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Abstract

Offline reinforcement learning aims to learn from pre-collected datasets without active
exploration. This problem faces significant challenges, including limited data availability and
distributional shifts. Existing approaches adopt a pessimistic stance towards uncertainty
by penalizing rewards of under-explored state-action pairs to estimate value functions
conservatively. In this paper, we show that the distributionally robust optimization (DRO)
based approach can also address these challenges and is asymptotically minimax optimal.
Specifically, we directly model the uncertainty in the transition kernel and construct an
uncertainty set of statistically plausible transition kernels. We then show that the policy that
optimizes the worst-case performance over this uncertainty set has a near-optimal performance
in the underlying problem. We first design a metric-based Hoeffding-style uncertainty set
such that with high probability the true transition kernel is in this set. We prove that to
achieve a sub-optimality gap of ϵ, the sample complexity is O(S2Cπ∗

ϵ−2(1− γ)−4), where
γ is the discount factor, S is the number of states, and Cπ∗ is the single-policy clipped
concentrability coefficient which quantifies the distribution shift. To achieve the optimal
sample complexity, we further propose a less conservative Bernstein-style uncertainty set,
which, however, does not necessarily include the true transition kernel. We show that an
improved sample complexity of O(SCπ∗

ϵ−2(1− γ)−3) can be obtained, which asymptotically
matches with the minimax lower bound for offline reinforcement learning, and thus is
asymptotically minimax optimal.

1 Introduction

Reinforcement learning (RL) has achieved impressive empirical success in many domains, e.g., (Mnih et al.,
2015; Silver et al., 2016). Nonetheless, most of the success stories rely on the premise that the agent
can actively explore the environment and receive feedback to further promote policy improvement. This
trial-and-error procedure can be costly, unsafe, or even prohibitory in many real-world applications, e.g.,
autonomous driving (Kiran et al., 2021) and health care (Yu et al., 2021a). To address the challenge, offline
(or batch) reinforcement learning (Lange et al., 2012; Levine et al., 2020) was developed, which aims to learn
a competing policy from a pre-collected dataset without access to online exploration.

A straightforward idea for offline RL is to use the pre-collected dataset to learn an estimated model of the
environment, and then learn an optimal policy for this model. This approach performs well when the dataset
sufficiently explored the environment, e.g., (Agarwal et al., 2020a). However, under more general offline
settings, the static dataset can be limited, which results in the distribution shift challenge and inaccurate
model estimation (Kidambi et al., 2020; Ross & Bagnell, 2012; Li et al., 2022). Namely, the pre-collected
dataset is often restricted to a small subset of state-action pairs, and the behavior policy used to collect the
dataset induces a state-action visitation distribution that is different from the one induced by the optimal
policy. This distribution shift and the limited amount of data lead to uncertainty in the estimation of the
model, i.e., transition kernel and/or reward function.

To address the above challenge, one natural approach is to first quantify the uncertainty, and further take
a pessimistic (conservative) approach in face of such uncertainty. Despite of the fact that the uncertainty
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exists in the transition kernel estimate, existing studies mostly take the approach to penalize the reward
function for less-visited state-action pairs to obtain a pessimistic estimation of the value function, known as
the Lower Confidence Bound (LCB) approach (Rashidinejad et al., 2021; Li et al., 2022; Shi et al., 2022; Yan
et al., 2022). In this paper, we develop a direct approach to analyzing such uncertainty in the transition
kernel by constructing a statistically plausible set of transition kernels, i.e., uncertainty set, and optimizing
the worst-case performance over this uncertainty set. This principle is referred to as "distributionally robust
optimization (DRO)" in the literature (Nilim & El Ghaoui, 2004; Iyengar, 2005). This DRO-based approach
directly tackles the uncertainty in the transition kernel. We show that our approach asymptotically achieves
the minimax optimal sample complexity (Rashidinejad et al., 2021). We summarize our major contributions
as follows.

1.1 Main Contributions

In this work, we focus on the most general partial coverage setting (see Section 2.3 for the definition). We
develop a DRO-based framework that efficiently solves the offline RL problem. More importantly, we design
a Bernstein-style uncertainty set and show that its sample complexity is minimax optimal.

DRO-based Approach Solves Offline RL. We construct a Hoeffding-style uncertainty set centered
at the empirical transition kernel to guarantee that with high probability, the true transition kernel lies
within the uncertainty set. Then, optimizing the worst-case performance over the uncertainty set provides a
lower bound on the performance under the true environment. Our uncertainty model enables easy solutions
using the robust dynamic programming approach developed for robust MDP in (Iyengar, 2005; Nilim &
El Ghaoui, 2004) within a polynomial computational complexity. We further show the sample complexity to
achieve an ϵ-optimal policy using our approach is O

(
S2Cπ∗

(1−γ)4ϵ2

)
(up to a log factor), where γ is the discount

factor, and Cπ∗ is the single-policy concentrability for any comparator policy π∗ (see Definition 1). This
sample complexity matches with the best-known complexity of the Hoeffding-style model-uncertainty method
(Rashidinejad et al., 2021; Uehara & Sun, 2021), which demonstrates that our DRO framework can directly
tackle the model uncertainty and effectively solve offline RL.

Achieving Asymptotic Minimax Optimality via Design of Bernstein-style Uncertainty Set.
While the approach described above is effective in achieving an ϵ-optimal policy with relatively low sample
complexity, it tends to exhibit excessive conservatism as its complexity surpasses the minimax lower bound
for offline RL algorithms (Rashidinejad et al., 2021) by a factor of S(1− γ)−1. To close this gap, we discover
that demanding the true transition kernel to be within the uncertainty set with high probability, i.e., the
true environment and the worst-case one are close, can be overly pessimistic and unnecessary. What is of
paramount importance is that the value function under the worst-case transition kernel within the uncertainty
set (almost) lower bounds the one under the true transition kernel. Notably, this requirement is considerably
less stringent than mandating that the actual kernel be encompassed by the uncertainty set. We then
design a less conservative Bernstein-style uncertainty set, which has a smaller radius and thus is a subset of
the Hoeffding-style uncertainty set. We prove that to obtain an ϵ-optimal policy, the order of the sample
complexity is O

(
SCπ∗

(1−γ)3ϵ2

)
. This complexity indicates the asymptotic minimax optimality of our approach

by matching with the minimax lower bound in asymptotic order of the sample complexity for offline RL
(Rashidinejad et al., 2021) and the best result from the LCB approach (Li et al., 2022).

1.2 Related Works

There has been a proliferation of works on offline RL. In this section, we mainly discuss works on model-based
approaches. There are also model-free approaches, e.g., (Liu et al., 2020; Kumar et al., 2020; Agarwal et al.,
2020b; Yan et al., 2022; Shi et al., 2022), which are not the focus here.

Offline RL under global coverage. Existing studies on offline RL often make assumptions on the coverage
of the dataset. This can be measured by the distribution shift between the behavior policy and the occupancy
measure induced by the target policy, which is referred to as the concentrability coefficient (Munos, 2007;
Rashidinejad et al., 2021). Many previous works, e.g., (Scherrer, 2014; Chen & Jiang, 2019; Jiang, 2019;
Wang et al., 2019; Liao et al., 2020; Liu et al., 2019; Zhang et al., 2020a; Munos & Szepesvari, 2008; Uehara
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et al., 2020; Duan et al., 2020; Xie & Jiang, 2020; Levine et al., 2020; Antos et al., 2007; Farahmand et al.,
2010), assume that the density ratio between the above two distributions is finite for all state-action pairs
and policies, which is known as global coverage. This assumption essentially requires the behavior policy
to be able to visit all possible state-action pairs, which is often violated in practice (Gulcehre et al., 2020;
Agarwal et al., 2020b; Fu et al., 2020).

Offline RL under partial coverage. Recent studies relax the above assumption of global coverage to
partial coverage or single-policy concentrability. Partial coverage assumes that the density ratio between the
distributions induced by a single target policy and the behavior policy is bounded for all state-action pairs.
Therefore, this assumption does not require the behavior policy to be able to visit all possible state-action
pairs, as long as it can visit those state-actions pairs that the target policy will visit. This partial coverage
assumption is more feasible and applicable in real-world scenarios. In this paper, we focus on this practical
partial coverage setting. Existing approaches under the partial coverage assumption can be divided into three
categories as follows.

Regularized Policy Search. The first approach regularizes the policy so that the learned policy is close to the
behavior policy (Fujimoto et al., 2019b; Wu et al., 2019; Jaques et al., 2019; Peng et al., 2019; Siegel et al.,
2020; Wang et al., 2020; Kumar et al., 2019; Fujimoto et al., 2019a; Ghasemipour et al., 2020; Nachum et al.,
2019; Zhang et al., 2020b; 2023). Thus, the learned policy is similar to the behavior policy which generates
the dataset, hence this approach works well when the dataset is collected from experts (Wu et al., 2019; Fu
et al., 2020).

Reward Penalization or LCB Approaches. One of the most widely used approaches is to penalize the reward
in face of uncertainty to obtain an pessimistic estimation that lower bounds the real value function, e.g.,
(Kidambi et al., 2020; Yu et al., 2020; 2021b; Buckman et al., 2020; Jin et al., 2021; Xie et al., 2021b; Yin
& Wang, 2021; Liu et al., 2020; Cui & Du, 2022; Chen et al., 2021; Zhong et al., 2022). The most popular
approach VI-LCB (Rashidinejad et al., 2021; Li et al., 2022) penalizes the reward with a bonus term that is
inversely proportional to the number of samples. The tightest sample complexity is obtained in (Li et al.,
2022) by designing a Bernstein-style penalty term, which matches the minimax lower bound in (Rashidinejad
et al., 2021).

DRO-based Approaches. Another approach is to first construct a set of “statistically plausible” MDP models
based on the empirical transition kernel, and then find the policy that optimizes the worst-case performance
over this set (Zanette et al., 2021; Uehara & Sun, 2021; Rigter et al., 2022; Bhardwaj et al., 2023; Guo
et al., 2022; Hong et al., 2023; Chang et al., 2021; Blanchet et al., 2023). However, finding such a policy
under the models proposed in these works can be NP-hard, hence some heuristic approximations without
theoretical optimality guarantee are used to deploy their approaches. Our work falls into this category, but
the computational complexity is polynomial, and the sample complexity of our approach is minimax optimal.
A recent work (Panaganti et al., 2023) also proposes a similar Hoeffding-style DRO framework as ours, and
their sample complexity results match ours in the first part, but fails to obtain the minimax optimality as
our second part.

Offline RL with function approximation. There is another substantial interest in combining offline reinforcement
learning with function approximation (e.g., deep neural networks) in order to encode inductive biases and
enable generalization across large, potentially continuous state spaces, with recent progress on both model-free
and model-based approaches (Ross & Bagnell, 2012; Laroche et al., 2019; Fujimoto et al., 2019b; Kumar
et al., 2019; Agarwal et al., 2020b). Besides the aforementioned challenges, an additional issue regrading the
representational conditions of the function class is introduced, which assert that the function approximator is
flexible enough to represent value functions induced by certain policies. A huge body of recent works aim to
understanding the condition for the function classes, including Bellman completeness condition (Liu et al.,
2020; Jin et al., 2021; Xie et al., 2021a; Yin et al., 2021; Rashidinejad et al., 2021), or Bellman realizability
(Xie & Jiang, 2021; Chen & Jiang, 2022; Rashidinejad et al., 2022; Jiang & Huang, 2020). However, in this
paper, we mainly consider the tabular setting, where no requirement on the function class is needed.

Robust RL with distributional uncertainty. In this paper, our algorithm is based on the framework
of robust MDP (Iyengar, 2005; Nilim & El Ghaoui, 2004; Bagnell et al., 2001; Satia & Lave Jr, 1973;
Wiesemann et al., 2013), which finds the policy with the best worst-case performance over an uncertainty

3



Under review as submission to TMLR

set of transition dynamics. When the uncertainty set is fully known, the problem can be solved by robust
dynamic programming. The sample complexity of model-based approaches without full knowledge of the
uncertainty sets were studied in, e.g., (Yang et al., 2021; Xu et al., 2023; Panaganti & Kalathil, 2022; Shi
et al., 2023; Panaganti & Kalathil, 2022), where a generative model is typically assumed. This model-based
approach is further adapted to the robust offline setting in (Panaganti et al., 2022; Shi & Chi, 2022). Yet in
these works, the challenge of partial coverage is addressed using the LCB aproach, i.e., penalizing the reward
functions, whereas we show that the DRO framework itself can also address the challenge of partial coverage
in the offline setting.

2 Preliminaries

2.1 Markov Decision Process (MDP)

An MDP can be characterized by a tuple (S,A,P, r), where S and A are the state and action spaces,
P = {Pa

s ∈ ∆(S), a ∈ A, s ∈ S}1 is the transition kernel, r : S × A → [0, 1] is the deterministic reward
function2, and γ ∈ [0, 1) is the discount factor. Specifically, Pa

s = (pa
s,s′)s′∈S, where pa

s,s′ denotes the
probability that the environment transits to state s′ if taking action a at state s. The reward of taking action
a at state s is given by r(s, a). A stationary policy π is a mapping from S to a distribution over A, which
indicates the probabilities of the agent taking actions at each state. At each time t, an agent takes an action
at ∼ π(st) at state st, the environment then transits to the next state st+1 with probability pat

st,st+1
, and the

agent receives reward r(st, at).

The value function of a policy π starting from any initial state s ∈ S is defined as the expected accumulated
discounted reward by following π: V π

P (s) ≜ EP [
∑∞

t=0 γ
tr(St, At)|S0 = s, π] , where EP denotes the expectation

when the state transits according to P. Let ρ denote the initial state distribution, and denote the value
function under the initial distribution ρ by V π

P (ρ) ≜ Es∼ρ[V π
P (s)].

2.2 Robust Markov Decision Process

In the robust MDP, the transition kernel is not fixed and lies in some uncertainty set P. Define the
robust value function of a policy π as the worst-case expected accumulated discounted reward over the
uncertainty set: V π

P (s) ≜ minP∈P EP [
∑∞

t=0 γ
tr(St, At)|S0 = s, π] . Similarly, the robust action-value function

for a policy π is defined as Qπ
P(s, a) = minP∈P EP [

∑∞
t=0 γ

tr(St, At)|S0 = s,A0 = a, π] . The goal of robust
RL is to find the optimal robust policy that maximizes the worst-case accumulated discounted reward, i.e.,
πr = arg maxπ V

π
P (s),∀s ∈ S. It is shown in (Iyengar, 2005; Nilim & El Ghaoui, 2004; Wiesemann et al.,

2013) that the optimal robust value function is the unique solution to the optimal robust Bellman equation
V πr

P (s) = maxa{r(s, a) + γσPa
s
(V πr

P )}, where σPa
s
(V ) ≜ minp∈Pa

s
p⊤V denotes the support function of V on a

set Pa
s and the corresponding robust Bellman operator is a γ-contraction.

2.3 Offline Reinforcement Learning

Under the offline setting, the agent cannot interact with the MDP and instead is given a pre-collected dataset
D consisting of N tuples {(si, ai, s

′
i, ri) : i = 1, ..., N}, where ri = r(si, ai) is the deterministic reward, and

s′
i ∼ Pai

si
follows the transition kernel P of the MDP. The (si, ai) pairs in D are generated i.i.d. according to

an unknown data distribution µ over the state-action space. In this paper, we consider the setting where the
reward functions r is deterministic but unknown. We denote the number of samples transitions from (s, a) in
D by N(s, a), i.e., N(s, a) =

∑N
i=1 1(si,ai)=(s,a) and 1X=x is the indicator function.

The goal of offline RL is to find a policy π which optimizes the value function V π
P based on the offline dataset

D. Let dπ denote the discounted occupancy distribution associated with π: dπ(s) = (1− γ)
∑∞

t=0 γ
tP(St =

s|S0 ∼ ρ, π,P). In this paper, we focus on the partial coverage setting and adopt the following definition from
1∆(S) denotes the probability simplex defined on S.
2To streamline our presentation and emphasize our novelty in solving offline RL through DRO formulation, we assume the

reward function is deterministic. However, our DRO approach directly extends to the stochastic reward setting by constructing
a similar uncertainty set for the reward estimation.
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(Li et al., 2022) to measure the distribution shift between the dataset distribution and the occupancy measure
induced by a single policy π∗:
Definition 1. (Single-policy clipped concentrability) The single-policy clipped concentrability coefficient of a
policy π∗ is defined as

Cπ∗
≜ max

s,a

min{dπ∗(s, a), 1
S }

µ(s, a) , (1)

where S ≜ |S| denotes the number of states.

We note another unclipped version of Cπ∗ is also commonly used in the literature, e.g., (Rashidinejad et al.,
2021; Uehara & Sun, 2021), defined as C̃π∗

≜ maxs,a
dπ∗

(s,a)
µ(s,a) . It is straightforward to verify that Cπ∗ ≤ C̃π∗ ,

and all of our results remain valid if Cπ∗ is replaced by C̃π∗ . A more detailed discussion can be found in (Li
et al., 2022; Shi & Chi, 2022).

The goal of this paper is to find a policy π which minimizes the sub-optimality gap compared to a comparator
policy π∗ under some initial state distribution ρ: V π∗

P (ρ)− V π
P (ρ).

3 Offline RL via Distributionally Robust Optimization

Model-based methods usually commence by estimating the transition kernel employing its maximum likelihood
estimate. Nevertheless, owing to the inherent challenges associated with distribution shift and limited data in
the offline setting, uncertainties can arise in these estimations. For instance, the dataset may not encompass
every state-action pair, and the sample size may be insufficient to yield a precise estimate of the transition
kernel. In this paper, we directly quantify the uncertainty in the empirical estimation of the transition
kernel, and construct a set of "statistically possible" transition kernels, referred to as uncertainty set, so
that it encompasses the actual environment. We then employ the DRO approach to optimize the worst-case
performance over the uncertainty set. Notably, this formulation essentially transforms the problem into a
robust Markov Decision Process (MDP), as discussed in Section 2.2.

In Section 3.1,we first introduce a direct metric-based Hoeffding-style approach to construct the uncertainty
set such that the true transition kernel is in the uncertainty set with high probability. We then present
the robust value iteration algorithm to solve the DRO problem. We further theoretically characterize the
bound on the sub-optimality gap and show that the sample complexity to achieve an ϵ-optimality gap is
O((1 − γ)−4ϵ−2SCπ∗). This gap matches with the best-known sample complexity for the LCB method
using the Hoeffding-style bonus term (Rashidinejad et al., 2021). This result shows the effectiveness of our
DRO-based approach in solving the offline RL problem.

We then design a less conservative Bernstein-style uncertainty set aiming to achieve the minimax optimal
sample complexity in Section 3.2. We theoretically establish that our approach attains an enhanced and
asymptotically minimax optimal sample complexity of O

(
(1− γ)−3ϵ−2SCπ∗). Notably, this sample complexity

matches with the minimax lower bound (Rashidinejad et al., 2021) and stands on par with the best results
achieved using the LCB approach (Li et al., 2022) in asymptotic order.

Our approach starts with learning an empirical model of the transition kernel and reward from the dataset as
follows. These empirical transition kernels will be used as the centroid of the uncertainty set. For any (s, a),
if N(s, a) > 0, set

P̂a
s,s′ =

∑
i≤N 1(si,ai,s′

i
)=(s,a,s′)

N(s, a) , r̂(s, a) = ri(s, a); (2)

And if N(s, a) = 0, set

P̂a
s,s′ = 1s′=s, r̂(s, a) = 0. (3)

The MDP M̂ = (S,A, P̂, r̂) with the empirical transition kernel P̂ and empirical reward r̂ is referred to as the
empirical MDP. For unseen state-action pairs (s, a) in the offline dataset, we take a conservative approach
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and let the estimated r̂(s, a) = 0, and set s as an absorbing state if taking action a. Then the action value
function at (s, a) for the empirical MDP shall be zero, which discourages the choice of action a at state s.

For each state-action pair (s, a), we construct an uncertainty set centered at the empirical transition kernel P̂a
s ,

with a radius inversely proportional to the number of samples in the dataset. Specifically, set the uncertainty
set as P̂ =

⊗
s,a P̂

a
s

3 and

P̂a
s =

{
q ∈ ∆(S) : D(q, P̂a

s) ≤ Ra
s

}
, (4)

where D(·, ·) is some function that measures the difference between two probability distributions, e.g., total
variation, Chi-square divergence, Ra

s is the radius ensuring that the uncertainty set adapts to the dataset
size and the degree of confidence, which will be determined later. We then construct the robust MDP as
M̂ = (S,A, P̂, r̂).

As we shall show later, the optimal robust policy

πr = arg max
π

min
P∈P̂

V π
P (s),∀s ∈ S. (5)

w.r.t. M̂ performs well in the real environment and reaches a small sub-optimality gap. In our construction
in eq. (4), the uncertainty set is (s, a)-rectangular, i.e., for different state-action pairs, the corresponding
uncertainty sets are independent. With this rectangular structure, the optimal robust policy can be found
by utilizing the robust value iteration algorithm or robust dynamic programming (Algorithm 1), and the
corresponding robust value iteration at each step can be solved in polynomial time (Wiesemann et al., 2013).
In contrast, the uncertainty set constructed in (Uehara & Sun, 2021; Bhardwaj et al., 2023), defined as
T = {Q : ED[∥P̂a

s −Qa
s∥2] ≤ ζ}, does not enjoy such a rectangularity. Solving a robust MDP with such an

uncertainty set can be, however, NP-hard (Wiesemann et al., 2013). The approach developed in (Rigter et al.,
2022) to solve it is based on the heuristic approach of adversarial training, and therefore is lack of theoretical
guarantee.

Algorithm 1 Robust Value Iteration (Nilim & El Ghaoui, 2004; Iyengar, 2005)
INPUT: r̂, P̂, V,D

1: while TRUE do
2: for s ∈ S do
3: V (s)← maxa{r̂(s, a) + γσ

P̂a
s
(V )}

4: end for
5: end while
6: for s ∈ S do
7: πr(s) ∈ arg maxa∈A{r̂(s, a) + γσ

P̂a
s
(V )}}

8: end for
Output: πr

The algorithm converges to the optimal robust policy linearly since the robust Bellman operator is a γ-
contraction (Iyengar, 2005). The computational complexity of the support function σ

P̂a
s
(V ) in Lines 3 and

7 w.r.t. the uncertainty sets we constructed matches the ones of the LCB approaches (Rashidinejad et al.,
2021; Li et al., 2022).

In the following two sections, we specify the constructions of the uncertainty sets.

3.1 Hoeffding-style Radius

We first employ the total variation to construct this uncertainty set. Specifically, we let D be the total

variation distance and Ra
s ≜ min

{
1,
√

S log SA
δ

8N(s,a)

}
. With our design, fewer samples result in a larger uncertainty

3Here,
⊗

s,a
denotes the Cartesian product of all state-action pairs, i.e., the uncertainty set P̂ is independently defined for

each state-action pairs. This structure is also known as the (s, a)-rectangular uncertainty set.

6



Under review as submission to TMLR

set and imply that we should be more conservative in estimating the transition dynamics at this state-action
pair. Other distance function of D can also be used, contingent upon the concentration inequality being
applied.

In Algorithm 1, σ
P̂a

s
(V ) = minq∈P̂a

s
{q⊤V } can be equivalently solved by solving its dual form (Iyengar,

2005), which is a convex optimization problem: max0≤µ≤V {P̂a
s(V − µ)−Ra

sSpan(V − µ)}, and Span(X) =
maxi X(i)−mini X(i) is the span semi-norm of vector X. The computational complexity associated with
solving it is O(S log(S)). Notably, this polynomial computational complexity is on par with the complexity
of the VI-LCB approach (Li et al., 2022).

We then show that with this Hoeffding-style radius, the true transition kernel falls into the uncertainty set
with high probability.
Lemma 1. With probability at least 1− δ, it holds that for any s, a, Pa

s ∈ P̂a
s , i.e., ∥Pa

s − P̂a
s∥ ≤ 2Ra

s
4.

This result implies that the real environment P falls into the uncertainty set P̂ with high probability, and
hence finding the optimal robust policy of M̂ provides a worst-case performance guarantee. We further
present our result of the sub-optimality gap in the following theorem.
Theorem 1. Consider an arbitrary deterministic comparator policy π∗. With probability at least 1− 2δ, the
output policy πr of Algorithm 1 satisfies

V π∗

P (ρ)− V πr

P (ρ) ≤
16SCπ∗ log NS

δ

(1− γ)2N
+

√
96S2Cπ∗ log SA

δ

(1− γ)4N
. (6)

To achieve an ϵ-optimality gap, a dataset of size N = O
(
(1− γ)−4ϵ−2S2Cπ∗) is required for a Hoeffding-style

uncertainty model. This sample complexity matches with the best-known sample complexity for LCB methods
with Hoeffding-style bonus term (Rashidinejad et al., 2021) and model uncertainty type approach (Panaganti
et al., 2023). It suggests that our DRO-based approach can effectively address the offline RL problem.

However, there is still a gap between this sample complexity and the minimax lower bound in (Rashidinejad
et al., 2021) and the best-known sample complexity of LCB-based method (Li et al., 2022), which is
O
(
(1− γ)−3ϵ−2SCπ∗). We will address this problem via a Bernstein-style uncertainty set design in the next

subsection.
Remark 1. The choice of total variation and radius when construct the uncertainty set and obtain the results
are not essential. We can also use alternative distance functions or divergence, and set radius according
to the corresponding concentration inequalities, e.g., including Chi-square divergence, KL-divergence and
Wasserstein distance (Canonne, 2020; Bhandari & Russo, 2021; Arora et al., 2023). Our results and methods
can be further generalized to large-scale problems when a low-dimensional latent representation is presented,
e.g., linear MDPs or low-rank MDPs (Panaganti et al., 2023).

3.2 Bernstein-style Radius

As discussed above, using a Hoeffding-style radius is able to achieve an ϵ-optimal policy, however, with an
unnecessarily large sample complexity. Compared with the minimax lower bound and the tightest result
obtained in (Li et al., 2022), there exists a gap of order O(S(1 − γ)−1). This gap is mainly because the
Hoeffding-style radius is overly conservative and the bound is loose. Specifically, Hoeffding-style approach
can be viewed as distribution based. That is, to construct the uncertainty set P̂ centered at P̂ large enough
such that the true transition kernel P falls into P̂ with high probability (Lemma 1). Therefore, it holds that
V πr

P̂
≤ V πr

P and the sub-optimality gap can be bounded as

V π∗

P − V πr

P = V π∗

P − V πr

P̂︸ ︷︷ ︸
∆1

+V πr

P̂
− V πr

P︸ ︷︷ ︸
∆2≤0

≤ ∆1. (7)

4In this paper, unless stated otherwise, we denote the l1-norm by ∥ · ∥.
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To further bound ∆1, we utilize the distance between the two transition kernels which is upper bounded by

the radius R of the uncertainty set, and obtain a sub-optimal bound of order O

(
1√

N(1−γ)4

)
.

This result can be improved from two aspects. Firstly, we note that the uncertainty set under the Hoeffding-
style construction is too large to include P with high probability. Although this construction implies ∆2 ≤ 0,
as the price of it, the large radius implies a loose bound on ∆1. Another observation is that both two terms
are in fact the differences between the expectations under two different distributions. Instead of merely using
the distance of the two distributions to bound them, we can utilize other tighter concentration inequalities
like Bernstein’s inequality, to obtain an involved but tighter bound.

Toward this goal, we construct a smaller and less conservative uncertainty set such that: (1). It implies a
tighter bound on ∆1 combining with Bernstein’s inequality; And (2). Although non-zero, the term ∆2 can
also be tightly bounded. Specifically, note that ∆2 = V πr

P̂
− V πr

P̂︸ ︷︷ ︸
(a)

+V πr

P̂ − V πr

P︸ ︷︷ ︸
(b)

. Term (b) can be viewed as an

estimation error which is from the inaccurate estimation from the dataset; And Term (a) is the difference
between robust value function and the value function under the centroid transition kernel P̂, which is always
negative and can be bounded using the dual-form solutions for specific uncertainty sets (Iyengar, 2005). We
hence choose a radius such that: (1). the negative bound on (a) cancels with the higher-order terms in the
bound on (b) and further implies a tighter bound on ∆2; And (2). the bound on ∆1 is also tight by utilizing
Bernstein’s inequality.

We then construct the Bernstein-style uncertainty set as follows. Instead of the total variation, we construct
the uncertainty set using the Chi-square divergence, i.e., D(p, q) = χ2(p||q) =

∑
s q(s)

(
1− p(s)

q(s)

)2
. The

reason why we adopt the Chi-square divergence instead of the total variation will be discussed later. We
design our uncertainty set for each state-action pair as follows. For (s, a) with N(s, a) > 0, we set the radius
as Ra

s ≜
48 log 4N

δ

N(s,a) , and set P̂a
s ≜ {q ∈ ∆(S) : χ2(q||P̂a

s) ≤ Ra
s}; And for (s, a) pairs that are not covered by the

dataset, we set P̂a
s ≜ ∆(S). We then construct the robust MDP as M̂ = (S,A, P̂ =

⊗
s,a P̂

a
s , r̂).

Remark 2. From Pinsker’s inequality and the fact that DKL(p||q) ≤ χ2(p||q) (Nishiyama & Sason, 2020), it
holds that ∥p− q∥ ≤

√
2χ2(p||q). Hence the Bernstein-style uncertainty set is a subset of the Hoeffding-style

uncertainty set in Section 3.1, and is less conservative.

Similarly, we find the optimal robust policy w.r.t. the corresponding robust MDP M̂ = (S,A, P̂, r̂) using the
robust value iteration with a slight modification, which is presented in Algorithm 2. Specifically, the output

Algorithm 2 Robust Value Iteration
INPUT: r̂, P̂, V,D

1: while TRUE do
2: for s ∈ S do
3: N(s)←

∑N
i=1 1(si)=s

4: V (s)← maxa{r̂(s, a) + γσ
P̂a

s
(V )}

5: end for
6: end while
7: for s ∈ S do
8: if N(s) > 0 then
9: πr(s) ∈ {arg maxa∈A{r̂(s, a) + γσ

P̂a
s
(V )}} ∩ {a : N(s, a) > 0}

10: else
11: πr(s) ∈ arg maxa∈A{r̂(s, a) + γσ

P̂a
s
(V )}}

12: end
13: end for
Output: πr

policy πr in Algorithm 2 is set to be the greedy policy satisfying N(s, a) > 0 if N(s) > 0. The existence of

8
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such a policy is proved in Lemma 2 in the appendix. This is to guarantee that when there is a tie of taking
greedy actions, we will take an action that has appeared in the pre-collected dataset D.

The support function σ
P̂a

s
(V ) w.r.t. the Chi-square divergence uncertainty set can also be computed using its

dual form (Iyengar, 2005): σ
P̂a

s
(V ) = maxα∈[Vmin,Vmax]{P̂a

sVα−
√
Ra

sVarP̂a
s
(Vα)}, where Vα(s) = min{α, V (s)}.

The dual form is also a convex optimization problem and can be solved efficiently within a polynomial time
O(S logS) (Iyengar, 2005).

Using the Chi-square divergence enables a smaller radius and yields a tighter bound on ∆2 = (a) + (b).
Namely, (b) can be bounded by a N−0.5-order bound according to the Bernstein’s inequality (see Lemma 5 in
the Appendix). Simultaneously, our goal is to obtain a bound with the same order on (a), which effectively
offsets the bound on (b), and yields a tighter bound on ∆2. The robust value function w.r.t. the total
variation uncertainty set, however, depends on Ra

s linearly (see the dual form we discussed above); On the
other hand, the solution to the Chi-square divergence uncertainty set incorporates a term of

√
Ra

s which
enables us to set a lower-order radius (i.e., set Ra

s = (N(s, a))−1) to offset the N−0.5-order bound on (b).

We then characterize the optimality gap obtained from Algorithm 2 in the following theorem.
Theorem 2. If N ≥ 1

(1−γ)KSCπ∗ µ2
min

, then the output policy πr of Algorithm 2 satisfies

V π∗

P (ρ)− V πr

P (ρ) ≤

√
KSCπ∗ log 4N

δ

(1− γ)3N
, (8)

with probability at least 1 − 4δ, where µmin = min{µ(s, a) : µ(s, a) > 0} denotes the minimal non-zero
probability of µ, and K is some universal constant that independent with S, γ, Cπ∗ and N .

Theorem 2 implies that our DRO approach can achieve an ϵ-optimality gap, as long as the size of the dataset
exceeds the order of

O

(
SCπ∗

(1− γ)3ϵ2︸ ︷︷ ︸
ϵ-dependent

+ 1
(1− γ)SCπ∗µ2

min︸ ︷︷ ︸
burn-in cost

)
. (9)

The burn-in cost term indicates that the asymptotic bound of the sample complexity becomes relevant after
the dataset size surpasses the burn-in cost. It represents the minimal requirement for the amount of data. In
fact, if the dataset is too small, we should not expect to learn a well-performed policy from it. In our case,
if the dataset is generated under a generative model Panaganti et al. (2022); Yang et al. (2021); Shi et al.
(2023) or uniform distribution, the burn-in cost term is in order of SA2

1−γ . Burn-in cost also widely exists in the
sample complexity studies of RL, e.g., H8SCπ∗ in (Xie et al., 2021b), S3A2

(1−γ)4 in (He et al., 2021), and SCπ∗

(1−γ)5

in (Yan et al., 2022), H
µminpmin

in (Shi & Chi, 2022). Note that the burn-in cost term is independent of the

accuracy level ϵ, which implies the sample complexity is less than O

(
SCπ∗

(1−γ)3ϵ2

)
, as long as ϵ is small. This

result matches the optimal asymptotic order of the complexity according to the minimax lower bound in
(Rashidinejad et al., 2021), and also matches the tightest bound obtained using the LCB approach (Li et al.,
2022) asymptotically. This suggests that our DRO approach can effectively address offline RL while imposing
minimal demands on the dataset, thus optimizing the sample complexity associated with offline RL.
Remark 3. We further discuss the major differences in our approach and the LCB approaches (Li et al.,
2022; Rashidinejad et al., 2021). Firstly, the motivations are different. The LCB approach can be viewed as
‘value function-based’, which aims to obtain a pessimistic estimation of the value function by subtracting
a penalty term from the reward, e.g., eq (83) in (Li et al., 2022). Our DRO approach aims to construct
an uncertainty set that contains the statistically plausible transition dynamics, and optimize the worst-case
performance among this uncertainty set. Our approach can be viewed as ‘transition model-based’, meaning
that we directly tackle the uncertainty from the model estimation, without using the value function as an
intermediate step.

9
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Our proof techniques are also different from the ones in LCB. To clarify the difference, we first rewrite our
update rule using the LCB fashion. The update in robust value iteration Algorithm 1 can be written as

V (s)← max
a
{r(s, a) + γσ

P̂a
s
(V )} = max

a
{r(s, a) + γP̂a

sV − b(s, a, V )}, (10)

where b(s, a, V ) ≜ γP̂a
sV − γσP̂a

s
(V ), and hence, our algorithm bears formal resemblance to an LCB approach.

However, this formal similarity does not imply that our approach and results can be derived from those of
LCB methods. Specifically, in LCB approaches, a crucial step involves the meticulous design of the penalty
term b(s, a, V ) to satisfy the condition γ|P̂a

sV − Pa
sV | ≤ b(s, a, V ), ensuring that the obtained estimation V

remains pessimistic compared to the true value function. This often leads to the development of a complex
penalty term, which may incorporate variance (e.g., see equation (28) in (Li et al., 2022)).

In contrast, within the DRO setting, designing an uncertainty set to uphold the aforementioned inequality
either yields a loose bound on sub-optimality or results in a highly intricate uncertainty set. On one hand,
enlarging the uncertainty set sufficiently to accommodate P ∈ P̂ (to ensure Pa

sV ≥ minq∈P̂a
s
qV = σ

P̂a
s
(V ) and

the inequality above) falls into the Hoeffding-style construction, leading to sub-optimal sample complexity. On
the other hand, adopting a similar approach involving Bernstein inequality introduces dependence on V into
the radius, resulting in a time-varying and intricate uncertainty set akin to the one in the LCB method. Our
method circumvents these issues by not mandating the above inequality for leveraging the pessimism principle.
Instead, we harness the inherent pessimism of the DRO setting and devise a straightforward yet effective
uncertainty set. Although the above inequality may not hold, the robust value function we derive remains a
pessimistic estimation of the true value function, demonstrating its effectiveness and efficiency.

This underscores the fundamental disparity in motivation and design between our method and LCB approaches,
highlighting the novelty of our approach.

We present a comparative analysis of our results alongside those of the most closely related works in Table 1. As
evidenced by the comparison, our approach stands out as the first model-uncertainty-based method to achieve
the minimax optimal sample complexity in offline RL. Notably, we observe variations in the assumptions
made across these works, particularly concerning the adoption of the clipped version of the single-policy
concentrability. We meticulously specify these variations in our comparison. However, as previously discussed,
the single-policy clipped concentrability is inherently smaller than its unclipped counterpart. Consequently,
our assumption is comparatively weaker, enabling our results to directly follow if we adopt the unclipped
assumption.

Approach Type Assumption Asymptotic Sample
Complexity

Computational
Complexity

Our Approach DRO Single-policy,
clipped

O
(

SCπ∗

ϵ2(1−γ)3

)
Polynomial

(Rashidinejad et al.,
2021)

LCB Single-policy O
(

SCπ∗

ϵ2(1−γ)5

)
Polynomial

(Uehara & Sun,
2021)

DRO Single-policy O
(

S2Cπ∗

ϵ2(1−γ)4

)
NP-Hard

(Panaganti et al.,
2023)

DRO Single-policy O
(

S2Cπ∗

ϵ2(1−γ)4

)
Polynomial

(Li et al., 2022) LCB Single-policy,
clipped

O
(

SCπ∗

ϵ2(1−γ)3

)
Polynomial

(Rashidinejad et al.,
2021)

Minimax Lower
bound

Single-policy O
(

SCπ∗

ϵ2(1−γ)3

)
-

Table 1: Comparison with related works.
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4 Experiments

We adapt our DRO framework under two problems, the Garnet problem G(30, 20) (Archibald et al., 1995),
and the Frozen-Lake problem (Brockman et al., 2016) to numerically verify our results.

In the Garnet problem, |S| = 30 and |A| = 20. The transition kernel P = {Pa
s , s ∈ S, a ∈ A} is randomly

generated following a normal distribution: Pa
s ∼ N(ωa

s , σ
a
s ) and then normalized, and the reward function

r(s, a) ∼ N(νa
s , ψ

a
s ), where ωa

s , σ
a
s , ν

a
s , ψ

a
s ∼ Uniform[0, 100].

In the Frozen-Lake problem, an agent aim to cross a 4× 4 frozen lake from Start to Goal without falling into
any Holes by walking over the frozen lake.

In both problems, we deploy our approach under both global coverage and partial coverage conditions.
Specifically, under the global coverage setting, the dataset is generated by the uniform policy π(a|s) = 1

|A| ;
And under the partial coverage condition, the dataset is generated according to µ(s, a) = 1a=π∗(s)

2 + 1a=η

2 ,
where η is an action randomly chosen from the action space A.

At each time step, we generate 40 new samples and add them to the offline dataset and deploy our DRO
approach on it. We also deploy the LCB approach (Li et al., 2022) and non-robust model-based dynamic
programming as the baselines. We run the algorithms independently 10 times and plot the average value of
the sub-optimality gaps over all 10 trajectories. We also plot the 95th and 5th percentiles of the 10 curves as
the upper and lower envelopes of the curves. The results are presented in Figure 1. It can be seen from the
results that our DRO approach finds the optimal policy with relatively less data; The LCB approach has
a similar convergence rate to the optimal policy, which verifies our theoretical results; The non-robust DP
converges much slower, and can even converge to a sub-optimal policy. The results hence demonstrate the
effectiveness and efficiency of our DRO approach.

(a) Garnet Problem under
global coverage

(b) Garnet Problem under par-
tial coverage

(c) Frozen-Lake under global
coverage

(d) Frozen-Lake under partial
coverage

Figure 1: Sub-optimality gaps of Robust DP, LCB approach, and Non-robust DP.

5 Conclusion

In this paper, we revisit the problem of offline reinforcement learning from a novel angle of distributional
robustness. We develop a DRO-based approach to solve offline reinforcement learning. Our approach
directly incorporates conservatism in estimating the transition dynamics instead of penalizing the reward of
less-visited state-action pairs. Our algorithms are based on the robust dynamic programming approach, which
is computationally efficient. We focus on the challenging partial coverage setting, and develop two uncertainty
sets: the Hoeffding-style and the less conservative Bernstein-style. For the Hoeffding-style uncertainty set, we
theoretically characterize its sample complexity, and show it matches with the best one of the LCB-based
approaches using the Hoeffding-style bonus term. For the Bernstein-style uncertainty set, we show its sample
complexity is asymptotically minimax optimal, with a constant-level burn-in cost. Our results provide a
DRO-based framework, an alternative approach to efficiently and effectively solve the problem of offline
reinforcement learning.
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A Notations

We first introduce some notations that are used in our proofs. We denote the numbers of states and actions
by S,A, i.e., |S| = S, |A| = A. For a transition kernel P and a policy π, Pπ denotes the transition matrix
induced by them, i.e., Pπ(s) =

∑
a π(a|s)Pa

s ∈ ∆(S).

For any vector V ∈ RS , V ◦ V ∈ RS denotes the entry-wise multiplication, i.e., V ◦ V (s) = V (s) ∗ V (s). For
a distribution q ∈ ∆(S), it is straightforward to verify that the variance of V w.r.t. q can be rewritten as
Varq(V ) = q(V ◦ V )− (qV )2.

B A Straightforward Analysis: Hoeffding’s Inequality

In this section, we present our proofs of the results under the Hoeffding-style construction.

We first note that Lemma 1 can be directly obtained from the existing results of concentration inequality,
e.g., Theorem 1 from (Canonne, 2020) or Theorem 2.2 from (Weissman et al., 2003). Hence the proof is
omitted here.
Theorem 3. (Restatement of Theorem 1) With probability at least 1− 2δ, it holds that

V π∗

P (ρ)− V πr

P (ρ) ≤ 2
(1− γ)2

8SCπ∗ log NS
δ

N
+ 2

(1− γ)2

√
24S2Cπ∗ log SA

δ

N
, (11)

To obtain an ϵ-optimal policy, a dataset of size

N = O

(
SCπ∗

(1− γ)4ϵ2

)
(12)

is required.

Proof. In the following proof, we only focus on the case when

N >
8SCπ∗ log NS

δ

1− γ ; (13)

Otherwise, eq. (6) follows directly from the trivial bound V π∗

P (ρ)− V πr

P (ρ) ≤ 1
1−γ .

According to Lemma 1, with probability at least 1− δ, P ∈ P̂. Moreover, due to the fact r(s, a) ≥ r̂(s, a),
hence

V π
P (s) ≥ V π

r̂,P(s) ≥ V π
r̂,P̂

(s) = V π
P̂

(s) (14)

for any π and s ∈ S, where V π
r̂,P denotes the value function w.r.t. P and reward r̂. Thus V π

P ≥ V π
P̂

for any
policy π.

Therefore,

V π∗

P (s)− V πr

P (s)
= V π∗

P (s)− V πr

P̂
(s) + V πr

P̂
(s)− V πr

P (s)

≤ V π∗

P (s)− V πr

P̂
(s)

= r(s, π∗(s)) + γPπ∗(s)
s V π∗

P − V πr

P̂
(s)

(a)
≤ r(s, π∗(s))− r̂(s, π∗(s)) + γPπ∗(s)

s V π∗

P − γσ
P̂

π∗(s)
s

(V πr

P̂
)

= r(s, π∗(s))− r̂(s, π∗(s)) + γPπ∗(s)
s V π∗

P − γPπ∗(s)
s V πr

P̂
+ γPπ∗(s)

s V πr

P̂
− γσ

P̂
π∗(s)
s

(V πr

P̂
)

= r(s, π∗(s))− r̂(s, π∗(s)) + γPπ∗(s)
s (V π∗

P − V πr

P̂
) + γ(Pπ∗(s)

s V πr

P̂
− σ

P̂
π∗(s)
s

(V πr

P̂
))

17
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≜ γPπ∗(s)
s (V π∗

P − V πr

P̂
) + b∗(V πr

P̂
), (15)

where (a) is from V πr

P̂
(s) = maxa Q

πr

P̂
(s, a) ≥ Qπr

P̂
(s, π∗(s)) = r̂(s, π∗(s)) + γσ

P̂
π∗(s)
s

(V πr

P̂
), and b∗(V )(s) ≜

r(s, π∗(s))− r̂(s, π∗(s)) + γPπ∗(s)
s V − γσ

P̂
π∗(s)
s

(V ).

Recursively applying this inequality further implies

V π∗

P (ρ)− V πr

P (ρ) ≤ 1
1− γ

〈
dπ∗

, b∗(V πr

P̂
)
〉
, (16)

where dπ∗(·) = (1− γ)
∑∞

t=0 γ
tP(St = ·|S0 ∼ ρ, π∗,P) is the discounted visitation distribution induced by π∗

and P.

To bound the term in eq. (15), we introduce the following notations.

Ss ≜

{
s : Nµ(s, π∗(s)) ≤ 8 log NS

δ

}
, (17)

Sl ≜

{
s : Nµ(s, π∗(s)) > 8 log NS

δ

}
. (18)

The two sets divide the state space into two sub-spaces. Ss contains the states that have less probability
in the behavior distribution µ on its corresponding optimal action, and are less-frequently covered by the
dataset; And Sl are the ones that have larger probability, and are more frequently covered.

For s ∈ Ss, from eq. (13), we have that

min
{
dπ∗

(s), 1
S

}
≤ Cπ∗

µ(s, π∗(s)) ≤
8Cπ∗ log NS

δ

N
<

1
S
, (19)

which further implies that dπ∗(s) ≤ 8Cπ∗
log NS

δ

N . Hence

∑
s∈Ss

dπ∗
(s)b∗(V πr

P̂
)(s) ≤ 1

1− γ
8SCπ∗ log NS

δ

N
, (20)

which is due to b∗(V )(s) ≜ r(s, π∗(s))− r̂(s, π∗(s)) + γPπ∗(s)
s V − γσ

P̂
π∗(s)
s

(V ) ≤ 1 + γ
1−γ = 1

1−γ .

We then consider s ∈ Sl. From the definition, Nµ(s, π∗(s)) > 8 log NS
δ . According to Lemma 4, with

probability 1− δ,

max{12N(s, π∗(s)), 8 log NS
δ
} ≥ Nµ(s, π∗(s)) > 8 log NS

δ
, (21)

hence max{12N(s, π∗(s)), 8 log NS
δ } = 12N(s, π∗(s)) and N(s, π∗(s)) ≥ 2

3 log NS
δ > 0. This hence implies

that for any s ∈ Sl, N(s, π∗(s)) > 0 and r̂(s, π∗(s)) = r(s, π∗(s)). Thus

|b∗(V πr

P̂
)(s)| = γ|Pπ∗(s)

s V πr

P̂
− σ

P̂
π∗(s)
s

(V πr

P̂
)|

≤ ∥Pπ∗(s)
s − Qπ∗(s)

s ∥1∥V πr

P̂
∥∞

≤ 2
1− γ min

2,

√
S log SA

δ

2N(s, π∗(s))


≤ 1

1− γ

√
2S log SA

δ

N(s, π∗(s)) . (22)

Moreover, from eq. (21),

1
N(s, π∗(s)) ≤

12
Nµ(s, π∗(s)) ≤

12Cπ∗

N min{dπ∗(s), 1
S }
≤ 12Cπ∗

N

(
1

dπ∗(s) + S

)
. (23)
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Combining with eq. (22) further implies

|b∗(V πr

P̂
)(s)| ≤ 1

1− γ

√
2S log SA

δ

√
12Cπ∗

N

(
1

dπ∗(s) + S

)

≤ 1
1− γ

√
2S log SA

δ

√
12Cπ∗

N

1
dπ∗(s) + 1

1− γ

√
2S log SA

δ

√
12Cπ∗

N
S. (24)

Thus

∑
s∈Sl

dπ∗
(s)b∗(V πr

P̂
)(s) ≤ 1

1− γ

√
24SCπ∗ log SA

δ

N

∑
s

√
dπ∗(s) + 1

1− γ

√
24S2Cπ∗ log SA

δ

N

≤ 1
1− γ

√
24S2Cπ∗ log 2

δ

N
+ 1

1− γ

√
24S2Cπ∗ log SA

δ

N

= 2
1− γ

√
24S2Cπ∗ log SA

δ

N
. (25)

Thus combining eq. (20) and eq. (25) implies

V π∗

P (ρ)− V πr

P (ρ)

≤ 1
1− γ

〈
dπ∗

, b∗(V πr

P̂
)
〉

≤ 2
(1− γ)2

8SCπ∗ log NS
δ

N
+ 1

(1− γ)2

√
24S2Cπ∗ log SA

δ

N
, (26)

which completes the proof.

C A Refined Analysis: Bernstein’s Inequality

In this section, we provide a refined analysis of the sub-optimality gap using Bernstein’s Inequality.
Theorem 4. (Restatement of Thm 2) Consider the robust MDP M̂, there exist an optimal policy πr such
that there exists some universal constant K, such that with probability at least 1− 4δ, if N ≥ 1

(1−γ)KSCπ∗ µ2
min

,
it holds that

V π∗

P (ρ)− V πr

P (ρ) ≤

√
KSCπ∗ log 4N

δ

(1− γ)3N
+

384 log2 4SAN
(1−γ)δ

(1− γ)2Nµmin
, (27)

where K = 442368.

Proof. We first have that

V π∗

P − V πr

P = V π∗

P − V πr

P̂︸ ︷︷ ︸
∆1

+V πr

P̂
− V πr

P︸ ︷︷ ︸
∆2

. (28)

In the following proof, we only focus on the case when

N > max
{
SKCπ∗ log NS

δ

1− γ ,
1

(1− γ)KSCπ∗µ2
min

}
; (29)

Otherwise, eq. (8) follows directly from the trivial bound V π∗

P (ρ)− V πr

P (ρ) ≤ 1
1−γ .
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We note that Lemma 8 of (Shi & Chi, 2022) states that under eq. (29), with probability 1− δ, for any (s, a)
pair,

N(s, a) ≥ Nµ(s, a)
8 log 4SA

δ

. (30)

This moreover implies that with probability 1− δ, if µ(s, a) > 0, then N(s, a) > 0. We hence focus on the
case when this event holds.

The remaining proof can be completed by combining the following two theorems.

Theorem 5. With probability at least 1− 2δ, it holds that

ρ⊤∆1 ≤
2c2SC

π∗ log 4N
δ

(1− γ)2N
+

80Sc1C
π∗ log NS

δ

(1− γ)2N
+ 96

γ

√
48SCπ∗ log 4N

δ

(1− γ)3N
. (31)

Proof. We first define the following set:

S0 ≜ {s : dπ∗
(s) = 0}. (32)

And for s /∈ S0, it holds that dπ∗(s) > 0.

We first consider s /∈ S0. Due to the fact dπ∗(s) > 0, hence dπ∗(s, π∗(s)) = dπ∗(s)π∗(π∗(s)|s) > 0. Thus it
implies that µ(s, π∗(s)) > 0, and equation 30 further implies N(s, π∗(s)) > 0 and r̂(s, π∗(s)) = r(s, π∗(s)).
Hence we have that

V π∗

P (s)− V πr

P̂
(s) = r(s, π∗(s)) + γPπ∗(s)

s V π∗

P − V πr

P̂
(s)

(a)
≤ γPπ∗(s)

s V π∗

P − γσ
P̂

π∗(s)
s

(V πr

P̂
)

= γPπ∗(s)
s V π∗

P − γPπ∗(s)
s V πr

P̂
+ γPπ∗(s)

s V πr

P̂
− γσ

P̂
π∗(s)
s

(V πr

P̂
)

= γPπ∗(s)
s (V π∗

P − V πr

P̂
) + γ(Pπ∗(s)

s V πr

P̂
− σ

P̂
π∗(s)
s

(V πr

P̂
)), (33)

where (a) is from V πr

P̂
(s) = maxa Q

πr

P̂
(s, a) ≥ Qπr

P̂
(s, π∗(s)) = r̂(s, π∗(s)) + γσ

P̂
π∗(s)
s

(V πr

P̂
) = r(s, π∗(s)) +

γσ
P̂

π∗(s)
s

(V πr

P̂
).

For s ∈ S0, it holds that

V π∗

P (s)− V πr

P̂
(s) = r(s, π∗(s)) + γPπ∗(s)

s V π∗

P − V πr

P̂
(s)

(a)
≤ γPπ∗(s)

s V π∗

P − γσ
P̂

π∗(s)
s

(V πr

P̂
) + r(s, π∗(s))− r̂(s, π∗(s))

≤ γPπ∗(s)
s (V π∗

P − V πr

P̂
) + γ(Pπ∗(s)

s V πr

P̂
− σ

P̂
π∗(s)
s

(V πr

P̂
)) + 1, (34)

where (a) follows similarly from eq. (33), and the last inequality is from r(s, π∗(s)) ≤ 1.

Hence combining eq. (33) and eq. (34) implies

V π∗

P (s)− V πr

P̂
(s) ≤ γPπ∗(s)

s (V π∗

P − V πr

P̂
) + b∗(V )(s), (35)

where b∗(V )(s) ≜ γPπ∗(s)
s V − γσ

P̂
π∗(s)
s

(V ) if s /∈ S0, and b∗(V )(s) ≜ 1 + γPπ∗(s)
s V − γσ

P̂
π∗(s)
s

(V ) for s ∈ S0.

Moreover we set

b̃(V πr

P̂
)(s) = max{0, b∗(V πr

P̂
)(s)}, (36)

then it holds that b∗(V πr

P̂
) ≤ b̃(V πr

P̂
).
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Then apply eq. (35) recursively and we have that

ρ⊤∆1 ≤
1

1− γ

〈
dπ∗

, b̃(V πr

P̂
)
〉
, (37)

Not that for s ∈ S0, it holds that dπ∗(s) = 0, and〈
dπ∗

, b̃(V πr

P̂
)
〉

=
∑
s/∈S0

dπ∗
(s)b̃(V πr

P̂
)(s). (38)

This implies that we only need to focus on s /∈ S0. We further defined the following sets:

Ss ≜

{
s /∈ S0 : Nµ(s, π∗(s)) ≤ 8 log NS

δ

}
, (39)

Sl ≜

{
s /∈ S0 : Nµ(s, π∗(s)) > 8 log NS

δ

}
. (40)

For s ∈ Ss, we have that

min
{
dπ∗

(s), 1
S

}
≤ Cπ∗

µ(s, π∗(s)) ≤
8Cπ∗ log NS

δ

N

(a)
<

1
S
, (41)

where (a) is due to the fact eq. (29).

This further implies that dπ∗(s) ≤ 8Cπ∗
log NS

δ

N . Hence

∑
s∈Ss

dπ∗
(s)b̃(V πr

P̂
)(s) ≤ 2

1− γ
8SCπ∗ log NS

δ

N
, (42)

which is due to ∥Pπ∗(s)
s V πr

P̂
− σ

P̂
π∗(s)
s

(V πr

P̂
)∥ ≤ 2

1−γ .

We then consider s ∈ Sl. Note that from the definition and equation 30, it holds that N(s, π∗(s)) > 0 for
s ∈ Sl.

Therefore it holds that

b̃(V πr

P̂
)(s) ≤ |γPπ∗(s)

s V πr

P̂
− γσ

P̂
π∗(s)
s

(V πr

P̂
)|

≤ |γPπ∗(s)
s V πr

P̂
− γP̂π∗(s)

s V πr

P̂
|+ |γP̂π∗(s)

s V πr

P̂
− γσ

P̂
π∗(s)
s

(V πr

P̂
)|

≤ γ
∣∣Pπ∗(s)

s V πr

P̂
− P̂π∗(s)

s V πr

P̂

∣∣+

√
log 4N

δ VarP̂π∗(s)
s

(V πr

P̂
)

N(s, π∗(s)) , (43)

where the last inequality is shown as follows.

Since P̂π∗(s)
s ∈ P̂a

s , we have that P̂π∗(s)
s V πr

P̂
≥ σ

P̂
π∗(s)
s

(V πr

P̂
). Now note that it is shown in (Iyengar, 2005; Shi

et al., 2023) that

σ
P̂

π∗(s)
s

(V πr

P̂
) = max

µ∈[0,V πr

P̂
]

{
P̂π∗(s)

s (V πr

P̂
− µ)−

√
R

π∗(s)
s VarP̂π∗(s)

s
(V πr

P̂
− µ)

}
. (44)

Thus

|γP̂π∗(s)
s V πr

P̂
− γσ

P̂
π∗(s)
s

(V πr

P̂
)|

= γP̂π∗(s)
s V πr

P̂
− γσ

P̂
π∗(s)
s

(V πr

P̂
)
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= γP̂π∗(s)
s V πr

P̂
− γ max

µ∈[0,V πr

P̂
]

{
P̂π∗(s)

s (V πr

P̂
− µ)−

√
R

π∗(s)
s VarP̂π∗(s)

s
(V πr

P̂
− µ)

}
(a)
≤ γP̂π∗(s)

s V πr

P̂
− γ

(
P̂π∗(s)

s (V πr

P̂
)−

√
R

π∗(s)
s VarP̂π∗(s)

s
(V πr

P̂
)
)

=
√
R

π∗(s)
s VarP̂π∗(s)

s
(V πr

P̂
), (45)

where (a) is due to the maximum term is larger than the function value at µ = 0, and this inequality completes
the proof of Equation (43).

To further bound eq. (43), we invoke Lemma 6 and have that∣∣Pπ∗(s)
s V πr

P̂
− P̂π∗(s)

s V πr

P̂

∣∣
≤ 12

√
VarP̂π∗(s)

s
(V πr

P̂
) log 4N

δ

N(s, π∗(s)) +
74 log 4N

δ

(1− γ)N(s, π∗(s))

≤ 12

√√√√ log 4N
δ

N(s, π∗(s))

(
2VarPπ∗(s)

s
(V πr

P̂
) +

41 log 4N
δ

(1− γ)2N(s, π∗(s))

)
+

74 log 4N
δ

(1− γ)N(s, π∗(s))

≤ 12

√
2 log 4N

δ

N(s, π∗(s))VarPπ∗(s)
s

(V πr

P̂
) +

(74 + 12
√

41) log 4N
δ

(1− γ)N(s, π∗(s)) , (46)

where the last inequality is from
√
x+ y ≤

√
x+√y.

Combine eq. (43) and eq. (46), we further have that

b̃(V πr

P̂
)(s) ≤ 24

√
2 log 4N

δ

N(s, π∗(s))VarPπ∗(s)
s

(V πr

P̂
) +

(74 + 12
√

41) log 4N
δ

(1− γ)N(s, π∗(s)) +
log N

δ

(1− γ)N(s, π∗(s))

≤ 24

√
2 log 4N

δ

N(s, π∗(s))VarPπ∗(s)
s

(V πr

P̂
) +

c1 log 4N
δ

(1− γ)N(s, π∗(s)) , (47)

where c1 = 75 + 12
√

41.

Note that in eq. (23), we showed that 1
N(s,π∗(s)) ≤

12Cπ∗

N (S + 1
dπ∗ (s) ). Hence plugging in eq. (47) implies that

b̃(V πr

P̂
)(s) ≤ 24

√
24Cπ∗ log 4N

δ

N
VarPπ∗(s)

s
(V πr

P̂
)
(
√
S + 1√

dπ∗(s)

)

+
12c1C

π∗ log 4N
δ

(1− γ)N

(
S + 1

dπ∗(s)

)
. (48)

Firstly we have that

∑
s∈Sl

24dπ∗
(s)

√
24Cπ∗ log 4N

δ

N
VarPπ∗(s)

s
(V πr

P̂
)
(
√
S + 1√

dπ∗(s)

)

=
∑
s∈Sl

24dπ∗
(s)

√
24SCπ∗ log 4N

δ

N
VarPπ∗(s)

s
(V πr

P̂
) +

∑
s∈Sl

12
√
dπ∗(s)

√
24Cπ∗ log 4N

δ

N
VarPπ∗(s)

s
(V πr

P̂
)

= 24

√
24Cπ∗ log 4N

δ

N

(∑
s∈Sl

√
dπ∗(s)VarPπ∗(s)

s
(V πr

P̂
) +

∑
s∈Sl

√
dπ∗(s)

√
Sdπ∗(s)VarPπ∗(s)

s
(V πr

P̂
)
)

(a)
≤ 24

√
24Cπ∗ log 4N

δ

N

√S√∑
s∈Sl

dπ∗(s)VarPπ∗(s)
s

(V πr

P̂
) +

√∑
s∈Sl

Sdπ∗(s)VarPπ∗(s)
s

(V πr

P̂
)


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= 48

√
24SCπ∗ log 4N

δ

N

√∑
s∈Sl

dπ∗(s)VarPπ∗(s)
s

(V πr

P̂
), (49)

where (a) is from Cauchy’s inequality and the fact
∑

s∈Sl
dπ∗(s) ≤ 1.

In addition, we have that

∑
s∈Sl

dπ∗
(s)

12c1C
π∗ log 4N

δ

(1− γ)N

(
S + 1

dπ∗(s)

)
≤

24c1SC
π∗ log 4N

δ

(1− γ)N . (50)

Combine the two inequalities above and we have that∑
s∈Sl

dπ∗
(s)b̃(V πr

P̂
)(s)

≤ 48

√
24SCπ∗ log 4N

δ

N

√∑
s∈Sl

dπ∗(s)VarPπ∗(s)
s

(V πr

P̂
) +

24Sc1C
π∗ log 4N

δ

(1− γ)N . (51)

Then we combine eq. (42) and eq. (51), and it implies that

⟨dπ∗
, b̃(V πr

P̂
)⟩

=
∑
s∈Ss

dπ∗
(s)b̃(V πr

P̂
)(s) +

∑
s∈Sl

dπ∗
(s)b̃(V πr

P̂
)(s)

≤
16SCπ∗ log NS

δ

(1− γ)N + 48

√
24SCπ∗ log 4N

δ

N

√∑
s∈Sl

dπ∗(s)VarPπ∗(s)
s

(V πr

P̂
) +

24Sc1C
π∗ log 4N

δ

(1− γ)N

≤
40c1SC

π∗ log NS
δ

(1− γ)N + 48

√
24SCπ∗ log 4N

δ

N

√∑
s∈S

dπ∗(s)VarPπ∗(s)
s

(V πr

P̂
). (52)

We then bound the term
∑

s∈S d
π∗(s)VarPπ∗(s)

s
(V πr

P̂
). We first claim the following inequality:

V πr

P̂
− γPπ∗

V πr

P̂
+ 2b̃(V πr

P̂
) ≥ 0. (53)

To prove eq. (53), we note that

V πr

P̂
(s) = max

a
Qπr

P̂
(s, a)

≥ Qπr

P̂
(s, π∗(s))

= r̂(s, π∗(s)) + γσ
P̂

π∗(s)
s

(V πr

P̂
)

= r̂(s, π∗(s)) + γPπ∗(s)
s V πr

P̂
− γPπ∗(s)

s V πr

P̂
+ γσ

P̂
π∗(s)
s

(V πr

P̂
)

(a)
≥ r̂(s, π∗(s)) + γPπ∗(s)

s V πr

P̂
− b∗(V πr

P̂
)(s)

≥ r̂(s, π∗(s)) + γPπ∗(s)
s V πr

P̂
− 2b̃(V πr

P̂
)(s), (54)

where (a) is from b∗(V πr

P̂
)(s) ≥ γPπ∗(s)

s V πr

P̂
− γσ

P̂
π∗(s)
s

(V πr

P̂
).

Hence for any s ∈ S,

V πr

P̂
(s)− γPπ∗(s)

s V πr

P̂
+ 2b̃(V πr

P̂
)(s) ≥ r̂(s, π∗(s)) ≥ 0, (55)

which proves eq. (53).
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Now with eq. (53), we first note that

(V πr

P̂
◦ V πr

P̂
)− (γPπ∗

V πr

P̂
) ◦ (γPπ∗

V πr

P̂
)

= (V πr

P̂
− γPπ∗

V πr

P̂
) ◦ (V πr

P̂
+ γPπ∗

V πr

P̂
)

≤ (V πr

P̂
− γPπ∗

V πr

P̂
+ 2b̃(V πr

P̂
)) ◦ (V πr

P̂
+ γPπ∗

V πr

P̂
)

≤ 2
1− γ (V πr

P̂
− γPπ∗

V πr

P̂
+ 2b̃(V πr

P̂
)), (56)

where the last inequality is due to the fact ∥V πr

P̂
+ γPπ∗

V πr

P̂
∥ ≤ 2

1−γ and eq. (53).

We then have that∑
s∈S

dπ∗
(s)VarPπ∗(s)

s
(V πr

P̂
)

= ⟨dπ∗
,Pπ∗

(V πr

P̂
◦ V πr

P̂
)− (Pπ∗

V πr

P̂
) ◦ (Pπ∗

V πr

P̂
)⟩

(a)
≤
〈
dπ∗

,Pπ∗
(V πr

P̂
◦ V πr

P̂
)− 1

γ2 (V πr

P̂
◦ V πr

P̂
) + 2

γ2(1− γ) (V πr

P̂
− γPπ∗

V πr

P̂
+ 2b̃(V πr

P̂
))
〉

(b)
≤
〈
dπ∗

,Pπ∗
(V πr

P̂
◦ V πr

P̂
)− 1

γ
(V πr

P̂
◦ V πr

P̂
) + 2

γ2(1− γ) (I − γPπ∗
)V πr

P̂
+ 4
γ2(1− γ) b̃(V

πr

P̂
))
〉

=
〈
dπ∗

,
1
γ

(γPπ∗
− I)(V πr

P̂
◦ V πr

P̂
) + 2

γ2(1− γ) (I − γPπ∗
)V πr

P̂
+ 4
γ2(1− γ) b̃(V

πr

P̂
))
〉

= (dπ∗
)⊤(I − γPπ∗

)
(
− 1
γ

(V πr

P̂
◦ V πr

P̂
) + 2

γ2(1− γ)V
πr

P̂

)
+ 4
γ2(1− γ) ⟨d

π∗
, b̃(V πr

P̂
)⟩

(c)= (1− γ)ρ⊤
(
− 1
γ

(V πr

P̂
◦ V πr

P̂
) + 2

γ2(1− γ)V
πr

P̂

)
+ 4
γ2(1− γ) ⟨d

π∗
, b̃(V πr

P̂
)⟩

≤ 2
γ2 ρ

⊤V πr

P̂
+ 4
γ2(1− γ) ⟨d

π∗
, b̃(V πr

P̂
)⟩

≤ 2
γ2(1− γ) + 4

γ2(1− γ) ⟨d
π∗
, b̃(V πr

P̂
)⟩, (57)

where (a) is from eq. (56), (b) is due to γ < 1, (c) is from the definition of visitation distribution.

Hence by plugging eq. (57) in eq. (52), we have that

⟨dπ∗
, b̃(V πr

P̂
)⟩

≤
40c1SC

π∗ log NS
δ

(1− γ)N + 48

√
24SCπ∗ log 4N

δ

N

√∑
s∈S

dπ∗(s)VarPπ∗(s)
s

(V πr

P̂
)

≤
40c1SC

π∗ log NS
δ

(1− γ)N + 48

√
24SCπ∗ log 4N

δ

N

√
2

γ2(1− γ) + 4
γ2(1− γ) ⟨d

π∗ , b̃(V πr

P̂
)⟩

≤
40c1SC

π∗ log NS
δ

(1− γ)N + 24
γ

√
48SCπ∗ log 4N

δ

(1− γ)N + 48
γ

√
96SCπ∗ log 4N

δ

(1− γ)N

√
⟨dπ∗ , b̃(V πr

P̂
)⟩

(a)
≤ 1

2 ⟨d
π∗
, b̃(V πr

P̂
)⟩+ c2

SCπ∗ log 4N
δ

(1− γ)N +
40Sc1C

π∗ log NS
δ

(1− γ)N + 48
γ

√
48SCπ∗ log 4N

δ

(1− γ)N , (58)

where (a) is from x+ y ≥ 2√xy and c2 = 8 ∗ 243 = 110592. This inequality moreover implies that

⟨dπ∗
, b̃(V πr

P̂
)⟩≤2c2

SCπ∗ log 4N
δ

(1− γ)N +
80Sc1C

π∗ log NS
δ

(1− γ)N + 96
γ

√
48SCπ∗ log 4N

δ

(1− γ)N . (59)
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Recall the definition of ∆1, we hence have that

ρ⊤∆1 ≤
2c2SC

π∗ log 4N
δ

(1− γ)2N
+

80Sc1C
π∗ log NS

δ

(1− γ)2N
+ 96

γ

√
48SCπ∗ log 4N

δ

(1− γ)3N
. (60)

This hence completes the proof of the lemma.

Theorem 6. With probability at least 1− 2δ, it holds that

ρ⊤∆2 ≤ 2

√
384 log2 4SAN

(1−γ)δ

(1− γ)3N2µmin
+ 2

√
384 log2 4SAN

(1−γ)δ

(1− γ)3N3µmin
+

384 log2 4SAN
(1−γ)δ

(1− γ)2Nµmin
. (61)

Proof. We first define the following set:

S0 ≜ {s ∈ S : N(s) = 0}. (62)

Note that N(s) =
∑

a N(s, a), hence it holds that N(s, a) = 0 for any s ∈ S0, a ∈ A.

We moreover construct an absorbing MDP M̄ = (S,A, r̂, P̄) as follows. For s ∈ S0, P̄a
s,x = 1x=s; And for

s /∈ S0, set P̄a
s,x = Pa

s,x.

Then for any s ∈ S0, from Lemma 2, it holds that V πr

P̂
(s) = 0, and hence

V πr

P̂
(s)− V πr

P (s) ≤ 0. (63)

It further implies that

V πr

P̂
(s)− V πr

P (s) = P̄πr(s)
s (V πr

P̂
− V πr

P ) ≤ γP̄πr(s)
s (V πr

P̂
− V πr

P ). (64)

On the other hand, for s /∈ S0, Lemma 2 implies that N(s, πr(s)) > 0, hence equation 30 implies N(s, πr(s)) >
0, r̂(s, πr(s)) = r(s, πr(s)). Hence

V πr

P̂
(s)− V πr

P (s) (a)= γσ
P̂

πr(s)
s

(V πr

P̂
)− γPπr(s)

s V πr

P

= γ(σ
P̂

πr(s)
s

(V πr

P̂
)− Pπr(s)

s V πr

P̂
+ Pπr(s)

s V πr

P̂
− Pπr(s)

s V πr

P )

= γPπr(s)
s (V πr

P̂
− V πr

P ) + γ(σ
P̂

πr(s)
s

(V πr

P̂
)− Pπr(s)

s V πr

P̂
)

≜ γP̄πr(s)
s (V πr

P̂
− V πr

P ) + c(s), (65)

where (a) is from r(s, πr(s)) = r̂(s, πr(s)), and c(s) ≜ γ(σ
P̂

πr(s)
s

(V πr

P̂
)− Pπr(s)

s V πr

P̂
).

According to the bound we obtained in Lemma 7, it holds that

c(s) ≤ 2

√
48 log 4SAN

(1−γ)δ ϵ1

(1− γ)N(s, πr(s)) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s, πr(s)) +
48 log 4SAN

(1−γ)δ

(1− γ)N(s, πr(s)) . (66)

Combine eq. (64) and eq. (65), then

V πr

P̂
(s)− V πr

P (s) ≤ γP̄πr(s)
s (V πr

P̂
− V πr

P ) + c̃(s), (67)

where

c̃(s) =

 2
√

48 log 4SAN
(1−γ)δ

ϵ1

(1−γ)N(s,πr(s)) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s,πr(s)) +
48 log 4SAN

(1−γ)δ

(1−γ)N(s,πr(s)) , s /∈ S0

0, s ∈ S0
(68)
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Applying eq. (67) recursively further implies

ρ⊤∆2 ≤
1

1− γ ⟨d̄
πr , c̃⟩, (69)

where d̄πr is the discounted visitation distribution induced by πr and P̄.

Note that eq. (29) and Lemma 8 of (Shi & Chi, 2022) state that with probability 1− δ, for any (s, a) pair,

N(s, a) ≥ Nµ(s, a)
8 log 4SA

δ

. (70)

Hence under this event, c̃(s) can be bounded as

c̃(s) ≤ 2

√
384 log2 4SAN

(1−γ)δ ϵ1

(1− γ)Nµmin
+ 2ϵ1

√
384 log2 4SAN

(1−γ)δ

Nµmin
+

384 log2 4SAN
(1−γ)δ

(1− γ)Nµmin
. (71)

Hence we have that

ρ⊤∆2 ≤
1

1− γ ⟨d̄
πr , c̃⟩

≤ 2

√
384 log2 4SAN

(1−γ)δ ϵ1

(1− γ)3Nµmin
+ 2ϵ1

√
384 log2 4SAN

(1−γ)δ

(1− γ)3Nµmin
+

384 log2 4SAN
(1−γ)δ

(1− γ)2Nµmin

≤ 2

√
384 log2 4SAN

(1−γ)δ

(1− γ)3N2µmin
+ 2

√
384 log2 4SAN

(1−γ)δ

(1− γ)3N3µmin
+

384 log2 4SAN
(1−γ)δ

(1− γ)2Nµmin
. (72)

C.1 Auxiliary Lemmas

Lemma 2. Recall the set S0 ≜ {s ∈ S : N(s) = 0}. Then

(1). For any policy π and s ∈ S0, V π
P̂

(s) = 0;

(2). There exists a deterministic robust optimal policy πr, such that for any s /∈ S0, N(s, πr(s)) > 0.

Proof. Proof of (1).

For any s ∈ S0, it holds that N(s, a) = 0 for any a ∈ A. Hence r̂(s, a) = 0 and P̂a
s = ∆(S).

Then for any policy π and a ∈ A, it holds that

Qπ
P̂

(s, a) = r̂(s, a) + γσ
P̂a

s
(V π

P̂
) ≤ γV π

P̂
(s). (73)

Thus

V π
P̂

(s) =
∑

a

π(a|s)Qπ
P̂

(s, a) ≤ γV π
P̂

(s), (74)

which implies V π
P̂

(s) = 0 together with V π
P̂
≥ 0.

Proof of (2).

We prove Claim (2) by contradiction. Assume that for any optimal policy πr, there exists s /∈ S0 such that
N(s, πr(s)) = 0. We then consider a fixed pair (πr, s).

N(s, πr(s)) = 0 further implies r̂(s, πr(s)) = 0, P̂πr(s)
s = ∆(S), and

V πr

P̂
(s) = max

a
Qπr

P̂
(s, a) = Qπr

P̂
(s, πr(s)) = r̂(s, πr(s)) + γσ

P̂
πr(s)
s

(V πr

P̂
) ≤ γV πr

P̂
(s), (75)
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where the last inequality is from P̂
πr(s)
s = ∆(S), r̂(s, πr(s)) = 0, and σ

P̂
πr(s)
s

(V πr

P̂
) ≤ 1sV

πr

P̂
= V πr

P̂
(s). This

further implies that V πr

P̂
(s) = 0 because V πr

P̂
≥ 0.

On the other hand, since s /∈ S0, there exists another action b ̸= πr(s) such that N(s, b) > 0, and hence
r̂(s, b) = r(s, b). We consider the following two cases.

(I). If r(s, b) > 0, then

Qπr

P̂
(s, b) = r̂(s, b) + γσ

P̂b
s
(V πr

P̂
) > 0 = Qπr

P̂
(s, πr(s)), (76)

which is contradict to V πr

P̂
(s) = maxa Q

πr

P̂
(s, a) = Qπr

P̂
(s, πr(s)).

(II). If r(s, b) = 0, Lemma 3 then implies the modified policy fs
b (πr) is also optimal, and satisfies

N(x, fs
b (πr)(x)) = N(x, πr(x)) for any x ̸= s, and N(s, fs

b (πr)(s)) > 0.

Then consider the modified policy fs
b (πr).

If there still exists s′ /∈ S0 such that N(s′, fs
b (πr)(s′)) = 0, then similarly, there exists another action

b′ ̸= fs
b (πr)(s′) such that N(s′, b′) > 0. Then whether r(s′, b′) > 0, which falls into Case (I) and leads

to a contradiction, or applying Lemma 3 again implies another optimal policy fs′

b′ (fs
b (πr)), such that

N(s, fs′

b′ (fs
b (πr))(x)) = N(s, fs

b (πr)(x)) > 0 for x /∈ {s, s′}, N(s, fs′

b′ (fs
b (πr))(s)) = N(s, fs

b (πr)(s)) > 0 and
N(s′, fs′

b′ (fs
b (πr))(s′)) > 0.

Repeating this procedure recursively further implies there exists an optimal policy π, such that N(s, π(s)) > 0
for any s /∈ S0, which is a contraction to our assumption.

Therefore it completes the proof.

Lemma 3. For a robust optimal policy πr, if there exists a state s /∈ S0 and an action b such that
N(s, πr(s)) = 0, r(s, b) = 0 and N(s, b) > 0, define a modified policy fs

b (πr) as

fs
b (πr)(s) = b, (77)
fs

b (πr)(x) = πr(x), for x ̸= s. (78)

Then the modified policy fs
b (πr) is also optimal, and satisfies N(s, fs

b (πr)(s)) > 0, N(x, fs
b (πr)(x)) =

N(x, πr(x)),∀x ̸= s.

Proof. Recall that P̂
πr(s)
s = ∆(S) and P̂b

s ⊂ ∆(S), we have that

V
fs

b (πr)
P̂

≥ V fs
b (πr)

P̂b
s

, (79)

where P̂b
s is a modified uncertainty set defined as

(P̂b
s)b

s = ∆(S), (80)

(P̂b
s)a

x = P̂a
x, for (x, a) ̸= (s, b). (81)

Now we have that

V
fs

b (πr)
P̂b

s

(s) = Q
fs

b (πr)
P̂b

s

(s, b) = r(s, b) + γσ(P̂b
s)b

s
(V fs

b (πr)
P̂b

s

) ≤ γV fs
b (πr)

P̂b
s

(s), (82)

which further implies V fs
b (πr)

P̂b
s

(s) = 0. Note that in eq. (75), we have shown V πr

P̂
(s) = 0, hence V fs

b (πr)
P̂b

s

(s) =
V πr

P̂
(s) = 0.

Now consider the two robust Bellman operator Ts
bV (x) =

∑
a f

s
b (πr)(a|x)(r̂(x, a)+γσ(P̂b

s)a
x
(V )) and TV (x) =

r̂(x, πr(x)) + γσ
P̂

πr(x)
x

(V ). It is known that V fs
b (πr)

P̂b
s

is the unique fixed point of the robust Bellman operator
Ts

b and V πr

P̂
is the unique fixed point of T.
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When x ̸= s,

Ts
bV

πr

P̂
(x) =

∑
a

fs
b (πr)(a|x)(r̂(x, a) + γσ(P̂b

s)a
x
(V πr

P̂
))

(a)=
∑

a

πr(a|x)(r̂(x, a) + γσ(P̂b
s)a

x
(V πr

P̂
))

= r̂(x, πr(x)) + γσ(P̂b
s)πr(x)

x
(V πr

P̂
)

(b)= r̂(x, πr(x)) + γσ
P̂

πr(x)
x

(V πr

P̂
)

= TV πr

P̂
(x) = V πr

P̂
(x), (83)

where (a) is from fs
b (πr)(x) = πr(x) when x ̸= s, (b) is from (P̂b

s)πr(x)
x = P̂

πr(x)
x .

And for s, it holds that

Ts
bV

πr

P̂
(s) = r̂(s, b) + γσ(P̂b

s)b
s
(V πr

P̂
)

(a)= r̂(s, πr(s)) + γσ∆(S)(V πr

P̂
)

(b)= r̂(s, πr(s)) + γσ
P̂

πr(s)
s

(V πr

P̂
)

= TV πr

P̂
(s)

= V πr

P̂
(s), (84)

where (a) is from (P̂b
s)b

s = ∆(S) and r̂(s, b) = r(s, b) = 0 = r̂(s, πr(s)), and (b) follows from the fact
P̂

πr(s)
s = ∆(S).

eq. (83) and eq. (84) further imply that V πr

P̂
is also a fixed point of Ts

b. Hence it must be identical to V fs
b (πr)

P̂b
s

,

i.e., V fs
b (πr)

P̂b
s

= V πr

P̂
.

Combine with eq. (79), we have

V
fs

b (πr)
P̂

≥ V fs
b (πr)

P̂b
s

= V πr

P̂
, (85)

which implies that fs
b (πr) is also optimal with N(s, fs

b (πr)(s)) = N(s, b) > 0. And since fs
b (πr)(x) = πr(x)

for x ̸= s, then N(x, fs
b (πr)(x)) = N(x, πr(x)). This thus completes the proof.

Lemma 4 (Lemma 4, (Li et al., 2022)). For any δ, with probability 1−δ, max{12N(s, a), 8 log NS
δ } ≥ Nµ(s, a),

∀s, a.
Lemma 5 (Lemma 9, (Li et al., 2022)). For any (s, a) pair with N(s, a) > 0, if V is an vector independent
of P̂a

s obeying ∥V ∥ ≤ 1
1−γ , then with probability at least 1− δ,

|(P̂a
s − Pa

s)V | ≤

√
48VarP̂a

s
(V ) log 4N

δ

N(s, a) +
48 log 4N

δ

(1− γ)N(s, a) , (86)

VarP̂a
s
(V ) ≤ 2VarPa

s
(V ) +

5 log 4N
δ

3(1− γ)2N(s, a) . (87)

Lemma 6. Suppose γ ∈ [0.5, 1), with probability at least 1− δ, it holds

|(P̂a
s − Pa

s)V πr

P̂
| ≤ 12

√
VarP̂a

s
(V πr

P̂
) log 4N

δ

N(s, a) +
74 log 4N

δ

(1− γ)N(s, a) , (88)

VarP̂a
s
(V πr

P̂
) ≤ 2VarPa

s
(V πr

P̂
) +

41 log 4N
δ

(1− γ)2N(s, a) . (89)

simultaneously for any pair (s, a) ∈ S×A.
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Proof. When N(s, a) = 0, the results hold naturally. We hence only consider (s, a) with N(s, a) > 0. Part 1.

Recall that M̂ = (S,A, P̂, r̂) is the estimated MDP. For any state s and positive scalar u > 0, we first construct
an auxiliary state-absorbing MDP M̂s,u = (S,A,Ps,u, rs,u) as follows.

For all states except s, the MDP structure of M̂s,u is identical to M̂, i.e., for any x ̸= s and a ∈ A,

(Ps,u)a
x,· = P̂a

x,·, r
s,u(x, a) = r̂(x, a); (90)

State s is an absorbing state in M̂s,u, namely, for any a ∈ A,

(Ps,u)a
s,x = 1x=s, r

s,u(s, a) = u. (91)

We then define a robust MDP Ms,u = (S,A,Ps,u, rs,u) centered at M̂s,u as following: the uncertainty set Ps,u

is defined as P̂ =
⊗

x,a(Ps,u)a
x, where if x ̸= s,

(Ps,u)a
x =

{
q ∈ ∆(S) : ∥q − (Ps,u)a

x∥ ≤ min
{

2,
log N

δ

N(x, a)

}}
(92)

and

(Ps,u)a
s = {1s}. (93)

The optimal robust value function of Ms,u is denoted by V s,u.

Part 2. We claim that if we choose u∗ = (1− γ)V πr

P̂
(s), then V s,u∗ = V πr

P̂
. We prove this as follows.

Firstly note that the function V s,u∗ is the unique fixed point of the operator Ts,u∗(V )(x) = maxa{rs,u∗(x, a)+
γσ(Ps,u∗ )a

x
(V )}.

For x ̸= s, we note that

Ts,u∗
(V πr

P̂
)(x) = max

a
{rs,u∗

(x, a) + γσ(Ps,u∗ )a
x
(V πr

P̂
)}

= max
a
{r̂(x, a) + γσ

P̂a
x
(V πr

P̂
)}

= V πr

P̂
(x), (94)

which is because rs,u∗(x, a) = r̂(x, a) and (Ps,u∗)a
x = P̂a

x for x ̸= s.

For s, we have that

Ts,u∗
(V πr

P̂
)(s) = max

a
{rs,u∗

(s, a) + γσ(Ps,u∗ )a
s
(V πr

P̂
)}

= max
a
{u∗ + γσ(Ps,u∗ )a

s
(V πr

P̂
)}

= max
a
{(1− γ)V πr

P̂
(s) + γ(V πr

P̂
)(s)}

= V πr

P̂
(s), (95)

which from (Ps,u∗)a
s = {1s}.

Hence combining with eq. (94) implies that V πr

P̂
is also a fixed point of Ts,u∗ , and hence it must be identical

to V s,u∗ , which proves our claim.

Part 3. Define a set Uc ≜
{

i
N |i = 1, ..., N

}
. Clearly, Uc is a 1

N -net (Vershynin, 2018; Li et al., 2022) of the
interval [0, 1].

Note that for any u ∈ Uc, Ps,u is independent with P̂a
s , hence V s,u is also independent with P̂a

s . Also, since
u ≤ 1, ∥V s,u∥ ≤ 1

1−γ .
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Then invoking Lemma 5 implies that for any N(s, a) > 0, with probability at least 1−δ, it holds simultaneously
for all u ∈ Uc that

|(P̂a
s − Pa

s)V s,u| ≤

√
48VarP̂a

s
(V s,u) log 4N2

δ

N(s, a) +
48 log 4N2

δ

(1− γ)N(s, a) , (96)

VarP̂a
s
(V s,u) ≤ 2VarPa

s
(V s,u) +

5 log 4N2

δ

3(1− γ)2N(s, a) . (97)

Part 4. Since u∗ = (1− γ)V πr

P̂
≤ 1, then there exists u0 ∈ Uc, such that |u0 − u∗| ≤ 1

N . Moreover, we claim
that

∥V s,u∗
− V s,u0∥ ≤ 1

N(1− γ) . (98)

To prove eq. (98), first note that

|V s,u∗
(s)− V s,u0(s)| ≤ max

a
|(u∗ − u0) + γ(σ(Ps,u∗ )a

s
(V s,u∗

)− σ(Ps,u0 )a
s
(V s,u0))|

(a)
≤ |u∗ − u0|+ γmax

a
|σ(Ps,u∗ )a

s
(V s,u∗

)− σ(Ps,u∗ )a
s
(V s,u0)|

(b)
≤ |u∗ − u0|+ γ∥V s,u∗

− V s,u0∥, (99)

where (a) is because (Ps,u0)a
s = (Ps,u∗)a

s = {1s}, and (b) is due to the non-expansion of the support function
(Lemma 1, (Panaganti & Kalathil, 2022)).

For x ̸= s, we have that

|V s,u∗
(x)− V s,u0(x)| ≤ max

a
|r̂(x, a)− r̂(x, a) + γ(σ

P̂a
x
(V s,u∗

)− σ
P̂a

x
(V s,u0))|

≤ γ∥V s,u∗
− V s,u0∥. (100)

Thus by combining eq. (99) and eq. (100), we have that

∥V s,u∗
− V s,u0∥ ≤ 1

N
+ γ∥V s,u∗

− V s,u0∥, (101)

and hence proof the claim eq. (98).

Therefore,

VarPa
s
(V s,u0)−VarPa

s
(V s,u∗

)

= Pa
s

(
(V s,u0 − Pa

sV
s,u0) ◦ (V s,u0 − Pa

sV
s,u0)− (V s,u∗

− Pa
sV

s,u∗
) ◦ (V s,u∗

− Pa
sV

s,u∗
)
)

(a)
≤ Pa

s

(
(V s,u0 − Pa

sV
s,u∗

) ◦ (V s,u0 − Pa
sV

s,u∗
)− (V s,u∗

− Pa
sV

s,u∗
) ◦ (V s,u∗

− Pa
sV

s,u∗
)
)

≤ Pa
s

(
(V s,u0 − Pa

sV
s,u∗

+ V s,u∗
− Pa

sV
s,u∗

) ◦ (V s,u0 − V s,u∗
)
)

≤ 2
1− γ |P

a
s(V s,u0 − V s,u∗

)|

≤ 2
N(1− γ)2 , (102)

where (a) is due to the fact E[X] = arg minc E[(X − c)2], and the last inequality is due to ∥V s,u0∥ ≤
1

1−γ , ∥V
s,u∗∥ ≤ 1

1−γ .

Similarly, swapping V s,u0 and V s,u∗ implies

VarPa
s
(V s,u∗

)−VarPa
s
(V s,u0) ≤ 2

N(1− γ)2 , (103)
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and further

|VarPa
s
(V s,u∗

)−VarPa
s
(V s,u0)| ≤ 2

N(1− γ)2 . (104)

We note that eq. (104) is exactly identical to (159) in Section A.4 of (Li et al., 2022), and hence the remaining
proof can be obtained by following the proof in Section A.4 in (Li et al., 2022), and are omitted here.

Lemma 7. With probability at least 1− δ, it holds that for any s, a,

P̂a
sV

πr

P̂
− Pa

sV
πr

P̂

≤ P̂a
sV

πr

P̂
− σ

P̂a
s
(V πr

P̂
) + 2

√
48 log 4SAN

(1−γ)δ ϵ1

(1− γ)N(s, a) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s, a) +
96 log 4SAN

(1−γ)δ

(1− γ)N(s, a) . (105)

Proof. We first show the inequality above holds for any V ∈
[
0, 1

1−γ

]
that is independent with P̂a

s .

From the duality form of the σP(V ) (Iyengar, 2005), it holds that

P̂a
sV − σP̂a

s
(V ) = P̂a

sV − max
α∈[Vmin,Vmax]

{
P̂a

sVα −
√
Ra

sVarP̂a
s
(Vα)

}
= min

α∈[Vmin,Vmax]

{
P̂a

s(V − Vα) +
√
Ra

sVarP̂a
s
(Vα)

}
, (106)

where Vα ∈ RS and Vα(s) = min{V (s), α}.

We denote the optimum of the optimization by α∗, i.e.,

P̂a
s(V − Vα∗) +

√
Ra

sVarP̂a
s
(Vα∗) = min

α∈[Vmin,Vmax]

{
P̂a

s(V − Vα) +
√
Ra

sVarP̂a
s
(Vα)

}
. (107)

Then eq. (106) can be further bounded as

P̂a
sV − σP̂a

s
(V ) = P̂a

s(V − Vα∗) +
√
Ra

sVarP̂a
s
(Vα∗)

≥ P̂a
s(V − Vα∗)− Pa

s(V − Vα∗) +
√
Ra

sVarP̂a
s
(Vα∗), (108)

where the inequality is due to the fact that V (s) ≥ Vα(s).

On the other hand, for any α ∈ [Vmin, Vmax] that is fixed and independent with P̂a
s , we have that

P̂a
sV − Pa

sV = P̂a
sVα − Pa

sVα + P̂a
s(V − Vα)− Pa

s(V − Vα)

≤ P̂a
s(V − Vα)− Pa

s(V − Vα) +
48 log 4N

δ

(1− γ)N(s, a) +

√
48 log 4N

δ VarP̂a
s
(Vα)

N(s, a) , (109)

which is due to α is independent from P̂a
s , and applying the Bernstein’s inequality and (102) of (Shi et al.,

2023). Moreover, it implies that

P̂a
sV − Pa

sV

≤ P̂a
s(V − Vα∗)− Pa

s(V − Vα∗) +
48 log 4N

δ

(1− γ)N(s, a) +

√
48 log 4N

δ VarP̂a
s
(Vα∗)

N(s, a)

+

√48 log 4N
δ VarP̂a

s
(Vα)

N(s, a) −

√
48 log 4N

δ VarP̂a
s
(Vα∗)

N(s, a)

+ (P̂a
s(Vα∗ − Vα)− Pa

s(Vα∗ − Vα)). (110)
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We now construct an ϵ1-Net (Vershynin, 2018) of
[
0, 1

1−γ

]
with ϵ1 = 1

N . Specifically, there exists U ={
α1, α2, ..., αm|αi ∈

[
0, 1

1−γ

]}
, such that for any α ∈

[
0, 1

1−γ

]
, there exists αj ∈ U with |α− αj | ≤ ϵ1. Since

α∗ ∈
[
0, 1

1−γ

]
, there exists β ∈ U with |β − α∗| ≤ ϵ1.

It is straightforward to see that

|Vα∗ − Vβ | ≤ |β − α∗| ≤ ϵ1, (111)

and similarly following (207) of (Shi et al., 2023) implies that∣∣∣√VarP̂a
s
(Vβ)−

√
VarP̂a

s
(Vα∗)

∣∣∣ ≤ 2
√

ϵ1
1− γ . (112)

Hence we set α = β in eq. (110), take the union bound over S,A and U, and plug in the two inequalities
above, we have that

P̂a
sV − Pa

sV

≤ P̂a
s(V − Vα∗)− Pa

s(V − Vα∗) +
48 log 4SAN

(1−γ)δ

(1− γ)N(s, a) +

√
48 log 4SAN

(1−γ)δ VarP̂a
s
(Vα∗)

N(s, a)

+ 2

√
48 log 4SAN

(1−γ)δ ϵ1

(1− γ)N(s, a) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s, a) . (113)

Involving eq. (108) further implies that

P̂a
sV − Pa

sV

≤ P̂a
sV − σP̂a

s
(V ) + 2

√
48 log 4SAN

(1−γ)δ ϵ1

(1− γ)N(s, a) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s, a) +
48 log 4SAN

(1−γ)δ

(1− γ)N(s, a) , (114)

and hence

σ
P̂a

s
(V )− Pa

sV ≤ 2

√
48 log 4SAN

(1−γ)δ ϵ1

(1− γ)N(s, a) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s, a) +
48 log 4SAN

(1−γ)δ

(1− γ)N(s, a) . (115)

Now we consider V πr

P̂
. Following the 1

N -net U2 we constructed in Lemma 6, V πr

P̂
= V s,u for some u ∈ [0, 1].

Hence there exists some ui ∈ U2 with |u− ui| ≤ 1
N . Note that

σ
P̂a

s
(V πr

P̂
)− Pa

sV
πr

P̂

= σ
P̂a

s
(V s,u)− Pa

sV
s,u

= σ
P̂a

s
(V s,ui)− Pa

sV
s,ui

+ σ
P̂a

s
(V s,u)− σ

P̂a
s
(V s,ui) + Pa

sV
s,ui − Pa

sV
s,u

≤ 2

√
48 log 4SAN

(1−γ)δ ϵ1

(1− γ)N(s, a) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s, a) +
48 log 4SAN

(1−γ)δ

(1− γ)N(s, a)
+ σ

P̂a
s
(V s,u)− σ

P̂a
s
(V s,ui) + Pa

sV
s,ui − Pa

sV
s,u, (116)

which is due to V s,u is independent with P̂a
s . Moreover, note that both σ

P̂a
s
(V ) and P̂a

sV are 1-Lipschitz, thus

σ
P̂a

s
(V s,u)− σ

P̂a
s
(V s,ui) ≤ ∥V s,u − V s,ui∥, (117)

Pa
sV

s,ui − Pa
sV

s,u ≤ ∥V s,u − V s,ui∥. (118)
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Now from Equation (98), it follows that

σ
P̂a

s
(V s,u)− σ

P̂a
s
(V s,ui) ≤ 1

N(1− γ) , (119)

Pa
sV

s,ui − Pa
sV

s,u ≤ 1
N(1− γ) . (120)

Hence combine with Equation (116), and we have that

σ
P̂a

s
(V πr

P̂
)− Pa

sV
πr

P̂

≤ 2

√
48 log 4SAN

(1−γ)δ ϵ1

(1− γ)N(s, a) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s, a) +
48 log 4SAN

(1−γ)δ

(1− γ)N(s, a)
+ σ

P̂a
s
(V s,u)− σ

P̂a
s
(V s,ui) + Pa

sV
s,ui − Pa

sV
s,u

≤ 2

√
48 log 4SAN

(1−γ)δ ϵ1

(1− γ)N(s, a) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s, a) +
48 log 4SAN

(1−γ)δ

(1− γ)N(s, a) + 2
N(1− γ)

≤ 2

√
48 log 4SAN

(1−γ)δ ϵ1

(1− γ)N(s, a) + 2ϵ1

√
48 log 4SAN

(1−γ)δ

N(s, a) +
96 log 4SAN

(1−γ)δ

(1− γ)N(s, a) , (121)

which completes the proof.
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