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ABSTRACT
Extracorporeal membrane oxygenation (ECMO) is an essential life-

supporting modality for COVID-19 patients who are refractory to

conventional therapies. However, the proper treatment decision

has been the subject of significant debate and it remains controver-

sial about who benefits from this scarcely available and technically

complex treatment option. To support clinical decisions, it is a

critical need to predict the treatment need and the potential treat-

ment and no-treatment responses. Targeting this clinical challenge,

we propose Treatment Variational AutoEncoder (TVAE), a novel

approach for individualized treatment analysis. TVAE is specifi-

cally designed to address the modeling challenges like ECMO with

strong treatment selection bias and scarce treatment cases. TVAE

conceptualizes the treatment decision as a multi-scale problem. We

model a patient’s potential treatment assignment and the factual

and counterfactual outcomes as part of their intrinsic characteris-

tics that can be represented by a deep latent variable model. The

factual and counterfactual prediction errors are alleviated via a re-

construction regularization scheme together with semi-supervision,

and the selection bias and the scarcity of treatment cases are miti-

gated by the disentangled and distribution-matched latent space

and the label-balancing generative strategy. We evaluate TVAE on
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two real-world COVID-19 datasets: an international dataset col-

lected from 1651 hospitals across 63 countries, and a institutional

dataset collected from 15 hospitals. The results show that TVAE

outperforms state-of-the-art treatment effect models in predicting

both the propensity scores and factual outcomes on heterogeneous

COVID-19 datasets. Additional experiments also show TVAE out-

performs the best existing models in individual treatment effect

estimation on the synthesized IHDP benchmark dataset.
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1 INTRODUCTION
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

and the associated COVID-19 pandemic have created a substan-

tial and unforeseen burden on the global healthcare system [2].
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With a global mortality of over 6.8 million (as of Feb 2023), there

is considerable focus on therapeutic solutions for patients with

most severe manifestations of the disease. In many cases, scarce

treatment options need to be considered and evaluated to support

patients’ lives. In particular, World Health Organization recom-

mends extracorporeal membrane oxygenation (ECMO) for patients

who are refractory to conventional therapies, a support modality

only available in expert centres with sufficient experience [23]. As

such treatments are technically complex and resource-intensive

with difficulty in predicting outcomes, proper treatment evaluation

and assignment for ECMO has been the subject of significant debate

since the start of the pandemic [10, 14]. Recent reports point to the

vitalness of ECMO support over 14,000 reported COVID-19 patients

with an overall hospital mortality of approximately 47% [22]. In

comparison, nearly 90% who couldn’t find a spot at an ECMO center

died, and these patients were young and previously healthy, with

a median age of 40 [11]. In addition to the vitalness, demand for

ECMO far exceeded its availability leading to numerous patients

waiting for ECMO support. To date, patient triage and ECMO re-

source allocation have been limited to the use of Intensive Care Unit

(ICU) illness markers and markers of severe medically refractory

respiratory failure, neither of which has been validated to predict

patients who would ultimately benefit from this resource-intensive,

high-risk therapy [26, 34]. These gaps in knowledge highlight the

need to develop clinically applicable predictive models to assist

clinicians in identifying patients most likely to benefit from ECMO

support and evaluating the treatment effect thus aiding in patient

triage and the necessary resource allocation [16, 26].

From the perspective of treatment effect analysis, treatment

assignment indicates whether a patient received the ECMO treat-

ment, “factual outcomes” corresponds to patient’s discharge status

(i.e. whether the patient survived/died), and patient’s features (or

coviatates) are the electronic health records (EHR) before ECMO

initiation. To support ECMO treatment decisions, we need to make

two-side estimations. First, we need to model the probability of

getting treatment for each patient (propensity scoring), to reflect

the underlying treatment assignment policy [25] as well as the

associated risk consideration, as ECMO itself can lead patients to

death. Second, we need to estimate the impact of each treatment de-

cision, calculated by the survival/death difference with and without

treatment.

Developing an ECMO decision-assistant model differs from typi-

cal supervised machine learning problems or standard treatment

effect problems in healthcare. Compared with a supervised clinical

problem [1, 17, 19, 20, 36, 46, 47, 49], the entire vector of treatment

effects can never be obtained, but only the factual outcomes aligned

with the individualized treatment assignments. Compared with a

typical treatment effect problem [25, 39], it faces the challenges

of strong selection bias, scarcity of treatment cases and curse of

dimensionality. First, unlike randomized controlled trials or many

common datasets, ECMOprediction is prone to strong selection bias.

ECMO is only applied to high-risk patients with severe symptoms,

when few life-supporting alternatives are available. As a result,

the features characterizing severity are significantly different from

those among non-ECMO-treated patients (referred hereafter as

control patients). For treatment effect models that apply a super-

vised learning framework for each treatment option separately, the

learned models would not generalize well to the entire population.

Second, the technical complexity and resource intensiveness of such

treatment limit the number of ECMO assignments, resulting in a

much smaller cohort size when compared to control patients. In fact,

a retrospective study shows that fewer than 0.7% of critically-illed

COVID-19 patients received ECMO treatment[4]. Moreover, the

EHR dataset contains hundreds types of measurements/lab tests,

and only a small subset of these measurements/tests would be con-

ducted to each patient. Due to the limited cohort size in ECMO

patients, it is challenging for most machine learning models to over-

come the curse of dimensionality without falling into over-fitting.

Instead of directly capturing the relationship between the prediction

tasks and these partially-observed high-dimensional input features,

a lower-dimensional representation of inputs is desired [45].

In this paper, we tackle these challenges and propose Treatment
Variational AutoEncoder (TVAE), a novel approach that uses a dis-

entangled and balanced latent representation to infer a subject’s

potential (factual and counterfactual) outcomes and treatment as-

signment. It leverages the recent advances in representation learn-

ing, and extends the capability of deep generative models in the

following aspects:

• Treatment Joint Inference: The lower-dimensional latent

representation of TVAE is semi-supervised by treatment as-

signment and factual response. This architecture eliminates

the need of auxiliary networks for prediction, and regulates

the counterfactual prediction.

• Distribution Balancing: To generate an accurate latent rep-
resentation, the selection bias is delicately disentangled from

other latent dimensions to facilitate treatment assignment

prediction and maximize the information sharing between

two groups.

• Label Balancing: Utilizing the generative function of TVAE,

we create fake ECMO cases from the posterior distribution

of real ECMO cases, hence addressing the data imbalance

and over-fitting without perturbing the patient distribution.

Our proposed TVAE outperforms state-of-the-art treatment ef-

fect models in predicting ECMO treatment assignment as well as

factual responses (with or without ECMO), validated by two large

real-world COVID-19 datasets consisting of an international dataset

including 118,801 Intensive Care Units (ICU) patients from 1651 hos-

pitals and a institutional dataset including 6,016 ICU patients from

15 hospitals. It also achieves the best performance in estimating

individual treatment effects using the public IHDP dataset. While

this work is motivated by and evaluated in the context of ECMO

treatment, the proposed approach may be generalized for other

treatment estimation tasks facing selection bias, label imbalance,

and curse of dimensionality.

2 RELATEDWORK
2.1 ECMO Treatment Prediction
To date, there exist a substantial gap between existing studies and

ECMO treatment analysis. Most studies are limited to ECMO mor-

tality scoring systems [24, 28, 29, 31] that rely on identifying pre-

ECMO variables, which are available and validated only from pa-

tients already supported on ECMO. As such, none of these scores

5361



Assisting Clinical Decisions for Scarcely Available Treatment via Disentangled Latent Representation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

have utilized an appropriate matched non-ECMO cohort, render-

ing them incapable of identifying the patients who should receive

ECMO support [30, 37]. A recent study uses gradient boosting trees

to predict ECMO treatment assignment [48], but it is not designed

to predict treatment effect in terms of factual and counterfactual

outcomes, which is an important contribution of this work.

2.2 Individual Treatment Effect
To predict each individual’s treatment assignment and treatment

effects, the most intuitive approach is to build separate single-task

predictors for propensity (probability of receiving ECMO treat-

ment), treatment outcome and control outcome (i.e., survival or

death with/without ECMO treatment), respectively [3, 6, 18, 32].

Such models are generalized as meta-learners in recent literature

[8, 9]. These models are prone to the strong selection bias and

label imbalance in ECMO treatment assignment, as each treatment-

outcome predictor is only exposed to a specific patient group, but

not the whole population.

Another popular approach reported in the literature is by adapt-

ing non-parametric models for individual level treatment effect.

The simplest version is the k nearest neighbors model, and more

advanced models are adapted from tree-based ensemble models.

Causal Forest has been developed from random forest to obtain a

consistent estimator with semi-parametric asymptotic convergence

rate [42]. Bayesian Additive Regression Trees (BART)-based meth-

ods have been proposed to build the trees with the regularization

prior and the backfitting Markov chain Monte Carlo (MCMC) al-

gorithm [6, 13]. Compared to neural network-based solutions, it is

hard for such models to build and regularize the patients represen-

tations, hence the curse of dimensionality in characterizing scarce

treatment group remains a challenge.

2.2.1 Representation Learning. Our proposed TVAE is related to

earlier works using deep representation learning for treatment

effect estimation. To build a balanced representation between treat-

ment and control groups, various strategies are adopted to force

information sharing between the groups. An popular strategy is

to remove the selection bias from the representations of treatment

and control groups, hence the representations of both groups are

similar. Such representation can be from shared layers (such as

SNet [8], DCN-PD [3], Dragonnet [35], TARNET [33], BNN [18])

or separate networks (e.g., TNet [8]). In contrast, TVAE acknowl-

edges the strong selection bias in ECMO data hence does not force

the representations of two groups to be the same. Instead, TVAE

disentangles the representation of patients into different aspects (or

latent dimensions), and extracts the biased aspect to a designated

latent dimension. By doing so, the remaining latent dimensions are

naturally "balanced" as both groups share the similar information in

these aspects. Considering the rareness of ECMO treatment events,

TVAE further avoids the potential over-fitting by maximizing the

cross-group similarities in these remaining latent dimensions.

2.2.2 Deep Generative Models. Another direction to estimate treat-

ment effects is through deep generative models. CEVAE [21] and

IntactVAE [44] adapt the Variational Autoencoder (VAE) to trans-

form the representation of all patients into a common latent space,

and build auxiliary networks to predict factual and counterfactual

outcomes. GANITE, on the other hand, learn the counterfactual

distributions instead of conditional expected values [51]. As a VAE-

based framework, TVAE possesses the salient properties of the

abovementioned works, but in a different fashion. TVAE has a

re-organized latent space that encodes patients’ characteristics by

explicitly expressing the predicted distributions of treatment assign-

ment aswell as factual and counterfactual outcomes. This eliminates

the extra complexity of adding auxiliary networks and its potential

insufficient training (as each auxiliary network for treatment out-

come is only trained by a subset of data). Such re-organized latent

space further regulates the counterfactual outcomes through the

clustering effect as well as input reconstruction. Moreover, TVAE

leverages its generative feature to tackle the data imbalance in

ECMO prediction: it augments ECMO cases by upsampling from

their latent distributions, hence achieving label balance in training

iterations.

3 PROBLEM FORMULATION
Throughout this paper, we adopt Rubin’s potential outcomes model

[25] and consider the population of COVID-19 subjects where each

subject 𝑖 is associated with a 𝑝-dimensional feature 𝑋𝑖 ∈ 𝑋 ⊆ R𝑝 ,
a binary treatment assignment indicator𝑊𝑖 ∈ {0, 1}, and two po-

tential outcomes 𝑌𝑖 (1), 𝑌𝑖 (0) ∈ {0, 1} drawn from a Bernoulli dis-

tribution (𝑌𝑖 (1), 𝑌𝑖 (0)) |𝑋𝑖 ∼ 𝑃 (.|𝑋𝑖 ). For an observational dataset

𝐷 comprising 𝑛 independent samples of the tuple {𝑋𝑖 ,𝑊𝑖 , 𝑌𝑖 (𝑊𝑖 )},
where 𝑌𝑖 (𝑊𝑖 ) and 𝑌𝑖 (1 −𝑊𝑖 ) are the factual and the counterfac-

tual outcomes, respectively, we are interested in the probability of

treatment assignment (propensity score) 𝑝 (𝑥) = 𝑃 (𝑊𝑖 = 1|𝑋𝑖 ), the
potential outcomewith treatment E[𝑌𝑖 (1) |𝑋𝑖 ] and the potential out-
come without treatment E[𝑌𝑖 (0) |𝑋𝑖 ]. As the treatment outcomes

are binary (survival or death), the treatment is "impactful" only if

treatment leads to a change from death to survival. In a more gener-

alized setting, a proxy of treatment impact is always used, which is

the reduction in mortality risk (the individualized treatment effect,

or ITE)𝑇 (𝑋𝑖 ) = E[𝑌𝑖 (1) −𝑌𝑖 (0) |𝑋𝑖 ] [25]. As the counterfactual out-
come, 𝑌𝑖 (1 −𝑊𝑖 ), can never be observed in practice, direct test-set

evaluation of the treatment effect is impossible. Existing counter-

factual estimation methods usually make the following important

assumptions:

Assumption 1 (No Unmeasured Confounding). Given 𝑋 , the
outcome variables𝑌0 and𝑌1 are independent of treatment assignment,
i.e., (𝑌0, 𝑌1) ⊥⊥𝑊 |𝑋 .

Assumption 2 (Positivity). For any covariates 𝑋𝑖 , the probabil-
ity to receive/not receive treatment is positive, i.e., 0 < 𝑃 (𝑊 = 𝑤 |𝑋 =

𝑋𝑖 ) < 1,∀𝑤 and 𝑖 .

The first assumption comes from the fact that every candidate

patient is continuously measured in various aspects that might

be relevant to treatment assignment and potential treatment out-

comes, and clinicians rely on these measures to make reasonable

treatment decisions. As all such measurements/tests are captured

in the EHR dataset, we believe the dataset has included all con-

founding variables. The second assumption holds because only

potential treatment candidates are included in this study, and no

patients must receive ECMO treatment in real clinical scenario.

More discussions on two assumptions are attached in Appendix A.
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Figure 1: Overview of TVAE. 1) the Treatment Joint Inference encodes input 𝑋 into a latent space with direct prediction of
treatment assignment and potential outcomes; 2) Distribution Balancing module disentangles the latent space and balances
the nonconfounding latent dimensions between treatment and control groups; 3) the Label Balancing module upsamples
the under-represented minority group from the learned latent distribution; 4) the upsampled fake data are merged with the
original data as the updated training inputs for the next iteration.

4 TVAE
Our proposed TVAE framework builds upon a VAE architecture to

transform the high-dimensional inputs into a lower-dimensional

latent representation. A VAE jointly trains a decoder network (pa-

rameterized with 𝜃 ) with an encoder (parameterized with 𝜙) to

recover the original inputs 𝑋 from the latent encoding 𝑍 while reg-

ularizing the learned latent space to be close to the prior distribution.

For a vanilla VAE, the loss function of training the encoder-decoder

network can be written as:

𝑙VAE (𝜙, 𝜃 ) =
∑︁
𝑋𝑖 ∈X

−E𝑍𝑖∼𝑞𝜙 (𝑍𝑖 |𝑋𝑖 )
[
log 𝑝𝜃 (𝑋𝑖 |𝑍𝑖 )

]
+ 𝐾𝐿

(
𝑞𝜙 (𝑍 |𝑋 ) | |𝑝 (𝑍 )

) (1)

where 𝑝𝜙 (𝑍 |𝑋 ) and 𝑞𝜃 (𝑋 |𝑍 ) are the learned approximation of the

posterior and likelihood distributions, and 𝑝 (𝑍 ) is the prior assump-

tion. This loss function consists of two parts: a reconstruction term

and a Kullback–Leibler (KL) divergence regularizer. The former

loss maximizes the recovery of the inputs, hence the latent encod-

ing must be a truthful representation of patients. The latter helps

learn an approximation to the true underlying characteristics of

the patient data and produce a compact, smooth and meaningful

latent space, which can make the learned latent representations

easier to use for downstream tasks such as clustering and data

generation [45].

In our proposed TVAE, we design a customized encoder, Treat-

ment Joint Inference (Section 4.1), to simultaneously make infer-

ences on both treatment assignment decision and treatment effect

(by predicting both factual and counterfactual outcomes). We fur-

ther propose two other schemes for TVAE, Distribution Balancing

(Section 4.2) and Label Balancing (Section 4.3), to tackle the chal-

lenges of selection bias in treatment effect estimation and label

imbalance in ECMO assignment prediction, respectively. Figure 1

shows an overview of our proposed TVAE framework.

4.1 Treatment Joint Inference
Unlike the previous ITE approaches [3, 8, 18, 32, 35], we aim to

simultaneously make inferences on treatment assignment and treat-

ment effect (by predicting both factual and counterfactual out-

comes) based on a compact neural structure without any auxiliary

predictor network. In TVAE, this is achieved by assigning specific

latent dimensions in the latent representation 𝑍 as the estimate of

the treatment assignment𝑊 , and the observed treatment outcome

𝑌 (1) or control outcome 𝑌 (0). Intuitively, irrelevant to the actual
assignment (Assumption 1), both the factual and counterfactual

treatment outcomes are true reflection of the patient physical status,

and therefore can be naturally considered as part of the patient

representation 𝑍 .

Given the latent representation produced by the variational en-

coder, 𝑍 = (𝑍 1, 𝑍 2, ..., 𝑍𝑑 ) ∈ R𝑑 , let the first three dimensions,

𝑍 1, 𝑍 2
and 𝑍 3

, be encoded to estimate the treatment assginment

(i.e., 𝑍 1 = �̂� ), treatment outcome (i.e., 𝑍 2 = 𝑌 (1)), and control

outcome (i.e., 𝑍 3 = 𝑌 (0)), respectively . Then the estimated as-

signment �̂� = 𝑍 1
and the factual outcome 𝑌 (𝑊 ) = 𝑍 3−𝑊

(where

𝑊 ∈ {0, 1}) is supervised by minimizing the following loss:

𝑙TI (𝜙, 𝜃 ) =
∑︁
𝑋𝑖 ∈X

−E𝑍 1

𝑖
,𝑍 3−𝑊

𝑖
∼𝑞𝜙

[
log𝑝 (𝑊𝑖 , 𝑌𝑖 (𝑊𝑖 ) |𝑍 1

𝑖 , 𝑍
3−𝑊
𝑖 )

]
(2)

where𝑊𝑖 and 𝑌 (𝑊𝑖 ) are the true treatment assignment and factual

outcome. For binary treatment outcomes, such as survival/death

for ECMO data, cross entropy is used to implement Eq. (2). For

continuous treatment outcomes, such as the semi-simulated IHDP

dataset (Section 5.4), mean square error is used.

The joint inference encoding allows us to make use of the la-

bel information (factual outcomes and treatment assignment) to

optimize the encoder. Similar idea of incorporating supervised in-

formation into VAE can be found in prior work such as conditional

VAE (CVAE) [38] and CEVAE [21]. However, they all rely on an

auxiliary network for label prediction. Moreover, as part of the
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latent representation, the label inference is also directly regularized

by the unsupervised data reconstruction.

Due to the absence of counterfactual ground truth 𝑌 (1−𝑊 ), it’s
impossible to directly learn the encoded dimension 𝑍 3−(1−𝑊 )

in a

supervised fashion as in Eq. (2) above. However, with our TVAE,

the estimate of counterfactual outcomes can be optimized through

a semi-supervised process by jointly optimizing 𝑙VAE (𝜙, 𝜃 ) in Eq.

(1) and 𝑙TI (𝜙, 𝜃 ) in Eq. (2). On one hand, the learning of 𝑌 (1 −𝑊 )
is regularized by the patient reconstruction process in 𝑙VAE (𝜙, 𝜃 ).
To minimize reconstruction error, 𝑍 3−(1−𝑊 )

must be a truthful

representation of𝑋 . On the other hand, the semi-supervised setting

of TVAE helps the latent encoding "share" outcome information

across similar patients. More concretely, similar patients are clus-

tered close to each other in a well-learned smooth and compact

latent space of VAE, the counterfactual outcome of a patient (e.g.,

treatment outcome of a control patient) can be inferred using the

factual outcomes of similar patients with a different treatment as-

signment in the latent neighborhood .

4.2 Distribution Balancing
4.2.1 Disentangled Latent Representation. Previous studies max-

imize the distribution similarity in control and treatment groups,

therefore selection bias is removed and the representation of the

scarce treatment group can be regularized [18, 32, 50] by the con-

trol group. However, instead of removing the selection bias from

patients’ representations, we argue that it should be utilized to

enhance propensity scoring. This can be achieved by disentan-

glement [5, 45] together with the Treatment Joint Inference. By

enforcing disentanglement in the latent space while jointly en-

coding the predicted outcomes (𝑊 , 𝑌 (𝑊 )) in the designated la-

tent dimensions, the selection bias flows into 𝑍 1
for treatment

assignment prediction, and naturally the remaining latent dimen-

sions are balanced between treatment and control group. To show

this, consider the disentanglement through mini Total Correlation
(TC) in the 𝑑-dimensional latent space [5], where the TC of the

set of variables, 𝑍 1:𝑑 = {𝑍 1, 𝑍 2, ..., 𝑍𝑑 }, is defined as the ratio be-

tween the joint distribution and the product of the marginals, i.e.,

𝑇𝐶 (𝑍 1:𝑑 |𝑋 ) := 𝐾𝐿
(
𝑞𝜙 (𝑍 |𝑋 )

����∏𝑑
𝑗=1 𝑞𝜙 (𝑍 𝑗 |𝑋 )

)
.

Proposition 1. Given 𝑍 1 = �̂� , conditioned on the data 𝑋 , the
total correlation of 𝑍 1:𝑑 equals the sum of the total correlation of 𝑍 2:𝑑

and the mutual information between the first dimension �̂� and all
the other dimensions 𝑍 2:𝑑 , i.e.,

𝑇𝐶 (𝑍 1:𝑑 |𝑋 ) = 𝑇𝐶 (𝑍 2:𝑑 |𝑋 ) + 𝐼 (�̂� |𝑋 ;𝑍 2:𝑑 |𝑋 ) (3)

where 𝐼 (𝐴;𝐵) is the mutual information between variable 𝐴 and 𝐵.

The proof can be found in Appendix C. As the Joint Encod-

ing forces 𝑍 1
to approximate𝑊 , clearly TC is minimized when

𝐼 (�̂� ;𝑍 2:𝑑 |𝑋 ) is minimized. Alternatively, we can see this from the

fact that all terms on both sides are nonnegative, hence the min-

imization is reached only if the mutual information between 𝑍 1

and other latent dimensions is 0. Hence, the remaining latent di-

mensions neither contain any treatment assignment information,

nor are they affected by the selection bias. Due to the curse of di-

mensionality, the latent representation of treatment group using a

deep encoder easily overfits and become poorly generalizable. Note

that, however, we can use the learned representation in the control

group to guide the learned representation in the treatment group.

The idea is as follows: when a latent dimension only preserves the

non-confounding information, then the distribution is irrelevant

to treatment assignment. For example, as gender is not considered

in treatment assignment, the latent encoding for gender should

be distributed indifferently in treatment and no-treatment groups.

This can be expressed as

Proposition 2. For any dimension 𝑍 𝑗 in the latent representation
𝑍 := [𝑍 1, 𝑍 2, ..., 𝑍𝑑 ], 𝐷𝑖𝑠𝑡 (𝑍 𝑗 (0)) = 𝐷𝑖𝑠𝑡 (𝑍 𝑗 (1)), if and only if
𝑍 𝑗 ⊥⊥ (𝑌 (0), 𝑌 (1),𝑊 ) |𝑋 , where 𝐷𝑖𝑠𝑡 (.) denotes the distribution.

4.2.2 Distribution Matching. This proposition provides the ground

to further regulate the remaining latent dimensions by minimiz-

ing the distribution difference. An intuitive way is to calculate the

maximum mean discrepancy (MMD) for the distance on the space

of probability measures, as it has an unbiased U-statistic estima-

tor, which can be used in conjunction with gradient descent-based

methods [40, 41]. Considering the complexity of potential distri-

butions, we apply the kernel trick so that the MMD is zero if and

only if the distributions are identical in the projected Hilbert space.

Denote 𝑞𝜙 (𝑍 𝑗 |𝑋 (0)) by 𝑃 𝑗− and 𝑞𝜙 (𝑍 𝑗 |𝑋 (1)) by 𝑃 𝑗+, the kernelized
MMD metric can be expressed as:

MMD

(
𝑞𝜙

(
𝑍 𝑗 |𝑋 (0)

)
, 𝑞𝜙

(
𝑍 𝑗 |𝑋 (1)

) )
= MMD

(
𝑃 𝑗−, 𝑃

𝑗
+
)

=

∫
𝑍

𝑘𝑍 (𝑧, .)𝑑𝑃 𝑗− (𝑧) −
∫
𝑍

𝑘𝑍 (𝑧, .)𝑑𝑃 𝑗+ (𝑧)

H𝑘

(4)

where 𝑘 is an infinite-dimensional radial basis function (RBF) kernel

and H𝑘 is the corresponding reproducing kernel Hilbert space.

Alternative distribution matching methods, such as linear MMD

without kernelization, Wasserstein Distance and KL divergence are

evaluated in treatment effect estimation in Sec. 5.5.

With balanced representation, two factors are inserted into the

loss function for joint-optimization: the TC loss and the MMD loss:

𝑙DB (𝜙, 𝜃 ) = 𝑇𝐶 (𝑍 1:𝑑 |𝑋 ) + 𝛾
𝑑∑︁
𝑗=4

MMD

(
𝑞𝜙

(
𝑍 𝑗 |𝑋 (0)

)
, 𝑞𝜙

(
𝑍 𝑗 |𝑋 (1)

) )
(5)

where hyperparameter 𝛾 is used to adjust the scales of the MMD

loss to be similar to the TC loss.

4.3 Label Balancing
The scarcity of ECMO treatment resources and the clinical con-

siderations in treatment assignment induce the selection bias in

COVID-19 patients. The limited number of the treatment assign-

ment leads to significant data imbalance (less than 3% in ECMO

datasets), thus an encoder network easily ignores the minority

group, overfits the minority group or underfits the majority group

in latent representation.

To address this issue, we enrich the training data by augmenting

the under-represented patients while maintaining their intrinsic

characeristics. Instead of using extra data augmentation models

[27, 43] to generate fake patients, we utilize the generative power
in our established latent space to sample more ECMO cases, as
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the latent representation of TVAE (or any VAE-based model) is a

posterior distribution (as shown in Figure 1). Since the patients

are sampled from the latent distribution of real ECMO cases, the

generated "fake" patients (constructed by passing the upsampled

latent representations through decoder) do not change the distri-

bution and characteristics of treatment group. Subsequently, the

upsampled "fake" data is concatenated with the original training

data to form a more balanced inputs for model learning.

For a well-balanced dataset, the loss function of TVAE is simply

𝑙
total

(𝜙, 𝜃 ) = 𝑙VAE (𝜙, 𝜃 ) +𝛼 · 𝑙TI (𝜙, 𝜃 ) + 𝛽 · 𝑙DB (𝜙, 𝜃 ), where hyperpa-
rameters 𝛼 and 𝛽 are used to adjust each loss term to be in similar

scales in the current dataset. Take the public IHDP dataset for ex-

ample, we set 𝛼 and 𝛽 to be 1 and 0.1, respectively. In the ECMO

case where treatment cases are rare, the label balancing module

kicks in during the training iteration, hence the model input is the

augmented dataset 𝑋 ′ ∼ 𝑝𝜃 (𝑋 ′ |𝑍 ′) where 𝑍 ′
is the up-sampled

latent representations. The loss function can be expressed as:

𝑙
total

(𝜙, 𝜃 ) =
∑︁
𝑋𝑖 ∈X

−E𝑍𝑖∼𝑞𝜙 (𝑍𝑖 |𝑋𝑖 )
[
log𝑝𝜃 (𝑋𝑖 |𝑍𝑖 ) + 𝛼 log𝑝 (𝑊𝑖 , 𝑌𝑖 |𝑍𝑖 )

]
+ 𝐾𝐿

(
𝑞𝜙 (𝑍 |𝑋 ′)∥𝑝 (𝑍 )

)
+ 𝛽 · 𝐾𝐿

(
𝑞𝜙

(
𝑍 |𝑋 ′) 𝑑∏

𝑗=1

𝑞𝜙
(
𝑍 𝑗 |𝑋 ′) )

+ 𝛽𝛾 ·
𝑑∑︁
𝑗=4

MMD

(
𝑞𝜙

(
𝑍 𝑗 |𝑋 ′ (0)

)
, 𝑞𝜙

(
𝑍 𝑗 |𝑋 ′ (1)

) )
(6)

When the loss function converges, the latent encoding will not

change by the added fake patients, hence 𝑞𝜙 (𝑍 |𝑋 ′) = 𝑞𝜙 (𝑍 |𝑋 ).

5 EXPERIMENTS
The first part of the experiments examine how TVAE performs

under real ECMO settings. For each individual case, we look at the

predicted treatment assignment and the factual response (mortality

or survival) with the assigned treatment option. Since the factual

response may come from either treatment group or control group,

the performance in response prediction suggests the overall per-

formance in predicting both treatment and control (no-treatment)

outcomes. To evaluate TVAE’s performance in estimating treatment

effect, we rely on the public synthesized datasets (where counter-

factual outcomes are also available). Our experiments are designed

to to answer the following questions:

(1) Can TVAE predict the treatment assignment and factual

responses?

(2) How do the tailored components (DB and LB) contribute to

the TVAE model?

(3) How does TVAE perform in individual treatment effect esti-

mation on synthesized datasets?

5.1 Data
In this study, we constructed two real COVID-19 datasets from

different continents. Data access agreement and IRB approval were

acquired prior to the study, as shown in Appendix E, together with

data processing pipeline, feature extraction methods, and character-

istics of the cohort. Evaluating the individual treatment effect (ITE)

Table 1: Performance of Predicting Treatment Assignment
and Factual Outcome (Response) on ISARIC Dataset.

AUPRC AUROC

Model Assignment Response Assignment Response

OLS .1335 ± .0081 .6225 ± .0027 .8542 ± .0080 .7149 ± .0013

KNN .1383 ± .0070 .5693 ± .0025 .5580 ± .0025 .6743 ± .0018

BART .2243 ± .0126 .6571 ± .0126 .9342 ± .0028 .7489 ± .0013

CF .2748 ± .0152 .6428 ± .0025 .8865 ± .0072 .7423 ± .0013

BNN N/A .5670 ± .0264 N/A .6890 ± .0181

DCNPD .2626 ± .0213 .5438 ± .0201 .9188 ± .0066 .6208 ± .0101

TNet .0596 ± .0048 .5931 ± .0075 .8589 ± .0138 .6983 ± .0077

SNet .0652 ± .0074 .5948 ± .0023 .8463± .0060 .7043 ± .0020

TARNET .1350 ± .0089 .6088 ± .0039 .8650 ± .0039 .7208 ± .0024

GANITE N/A .6524 ± .0209 N/A .7488 ± .0125

CEVAE .2580 ± .0096 .6415 ± .0193 .9188 ± .0058 .7293 ± .0109

Dragonnet .1439 ± .0121 .6525 ± .0030 .9069 ± .0060 .7475 ± .0023

TVAE
-DB

.2810 ± .0140 .6669 ± .0031 .9306 ± .0040 .7605 ± .0008

TVAE
-LB

.2226 ± .0185 .6566 ± .0026 .9295 ± .0044 .7553 ± .0008

TVAE .2970 ± .0195 .6678 ± .0022 .9431 ± .0032 .7610 ± .0011

estimation on the ISARIC and BJC ECMO data is impossible, since

the ground truth of the counterfactual outcomes is not available in

reality. Therefore, we also implement TVAE using the synthesized

Infant Health and Development Program (IHDP) dataset, described

in previous studies [6, 21, 32, 35, 42]. It consists of 1000 replications.

In each replication, the dataset contains 747 subjects (139 treated

and 608 control), represented by 25 covariates.

ISARIC Dataset. The first ECMO dataset includes COVID-19

individuals from the International Severe Acute Respiratory and

Emerging Infection Consortium (ISARIC)–World Health Organi-

zation (WHO) Clinical Characterisation Protocol (CCP), referred

hereafter as ISARIC Data. Through international collaborative ef-

forts, it covers 1651 hospitals across 63 countries from 26 January

2020 to 20 September 2021. We include a total of 118,801 patients

who were admitted to an Intensive Care Unit (ICU) for at least 24

hours so that ECMO treatment is a feasible treatment option (hence

the assumption of a positive probability for treatment assignment

holds). Among these patients, 1,451 (1.22%) received ECMO treat-

ment. As the patients are from different hospitals with different

treatment decision criteria, the characteristics in both treatment

and control groups are heterogenous. The mortality ratio is 40.00%

in treatment group and 50.56% in control group.

BJC Dataset. The second ECMO dataset is a single institutional

dataset, containing electronic health records (EHR) spanning 15 hos-

pitals in Barnes Jewish HealthCare system. This dataset is referred

hereafter as BJC Dataset. It contains COVID-19 patients admitted to

ICU during 19 months (March 3rd 2020 - October 1st 2021). Among

the total of 6,016 included patients, 134 (2.23%) received ECMO

treatment. As the patients are from the same healthcare system, the

treatment assignment is made by a panel of clinical experts with

consistent decision criteria. The mortality ratio in the treatment

group is 47.01% and in the control group is 18.99%. Detailed data

processing and feature extraction are provided in Appendix E.
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Figure 2: Latent Distributions of treatment and control
groups in unsupervised dimensions with and without Distri-
bution Balancing module. Left: with Distribution Balancing;
Right: without Distribution Balancing; Top: BJC Dataset; bot-
tom: ISARIC Dataset.

Figure 3: Risk stratification by propensity score (X axis) and
treatment effects (Y axis) on control cases, died treatment
cases and survived treatment cases. Horizon lines are the
average treatment effects of each group. Top: ISARIC; bottom:
BJC Dataset.

Table 2: Performance of Predicting Treatment Assignment
and Factual Outcome (Response) on BJC Dataset.

AUPRC AUROC

Model Assignment Response Assignment Response

OLS .6588 ± .0388 .7530 ± .0114 .9542 ± .0057 .9079 ± .0054

KNN .5049 ± .0361 .6819 ± .0065 .7306 ± .0280 .8567 ± .0057

BART .5657 ± .0198 .7314 ± .0125 .9561 ± .0085 .9013 ± .0047

CF .6624 ± .0265 .7750 ± .0058 .9447 ± .0112 .9227 ± .0112

BNN N/A .7023 ± .0192 N/A .8887 ± .0072

DCNPD .6136 ± .0295 .6380 ± .0150 .9374 ± .0165 .8609 ± .0068

TNet .5403 ± .0641 .7034 ± .0495 .9046 ± .0169 .8612 ± .0228

SNet .4977 ± .0411 .6647 ± .0096 .8574 ± .0162 .8366 ± .0110

TARNET .5715 ± .0598 .7192 ± .0100 .9567 ± .0079 .8814 ± .0070

Dragonnet .6522 ± .0394 .7212 ± .0085 .9551 ± .0100 .8834 ± .0056

GANITE N/A .6991 ± .0256 N/A .8930 ± .0152

CEVAE .7007 ± .0070 .3937 ± .0104 .9469 ± .0108 .7349 ± .0062

TVAE
-DB

.6857 ± .0976 .7568 ± .0174 .9488 ± .0135 .9148 ± .0050

TVAE
-LB

.6767 ± .0434 .7672 ± .0087 .9509 ± .0108 .9127 ± .0059

TVAE .7344 ± .0357 .7856 ± .0083 .9582 ± .0123 .9243 ± .0035

5.2 Baseline Settings and Evaluation Metrics
We implemented the state-of-the-art treatment effect algorithms

that were discussed in the related works. This includes a linear ordi-

nary least square model (OLS), a nonparametric k-Nearest Neighbor

model (kNN), the tree-based causal inference models (BART [6]

and Causal Forest (CF) [42]), deep generative causal inference mod-

els (CEVAE and GANITE [21, 51]), and other deep representation

causal inference models (DCN-PD, BNN, TNet, SNet, TARNET, and

Dragonnet). [3, 8, 18, 33, 35, 50].

Among all the models, we performed the grid-search of hyper-

parameters. The final hyper-parameter settings are described in

Appendix G. An ablation study is conducted to investigate if the

tailored components (Distribution Balancing and Label Balancing)

help with ECMO prediction. This involves both quantitative eval-

uations by prediction performance and qualitative evaluation by

visualizing the latent distributions. TVAE
-DB

represents the model

when distribution balancing is removed from the loss function, and

TVAE
-LB

represents the model when the minority cases are not

up-sampled from the learned latent distribution.

In ISARIC Dataset and BJC Dataset, both treatment assignment

and factual outcomes are binary, therefore the area under the

Receiver-Operating Characteristic curves (AUROC) is used to eval-

uate the predictive power of each model. Due to the scarcity of

the treatment resources, we are interested in the trade-off of preci-

sion and recall, hence we also calculate the area under the Pre-

cision Recall curve (AUPRC). Quantitative results are reported

with mean and standard error after 5-fold cross validation, where

the stratification is random while preserving the treatment assign-

ment ratio in each fold of patients. For IHDP dataset, we followed

the train/test split strategy with 1000 replications provided in the

previous study [21], and calculate the square root of the Preci-

sion in Estimation of Heterogeneous Effect (rPEHE), defined as:

𝜖𝑟𝑃𝐸𝐻𝐸 =

√︃
1

𝑁

∑𝑁
𝑖=1 ( ˜𝑌𝑖 (1) − ˜𝑌𝑖 (0) − (𝑌𝑖 (1) − 𝑌𝑖 (0)))2 where ˜𝑌𝑖 (1)

and
˜𝑌𝑖 (0) are the estimated treatment and no-treatment outcomes,

respectively.
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5.3 Quantitative and Qualitative Results in
ECMO Prediction

The quantitative results of prediction metrics are reported in Table

1 for ISARIC Dataset, and Table 2 for BJC Dataset. For models that

do not (explicitly) predict propensity score, the corresponding fields

are labeled as "N/A".

5.3.1 Overall performance. Our proposed TVAE outperforms all

the baseline methods in ISARIC and BJC datasets by all metrics.

Such observation has statistical significance, measured by 90% con-

fidence interval and paired one-tail t-test.

5.3.2 Model complexity v.s. over-fitting. On BJC Dataset where the

cohort size of ECMO patients is significantly small (134 cases) and

the input feature dimensions are relatively large (178 features),

simple linear models such as OLS perform better than complex

tree-based models and most of the deep-learning models. This is

likely the result of over-fitting when complex models try to char-

acterize scarce treatment cases. On the other hand, more complex

models (such as BART, CF, GANITE, CEVAE and Dragonnet) out-

perform OLS on ISARIC Dataset, as it is significant larger and

more heterogeneous. Armed with multiple novel regularization

schemes (semi-supervised encoding, disentanglement and distribu-

tion matching), TVAE demonstrates its robustness in BJC cohort,

meanwhile its deep learning architecture is capable of discovering

the underlying nonlinear patterns in ISARIC cohort.

5.3.3 Tree-based learning v.s. deep representation learning. Similar

as observed in a previous study [12, 46], tree-based models have

high prediction performance in tabular data, but performance de-

teriorates when facing label imbalance. In the label-imbalanced

treatment assignment prediction, CEVAE and DCNPD achieves

similar or better AUROC/AURPC than tree-based models. In our

TVAE, the carefully designed architecture improves its representa-

tion learning, achieving even more significant improvement over

tree-based models in imbalanced problems (treatment assignment

prediction) while matching the performance in factual prediction.

5.3.4 Ablation analysis. We are interested in how the dedicated

components affect the model performance. To quantitatively eval-

uate the contribution of Distribution Balancing, we remove the

MMD loss and disentanglement, and reduce the weight of KL di-

vergence (KL divergence helps disentanglement [15], but it must

be kept for clustering effects). After the removal of the Distribution

Balancing, all metrics dropped, and the decrease is more significant

in the BJC Dataset, resulting in 6.6% reduction in the AUPRC of

treatment assignment prediction. This is consistent with the fact

that the BJC Dataset has limited treatment samples, hence more

prone to overfitting. To qualitatively visualize how Distribution

Balancing affects the latent representations, in Fig. 2 we plot the di-

rect visualizations of projected inputs in the latent space (as well as

probability density distribution) of treatment and control groups in

unsupervised dimensions, with and without Distribution Balancing.

Each scatter point represents an ECMO/control case, and the trans-

parency is proportional to the empirical probability density at this

location. The empirical probability density is calculated through

kernel density estimation (KDE). We used the 4th and 5th latent

dimension, as the first three dimensions are for treatment assign-

ment, factual and counter factual estimation, respectively. A clear

divergence between treatment and control groups is observed after

the removal of Distribution Balancing, suggesting the potential

existence of selection bias in these dimensions or overfitting.

To quantitatively evaluate the contribution of Label Balancing,

we remove the upsampling from the training process. Without

balancing the treatment/control groups, we observed 25.1% and 7.9%

drops in the AUPRC of treatment assignment on ISARIC Dataset

and BJC Dataset. To investigate the optimal upsampling ratio, we

vary the relative size of the upsampled ECMO cases and the optimal

unsampled size is found to be 80% (relative to the number of control

cases) for ISARIC Dataset and 60% for BJC Dataset, as can be seen

in Appendix H. Note that the ablation of Treatment Joint Inference

is not within the scope of this study, since removing it will totally

change the architecture of the proposed work.

5.3.5 Risk stratification. Given TVAE as a decision assistance tool,

we want to visualize the consistency between risk predictions and

observed outcomes. In Fig. 3, we plot the predicted propensity score,

and the treatment effects (measured by the mortality risk with

ECMO minus the mortality risk without ECMO). Via propensity

scoring, TVAE separates cases that are more likely to be assigned

treatment from cases that are not, and the stratification matches

with the actual clinical decisions. By predicting the potential risk

reduction by ECMO treatment, our model divides the treatment

group into those who benefit more from ECMO and those who

benefit less. The division is consistent with the actual death and

survival outcomes.

5.4 Individual Treatment Effect Estimation
We first compare the treatment effect estimation between TVAE

and the state-of-the-art algorithms. Recent literature has noted the

inconsistency of results reported in existing literature, where the

calculated metrics might be different, or sometimes from different

replication strategies [7]. To generate a fair comparison between all

algorithms, we followed the train/test split strategy with 1000 repli-

cations provided in the original study [21], and calculate the square

root of the Precision in Estimation of Heterogeneous Effect (rPEHE)

for all included state-of-the-art algorithms. For reproducibility, the

results of TVAE as well as existing algorithms are provided using

Jupyter Notebook on Github: https://github.com/xuebing1234/tvae.

As tabulated in Table 3, TVAE has significant improvement in esti-

mating treatment effects over the state-of-the-art models.

Since both the factual and counterfactual outcomes are available,

we further evaluate how different Distribution Matching strategies

(Kernelized MMD, MMD, Wasserstein Distance, and KL divergence)

affect the treatment effect estimation. Among them, Kernelized

MMD and and KL divergence lead to lowest estimation errors, indi-

cating that they might be more suitable for distribution matching

in batch learning. It is noteworthy that IHDP (and potentially any

other synthesized datasets) does not possess the complexity in real

ECMO scenario. For instance, the level of scarcity in the treatment

assignment (pos/neg ratio 23%) is >10 times higher than ECMO

datasets, and it has much smaller selection bias (derandomization

simply by removing non-white mothers) and simpler input space.
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Table 3: IHDP Dataset Performance (*: Results reported in
the original paper that used the same replications.).

Model 𝜖𝑃𝐸𝐻𝐸

OLS1 7.59 ± 0.33

OLS2 2.33 ± 0.11

BART 1.98 ± 0.09

Causal Forest 4.18 ± 0.20

KNN 3.62 ± 0.15

GANITE 1.83 ± 0.01

CEVAE* 2.60 ± 0.10

BNN* 2.10 ± 0.10

DCNPD 2.05 ± 0.03

TNet 1.77 ± 0.05

SNet 1.29 ± 0.04

TARNET 1.24 ± 0.04

Dragonnet 1.39 ± 0.05

TVAE + kMMD 1.18 ± 0.04
TVAE + MMD 1.19 ± 0.04

TVAE + Wasserstein 1.20 ± 0.04

TVAE + KL 1.18 ± 0.04

6 CONCLUSION AND BROADER IMPACT
We aim to support the challenging treatment decisions on ECMO

treatment, a scarcely available life-supporting modality for COVID-

19 patients. We proposed a disentangled representation model that

delivers the propensity score and potential outcomes through semi-

supervised variational autoencoding. Several innovative compo-

nents are proposed and integrated to address the strong selection

bias, scarcity of treatment cases, and the curse of dimensionality in

patient characterization. The Treatment Joint Inference eliminates

the auxiliary networks while regulating factual and counterfac-

tual predictions through input reconstruction, clustering and semi-

supervision. The Distribution Balancing disentangles the latent di-

mensions into different aspects of information and extract the selec-

tion bias to aid propensity scoring. The remaining non-confounding

dimensions are regulated by maximizing the distributions between

treatment and control. The Label Balancing component mitigates

data imbalance with generative latent representation while preserv-

ing the patient distributions. The experiments on two real-world

COVID-19 datasets and the public synthetic dataset show that the

model is robust in capturing the underlying decision-making pro-

cess as well as individual treatment effects, hence outperforming

other state-of-the-art algorithms.

Potential Impact: This work fills the gap between treatment

effect models and the critical need for ECMO clinical decision sup-

port (or other application domains that face strong selection bias,

scarcity of treatment, and overfitting). To our best knowledge, there

is no machine learning tool that can aid clinicians in identifying

ECMO candidates from high-dimensional EHR data while weigh-

ing the risks of disease progression versus the scarcity of ECMO

support. In fact, the decision is arguably the most complex decision

made in the ICU setting.

The improvement in predictions over state-of-art models leads to

the better identification of treatment needs and resource allocation,

hence saving lives. When using a machine learning assistive tool

in ICU setting, we usually want the model to maximize sensitivity

(true positive rate) while fixing a high specificity (true negative rate).

Comparing TVAE with existing algorithms (for example, BART),

when fixing a high specificity of 0.95, TVAE has a sensitivity of

0.84 (while BART has a sensitivity of 0.71) in the BJC Dataset, and

0.64 (while BART has 0.33) in ISARIC Dataset. Considering the

capacity of ECMO resources, such performance improvement leads

to 374 more patients (18 in BJC Dataset, and 356 in ISARIC) being

correctly identified for ECMO treatment (see more details in Ap-

pendix F). Although it is impossible to compare treatment effect

estimation without counterfactual outcomes, the improved AUROC

and AUPRC in factual outcome prediction suggests potential im-

provement in characterizing the survival/death impact for each

treatment decision.

Limitation: This work is not without limitations. In clinical prac-

tice, when the treatment decisions are not EHR-related or tracked by

the EHR system, the assumption of No Unmeasured Confounding

might be violated. Meanwhile, the evaluation of model performance

on the counterfactual outcomes remains to be a challenge except

using synthetic datasets. Due to the concerns in potential algorithm

bias and robustness arose from the data collection, sample size, and

underestimation of certain groups, the machine learning predic-

tions should only serve as assistance to clinical decision making. In

health care settings, the treatment effect estimated by our model

should be used as only one of the inputs to the clinicians alongside

other clinical and ethical considerations. How to incorporate our

treatment effect model in clinical decisions should be investigated

in future studies.
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A DISCUSSION ON ASSUMPTIONS
The decision to initiate ECMO is almost always the most complex

decision to make. ECMO is the most resource intensive therapy pro-

vided in the ICU and is associated with significant morbidities, in

addition there are no universally accepted tools to identify patients

at highest risk of receiving ECMO or universally accepted criteria

for ECMO initiation. It was thus important to first identify patients

not eligible for ECMO (by either BMI or age). From an inclusion per-

spective it was then important to include all the clinical, laboratory

and therapeutic variables that influence ECMO decision making as

no single variable can solely identify patients who might or might

not receive ECMO. For example, a patient’s respiratory rate if high

could represent severe respiratory distress and failure that could

contribute to the decision to provide ECMO. A normal respiratory

rate for a patient who is endotracheally intubated, on mechanical

ventilatory support and under neuromuscular blockade but with-

out satisfactory evidence of adequate gas exchange could also be

considered a reason to consider ECMO support. Additionally, a

patient in severe respiratory failure with subsequent hypercarbia

can become hypopneic with low respiratory rate could be at risk of

impending cardio-respiratory arrest and thus could be a candidate

for urgent ECMO support.

A.1 Discussion on Assumption 1
The no unmeasured confounding assumption comes from the fact

that an ICU patient is continuously measured in various aspects that

might be relevant to treatment assignment and potential treatment

outcomes, and clinicians rely on these measures to make reasonable

treatment decisions.We assume that clinicians have taken necessary

measurements that reflect all confounding information. As all such

measurements/tests are captured in the Electronic Health Records,

we believe the dataset has included all confounding variables. Take

Institutional Data for example, we collect 52,216 measurements only

from the flowsheets table, despite other tables such as demographics,

comorbidities, lab tests, ventilation settings, etc. However, in the

actual implementation, highly missing measures/tests are excluded

from the model inputs, which remains to be investigated if this

incurs any no unmeasured confounding. This has been included in

the discussion of limitations in Sec. 6.

A.2 Discussion on Assumption 2
For the rigorous analysis, we pre-exclude definite cases with zero

probability (for example, any ICU patients with age>80 is considered

unsuitable for ECMO treatment). Since there are no clinical criteria

that an ICU patient ‘must’ be on ECMO, probability of each invidual

treatment assignment is less than 1. In the resulting dataset, the

probability of treatment decision is always in the range of (0,1).

B IDENTIFIABILITY OF TREATMENT
OUTCOMES

To predict the factual and counterfactual outcomes (hence the indi-

vidual treatment effect), we need to show that 𝑝 (𝑌 |𝑋, do(𝑊 = 1))

in TVAE is identifiable. From the Identification Theorem [21], we

can see that:

𝑝 (𝑌 |𝑋, do(𝑊 = 1)) =
∫
𝑍

𝑝 (𝑌 |𝑋, do(𝑊 = 1), 𝑍 )𝑝 (𝑍 |𝑋, do(𝑊 = 1))𝑑𝑍

𝑖
=

∫
𝑍

𝑝 (𝑌 |𝑋,𝑊 = 1, 𝑍 )𝑝 (𝑍 |𝑋,𝑊 = 1)𝑑𝑍

𝑗
=

∫
𝑍 1

𝑝 (𝑌 |𝑋,𝑊 = 1, 𝑍 1)𝑝 (𝑍 1 |𝑋,𝑊 = 1)𝑑𝑍 1

𝑘
=

∫
𝑍 1

𝑝 (𝑌 |𝑊 = 1, 𝑍 1)𝑝 (𝑍 1 |𝑋,𝑊 = 1)𝑑𝑍 1

where equality (𝑖) is by the rules of do-calculus, equality ( 𝑗) is by
the designated latent dimension in TVAE, and equality (𝑘) comes

from the property of VAE that 𝑌 is independent of 𝑋 given 𝑍 . To

ensure that 𝑌 is only expressed in the designated latent dimension,

disentanglement is further added to TVAE (see Sec 4.3). The case

of 𝑝 (𝑌 |𝑋, do(𝑊 = 0)) is identical, hence the defined individual

treatment effect can be recovered.

C PROOF OF PROPOSITION 1
Proposition 1. Given 𝑍 1:𝑑

:= {𝑍 1, 𝑍 2, ..., 𝑍𝑑 } and 𝑍 1 = �̂� ,
conditioned on the data𝑋 , the total correlation of 𝑍 1:𝑑 equals the sum
of the total correlation of 𝑍 2:𝑑 and the mutual information between
the first dimension �̂� and all the other dimensions 𝑍 2:𝑑 , i.e.,

𝑇𝐶 (𝑍 1:𝑑 |𝑋 ) = 𝑇𝐶 (𝑍 2:𝑑 |𝑋 ) + 𝐼 (�̂� |𝑋 ;𝑍 2:𝑑 |𝑋 ) (7)

where 𝐼 (𝐴;𝐵) is the mutual information between variable 𝐴 and 𝐵.

Proof.

𝐿𝐻𝑆 = E𝑞𝜙 (𝑍 1:𝑑 |𝑋 )
[
log

𝑞𝜙 (𝑍 1:𝑑 |𝑋 )
𝑞𝜙 (𝑍 1 |𝑋 )𝑞𝜙 (𝑍 2 |𝑋 ) ...𝑞𝜙 (𝑍𝑑 |𝑋 )

]
= E𝑞𝜙 (𝑍 1:𝑑 |𝑋 )

[
log

( 𝑞𝜙 (𝑍 2:𝑑 |𝑋 )
𝑞𝜙 (𝑍 1 |𝑋 )𝑞𝜙 (𝑍 2 |𝑋 ) ...𝑞𝜙 (𝑍𝑑 |𝑋 )

)
+ log

( 𝑞𝜙 (𝑍 1:𝑑 |𝑋 )
𝑞𝜙 (𝑍 2:𝑑 |𝑋 )𝑞𝜙 (𝑍 1 |𝑋 )

) ]
= 𝑇𝐶 (𝑍 2:𝑑 |𝑋 ) + 𝐼 (𝑍 1 |𝑋 ;𝑍 2:𝑑 |𝑋 )
= 𝑅𝐻𝑆

(8)

□

D PREDICTED RISKS OF CONTROL AND
TREATMENT CASES

The predicted distribution of ECMO cases and control cases in

terms of treatment effect and control effect are plotted in Figure

S1. Patients positioned to the right have higher mortality risk even

without ECMO treatment, and patients in the upper regions have

higher mortality risks after ECMO treatment. From the figure we

can see that 1): Death ECMO cases have higher predicted treat-

ment and control mortality risks than survival cases, and 2): actual

treatment cases do not have the highest predicted mortality risks

(either treatment or no-treatment). For 1), this is consistent with

our intuition. First, the deaths after treatment demonstrate their

high mortality risk even after ECMO. Second, the deaths imply their
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more severe symptoms before treatment decision, hence they are

associated with higher mortality risks without ECMO treatment.

For 2), the actual clinical decision is not the reduction in mortal-

ity risks, but the changes in outcome. For instance, a reduction of

death probability from 30% to 0 will not justify the ECMO treatment

when comparing to the reduction of death probability from 65% to

35%, since the latter is more likely to result in a change of outcome

(changing the patient from death to survival). As a result, the actual

ECMO assignment are not picking the cases with highest mortality

risk (more likely to die regardless of treatment or not), but rather

the cases that are more likely to be overturned.

Figure S1: Distribution of treatment and no-treatment mor-
tality risks in control (deaths), control (survivals), treatment
(death) and treatment (survivals) groups. Left: ISARIC; Right:
BJC Dataset

E DATA ACCESS AGREEMENT,
PREPROCESSING AND COHORT
CHARACTERISTICS

Data access agreement with International Severe Acute Respira-

tory and emerging Infections Consortium (ISARIC) were signed on

Dec 18, 2020. The purpose of access is to contribute to execute an

analysis of "Development of predictive analytics model for
need of extracorporeal support in COVID-19".

For the BJC dataset, the IRB (#202011004) titled "Identifying
predictors for ECMOneed inCOVID 19 patients"was approved
on Nov 2, 2020.

Detailed data description and processing pipeline and charac-

teristics of cohort are summarized. For ISARIC, the summary is

provided here: https://tinyurl.com/mrv8rmp3. For the institutional

data, the summary is provided here: https://tinyurl.com/yxersh7d.

F MORE METRICS BETWEEN TVAE AND
BART

Table 4: More point metrics between TVAE and BART

Model Sensitivity Specificity Precision Accuracy F1

Institutional Dataset

BART .7100 .9531 .2563 .9476 .3752

TVAE .8356 .9517 .2887 .9491 .4275

ISARIC Dataset

BART .3330 .9499 .0609 .9439 .1029

TVAE .6353 .9506 .1114 .9476 .1895

G PARAMETERS OF BASELINES
The summary of hyper-parameters used in ECMO datasets are

listed here: https://tinyurl.com/433yhjzh The hyper-parameters are

tuned through grid-search. For IHDP, we use the default hyper-

parameters in the associated Github code repository, and uploaded

the experiment results here: https://github.com/xuebing1234/tvae

H OPTIMAL SAMPLING STRATEGY
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Figure S2: Prediction performance (measured by AUPRC).
Upper: ISARIC Data; Lower: BJC Data.
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