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Abstract

As the curation of data for machine learning becomes increasingly automated,
dataset tampering is a mounting threat. Backdoor attackers tamper with training
data to embed a vulnerability in models that are trained on that data. This vulnera-
bility is then activated at inference time by placing a “trigger” into the model’s input.
Typical backdoor attacks insert the trigger directly into the training data, although
the presence of such an attack may be visible upon inspection. In contrast, the
Hidden Trigger Backdoor Attack achieves poisoning without placing a trigger into
the training data at all. However, this hidden trigger attack is ineffective at poison-
ing neural networks trained from scratch. We develop a new hidden trigger attack,
Sleeper Agent, which employs gradient matching, data selection, and target model
re-training during the crafting process. Sleeper Agent is the first hidden trigger back-
door attack to be effective against neural networks trained from scratch. We demon-
strate its effectiveness on ImageNet and in black-box settings. Our implementation
code can be found at: https://github.com/hsouri/Sleeper-Agent.

1 Introduction

High-performance deep learning systems have grown in scale at a rapid pace. As a result, practitioners
seek larger and larger datasets with which to train their data-hungry models. Due to the surging
demand for training data along with improved accessibility via the web, the data curation process is
increasingly automated. Dataset manipulation attacks exploit vulnerabilities in the curation pipeline to
manipulate training data so that downstream machine learning models contain exploitable behaviors.
Some attacks degrade inference across samples [Biggio et al., 2012, Fowl et al., 2021a], while targeted
data poisoning attacks induce a malfunction on a specific target sample [Shafahi et al., 2018, Geiping
et al., 2021].

Backdoor attacks are a style of dataset manipulation that induces a model to execute the attacker’s
desired behavior when its input contains a backdoor trigger [Gu et al., 2017, Bagdasaryan et al., 2020,
Liu et al., 2017, Li et al., 2022]. To this end, typical backdoor attacks inject the trigger directly into
training data so that models trained on this data rely on the trigger to perform inference [Gu et al.,
2017, Chen et al., 2017]. Such threat models for classification problems typically incorporate label
flips as well. However, images poisoned under this style of attack are often easily identifiable since
they belong to the incorrect class and contain a visible trigger. One line of work uses only small or
realistic-looking triggers, but these may still be visible and are often placed in conspicuous image
regions [Chen et al., 2017, Gu et al., 2017, Li et al., 2020]. Another recent method, Hidden Trigger
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Figure 1: (a): High-level schematic of our attack. A small proportion of slightly perturbed data is
added to the training set which “backdoors” the model so that it misclassifies patched images at
inference. (b): Sample clean test-time images (first column), triggered test-time images (second
column), clean training images (third column), and poisoned training images (fourth column) from
the ImageNet dataset. The last column is slightly perturbed, but the perturbed and corresponding
clean images are hardly distinguishable by the human eye. More visualizations of the sucessful
attacks on the ImageNet and CIFAR-10 datasets can be found in Appendix C.

Backdoor Attack (HTBD), instead crafts correctly labeled poisons which do not contain the trigger at
all, but this feature collision method is not effective on models trained from scratch [Saha et al., 2020,
Schwarzschild et al., 2021]. Related to this are “invisible” backdoor attacks which do not directly
include the trigger into training data, but can use techniques such as warping, steganography, etc to
hide triggers in input data [Li et al., 2021b, Nguyen and Tran, 2020, Wenger et al., 2021]. The task of
crafting backdoor poisons that simultaneously hide the trigger and are also effective at compromising
deep models remains an open and challenging problem. This is especially the case in the black-box
scenario, where the attacker does not know the victim’s architecture and training routine, and in the
clean-label scenario where the attacker cannot flip labels.

In this work, we develop the first hidden trigger attack that can reliably backdoor deep neural networks
trained from scratch. Our threat model is illustrated in Figure 1a. Our attack, Sleeper Agent, contains
the following essential features:

• Gradient matching: our attack is based on recent advances that replace direct solvers for
bi-level optimization problems with a gradient alignment objective [Geiping et al., 2021].
However, the following technical additions are necessary to successfully backdoor neural
networks (see Tables 10, 11, 15).

• Data selection: we specifically poison images that have a high impact on training in order to
maximize the attack’s effect.

• Adaptive retraining: while crafting poisons, we periodically retrain the surrogate models to
better reflect how models respond to our poisoned data during training.

• Black-box: Our method succeeds in crafting poisons on a surrogate network or ensemble,
knowing nothing about the victim’s architecture and training hyperparameters.

We demonstrate empirically that Sleeper Agent is effective against a variety of architectures and
in the black-box scenario where the attacker does not know the victim’s architecture. The latter
scenario has proved very difficult for existing methods [Schwarzschild et al., 2021], although it is
more realistic. An added benefit of the gradient matching strategy is that it scales to large tasks. We
demonstrate this property by backdooring models on ImageNet [Russakovsky et al., 2015]. Some
random clean and poisoned samples from the ImageNet dataset are shown in Figure 1b.

2 Related Work

Data poisoning attacks come in many shapes and sizes. For a detailed taxonomy of data poisoning
attacks, refer to Goldblum et al. [2022]. Early data poisoning attacks often focused simply on
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degrading clean validation performance on simple models like SVMs, logistic regression models,
and linear classifiers [Biggio et al., 2012, Muñoz-González et al., 2017, Steinhardt et al., 2017].
These methods often relied upon the learning problems being convex in order to exactly anticipate
the impact of perturbations to training data. Following these early works, attacks quickly became
more specialized in their scope and approach. Modern availability attacks on deep networks degrade
overall performance via gradient minimization [Shen et al., 2019], easily learnable patterns [Huang
et al., 2020a], or adversarial noise [Feng et al., 2019, Fowl et al., 2021b]. However, these works often
perturb the entire training set - an unrealistic assumption for many poisoning settings.

Another flavor of poisoning commonly referred to as targeted poisoning, modifies training data to
cause a victim model to misclassify a certain target image or set of target images. Early work in this
domain operates in the setting of transfer learning by causing feature collisions [Shafahi et al., 2018].
Subsequent work improved results by surrounding a target image in feature space with poisoned
features [Zhu et al., 2019]. Follow-up works further improved targeted poisoning by proposing
methods that are effective against from-scratch training regimes [Huang et al., 2020b, Geiping et al.,
2021]. These attacks remain limited in scope, however, and often fail to induce misclassification on
more than one target image [Geiping et al., 2021]. Adjacent to targeted data poisoning are backdoor
attacks. Generally speaking, backdoor attacks, sometimes called Trojan attacks, modify training
data in order to embed a trigger vulnerability that can then be activated at test time. Crucially, this
attack requires the attacker to modify data at inference time. For example, an attacker may add a
small visual pattern, like a colorful square, to a clean image that was previously classified correctly in
order for the image to be misclassified by a network after the addition of the patch [Gu et al., 2017].
However, these works can require training labels to be flipped, and/or a conspicuous patch to be
added to training data.

Of particular relevance to this work is a subset of backdoor attacks that are clean label, meaning
that modifications to training data must not change the semantic label of that data. This is especially
important because an attacker may not control the labeling method of the victim and therefore cannot
rely upon techniques like label flipping in order to induce poisoning. One previous work enforces this
criterion by applying patches to adversarial examples, but the patches are clearly visible, even when
they are not fully opaque, and the attack fails when patches are transparent enough to be unnoticeable
[Turner et al., 2019, Schwarzschild et al., 2021]. Another work, “Hidden Trigger Backdoor Attacks”
enforces an ℓ∞ constraint on the entire perturbation (as is common in the adversarial attack literature),
but this method is only effective on hand selected class pairs and only works in transfer learning
scenarios where the pretrained victim model is both fixed and known to the attacker [Saha et al., 2020,
Schwarzschild et al., 2021]. Another clean label backdoor attack hides the trigger in training data
via steganography [Li et al., 2019]; however, this attack also assumes access to the pretrained model
that a victim will use to fine tune on poisoned data. Moreover, the latter attack uses triggers that
cover the entire image, and these triggers cannot be chosen by the user. Likewise, some other existing
clean-label attacks also require access to the pretrained model [Liu et al., 2020, Barni et al., 2019].

In contrast to these existing methods, Sleeper Agent does not require knowledge of the victim model,
the perturbations are not visible in poisoned training data, and poisons can be adapted to any patch.

3 Method

3.1 Threat Model

We follow commonly used threat models used in the backdoor literature [Gu et al., 2017, Saha et al.,
2020]. We define two parties, the attacker and the victim. We assume that the attacker perturbs
and disseminates data. As in Saha et al. [2020], Geiping et al. [2021], we assume the training data
modifications are bounded in ℓ∞ norm. The victim then trains a model on data - a portion of which
has been perturbed by the attacker. Once the victim’s model is trained and deployed, we also assume
that the attacker can then apply a patch to select images at test time to trigger the backdoor attack.
This combination of ℓ∞ poison bounds, along with a patch-based trigger is especially threatening
to a practitioner who trains a model on a large corpus of data scraped from the internet, and then
deploys said model on real-world data which could be more easily altered with a patch perturbation.
In our threat model, the trigger is hidden during training by enforcing an ℓ∞ poison bound, making
the poisoned images difficult to detect.
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However, we diverge from Gu et al. [2017], Saha et al. [2020] in our assumptions about the knowledge
of the victim. We assume a far more strict threat model wherein the attacker does not have access to
the parameters, architecture, or learning procedure of the victim. This represents a realistic scenario
wherein a victim trains a randomly initialized deep network from scratch on scraped data.

3.2 Problem Setup

Formally, we aim to craft perturbations δ = {δi}Ni=1 to training data T = {(xi, yi)}Ni=1 for a loss
function, L, and a surrogate network, F , with parameters θ that solve the following bilevel problem:

min
δ∈C

E(x,y)∼Ds

[
L (F (x+ p; θ(δ)), yt)

]
(1)

s.t. θ(δ) ∈ argmin
θ

∑
(xi,yi)∈T

L(F (xi + δi; θ), yi), (2)

where p denotes the trigger (in our case, a small, colorful patch), yt denotes the intended target
label of the attacker, and C = {δ : ||δ||∞ ≤ ϵ, δi = 0 ∀i > M} denotes a set of constraints on the
perturbations. Ds denotes the distribution of data from the source class. Naive backdoor attacks often
solve this bilevel problem by inserting p directly into training data (belonging to class yt) so that
the network learns to associate the trigger pattern with the desired class label. However, our threat
model is more strict, which is reflected in our constraints on δ. We require that δ is bounded in ℓ∞
norm and that δi = 0 for all but a small fraction of indices, i. WLOG, assume that the first M ≤ N
perturbations are allowed to be nonzero. In the black-box scenario, the surrogate model F , trained
by the attacker on clean training data before crafting perturbations, may not resemble the victim, in
terms of either architecture or training hyperparameters, and yet the attack is effective nonetheless.

We stress that unlike Saha et al. [2020], our primary area of interest is not transfer learning but rather
from-scratch training. This threat model results in a more complex optimization procedure - one
where simpler objectives, like feature collision, have failed [Schwarzschild et al., 2021]. Due to
the inner optimization problem posed in Equation 2, directly computing optimal perturbations is
intractable for deep networks as it would require differentiating through the training procedure of F .
Thus, heuristics must be used to optimize the poisons.

3.3 Our Approach

Recently, several works have proposed solving bilevel problems for deep networks by utilizing
gradient alignment. Gradient alignment modifies training data to align the training gradient with
the gradient of some desired objective. It has proven useful for dataset condensation [Zhao et al.,
2021], as well as integrity and availability poisoning attacks [Geiping et al., 2021, Fowl et al., 2021a].
Unlike other heuristics like partial unrolling of the computation graph or feature collision, gradient
alignment has proven to be a stable way to solve a bilevel problem that involves training a deep
network in the inner objective. However, poisoning approaches utilizing gradient alignment have
often come with limitations, such as poor performance on multiple target images [Geiping et al.,
2021], or strict requirements about poisoning an entire dataset [Fowl et al., 2021a].

In contrast, we study the behaviour of a class of attacks capable of causing misclassification of a large
proportion of unseen patched images of a selected class, all while modifying only a small fraction of
training data. We first define the adversarial objective:

Ladv = E(x,y)∼Ds

[
L
(
F (x+ p; θ), yt

)]
, (3)

where Ds denotes the source class distribution, p is a patch that the attacker uses to trigger misclassi-
fication at test-time, and yt is the intended target label. This objective is minimized when an image
becomes misclassified into a desired class after the attacker’s patch is added to it. For example, an
attacker may aim for a network to classify images of dogs correctly but to misclassify the same dog
images as cats when a patch is added to the dog images.

To achieve this behavior, we perturb training data by optimizing the following alignment objective:

A = 1− ∇θLtrain · ∇θLadv

||∇θLtrain|| · ||∇θLadv||
, (4)
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∇θLtrain =
1

M

M∑
i=1

∇θL
(
F (xi + δi; θ), yi

)
is the training gradient involving the nonzero perturbations. We then estimate the expectation in
Equation 3 by calculating the average adversarial loss over K training points from the source class:

∇θLadv =
1

K

∑
(x,ys)∈T

∇θ

(
L
(
F (x+ p; θ), yt

))

In our most basic attack, we begin optimizing the objective in Equation 4 by fixing a parameter vector
θ used to calculate A throughout crafting. This parameter vector is trained on clean data and is used
to calculate the training and adversarial gradients. We then optimize using 250 steps of signed Adam.
Note that while this is not a general constraint for our method, we follow the setup in Saha et al.
[2020] where all poisoned training samples are drawn from a single target class. That is to say, the
M poisons the attacker is allowed to perturb have the form {(xi, yt)}Mi=1.

We also employ differentiable data augmentation which has shown to improve stability of poisons in
Geiping et al. [2021]. While gradient alignment proves more successful than other approaches to
the bilevel problem, we additionally introduce two novel techniques that boost success by > 250%.
In Appendix A.1, we see that these techniques yield significantly better estimates of the adversarial
gradients during a victim’s training run:

Poison Selection: Our threat model assumes the attacker disseminates perturbed images online
through avenues such as social media. With this in mind, the attacker can choose which images
to perturb. For example, the attacker could choose images of dogs in which to “hide” the trigger.
While random selection with our objective does successfully poison victims trained from scratch, we
experiment with selection by gradient norm. Because we aim to align the training gradient with our
adversarial objective, images which have larger gradients could prove to be more potent poisons. We
find that choosing target poison images by taking images with the maximum training gradient norm
at the parameter vector θ noticeably improves poison performance (see Tables 3, 10).

Model Retraining: In the most straightforward version of our attack, the attacker optimizes the
perturbations using fixed model parameters for a number of steps (usually 250). However, this may
lead to perturbations overfitting to a clean-trained model; during a real attack, a model is trained on
poisoned data, but we optimize the poisons on a model that is trained only with clean data. To close
the gap, we introduce model retraining during the poison crafting procedure. After retraining our
model on the perturbed data, we again take optimization steps on the perturbations, but this time
evaluating the training and adversarial losses at the new parameter vector. We repeat this process of
retraining/optimizing several times and find that this noticeably improves the success of the poisons -
often boosting success by more than 20% (see Tables 3, 10, 11).

See Appendix A.1 for an empirical evaluation of the importance of poison selection and model
retraining for estimating the adversarial gradients of a victim. A brief description of our threat model
is found in Algorithm 1.

Algorithm 1 Sleeper Agent poison crafting procedure

Input: Training data T = {(xi, yi)}Ni=1, trigger patch p, source label ys, target label yt, poison budget M ≤ N ,
optimization steps R, retraining factor T

Begin:
1: Train surrogate network or ensemble F (. ; θ) on training data T
2: Select M samples with label yt from T with highest gradient norm
3: Randomly initialize perturbations δMi=1

4: for r = 1, 2, ... , R optimizations steps do
5: Compute A(δ, θ, p, yt, ys) and update δMi=1 with a step of signed Adam
6: if r mod ⌊R/(T + 1)⌋ = 0 and r ̸= R then
7: Retrain F on poisoned training data {(xi + δi, yi)}Mi=1 ∪ {(xi, yi)}Ni=M+1 and update θ
8: end if
9: end for

10: return: poison perturbations δMi=1
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Table 1: Baseline evaluations on CIFAR-10. Perturbations have ℓ∞-norm bounded above by 16/255,
and poison budget is 1% of training images.

Architecture ResNet-18 MobileNetV2 VGG11

Clean model val (%) 92.31 (±0.08) 88.19 (±0.05) 89.00 (±0.03)
Poisoned model val (%) 92.16 (±0.05) 88.03 (±0.05) 88.70 (±0.04)
Clean model source val (%) 92.36 (±0.93) 88.55 (±1.64) 90.62 (±1.23)
Poisoned model source val (%) 91.50 (±0.88) 87.79 (±1.60) 89.45 (±1.19)
Poisoned model patched source val (%) 12.96 (±5.40) 21.09 (±5.41) 17.97 (±4.00)
Attack Success Rate (%) 85.27 (±5.90) 72.92 (±6.09) 75.15 (±5.40)

Table 2: The effect of poison budget. Experiments on CIFAR-10 with ResNet-18 models [He et al.,
2016]. Perturbations have ℓ∞-norm ≤ 16/255.

Poison Budget 50 (0.1%) 100 (0.2%) 250 (0.5%) 400 (0.6%) 500 (1%)

Clean model val (%) 92.34 (±0.05) 92.36 (±0.04) 92.31 (±0.04) 92.15 (±0.08) 92.31 (±0.08)
Poisoned model val (%) 92.33 (±0.04) 92.34 (±0.05) 92.25 (±0.04) 92.12 (±0.06) 92.16 (±0.05)
Clean model source val (%) 93.01 (±0.69) 91.08 (±0.85) 92.43 (±0.74) 92.42 (±0.80) 92.36 (±0.93)
Poisoned model source val (%) 93.03 (±0.67) 90.61 (±0.86) 91.83 (±0.75) 91.88 (±0.79) 91.50 (±0.88)
Poisoned model patched source val (%) 61.04 (±4.27) 40.07 (±5.72) 22.77 (±4.77) 15.88 (±4.91) 12.96 (±5.40)
Attack Success Rate (%) 24.71 (±4.10) 49.76 (±6.21) 72.48 (±5.24) 81.44 (±5.25) 85.27 (±5.90)

4 Experiments

In this section, we empirically test the proposed Sleeper Agent backdoor attack on multiple datasets,
against black-box settings, using an existing benchmark, and against popular defenses. Details
regarding the experimental setup can be found in Appendix B.

4.1 Baseline Evaluations

Typically, backdoor attacks are considered successful if poisoned models do not suffer from a
significant drop in validation accuracy on images without triggers, but they reliably misclassify
images from the source class into the target class when a trigger is applied. We begin by testing
our method in the gray-box setting. In the gray-box setting, we use the same architecture but
different random initialization for crafting poisons and testing. Table 1 depicts the performance of
Sleeper Agent on CIFAR-10 when perturbing 1% of images in the training set with each perturbation
constrained in an ℓ∞-norm ball of radius 16/255. During poison crafting, the surrogate model
undergoes four evenly spaced retraining periods (T = 4), and we test the effectiveness of each
surrogate model architecture at generating poisons for victim models of the same architecture. In
subsequent sections, we will extend these experiments to the black-box setting and to an ensemblized
attacker. We observe in these experiments that the poisoned models indeed achieve very similar
validation accuracy to their clean counterparts, yet the application of triggers to source class images
causes them to be misclassified into the target class as desired. In Table 2, we observe that Sleeper
Agent can even be effective when the attacker is only able to poison a very small percentage of
the training set. Note that the success of backdoor attacks depends greatly on the choice of source
and target classes, especially since some classes contain very large objects which may dominate
the image, even when a trigger is inserted. As a result, the variance of attack performance is high
since we sample class pairs randomly. The poisoning and victim hyperparameters we use for our
experiments can be found in Appendix B.

The benefits of ensembling: One simple way we can improve the transferability of our backdoor
attack across initializations of the same architecture is to craft our poisons on an ensemble of multiple
copies of the same architecture but trained using different initializations and different batch sampling
during their training procedures. This behavior has also been observed in Huang et al. [2020b],
Geiping et al. [2021]. In Table 3, we observe that this ensembling strategy indeed can offer significant
performance boosts, both with and without retraining.

The black-box setting: Now that we have established the transferability of Sleeper Agent across
models of the same architecture, we test on the hard black-box scenario where the victim’s architecture
is completely unknown to the attacker. This setting has proven extremely challenging for existing
methods [Schwarzschild et al., 2021]. Table 4 contains four settings. In the first row, we simply
craft the poisons on a single ResNet-18 and transfer these to other models. Second, we craft poisons
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Table 3: Ensembles consisting of copies of the same architecture (ResNet-18). S denotes the size
of the ensemble, and T denotes the retraining factor. Experiments are conducted on CIFAR-10,
perturbations have ℓ∞-norm bounded by 16/255, and the attacker can poison 1% of training images.

Attack Clean model val (%) Poisoned model val (%) Attack Success Rate (%)

Sleeper Agent (S = 1, T = 0) 92.36 (±0.05) 92.08 (±0.08) 63.49 (±6.13)
Sleeper Agent (S = 2, T = 0) 92.10 (±0.04) 92.12 (±0.06) 64.70 (±5.65)
Sleeper Agent (S = 4, T = 0) 92.14 (±0.03) 91.98(±0.05) 74.81 (±4.10)
Sleeper Agent (S = 2, T = 4) 92.11 (±0.07) 92.08 (±0.13) 87.40 (±6.23)
Sleeper Agent (S = 4, T = 4) 92.17 (±0.03) 91.81 (±0.06) 88.45 (±6.00)

Table 4: Black-box attacks: First row: Attacks crafted on a single ResNet-18 and transferred. Second
row: attacks crafted on MobileNet-V2 and ResNet-34 and transferred. Third row: attacks crafted
on the remaining architectures excluding the victim. The ensemble used in the last row includes
the victim architecture. Experiments are conducted on CIFAR-10 and perturbations have ℓ∞-norm
bounded above by 16/255, and the attacker can poison 1% of training images.

Attack ResNet-18 MobileNet-V2 VGG11 Average

Sleeper Agent (S = 1, T = 4, ResNet-18) − 29.10% 31.96% 29.86%
Sleeper Agent (S = 4, T = 0, MobileNet-V2, ResNet-34) 70.30% − 46.48% 58.44%
Sleeper Agent (S = 4, T = 0, victim excluded) 63.11% 42.40% 55.28% 53.60%
Sleeper Agent (S = 6, T = 0, victim included) 68.46% 67.28% 85.37% 73.30%

on an ensemble consisting of two MobileNet-V2 and two ResNet-34 architectures and transfer to
the remaining models. Third, for each architecture, we craft poisons with an ensemble consisting
of the other two architectures and test on the remaining one. The second and third scenarios are
ensemblized black-box attacks, and we see that Sleeper Agent is effective. In the last row, we perform
the same experiment but with the testing model included in the ensemble, and we observe that a
single ensemble can craft poisons that are extremely effective on a range of architectures. We choose
ResNet-18, MobileNet-V2, and VGG11 as these are common and contain a wide array of structural
diversity [He et al., 2016, Sandler et al., 2018, Simonyan and Zisserman, 2014]. Additionally, Guo
and Liu [2020] considers the case that the attacker uses a weaker surrogate than the defender’s model.
We simulate this case by using a VGG11 surrogate and ResNet-18 target. We find, with a 1% poison
budget on CIFAR-10, that Sleeper Agent achieves an attack success rate of 57.47%.

ImageNet evaluations: In addition to CIFAR-10, we perform experiments on ImageNet. Table 5
summarizes the performance of Sleeper Agent on ImageNet where attacks are crafted and tested on
ResNet-18 and MobileNetV2 models. Each attacker can only perturb 0.05% of training images, and
perturbations are constrained in an ℓ∞-norm ball of radius 16/255 - a bound seen in prior poisoning
works on ImageNet [Fowl et al., 2021a, Geiping et al., 2021, Saha et al., 2020]. To have a strong
threat model, we use the retraining factor of two (T = 2) so that the surrogate model is retrained
at two evenly spaced intervals. Figure 1b contains visualizations of the patched sources and the
crafted poisons. The details of models and hyperparameters can be found in Appendix B. Additional
experiments on ImageNet and further visualizations are presented in Appendices A and C.

4.2 Comparison to Other Methods

There are several existing clean-label hidden-trigger backdoor attacks that claim success in settings
different than ours. In order to further demonstrate the success of our method, we compare our
poisons to ones generated from these methods in our strict threat model of from-scratch training.
In these experiments, poisons are generated by our attack, clean label backdoor, and hidden trigger
backdoor. All poison trials have the same randomly selected source-target class pairs, the same

Table 5: ImageNet evaluations. Perturbations have ℓ∞-norm bounded above by 16/255, and the
poison budget is 0.05% of training images.

Architecture ResNet-18 MobileNetV2

Clean model val (%) 69.76 71.88
Poisoned model val (%) 67.84 (±0.10) 68.60 (±0.03)
Attack Success Rate (%) 44.00 (±6.73) 41.00 (±3.31)
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Table 6: Benchmark results on CIFAR-10. Comparison of our method to popular “clean-label”
attacks. Results averaged over the same source/target pairs with ϵ = 16/255 and poison budget 1%.

Attack ResNet-18 MobileNetV2 VGG11 Average

Hidden-Trigger Backdoor [Saha et al., 2020] 3.50% 3.76% 5.02% 4.09%
Clean-Label Backdoor [Turner et al., 2019] 2.78% 3.50% 4.70% 3.66%

Sleeper Agent (Ours) 78.84% 75.96% 86.60% 80.47%

budget, and the same ε-bound (Note: clean-label backdoor originally did not use ℓ∞ bounds, so we
adjust the opacity of their perturbations to ensure the constraint is satisfied). We then train a randomly
initialized network from scratch on these poisons and evaluate success over 1000 patched source
images. We test three popular architectures and find that our attack significantly outperforms both
methods and is the only backdoor method to exceed single digit success rates, confirming the findings
of Schwarzschild et al. [2021] on the fragility of these existing methods. See Table 6 for full results.

4.3 Defenses

A selling point for hidden trigger backdoor attacks is that the trigger that is used to induce misclas-
sification at test-time is not present in any training data, thus making inspection based defenses, or
automated pattern matching more difficult. However, there exist numerous defenses, aside from
visual inspection, that have been proposed to mitigate the effects of poisoning - both backdoor and
other attacks. We test our method against a number of popular defenses.

Spectral Signatures: This defense, proposed in Tran et al. [2018], aims to filter a pre-selected
amount of training data based upon correlations with singular vectors of the feature covariance matrix.
This defense was originally intended to detect triggers used in backdoor attacks.

Activation Clustering: Chen et al. [2019] clusters activation patterns to detect anomalous inputs.
Unlike the spectral signatures defense, this defense does not filter a pre-selected volume of data.

DPSGD: Poison defenses based on differentially private SGD [Abadi et al., 2016] have also been
proposed [Hong et al., 2020]. Differentially private learning inures models to small changes in
training data, which provably imbues robustness to poisoned data.

Data Augmentations: Recent work has suggested that strong data augmentations, such as mixup,
break data poisoning [Borgnia et al., 2021]. This has been confirmed in recent benchmark tests
which demonstrate many poisoning techniques are brittle to slight changes in victim training routine
[Schwarzschild et al., 2021]. We test against mixup augmentation [Zhang et al., 2018].

STRIP: Gao et al. [2019] proposes to add strong perturbations by superimposing input images at test
time to detect the backdoored inputs based on the entropy of the predicted class distribution. If the
entropy is lower than a predefined threshold, the input is considered backdoored and is rejected.

NeuralCleanse: Wang et al. [2019] proposes a defense designed for traditional backdoor attacks
by reconstructing the maximally adversarial trigger used to backdoor a model. While this defense
was not designed for hidden trigger backdoor attacks, we experiment with this as a detection defense
wherein we test whether NeuralCleanse can detect the backdoored class. This modification is denoted
by NeuralCleanse*. In our trials, NeuralCleanse* does not successfully detect any of the backdoored
classes - as determined by taking the maximum mask MAD (see Wang et al. [2019]). Neural
Cleanse does not produce an anomaly score > 2 (their characterization of detecting outliers) for the
backdoored class in any of our experiments.

We find that across the board, all of these defenses exhibit a robustness-accuracy trade-off. Many
of these defenses do not reliably nullify the attack, and defenses that do degrade attack success also
induce such a large drop in validation accuracy that they are unattractive options for practitioners.
For example, to lower the attack success to an average of 13.14%, training with DPSGD degrades
natural accuracy on CIFAR-10 to 70%. See Table 7 for the complete results of these experiments.
Additional evaluations on recent defenses are presented in Appendix A.6.
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Table 7: Defenses. Experiments are conducted on CIFAR-10 with ResNet-18 models, perturbations
have ℓ∞-norm bounded above by 16/255, and poison budget is 1% of training images.

Defense Attack Success Rate (%) Validation Accuracy (%)

Spectral Signatures 37.17 (±10.10) 89.94 (±0.19)
Activation Clustering 15.17 (±5.38) 72.38 (±0.48)

DPSGD 13.14 (±4.49) 70.00 (±0.17)
Data Augmentation 69.75 (±10.77) 91.32 (±0.12)

STRIP 62.68 (±4.90) 92.23 (±0.05)
NeuralCleanse* 85.27 (±5.90) 92.31 (±0.08)

Table 8: Random poisons. Experiments are conducted on CIFAR-10 with ResNet-18 models.
Perturbations have ℓ∞-norm bounded above by 16/255 and poisons are drawn from all classes.

Attack Poison budget Attack Success Rate (%)

Sleeper Agent (S = 1, T = 4) 1% 41.90 (±7.16)
Sleeper Agent (S = 1, T = 4) 3% 66.51 (±6.90)

4.4 Sleeper Agent Can Poison Images in Any Class

Typical backdoor attacks which rely on label flips or feature collisions can only function when poisons
come from the source and/or target classes [Saha et al., 2020, Turner et al., 2019]. This restriction
may be a serious limitation in practice. In contrast, we show that Sleeper Agent can be effective even
when we poison images drawn from all classes. To take advantage of our data selection strategy, we
select poisons with maximum gradient norm across all classes. Table 8 contains the performance of
Sleeper Agent in the aforementioned setting.

4.5 Evaluations Under Hard ℓ∞-norm Constraints

While existing works on backdoor attacks consider poisons with ℓ∞-norm bounded above by 16/255
as an imperceptible threat [Saha et al., 2020, Turner et al., 2019], Nguyen and Tran [2020] shows that
human inspection can detect poisoned samples effectively. This inspection might mitigate the threat
of large perturbations. To bypass this possibility, we conduct our baseline experiments on CIFAR-10
using perturbations with small ℓ∞-norms. From Table 9, we observe that our threat model is effective
even with an ℓ∞-norm bounded above by 8/255. Visualizations can be found in Appendix C.

4.6 Ablation Studies

Here, we analyze the importance of each technique in our algorithm via ablation studies. We focus
on three aspects of our method: 1) patch location, 2) retraining during poison crafting, 3) poison
selection, and 4) retraining factor. Table 10 details the combinations and their effects on poison
success. We find that randomizing patch location improves poisoning success, and both retraining and
data selection based on maximum gradient significantly improve poison performance. Combining all
three boosts poison success more than four-fold. To further show the importance of retraining, we
conduct more experiments with and without retraining on ImageNet. From Table 11, we infer that
retraining is essential. Additional ablations studies are found in Appendix A.

Table 9: Evaluation under different ℓ∞-norm. Experiments are conducted on CIFAR-10 with
ResNet-18 models, and the poison budget is 1% of training images.

Perturbation ℓ∞-norm Attack Success Rate (%)

8/255 37.32 (±8.33)
10/255 55.75 (±8.12)
12/255 63.31 (±8.84)
14/255 78.03 (±7.13)
16/255 85.27 (±5.90)

9



Table 10: CIFAR-10 ablation studies. Investigation of the effects of random patch-location,
retraining, and data selection. Experiments are conducted on CIFAR-10 with ResNet-18 models,
perturbations have ℓ∞-norm bounded above by 16/255, and poison budget is 1% of training images.

Attack setup Attack Success Rate (%)

Fix patch-location (bottom-right corner) 19.25 (±3.01)
Random patch-location 33.95 (±4.57)
Random patch-location + retraining 59.42 (±5.78)
Random patch-location + data selection 63.49 (±6.13)
Random patch-location + retraining + data selection 85.27 (±5.90)

Table 11: ImageNet ablation studies. Perturbations have ℓ∞-norm bounded above by 16/255, and
the poison budget is 0.05% of training images.

Attack Attack Success Rate (%)

Sleeper Agent (S = 1, T = 0) 22.00 (±5.65)
Sleeper Agent (S = 1, T = 2) 44.00 (±6.73)

5 Broader Impact and Limitations

In this work, we illuminate a new scalable backdoor attack that could be used to stealthily compromise
security-critical systems. We hope that by highlighting the potential danger of this nefarious threat
model, our work will give rise to stronger defenses and will encourage caution on the part of
practitioners.

While on average, our method is effective, the variance is large, and the success of our method
can range from almost all patched images being misclassified to low success. This behavior has
previously been observed in Schwarzschild et al. [2021]. In real-world scenarios, datasets are often
noisy and imbalanced, so training behavior may be mysterious. As a result, practitioners should be
cautious in their expectations that methods developed on datasets like CIFAR-10 and ImageNet will
work on their own problems.

6 Conclusion

In this work, we present the first hidden-trigger backdoor attack that is effective against deep networks
trained from scratch. This is a challenging setting for backdoor attacks, and existing attacks typically
operate in less strict settings. Nonetheless, we choose the strict setting because practitioners often
train networks from scratch in real-world applications, and patched poisons may be easily visible
upon human inspection. In order to accomplish the above goal, we use a gradient matching objective
as a surrogate for the bilevel optimization problem, and we add features such as re-training and data
selection in order to significantly enhance the performance of our method, Sleeper Agent.
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