= EΛ0|t

[
A

Λ·|0
t (Xt, y)

∣∣Xt

]
, (11)

which conclude that it becomes conditional expectation of the generator of Λ·|0. Also, based on the
Proposition A.6, the Mt = Λt for all t.

Note that A
Λ·|0
t (x, y) = EΛτ|0,t

[
At(x, y;Xτ )

∣∣X0, Xt = x
]
, which implies AM

t (x, y) = 0 =⇒
A

Λ·|0
t (x, y) = 0 ∀x ̸= y, z ∈ X , t ∈ [0, τ). Thus, Λ ≪ M . Because M∗ is the minimizer

of KL-divergence DKL(Λ∥·), we can assume M∗
0 = Λ0. Based on this, we want to show that
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DKL(Λ∥M∗)−DKL(Λ∥M) = 0. Recall that Equation (10), where the KL-divergence is formulated
as

DKL(Λ∥M) =

∫ τ

0

EΛ0,t

(AΛ·|0
t −AM

t

)
(Xt, Xt) +

∑
y ̸=Xt

A
Λ·|0
t log

A
Λ·|0
t

AM
t

(Xt, y)

 dt,

=

∫ τ

0

EΛ0,t

∑
y ̸=Xt

(
A

Λ·|0
t log

A
Λ·|0
t

AM
t

−A
Λ·|0
t +AM

t

)
(Xt, y)


︸ ︷︷ ︸

f(t,Λ,M)

dt.

Then, DKL(Λ∥M∗) − DKL(Λ∥M) =
∫ τ

0
∆dt ≤ 0 by definition, where ∆ := f(t,Λ,M∗) −

f(t,Λ,M).

∆ = EΛ0,t

∑
y ̸=Xt

(
AM∗

t −AM
t +A

Λ·|0
t log

AM
t

AM∗
t

)
(Xt, y)

 ,

= EΛt
EΛ0|t

∑
y ̸=Xt

(
AM∗

t −AM
t +A

Λ·|0
t log

AM
t

AM∗
t

)
(Xt, y)

 ,

= EΛt

∑
y ̸=Xt

EΛ0|t

[(
AM∗

t −AM
t +A

Λ·|0
t log

AM
t

AM∗
t

)
(Xt, y)

]
,

= EΛt

∑
y ̸=Xt

(
AM∗

t −AM
t + EΛ0|t

[
A

Λ·|0
t |Xt

]
log

AM
t

AM∗
t

)
(Xt, y), (∵ M,M∗ ∈ M)

= EΛt

∑
y ̸=Xt

(
AM∗

t −AM
t +AM

t log
AM

t

AM∗
t

)
(Xt, y), (∵ Equation (11))

= EMt

∑
y ̸=Xt

(
AM∗

t −AM
t +AM

t log
AM

t

AM∗
t

)
(Xt, y). (∵ Mt = Λt)

We can deduce that
∫ τ

0
∆dt = DKL(M∥M∗) ≥ 0, which conclude that M = M∗.

A.3.6 Proof of Proposition A.2

Now we prove the proposition Proposition A.2 using above lemmas.

Proof. Proposition A.2

By the Lemma A.3 and Equation (10), the KL-divergence of Λ to any Markov measure M ∈ M
disintegrates as:

DKL(Λ∥M) =

∫ τ

0

EΛ0,t

(AΛ·|0
t −AM

t

)
(Xt, Xt) +

∑
y ̸=Xt

A
Λ·|0
t log

A
Λ·|0
t

AM
t

(Xt, y)

 dt,

where the A
Λ·|0
t is the generator of pinned process of Λ·|0 stated by Lemma A.5. According to

Lemma A.7, the Markov measure M∗ generated by At(x, y) = EΛτ|t [At(x, y;Xτ )|Xt = x] is the
minimizer of DKL(Λ∥M) for M ∈ M. In last, Proposition A.6 ensure the time marginals of Λ,M∗

for all t ∈ [0, τ ] are equivalent.
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A.4 Time-reversal Markov projection

Proposition A.8. Let M∗ = ΠM(Λ),Λ ∈ R(Q) and the forward generator of Q be At(x, y) with the
transition probability Ps:t(x, y). Let X = (Xt)t∈[0,τ ] be the canonical process and Y = (Yt)t∈[0,τ ]

be the time reversal of X , where Yt = Xτ−t. Under mild assumptions, the time-reversal generator of
M∗ becomes

ÃM∗

t (Yt, x) = E0|t

[
Ãt(Yt, x;X0)

∣∣∣∣Yt

]
Ãs(y, x; z) = ∂tP̃s:t(y, x; z)

∣∣∣∣
t=s

= Aτ−s(x, y)
P0:τ−s(z, x)

P0:τ−s(z, y)
− δxy

∑
u

Aτ−s(u, x)
P0:τ−s(z, u)

P0:τ−s(z, x)
,

where z ∈ X , and Ãs(·, ·; z) is the generator for the conditioned process of Y with Yτ = z. The
reverse KL-divergence is

DKL(Λ∥M∗) =

∫ τ

0

EΛτ,t

(ÃΛ·|τ − ÃM∗
)(Yt, Yt) +

∑
x ̸=Yt

ÃΛ·|τ log
ÃΛ·|τ

ÃM∗ (Yt, x)

 dt,

where the ÃΛ·|τ is the time-reversal generator for the conditioned measure Λ·|τ which is defined as

Ã
Λ·|τ
t (Yt, x) = EΛ0|t,τ

[
Ã(Yt, x;Yτ )

∣∣∣∣Yt, Y0

]
.

Proof. Follow the proof of Proposition A.2. Note that the Markov measure is time-symmetric.

A.5 Proof of Theorem 2.3

Proof. With iterative projection, we have a sequence of measure Λ(n) such that:

Λ(2n+1) = ΠM(Λ(2n)),

Λ(2n+2) = ΠR(Q)(Λ
(2n+1)),

where Λ(0) ∈ R(Q). Let Π(n) = Λ(2n) and M (n) = Λ(2n+1). We will omit the superscription ·(n) if
there is no confusion.

Let P ∈ M be a Markov process generated by a generator AP
t (x, y) < ∞ with initial distribution

M0 with the Kolmogorov forward equation. Assuming that DKL(Π∥P) < ∞, then

DKL(Π∥P)−DKL(Π∥M) = EΠ

[
log

dM

dP

]
< ∞,

which implying the Radon-Nikodym derivative dM
dP < ∞ over the support of Π.

Then we will first show the equality:

EΠ

[
log

dM

dP

]
= EM

[
log

dM

dP

]
.

As Π0 = M0, it is sufficient to show

EΠ

[
log

dM·|0

dP·|0

]
= EM

[
log

dM·|0

dP·|0

]
,

where

log
dM·|0

dP·|0
(ω) =

∫ τ

0

log
AM

t

AP
t

(ωt−, ωt)dNt(ω) +

∫ τ

0

(AM
t −AP

t )(ωt, ωt)dt

is given from Appendix A.3.1. Since Π|0 is Markov from Lemma A.3 with generator

A
Π|0
t (x, y) = EΠτ|0,t [At(x, y;Xτ )|X0, Xt = x] ,
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which is derived at the Lemma A.5. Then,

EΠ

[∫ τ

0

log
AM

t

AP
t

(Xt−, Xt)dNt

]

= EΠ

∫ τ

0

∑
y ̸=Xt

A
Π·|0
t log

AM
t

AP
t

(Xt, y)dt

 ,

= EΠ

∫ τ

0

∑
y ̸=Xt

EΠ [At(Xt, y;Xτ )|X0, Xt] log
AM

t

AP
t

(Xt, y)dt

 ,

= EΠ

∫ τ

0

∑
y ̸=Xt

EΠ [At(Xt, y;Xτ )|Xt] log
AM

t

AP
t

(Xt, y)dt

 ,

by the tower property of conditional expectation. From the Lemma A.7 and Proposition A.6, we can
replace the EΠ [At(Xt, y;Xτ )|Xt] as AM

t (Xt, y),

EΠ

∫ τ

0

∑
y ̸=Xt

EΠ [At(Xt, y;Xτ )|Xt] log
AM

t

AP
t

(Xt, y)dt

 ,

= EΠ

∫ τ

0

∑
y ̸=Xt

AM
t log

AM
t

AP
t

(Xt, y)dt

 ,

= EM

∫ τ

0

∑
y ̸=Xt

AM
t log

AM
t

AP
t

(Xt, y)dt

 ,

where the last equation justified since Πt = Mt for all t ∈ [0, τ ]. The other term,
∫ τ

0
(AM

t −
AP

t )(Xt, Xt)dt, can be treated as the same way, which establishes the equality. From the result, we
get DKL(Π∥P) = DKL(Π∥M) +DKL(M∥P). The equality is derived for other diffusion processes
[19, 20, 6], but in this paper we extended it to continuous Markov chain with discrete state space
case.

By letting P = PSB, we get

DKL(Π∥PSB) ≥ DKL(M∥PSB),

the equality holds if and only if Π = M . By the assumption DKL(Λ
(0)∥PSB) < ∞, the sequence

of KL-divergence {DKL(Λ
(n)∥PSB)}n∈N is non-increasing and bounded, which implies the KL-

divergence converges. Thus,

lim
n→∞

DKL(Π
(n)∥PSB)−DKL(M

(n)∥PSB) = lim
n→∞

DKL(Π
(n)∥M (n)) = 0.

We here utilize Aldous’ tightness criteria for showing the tightness of PSB. Since the state space is
finite it is sufficient to show the following: For any ε > 0, there exists δ > 0 such that for all stopping
time t,

PSB(dX (Xt+θ, Xt) ≥ η) ≤ ε,

for arbitrary small η > 0 and 0 < θ < δ (see Section 16 of [44] Section 3 of [45]). To check the
criteria, we will show that the leaving rate of PSB is bounded. From the Lemma A.5 and Lemma A.7,
we know the analytic form of the transition rate At. Since Theorem A.1 ensure that the PSB is Markov
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as well as is in reciprocal class,

APSB

t (x, x) = EPSB [At(x, x;Xτ )|X0 = x0, Xt = x] ,

=
∑

Xτ∈X

[
PSB(Xτ |Xt = x,X0 = x0)At(x, x)

− PSB(Xτ |Xt = x,X0)

Pt:τ (x,Xτ )

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
,

=
∑

Xτ∈X

[
PSB(Xτ |Xt = x)At(x, x)

− PSB(Xτ |Xt = x,X0)

Pt:τ (x,Xτ )

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
,

= At(x, x)−
∑

Xτ∈X

[
PSB(Xτ |Xt = x,X0)

Pt:τ (x,Xτ )

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
,

= At(x, x)−
∑

Xτ∈X

[
dPSB

t,τ

dQt,τ
(x,Xτ )

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
.

The Radon-Nikodym derivative is finite and positive for x, such that PSB(Xt = x) > 0. Because the
state space X is finite, there is finite upper bound ut for every possible pair (x, xτ ). Thus,

APSB

t (x, x) ≥ At(x, x)−
∑

Xτ∈X

[
ut

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
,

= At(x, x)− ut

∑
u∈X

A(x, u)
∑

Xτ∈X
Pt:τ (u,Xτ ),

= At(x, x)− ut

∑
u∈X

A(x, u),

= At(x, x).

The leaving rate cSB
t (x) of PSB at (t, x) is bounded by that of Q, ct(x). Assuming the leaving rate of

Q is uniformly bounded by c, cSB
t is uniformly bounded by c. Back to the Aldous’ tightness criteria,

by choosing δ = ε/c we can see that PSB is tight.

The sequence {Π(n)}n∈N is tight. Since PSB is tight, for any ε > 0 we can choose a compact and
measurable K (under Skorokhod topology and associated Borel σ algebra). For any measurable K,

DKL(Π
(n)∥PSB) = EΠ(n)

[
− log

dPSB

dΠ(n)
|Kc

]
Π(n)(Kc) + EΠ(n)

[
− log

dPSB

dΠ(n)
|K
]
Π(n)(K),

≥ − log
PSB(Kc)

Π(n)(Kc)
Π(n)(Kc)− log

PSB(K)

Π(n)(K)
Π(n)(K),

by the Jensen inequality. If {Πn}n∈N is not tight, for each compact K and λ > 0, there is at least
one n ∈ N where Π(n)(Kc) ≥ λ,Π(n)(K) < 1− λ. Thus, for ε > 0 there exists n ∈ N, such that

− log
PSB(Kc)

Π(n)(Kc)
Π(n)(Kc) ≥ − log(ε/λ)λ,

which implies that the lower bound of DKL(Π
(n)∥PSB) can be arbitrary large. However, the KL-

divergence is non-increasing and upper bounded by DKL(Π
(0)∥PSB) < ∞, contradiction occurs.

Thus, the sequence of measure should be tight. Similarly, we can show the {M (n)}n∈N is tight.

The space (Ω, dΩ) is a Polish space (Section 12 of [44] or Section 3.5 of [45]), and therefore, by
Prokhorov’s theorem, the collections of measures Π(n)

n∈N and M (n)
n∈N are relatively compact.

Each subsequence of {M (n)}n∈N has a sub-subsequence {Π(i)}i≥0 weakly converges to Π(∞) as
i → ∞. Similarly, there is a sub-subsequence {M (i)}i≥0 that converges in law to M (∞). By the
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lower semi-continuity of the KL-divergence, DKL(Π
(∞)∥M (∞)) ≤ lim infi→∞(Π(i)∥M (i)) = 0,

which implies the two convergence point is equal to P(∞). The resulting measure is Markov and
is in R(Q), because the state space is finite, which deduce PSB = P(∞). We choose an arbitrary
convergent point of sub-subsequence resulting in PSB, the convergence is ensured (Theorem 2.6
[44]).

B Graph permutation matching

B.1 Introduction

A graph G = (V, E) is defined as the set of nodes V = {vi} and the set of edges {eij}, where i
and j denote the node indices. Under a permutation σ ∈ Sn, the structure of the graph G remains
unchanged, as the node and edge sets are invariant to indexing:

σ(V) = {vσ(i)} = V,
σ(E) = {eσ(i)σ(j)} = E ,

However, the vectorized representation of a graph, G = (V,E) is affected by the permutation
because V and E are treated as ordered sets. Thus, a graph G can be considered as a set of all
permuted version of its vectorized representation:

G = {σ(G) : σ ∈ Sn},
where the G is an arbitrarily indexed vectorization of G.

The likelihood of transitioning from an initial graph G = (V,E) to a terminal graph G′ = (V′,E′),
denoted p(G′|G) = Q(Xτ = G′|X0 = G), depends on both node and edge correspondences,
whereas the likelihood p(G′|G), which is permutation-invariant, does not. More specifically, for any
permutation σ, the likelihood p(σ(G′)|G) changes, even though the underlying graph G′ remains un-
changed. Calculating the likelihood of the graph itself (as opposed to the graph vector) would require
summing the likelihoods of all possible permutations of G′, but this approach is computationally
prohibitive due to the factorial number of permutations.

This dependency on graph permutation introduces challenges not only in computing likelihoods
but also in constructing reciprocal measures. Ideally, a reciprocal measure over graph domain
would account for all permutations of graph vectors. However, as with likelihood computations, the
construction of reciprocal measures is highly sensitive on the alignment of graph vectors, making
proper handling of these permutations essential for the iterative Markovian fitting (IMF) algorithm.

B.2 Sub-optimal vs. Optimal Permutation

In practice, the key insight is that the likelihood difference of graph vectors between the optimal
permutation σ∗ and sub-optimal permutations σ is substantial, allowing us to neglect sub-optimal
permutations. The design choice of the reference process Q, particularly its signal to noise ratio
ᾱ(τ)
ᾱ(0) ≫ 0 (see Equation (8)), ensures the transitions preserving the initial states are far more probable.
As a result, the likelihood for sub-optimal permutations, where node and edge correspondences are
mismatched, is expected to be significantly lower than for the optimal permutation. The reason is that
even a small mismatch in node alignment between σ∗ and σ can cause a large number of edge state
mismatches, leading to a dramatic decrease in the total likelihood.

Thus, the likelihood p(σ∗G′|G) ≫ p(σG′|G) and the contribution of sub-optimal permutation in
calculating p(G′|G) is negligible. It is sufficient that focus solely on the optimal permutation σ∗ for
the likelihood computation, as the probability of sub-optimal arrangements is effectively zero in
practical terms.

The prioritization of optimal permutation could be also utilized in the construction of reciprocal
measures. Suppose we have only one graph for initial and terminal, where the one is G and G′,
respectively. Without loss of generality, we assume an even distribution over graph vectors G ∈ G,
and then consider permutations over σG′ ∈ G′. Note that p(σG′|G) = p(σ′σG′|σ′G). According
to the static SB solution, the graph vectors σG′ ∈ G′ are distributed according to the likelihood
p(σG′|G) for each graph vector G ∈ G, where the optimal permutation is selected most frequently.
In this context, neglecting sub-optimal permutation can be viewed as the static OT solution.
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As the original SB problem is formulated with the dynamics over graph "vector" domain, arranging
the graph vectors is a part of the SB problem. However, by relying on the optimal permutation, we
can reduce complexity of the SB problem aroused by the graph vectors alignment. This strategy
ensures the transition from a graph vector to the optimally permuted graph vector, resulting in more
reliable convergence of the iterative algorithm.

B.3 Standard formulation of Graph matching problem

In this section we will discuss about the standard formulation of the graph matching problem and
how the task of finding the optimal permutation σ∗, which minimizes the negative log-likelihood
(NLL) − log p(σG′|G), can be framed as a graph matching problem.

Consider two graph vectors G = (V,E) and G′ = (V′,E′) along with the cost function cV and
cE , which define the cost of mapping nodes and edges, respectively. The binary assignment matrix
X ∈ {0, 1}n×n′

represents the matching between nodes, where n and n′ denote the number of nodes
of G and G′, respectively. If vi ∈ V matches v′a ∈ V′, then Xi,a = 1, while all other entries for
node vi are zero.

The total node matching cost is given by
∑

Xi,a=1 c
V (vi, v

′
a), where cV (vi, v

′
a) denotes the

cost of matching from vi ∈ V to v′a ∈ V′. Similarly, the total edge matching cost is∑
Xi,a=1,Xj,b=1 c

E(eij , e
′
ab), where cE(eij , e

′
ab) is the cost of matching from eij ∈ E to e′ab ∈ E′.

We define the cost matrix A ∈ Rnn′×nn′
, where the diagonal components Aia,ia = cV (vi, v

′
a)

represent node costs and the off-diagonal components Aia,jb = cE(eij , e
′
ab) represent edge costs.

By flattening the assignment matrix to be x ∈ {0, 1}nn′
, we can write the total cost function f as

f(x) =
∑

xia=1,xjb=1

cE(eij , e
′
ab) +

∑
xia=1

cV (vi, v
′
a),

= x⊤Ax.

Thus, the graph matching problem is find the optimal assignment x that minimizing cost f(x), which
is written in formal:

x∗ = argmin
x

x⊤Ax, (12)

s.t.

n∑
i=1

xia ≤ 1,

n′∑
a=1

xia ≤ 1,

where the inequalities become equalities if n = n′. This formulation corresponds to the well-known
quadratic assignment problem (QAP), which is NP-hard.

The NLL − log p(G′|G) can be decomposed by the sum of the NLLs of nodes and edges:

− log p(G′|G) =
∑

δia=1,δjb=1

− logPE
0:τ (eij , e

′
ab) +

∑
δia=1

− logPV
0:τ (vi, v

′
a).

By interpreting the NLLs of nodes and edges as cost function cV and cE , respectively, the problem
of finding the optimal permutation σ∗ can be formulated as a QAP, as in Equation (12).

B.4 Solution method

Exact solution methods for the QAP, such as mixed integer programming (MIP), requires combinato-
rial optimization, which incurs prohibitive computational costs [46]. Many accelerated algorithms
adopt branch-and-bound strategies that utilize bounds of objective functions [47, 48, 49, 50], reduc-
ing the exploration space. However, the combinatorial optimization cannot be avoidable in these
strategy. Alternatively, continuous relaxation methods [27, 51] solve the QAP in Equation (12) using
a continuous vector x, bypassing combinatorial explorations. However, the continuous relaxation
yields non-binary vectors, which require a discretization step, potentially introducing errors.

In our work, we compared two continuous relaxation methods: spectral method (SM) and maximum
polling method (MPM), followed by the Hungarian algorithm for post-discretization. Both methods
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iteratively update the continuous version of assignment vector x as:

xk+1 =
xk −A⊙ xkε

v
, (13)

where ⊙ denotes matrix multiplication for SM and max-pooled matrix multiplication for MPM, and
ε denotes step size, and v denotes the normalizer. Specifically, the A⊙ x for SM is described as

(A⊙ x)ia = xiaAia:ia +
∑
j∈Ni

∑
b∈Na

xjbAia;jb.

In the MPM case, the operation is defined as

(A⊙ x)ia = xiaAia:ia +
∑
j∈Ni

max
b∈Na

xjbAia;jb.

In practice, we modified the cost matrix A slightly for efficiency. To accelerate the process, we
neglect all edges corresponding to dummies in G′, which significantly reduces computational cost,
making |Na| scale linearly with n′. Additionally, a small Gaussian perturbation was applied to
A, slightly altering the minima in the continuous vector space. We solved each QAP ten times to
compensate the effects of randomness, improving performance with reasonable computational costs
(see Appendix B.5).

B.5 Performance of graph matching algorithm

In this section, we compare the performance of the following algorithms under different conditions: (1)
SM algorithm, (2) MPM algorithm, and (3) MPM algorithm with randomness. The hyper-parameters
ᾱ(τ)/ᾱ(0) = 0.3 for the reference process Q.

To evaluate the effectiveness of QAP solvers on molecular graphs, we selected 100 molecules from
the ZINC test set. In all experiments, the source molecule was treated as fully connected (with
dummy types), while the target molecule retained only its original edges. We performed up to 1,000
iterations of updates according to Equation (13) with a specified tolerance.

To assess the performance of the algorithms, we permuted the molecular graphs and then tested
whether the original indices could be recovered, where optimality is achieved with the inverse
permutation. For this task, we evaluated the exact matching ratio, which indicates the proportion
of cases where the original indices were successfully recovered. Due to the inherent symmetry in
molecular graphs, multiple optimal permutations may exist. Therefore, instead of relying solely on
exact index recovery, we base the success criterion on the objective function value. If the Negative
Log-Likelihood (NLL) error falls below 1e-2, the solution is considered successful.

For different molecule pairs where no optimal permutation is available, which is common in practical
scenarios, exact solvers become computationally prohibitive even with relatively small molecular
graphs. As such, we evaluated the performance of the QAP solvers by measuring the reduction in
NLL between the initial and optimized permutations.

We conducted experiments with various hyperparameters, and the results are illustrated in Table 3.
All algorithms successfully found exact matches for the same molecules, but the MPM algorithm
performed better than the SM algorithm when applied to different molecule pairs. For all subsequent
experiments, we adopted the MPM algorithm with randomness in the cost matrix as the QAP solver.

Table 3: Comparison of different algorithms based on configuration parameters. NLL drop
represents the improvement in likelihood between randomly paired molecules, while exact match
reflects the percentage of permutations successfully recovered after applying a random permutation
to the molecules. ↑ and ↓ denote higher and lower values are better, respectively.

Algorithm
Configuration

NLL drop(↑) Exact matching(↑)
Pooling Tolerance Precision Max # iterations Noise coefficient # trials

(1) SM Sum 1e-9 FP64 1000 0 1 2.251 100 %
(2) MPM Max 1e-5 FP32 1000 0 1 13.256 100 %
(3) MPM + Randomness Max 1e-5 FP32 1000 1e-6 10 13.256 100 %
(4) Our setting Max 1e-4 FP32 2500 1e-6 10 14.324 100 %
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B.6 Relation to graph edit distance

The graph edit distance (GED) is a widely used and flexible metric for measuring the dissimilarity
between two graphs. It is defined as the minimum cost required to transform one graph into another
through a sequence of unit operations. Each unit operation can be a removal, substitution, or insertion,
and can be applied to either node or edges. The total cost of the transformation is the sum of the costs
assigned to these components.

According to [52], finding the minimal-cost transformation between two graphs is equivalent to the
QAP problem with an associated cost function. Though both problems are NP-hard, the equivalence
is meaningful in that there are numerous approximation algorithms for the QAP problem that operate
within polynomial time.

The basic idea for re-formulation into QAP problem involves the introduction of dummy nodes and
dummy edges, where removal (insertion) operations could be replaced by substitution into (from)
dummies. The cost function of unit operation is defined as cV (vi, v

′
a) and eE(eij , e

′
ab) for node

replacement and edge replacement, respectively. Let α = ᾱ(τ)/ᾱ(0), the cost replacement is defined
as:

cV (vi, v
′
a) =

{
− log (dV −1)α+1

dV if vi = v′a
− log −α+1

dV otherwise,

cE(eij , e
′
ab) =

{
− log (dE−1)α+1

dE if eij = e′ab
− log −α+1

dE otherwise,

where dV and dE denote the cardinality of X V and XE , respectively. Similar to Equation (12), we
can formulate it to a quadratic problem with the objective function f as:

f(x) =
∑

xia=1,xjb=1

cE(eij , e
′
ab) +

∑
xia=1

cV (vi, v
′
a),

=
∑

xia=1,xjb=1

− logPE
0:τ (eij , e

′
ab) +

∑
xia=1

− logPV
0:τ (vi, v

′
a),

= p(σG′|G),

where, the σ is the graph permutation associated to the assignment vector x.

However, the GED is not same to the NLL. Note that the edit cost functions penalize every operations
with same cost − log −α+1

d except for the identity operation. Though the cost of identity operation is
lesser than the others, the optimal transformation would not contains any identity operation. In real,
the cost of identity operation does not affect the optimal edit path, implying that GED is not equal but
proportion to the NLL, where the difference proportional to the number of the nodes and edges that
are equal under the optimal graph matching σ∗. Though the GED is not exactly same to the NLL, the
problem is equivalent to the graph matching problem.

This observation provides a clear interpretation of the underlying dynamics of the SB problem,
revealing that the associated OT cost is effectively the GED. Therefore, solving the SB problem can
be understood as finding the OT plan between graph distributions, where the transport cost is defined
by the GED.

C Implementation details

C.1 Parameterization

In this section, we briefly describe the neural network parameterization and the practical training loss.
According to Equations (4) and (5), the neural network approximates the generator A

Λ·|0
t (x, y) and

Ã
Λ·|τ
t (y, x), which are formulated as conditional expectation of A(x, y; z) and Ã(y, x; z), respectively

(see Lemma A.5).
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The target generator takes the form:

As(x, y; z) =

{
As(x, y)

Ps:τ (y,z)
Ps:τ (x,z)

, if x ̸= y

−
∑

u̸=x As(x, u)
Ps:τ (u,z)
Ps:τ (x,z)

, if x = y
(14)

, where As and Ps:τ are tractable attributes of Q. Let the the transition probability matrix be
P (s, τ) : [0, τ ]2 → R|X |×|X|, with Ps:τ (x, y) = e⊤x P (s, τ)ey. Thus, the neural network predicts
the distribution of z given Xt, denoted as zθ(t,Xt) ∈ R|X |, and our parameterization choice is as
follows:

AMθ

s (Xt, y; t,Xt) = As(x, y)
eyP (s, τ)zθ(t,Xt)

exP (s, τ)zθ(t,Xt)
,

for Xt ̸= y. The time reverse generator is also defined similarly.

Though the loss formulation was defined as continuous manner, we approximate it with the discretiza-
tions. Firstly, we will replace At(Xt, Xt; z)−AMθ

t (Xt, Xt) with as follows:

At(Xt, Xt; z)−AMθ

t (Xt, Xt) ≈
1

∆t
(1 +At(Xt, Xt; z)∆t) log

1 +At(Xt, Xt; z)∆t

1 +AMθ

t (Xt, Xt)∆t
,

≈ 1

∆t
P

Q·|τ=z

t:t+∆t(Xt, Xt) log
P

Q·|τ=z

t:t+∆t(Xt, Xt)

PMθ

t:t+∆t(Xt, Xt)
.

Similarly,

At(x, y; z) log
At(x, y; z)

AMθ

t (x, y)
≈ 1

∆t
P

Q·|τ=z

t:t+∆t(x, y) log
P

Q·|τ=z

t:t+∆t(x, y)

PMθ

t:t+∆t(x, y)
.

Thus the discretized loss function corresponding to Equation (4) is:

L(θ) =
∑
ti

1

∆t
EΛti,τ

[∑
y

P
Q·|τ=z

t:t+∆t(x, y) log
P

Q·|τ=z

t:t+∆t(x, y)

PMθ

t:t+∆t(x, y)

]
.

The time reversed loss can be discretized as same way.

C.2 Neural Network Parameterization and Hyperparameter settings

DDSBM and DBM. Our neural network parameterization is based on Vignac et al. [23], which
uses a graph transformer network [53]. In short, it takes as input a noisy graph Gt = (Vt,Et) and
predicts a distribution over the target graphs. Structural and spectral features are also used as inputs
to improve the expressivity of neural networks. We refer the reader to Vignac et al. [23] for more
details.

For noise scheduling, we employ a slightly different strategy than Vignac et al. [23]. While Vignac
et al. [23] uses a cosine schedule for ᾱt, we implement a symmetric scheduling of αt by incorporating
αmin, as defined below:

α(t) =
∂tᾱ(t)

ᾱ(t)
= cos

(
t/τ + s

1 + s
· π
2

)2

· (1− αmin) + αmin, (15)

for 0 ≤ t ≤ τ/2, with α(t) = α(τ − t) for the remaining half of the schedule. For instance, with
100 diffusion steps, ᾱ(τ) ≈ 0.95 when αmin = 0.999, and ᾱ(τ) ≈ 0.90 when αmin = 0.99795.

We trained DDSBM models with IMF iterations, and DBM models, an one-directional variant of
DDSBM with fixed joint molecular pairs, were trained with the same number of gradient updates
to ensure consistency. Both DBM and DDSBM reported in this work were trained using four RTX
A4000 GPUs. The detailed hyperparameters for training are shown in Table 4.

Graph-to-Graph Translation. For HierG2G and AtomG2G, we used the default settings provided
on the official GitHub repository. Both models were trained until maximum epochs by default with a
single RTX A4000 GPU.
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Figure 2: Plot of α(t) and ᾱ(t) as functions of timestep t where αmin = 0.999

Table 4: Training hyperparmeters of DBM and DDSBM.

Task Model diffusion steps αmin epoch SB iterations

ZINC250k DBM 100 0.999 1800 –
ZINC250k DDSBM 100 0.999 300 6
Polymer DBM 100 0.999 1250 –
Polymer DDSBM 100 0.999 250 5

D Supplementary results

D.1 Data processing for ZINC250K dataset experiment

In Section 5.2, we experimented with the standard ZINC250K dataset. In our molecular graph
representation, G = (V,E), the node vectors V = (v(i))i represent the atomic types, and the edge
vectors E = (e(ij))ij represent bond orders. Due to this implementation choice, node features other
than the atomic type cannot be represented, causing occasional failures in decoding into molecules.
Still, to focus on the SB problem itself, we filtered out molecules whose graph representations are not
directly converted into molecules by the RDKit package. Among the node features, formal charge
and explicit hydrogen information is crucial in decoding process since, without them, each atom’s
valency cannot be inferred so that corresponding molecule cannot be uniquely determined. Thus, the
following criteria were applied to filter molecules from the ZINC250K dataset: (1) all atoms do not
possess a formal charge and (2) all aromatic atoms do not have an explicit hydrogen.

D.2 Examples for generated molecules

To show the difference between molecules generated from DDSBM and others, we visualized some
selected examples for the ZINC250K and polymer datasets, respectively (see Figures 3 and 4).

D.3 The effect of initial coupling

We further analyze the molecular optimization task in Section 5.2 with different initial couplings.
In that section, we used randomly coupled molecules as the initial coupling for all the models.
However, except for DDSBM, all of them assume that suitable molecule pairs have already been
identified to be provided. To meet this, we adopted Tanimoto similarity [54] as a pseudo-metric to
find similar molecule pairs between the two molecule distributions, denoted as Tanimoto similarity-
based coupling. We note that the similarity-based coupling is another optimal transport problem of
maximizing the sum of pair-wise molecular similarities, where we employed the Hungarian method
to obtain a sub-optimal solution.
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Figure 3: Visualization of molecules generated by DDSBM, DBM, and HierG2G compared to
the source molecule.

Using the Tanimoto similarity-based coupling, we retrained all models discussed in Section 5.2 and
compared their performance. Here, we denote a newly trained DDSBM model as DDSBM-T to
deviate it from the model trained on the randomly coupled data. From Table 5, we observe that all
models achieved lower NLL values compared to when they were trained with random coupling. The
HierG2G model exhibits much lower FCD and NLL values compared to those of random coupling,
indicating that previous graph transformation methods can be improved if more optimal pairs are
provided as training data.

The distinct feature of DDSBM-T is that all baseline models learn graph transfor-
mations between the molecule pairs with high Tanimoto similarity, while DDSBM-
T learns graph transformations with minimal cost defined by its reference process Q.

Figure 6: Comparison of DKL(Λ|Mθ) across IMF
iterations for two types of initial couplings: Ran-
dom and Tanimoto similarity.

It cannot be guaranteed that the distance defined
by our reference process is better than the Tan-
imoto similarity from the perspective of molec-
ular optimization. Essentially, the success of
molecular optimization should be measured by
how well the target property is adjusted while
preserving other key properties. Apparently, Ta-
ble 5 shows that DDSBM-T outperforms the
other baselines in terms of molecular property
metrics. This suggests that the graph transfor-
mation from DDSBM retains other molecular
properties, attaining the goal of the molecule
optimization task.

Finally, we analyze the effect of initial coupling
on the training process, especially focusing on
the approach to convergence. We illustrate the
training losses of DDSBM models from two
different initial couplings, random and Tani-
moto similarity-based, in Figure 6, respectively.

DDSBM-T shows consistently lower loss values up to the sixth IMF iteration and reaches convergence
at the third IMF iteration.
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Figure 4: Visualization of molecules generated by DDSBM and DBM with the source molecule.
The samples generated by DBM and DDSBM were selected from the molecules predicted to have a
blue color with GAP values in the range of 2.56–2.75 eV.

Table 5: Distribution shift performance on ZINC with initial coupling based on the Tanimoto
similarity. As in Table 1, reference refers to metrics from the initial coupling, used as a standard to
evaluate each model’s graph translation. The experimental setting is the same as described Section 5.2,
except for the initial coupling.

Model Type Validity(↑) FCD(↓) NLL(↓) LogP W1(↓) QED MAD(↓) SAscore MAD(↓)
Reference1 - - 4.811 / 0.315 245.765 2.011 0.126 0.367

AtomG2G Latent 100.0 5.676 346.499 0.220 0.136 0.738
HierG2G Latent 100.0 1.171 264.072 0.189 0.127 0.446

DBM Bridge 90.2 0.749 220.594 0.141 0.127 0.508
DDSBM-T Schrödinger Bridge 95.6 0.911 152.856 0.103 0.110 0.393
1 NLL, W1, and MADs were calculated using random pairs from the test set. Two FCD values are provided: the first compares the initial molecules

in the test set with the terminal molecules in the training set, and the second compares the terminal molecules in both sets.
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Figure 5: Density plots comparing the distributions of three molecular properties (logP , ∆QED,
and ∆SAscore) across four different molecular generation methods: AtomG2G, HierG2G,
DBM, and DDSBM.
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