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ABSTRACT

The great success in graph neural networks (GNNs) provokes the question about
explainability: “Which fraction of the input graph is the most determinant to the
prediction?” However, current approaches usually resort to a black-box to de-
cipher another black-box (i.e., GNN), making it difficult to understand how the
explanation is made. Based on the observation that graphs typically share some
joint motif patterns, we propose a novel subgraph matching framework named
MatchExplainer to explore explanatory subgraphs. It couples the target graph
with other counterpart instances and identifies the most crucial joint substructure
by minimizing the node corresponding-based distance between them. After that,
an external graph ranking is followed to select the most informative substructure
from all subgraph candidates. Thus, MatchExplainer is entirely non-parametric.
Moreover, present graph sampling or node dropping methods usually suffer from
the false positive sampling problem. To ameliorate that issue, we take advantage
of MatchExplainer to fix the most informative portion of the graph and merely
operate graph augmentations on the rest less informative part, which is dubbed as
MatchDrop. We conduct extensive experiments on both synthetic and real-world
datasets, showing the effectiveness of our MatchExplainer by outperforming all
parametric baselines with large margins. Additional results also demonstrate that
our MatchDrop is a general paradigm to be equipped with GNNs for enhanced
performance.

1 INTRODUCTION

Graph neural networks (GNNs) have drawn broad interest due to their success for learning rep-
resentations of graph-structured data, such as social networks (Fan et al., 2019), knowledge
graphs (Schlichtkrull et al., 2018), traffic networks (Geng et al., 2019), and microbiological
graphs (Gilmer et al., 2017). Despite their remarkable efficacy, GNNs lack transparency as the
rationales of their predictions are not easy for humans to comprehend. This prohibits practitioners
from not only gaining an understanding of the network characteristics, but correcting systematic
patterns of mistakes made by models before deploying them in real-world applications.

Recently, extensive efforts have been devoted to studying the explainability of GNNs (Yuan et al.,
2020). Researchers strive to answer the questions like "What knowledge of the input graph is the
most dominantly important in the model’s decision?" Towards this end, feature attribution and selec-
tion (Selvaraju et al., 2017; Sundararajan et al., 2017; Ancona et al., 2017) is a prevalent paradigm.
They distribute the model’s outcome prediction to the input graph via gradient-like signals (Baldas-
sarre & Azizpour, 2019; Pope et al., 2019; Schnake et al., 2020), mask or attention scores (Ying
et al., 2019; Luo et al., 2020), or prediction changes on perturbed features (Schwab & Karlen, 2019;
Yuan et al., 2021), and then choose a salient substructure as the explanation.

Nonetheless, the latest approaches are all deep learning-based and rely on a network to parameter-
ize the generation process of explanations (Vu & Thai, 2020; Wang et al., 2021b). We argue that
depending on another black-box to comprehend the prediction of the target black-box (i.e., GNNs)
is sub-optimal, since the behavior of those explainers is hard to interpret. These black-boxes, in-
deed, always fail to give a clue of how they find proper explanatory subgraphs. In contrast, a decent
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explainer ought to provide clear insights of how it captures and values this substructure. Other-
wise, a lack of interpretability in explainers can undermine our trust in them. Moreover, some prior
works (Chen et al., 2018; Ying et al., 2019; Yuan et al., 2021) independently excavate explanations
for each instance without explicitly referring to other training data in the inference phase. They
ignore the fact that different essential subgraph patterns are shared by different groups of graphs,
which can be the key to decipher the decision of GNNs. These frequently occurred motifs usually
contain rich semantic meanings and indicate the characteristics of the whole graph instance (Hender-
son et al., 2012; Zhang et al., 2020; Banjade et al., 2021). For example, the hydroxide group (-OH) in
small molecules typically results in higher water solubility, and the pivotal role of functional groups
has also been proven in protein structure prediction (Senior et al., 2020).

To overcome these drawbacks, we propose to mine the explanatory motif in a subgraph matching
manner. In contrast to a learnable network, we design a non-parametric algorithm dubbed MatchEx-
plainer with no need for training, which is composed of two stages. At the first stage, it marries the
target graph iteratively with other counterpart graphs and endeavors to explore the most crucial joint
substructure by minimizing the node corresponding-based distance in the high-dimensional feature
space. Since the counterpart graphs are diverse, the explanations at the first stage of MatchExplainer
can be non-unique for the same instance. Thus, an external graph ranking technique is followed as
the second stage of MatchExplainer to pick out the most appropriate one. To be explicit, it examines
the important role that these substructures plays in determining the graph property by subtracting
the subgraphs from the original input graph and testing the prediction of the remaining part.

Our MatchExplainer not only shows great potential in fast discovering the explanations for GNNs,
but also can be employed to enhance the traditional graph augmentation methods. Though exhibiting
strong power in preventing over-fitting and over-smoothing, present graph sampling or node drop-
ping mechanisms suffer from the false positive sampling problem. That is, nodes or edges of the
most informative substructure are accidentally dropped or erased but the model is still required to
forecast the original property, which can be misleading. To alleviate this obstacle, we take advantage
of MatchExplainer and introduce a simple technique called MatchDrop. Specifically, it first digs out
the explanatory subgraph by means of MatchExplainer and keeps this part unchanged. Then the
graph sampling or node dropping is implemented solely on the remaining less informative part. As
a consequence, the core fraction of the input graph that reveals the label information is not affected
and the false positive sampling issue is effectively mitigated.

To summarize, we are the foremost to investigate the explainability of GNNs from the perspective of
non-parametric subgraph matching to the best of our knowledge. Extensive experiments on synthetic
and real-world applications demonstrate that our MatchExplainer can find the explanatory subgraphs
fast and accurately with state-of-the-art performance. Apart from that, we empirically show that our
MatchDrop can serve as an efficient way to promote the graph augmentation methods.

2 PRELIMINARY AND TASK DESCRIPTION

In this section, we begin with the description of the GNN explanation task and then briefly review
the relevant background of graph matching and mutual information theory.

Explanations for GNNs. Let fY denote a well-trained GNN to be explained, which gives the pre-
diction ŷG of the input graph G to approximate the ground-truth label yG . Without loss of generality,
we consider the problem of explaining a graph classification task (Ying et al., 2019; Yuan et al.,
2020) as to find an explainer fS that discovers the subgraph GS from input graph G by:

argmin
fS

R(fY ◦ fS(G), ŷG), s.t.|fS(G)| ≤ K, (1)

where R(·, ·) is the risk function, which is usually implemented as a cross-entropy (CE) loss or a
mean squared error (MSE) loss, and | · | returns the graph size (namely the number of nodes in this
paper), and K is a prefixed constraint.

Graph Matching. As a classic combinatorial problem, graph matching is known to be NP-
hard (Loiola et al., 2007). Addressing it requires expensive, complex, and impractical solvers, hence
plenty of inexact but practical solutions (Wang et al., 2020) have been proposed. Given two different
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graphs G1 = (V1, E1) and G2 = (V2, E2) with N1 and N2 nodes respectively, the matching between
them can be generally expressed by the quadratic assignment programming (QAP) form (Wang
et al., 2019):

argmin
T∈{0,1}N1×N2

vec(T)TKvec(T), s.t.,T1 = 1, TT1 = 1, (2)

where T is a binary permutation matrix encoding node correspondence, and 1 denotes a column
vector with all elements to be one. K ∈ RN1×N2 is the so-called affinity matrix (Leordeanu &
Hebert, 2005), whose elements encode the node-to-node affinity between G1 and G2.

Mutual Information. Indeed, Eq. 1 is equivalent to maximizing the mutual information between
G and GS . Namely, the goal of an explainer is to derive a small subgraph GS such that:

argmax
GS⊂G,|GS |≤K

I(fY (GS); fY (G)), (3)

where I(·; ·) refers to the Shannon mutual information between two random variables. Notably,
instead of merely optimizing the information hidden in GS , another line of research (Yuan et al.,
2021) seeks to reduce the mutual information between the subtracted subgraph G − GS and G, i.e.,

argmin
GS⊂G,|GS |≤K

I(fY (G − GS); fY (G)). (4)

3 THE MATCHEXPLAINER APPROACH

In this section, we first introduce the formulation of our MatchExplainer approach from the perspec-
tive of mutual information maximization. We then divide the maximization objective into two parts,
one addressed by a graph matching algorithm, and the other one tackled by subgraph ranking.

3.1 FORMULATION OF MATCHEXPLAINER

The core idea of MatchExplainer is to jointly optimize the two objectives in Eq. 3 and Eq. 4 as:

argmax
GS⊂G,|GS |≤K

I(fY (GS); fY (G))− I(fY (G − GS); fY (G)), (5)

which is able to ensure the sufficiency (the first term) and necessity (the second term) of the re-
placement of G with its subgraph GS . However, this problem is nontrivial to solve owing to the
exponential complexity of searching the desirable subgraph. Recent methods (Yuan et al., 2021;
2020; Wang et al., 2021b) employ another black-box GNN fS(G) to output GS . As mentioned be-
fore, such type of methods encounter the irrationality of pursuing explainability via unexplainable
models.

Instead of solving Eq. 5 directly, we reduce it into a surrogate task with the aid of external graphs.
Particularly, we fetch another graph G′ that shares the same predicted property as G (i.e., ŷG = ŷG′ ),
and then extract the most relevant part between G and G′ as the candidate GS . We will go through
all possible G′s, and locate the one giving the largest mutual information. In form, we derive:

argmax
G′∈DG ,G′ ̸=G

[
argmax

GS⊂G,|GS |≤K
I(fY (GS); fY (G′); fY (G))− I(fY (G − GS); fY (G))

]
, (6)

where DG := {G′ | yG′ = yG} denotes the set of graphs sharing the same label as G. We define the
optimal solution of Eq. 5 as G∗

S , and immediately have the following proposition:

Proposition 1 If there exists G′ ∈ DG satisfying fY (G∗
S) = fY (G′), then Problem 5 is equivalent

to Problem 6.

We further divide Problem 6 into two subtasks:

• Subgraph Matching: Given any external graph G′, we derive the most relevant subgraph
GS(G′) by GS(G′) = argmaxGS⊂G,|GS |≤K I(fY (GS); fY (G′); fY (G)). Note that with the
reference of G′, it is efficient to derive GS(G′) by applying a graph matching algorithm. We
provide more details in § 3.2.
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• External Graph Ranking: Different external graph G′ corresponds to different subgraph
GS(G′) returned by the last sub-problem. We choose the one that gives the smallest mutual
information, that is G∗

S = argminGS(G′) I(fY (G − GS(G′)); fY (G)). The details are given
in § 3.3

Although modeling Problem 6 as the two subtasks above approximate the exact solution to some
extent, we find in our experiments that they are sufficient to derive promising performance.

3.2 SUBGRAPH MATCHING MECHANISM

To begin with, we break the target GNN hY into two consecutive parts: hY = ϕG ◦ ϕX , where ϕG
is the aggregator to compute the graph-level representation and predict the properties, and ϕX is the
feature function to update both the node and edge features. For a given graph G with node features
hi ∈ Rψv ,∀i ∈ V and edge features eij ∈ Rψe ,∀(i, j) ∈ E , the renewed output is calculated as
{h′

i}i∈V , {e′ij}(i,j)∈E = ϕX
(
{hi}i∈V , {eij}(i,j)∈E

)
, which is forwarded into ϕG afterwards.

Our target is to find subgraphs GS ⊂ G and G′
S ⊂ G′ both with K nodes to maximize

I(fY (GS); fY (G′
S)). Here we utilize the node correspondence-based distance dG as a substitution

for measuring the mutual information between GS and G′
S , which is minimized as follows:

min
GS⊂G,G′

S⊂G′
dG(GS ,G′

S) = min
GS⊂G,G′

S⊂G′

(
min

T∈Π(GS ,G′
S)

〈
T,DϕX

〉)
, (7)

where DϕX is the matrix of all pairwise distances between node features of GS and G′
S . Its element

is calculated as DϕX

ij = dX(h′
i,h

′
j) ∀i ∈ V, j ∈ V ′, where dX is the standard vector space similarity

such as the Euclidean distance and the Hamming distance. The inner optimization is conducted over
Π(., .), which is the set of all matrices with prescribed margins defined as:

Π(GS ,G′
S) =

{
T ∈ {0, 1}K×K |T1 = 1, TT1 = 1

}
. (8)

Due to the NP-hard nature of graph matching (Loiola et al., 2007), we adopt the greedy strategy to
optimize dG(GS ,G′

S) and attain the subgraph GS . It is worth noting that the greedy algorithm does
not guarantee to reach the globally optimal solution (Bang-Jensen et al., 2004), but can yield locally
optimal solutions in a reasonable amount of time. After that, we feed GS into hY and examine its
importance. If hY (GS) = hY (G), then GS is regarded as the potential explanations. Otherwise, GS
is abandoned since it cannot recover the information required by hY to predict G.

It is worth noting that our excavation of explanations through subgraph matching is significantly dif-
ferent from most traditional graph matching methods. The majority of graph matching algorithms
(Zanfir & Sminchisescu, 2018; Sarlin et al., 2020; Wang et al., 2020; 2021a) typically establish node
correspondence from a whole graph G1 to another whole graph G2. However, we seek to construct
partial node correspondence between the subgraph of G1 and the subgraph of G2. Besides, most cur-
rent graph matching architectures (Zanfir & Sminchisescu, 2018; Li et al., 2019; Wang et al., 2020;
Papakis et al., 2020; Liu et al., 2021a) are deep learning-based. They utilize a network to forecast
the relationship between nodes or graphs, which has several flaws. For instance, the network needs
tremendous computational resources to be trained. More importantly, its effectiveness is unreliable
and may fail in certain circumstances if the network is not delicately designed. To overcome these
limitations, we employ a non-parametric subgraph matching paradigm, which is totally training-free
and fast to explore the most informatively joint substructure shared by any pair of input instances.

3.3 EXTERNAL GRAPH RANKING

Since our MatchExplainer is able to discover a variety of possible explanatory subgraphs via sub-
graph matching, how to screen out the most informative one becomes a critical issue. In this subsec-
tion, we introduce the external graph ranking mechanism to sort out the optimal explanation. Ide-
ally, G′ ought to share the exact same explanatory substructure with G, i.e., max I(fY (GS); fY (G′

S)).
Meanwhile, G−GS(G′) should be independent to the property of the input graph, i.e., min I(fY (G−
GS(G′)); fY (G)). Therefore, there are two distinct principles for selecting the counterpart graphs.
The first line is to seek G′ that has as close the explanatory subgraph as possible to G. The second
line is to ensure that G − GS maintains little information relevant to the original property fY (G).
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Nevertheless, without sufficient domain knowledge regarding which substructure is majorly respon-
sible for the graph property, it would be impossible for us to manually select the counterpart graph
G′ that satisfies GS ≈ G′

S . As a remedy, the node correspondence-based distance dG(GS ,G′
S) can be

treated as the indicator for whether this pair of graphs enjoy a similar explanatory substructure.

Though dG(GS ,G′
S) is a feasible criterion to filtrate the most informative substructure, a more effi-

cient way is to immediately minimize the mutual information between G − GS and G. This corre-
sponds to decrease I(fY (G − GS); fY (G)) in Equ. 6. Towards this goal, we remove the extracted
subgraph GS from G and aspire to confuse GNNs’ predictions on the remaining part G − GS . Math-
ematically, the optimal G′ maximizes the difference between the prediction of the whole graph and
the prediction of the graph that is subtracted by GS . In other words, we wish to maximize:

∆G(G′, hY ) = hc
∗

Y (G)− hc
∗

Y (G − GS(G′)), (9)

where c∗ is the ground truth class of G and GS is the substructure via subgraph matching with G′.

Then given any graph G and a reference graph set DR = {G1, ...,Gn}, we acquire all possible
subgraphs via matching G to available graphs in DR. Notably, not all graphs in DR are qualified
counterparts. There are several intuitive conditions that the counterpart graph G′ has to satisfy. First,
G and G′ should belong to the same category predicted by hY . Besides, G′ needs to have at least K
nodes. Otherwise, GS would be smaller than the given constrained size. After the pairwise subgraph
matching, we calculate their corresponding ∆G(., hY ) and pick up the one that leads to the largest
∆G(., hY ) as the optimal counterpart graph.

Effectiveness vs. efficiency. The time-complexity is always an important topic to evaluate the
practicability of explainers. For our MatchExplainer, the size of the reference set, i.e., |DR|, plays
a vital role in determining the time cost. However, a limited number of counterpart graphs can
also prohibit it from exploring better explanatory subgraphs. Thus, it is non-trivial to balance the
effectiveness and efficiency of MatchExplainer by choosing an appropriate size of DR.

4 THE MATCHDROP METHODOLOGY

Preventing the false positive sampling. Deep graph learning faces unique challenges such as
feature data incompleteness, structural data sparsity, and over-smoothing. To address these issues,
a growing number of data augmentation techniques (Hamilton et al., 2017; Rong et al., 2019) have
been proposed in the graph domain and shown promising outcomes. Among them, the graph sam-
pling and node dropping (Feng et al., 2020; Xu et al., 2021) are two commonly used mechanisms.
However, most previous approaches are completely randomized, resulting in false positive sam-
pling and injecting spurious information into the training process. For instance, 1,3-dinitrobenzene
(C6H4N2O4) is a mutagen molecule and its explanation is the NO2 groups (Debnath et al., 1991). If
any edge or node of the NO2 group is accidentally dropped or destroyed, the mutagenicity property
no longer exists. And it will misguide GNNs if the original label is assigned to this molecular graph
after node or edge sampling.

MatchDrop (ours)
(Keep the necessary parts unchanged.)

Previous Graph Sampling Methods

Example: C6H4N2O4 Approaches Result

It leads to false positive 
sampling and does 
harm to the training.

The most informative 
part remains and the 
false positive sampling 
is forbidden.

Perturbation

(Completely random perturbation.)

NO2

H

N+ N+

H

H

O H

OO

O

Figure 1: The illustration of our proposed MatchDrop.

To tackle this drawback, recall that
our MatchExplainer offers a conve-
nient way to discover the most es-
sential part of a given graph. It
is natural to keep this crucial por-
tion unchanged and only drop nodes
or edges in the remaining portion.
Based on this idea, we propose a
simple but effective method dubbed
MatchDrop, which keeps the most in-
formative part of graphs found by our
MatchExplainer and alters the less in-
formative part (see Figure 1).

The procedure of our MatchDrop is
described as follows. To begin with, we train a GNN hY for several epochs until it converges to an
acceptable accuracy, which guarantees the effectiveness of the subsequent subgraph selection. Then
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for each graph G in the training set Dtrain, we randomly select another graph G′ ∈ Dtrain with the
same class as the counterpart graph. Afterwards, we explore its subgraph GS via MatchExplainer
with a retaining ratio ρ (i.e., |GS | = ρ|G|) and use it as the model input to train hY .

Notably, similar to the typical image augmentation skills such as rotation and flapping (Shorten &
Khoshgoftaar, 2019), MatchDrop is a novel data augmentation technique for GNN training. How-
ever, instead of augmenting G randomly, MatchDrop reserves the most informative part and only
changes the less important substructure. This significantly reduces the possibility of false positive
sampling. Additionally, unlike other learnable mechanisms to inspect subgraphs, our MatchDrop is
entirely parameter-free and, therefore, can be deployed at any stage of the training period.

Training objective. The training of GNNs is supervised by the cross entropy (CE) loss. Suppose
there are M classes in total, then the loss takes the following form:

LS = − 1

|Dtrain|
∑

G∈Dtrain

M∑
c=1

yG log (hcY (hS(G, ρ))) , (10)

where hcY (.) indicates the predicted probability of GS to be of class c and yG is the ground truth
value. hS employs MatchExplainer to mine the subgraph GS by matching G to a randomly selected
counterpart graph G′ in the training set Dtrain with a pre-defined ratio ρ.

5 EXPERIMENTAL ANALYSIS

5.1 DATASETS AND EXPERIMENTAL SETTINGS

Following Wang et al. (2021b), we use four standard datasets with various target GNNs.

• Molecule graph classification: MUTAG (Debnath et al., 1991; Kazius et al., 2005) is a molecular
dataset for the graph classification problem. Each graph stands for a molecule with nodes for
atoms and edges for bonds. The labels are determined by their mutagenic effect on a bacterium.
The well-trained Graph Isomorphism Network (GIN) (Xu et al., 2018) has approximately achieved
a 82% testing accuracy.

• Motif graph classification.: Wang et al. (2021b) create a synthetic dataset, BA-3Motif, with 3000
graphs. They take advantage of the Barabasi-Albert (BA) graphs as the base, and attach each base
with one of three motifs: house, cycle, grid. We train an ASAP model (Ranjan et al., 2020) that
realizes a 99.75% testing accuracy.

• Handwriting graph classification: Knyazev et al. (2019) transforms the MNIST images into 70K
superpixel graphs with at most 75 nodes for each graph. The nodes are superpixels, and the edges
are the spatial distances between them. There are 10 types of digits as the label. We adopt a
Spline-based GNN (Fey et al., 2018) that gains around 98% accuracy in the testing set.

• Scene graph classification: Wang et al. (2021b) select 4443 pairs of images and scene graphs
from Visual Genome (Krishna et al., 2017) to construct the VG-5 dataset (Pope et al., 2019). Each
graph is labeled with five categories: stadium, street, farm, surfing and forest. The regions of
objects are represented as nodes, while edges indicate the relationships between object nodes. We
train an AAPNP (Klicpera et al., 2018) that reaches 61.9% testing accuracy.

We compare our MatchExplainer with several state-of-the-art and popular explanation baselines,
which are listed below:

• SA (Baldassarre & Azizpour, 2019) directly uses the gradients of the model prediction with re-
spect to the adjacency matrix of the input graph as the importance of edges.

• Grad-CAM (Selvaraju et al., 2017; Pope et al., 2019) uses the gradients of any target concept such
as the motif in a graph flowing into the final convolutional layer to produce a coarse localization
map highlighting the important regions in the graph for predicting the concept.

• GNNExplainer (Ying et al., 2019) optimizes soft masks for edges and node features to maximize
the mutual information between the original predictions and new predictions.
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Table 1: Comparisons of our MatchExplainer with other baseline explainers.
MUTAG VG-5 MNIST BA-3Motif

ACC-AUC ACC-AUC ACC-AUC ACC-AUC Recall@ 5

SA 0.769 0.769 0.559 0.518 0.243
Grad-CAM 0.786± 0.011 0.909± 0.005 0.581± 0.009 0.533± 0.003 0.212± 0.002
GNNExplainer 0.895± 0.010 0.895± 0.003 0.535± 0.013 0.528± 0.005 0.157± 0.002
PG-Explainer 0.631± 0.008 0.790± 0.004 0.504± 0.010 0.586± 0.004 0.293± 0.001
PGM-Explainer 0.714± 0.007 0.792± 0.001 0.615± 0.003 0.575± 0.002 0.250± 0.000
ReFine 0.955± 0.005 0.914± 0.001 0.636± 0.003 0.576± 0.0131 0.297± 0.0001

MatchExplainer 0.997 0.993 0.938 0.634 0.305
Relative Impro. 4.5% 8.6% 48.9% 8.1% 2.6%

• PGExplainer (Luo et al., 2020) hires a parameterized model to decide whether an edge is impor-
tant, which is trained over multiple explained instances with all edges.

• PGM-Explainer (Vu & Thai, 2020) collects the prediction change on the random node perturba-
tions, and then learns a Bayesian network from these perturbation-prediction observations, so as
to capture the dependencies among the nodes and the prediction.

• Refiner (Wang et al., 2021b) exploits the pre-training and fine-tuning idea to develop a multi-
grained GNN explainer. It has both a global understanding of model workings and local insights
on specific instances.

As the ground-truth explanations are usually unknown, it is tough to quantitatively evaluate the
excellence of explanations. There, we follow Wang et al. (2021b) and employ the predictive accu-
racy (ACC@ρ) and Recall@N as the metrics. Specifically, ACC@ρ measures the fidelity of the
explanatory subgraphs by forwarding them into the target model and examining how well it recovers
the target prediction. ACC-AUC is reported as the area under the ACC curve over different selec-
tion ratios ρ ∈ {0.1, 0.2, ..., 1.0}. Recall@N is computed as EG [|Gs ∩ G∗

S | / |G∗
S |], where G∗

S is the
ground-truth explanatory subgraph. Remarkably, Recall@N is only suitable for BA3-motif, since
this dataset is synthetic and the motifs are foregone.

5.2 CAN MATCHEXPLAINER FIND BETTER EXPLANATORY SUBGRAPHS?

5.2.1 QUANTITATIVE EVALUATIONS

To investigate the effectiveness of MatchExplainer, we conduct broad experiments on four datasets
and the comparisons are reported in Table 1. For MUTAG, VG-5, and BA3-Motif, we exploit
the whole training and validation data as the reference set. For MNIST, we randomly select 10%
available samples as the reference set to speed up matching. It can be found that MatchExplainer
outperforms every baseline in all cases. Particularly, previous explainers fail to explain GNNs well
in MNIST with ACC-AUCs lower than 65%, but MatchExplainer can reach as high as 93.8%. And if
we use the whole training and validation data in MNIST as the reference, its ACC-AUC can increase
to 97.2%. This phenomenon demonstrates the advantage of subgraph matching in explaining GNNs
when the dataset has clear patterns of explanatory subgraphs. Additionally, MatchExplainer also
achieves significant relative improvements over the strongest baseline by 8.6% and 8.1% in VG-5
and BA3-Motif, respectively.

Furthermore, it is also worth noting that MatchExplainer realizes nearly 100% ACC-AUCs
in each task but BA-3Motif. For BA-3Motif, we find that its predictive accuracy are
[0.31, 0.31, 0.31, 0.34, 0.49, 0.71, 0.97, 1.0, 1.0, 1.0] with different selection ratios. This aligns with
the fact that most motifs in this task occupy a large fraction of the whole graph. Once the selection
ratio is greater than 0.7, MatchExplainer is capable of figuring out the correct explanatory subgraph.

We visualize the explanations of MatchExplainer on MUTAG in Appendix B for qualitative evalua-
tions.

1These results are reproduced
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Table 2: Efficiency studies of different methods (in seconds).
Method Phase MUTAG VG-5 MNIST BA-3Motif

GNNexplainer
Training 186.0 1127.2 1135.4 66.1

Inference (per graph) 1.290 0.565 0.732 0.517
Training + Inference (total) 703.4 1644.6 1782.1 271.6

PG-Explainer
Training 186.3 286.3 1154.1 112.4

Inference (per graph) 0.056 0.094 0.025 0.020
Training + Inference (total) 208.6 309.5 1162.1 120.4

Refine
Training 1191.6 1933.3 5025.8 763.0

Inference (per graph) 0.068 0.107 0.026 0.027
Training + Inference (total) 1218.9 1959.7 5051.2 773.8

MatchExplainer
Training – – – –

Inference (per graph) 0.485 0.732 0.682 7.687
Training + Inference (total) 194.6 180.3 667.8 3052.1

5.2.2 EFFICIENCY STUDIES

We compute the average inference time cost for each dataset with different methods to obtain ex-
planations of a single graph. We also count the overall training and inference time expenditure, and
summarize the results in Table 2. Specifically, we train GNNExplainer and PG-Explainer for 10
epochs, and pre-train Refine for 50 epochs before evaluation. It can be observed that though prior
approaches enjoy fast inference speed, they suffer from long-term training phases. As an alternative,
our MatchExplainer is completely training-free. When comparing the total time, MatchExplainer
is the least computationally expensive in MUTAG, VG-5 and MNIST. However, as most motifs in
BA-3Motif are large-size, MatchExplainer has to traverse a large reference set to obtain appropriate
counterpart graphs, which unavoidably results in spending far more time.

5.3 CAN MATCHDROP GENERALLY IMPROVE THE PERFORMANCE OF GNNS?

5.3.1 IMPLEMENTATIONS

We take account of two backbones: GCN (Kipf & Welling, 2016), and GIN (Xu et al., 2018) with
a depth of 6. Similar to Rong et al. (2019), we adopt a random hyper-parameter search for each
architecture to enable more robust comparisons. There, DropNode stands for randomly sampling
subgraphs, which can be also treated as a specific form of node dropping. FPDrop is the opposite
operation of our MatchDrop, where the subgraph sampling or node dropping is only performed
in the explanatory subgraphs while the rest remains the same. We add FPDrop as a baseline to
help unravel the reason why MatchDrop works. PGDrop is similar to MatchDrop, but uses a fixed
PGExplainer (Luo et al., 2020) to explore the informative substructure. The selection ratios ρ for
FPDrop, PGDrop, and MatchDrop are all set as 0.95.

5.3.2 OVERALL RESULTS

Table 3 documents the performance on all datasets except BA-3Motif, since its testing accuracy has
already approached 100%. It can be observed that MatchDrop consistently promotes the testing
accuracy for all cases. Exceptionally, FPdrop imposes a negative impact over the performance of
GNNs. This indicates that false positive sampling does harm to the conventional graph augmentation
methods, which can be surmounted by our MatchDrop effectively. On the other hand, PGDrop also
gives rise to the decrease of accuracy. One possible reason is that parameterized explainers like
PGExplainr are trained on samples that GNNs predict correctly, so they are incapable to explore
explanatory subgraphs on unseen graphs that GNNs forecast mistakenly.
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Table 3: Testing accuracy (%) comparisons on different backbones with and without MatchDrop.
Dataset Backbone Original FPDrop DropNode PGDrop MatchDrop

MUTAG GCN 0.828± 0.004 0.803± 0.017 0.832± 0.008 0.825± 0.02 0.844±0.006
GIN 0.832± 0.003 0.806± 0.020 0.835± 0.009 0.828± 0.01 0.845±0.007

VG-5 GCN 0.619± 0.003 0.587± 0.014 0.623± 0.007 0.604± 0.002 0.638±0.008
GIN 0.621± 0.004 0.593± 0.018 0.622± 0.006 0.600± 0.004 0.630±0.003

MNIST GCN 0.982± 0.001 0.955± 0.008 0.982± 0.002 0.975± 0.003 0.986±0.002
GIN 0.988± 0.001 0.959± 0.005 0.989± 0.001 0.979± 0.002 0.990±0.001

6 RELATED WORK

6.1 EXPLAINABILITY OF GNNS

Though increasing interests have been appealed in explaining GNNs, the study in this area is still
insufficient compared to the domain of images and natural languages. Generally, there are two
research lines. The widely-adopted one is the parametric explanation methods. They run a pa-
rameterized model to dig out informative substructures, such as GNNExplainer (Ying et al., 2019),
PGExplainer (Luo et al., 2020), and PGM-Explainer (Vu & Thai, 2020). The other line is the non-
parametric explanation methods, which employ heuristics like gradient-like scores obtained by back-
propagation as the feature contributions (Baldassarre & Azizpour, 2019; Pope et al., 2019; Schnake
et al., 2020). Nevertheless, the latter usually shows much poorer results than the former parametric
methods. In contrast, our MatchExplainer procures state-of-the-art performance astonishingly.

6.2 GRAPH AUGMENTATIONS

Data augmentation has recently attracted growing attention in graph representation learning to
counter issues like data noise and data scarcity (Zhao et al., 2022). The related work can be roughly
broken down into feature-wise (Zhang et al., 2017; Liu et al., 2021b; Taguchi et al., 2021), structure-
wise (You et al., 2020; Zhao et al., 2021b), and label-wise (Verma et al., 2019) categories based on
the augmentation modality (Ding et al., 2022). Among them, many efforts are raised to augment
the graph structures. Compared with adding or deleting edges (Xu et al., 2022), the augmentation
operations on node sets are more complicated. A typical application is to promote the propagation of
the whole graph by inserting a supernode (Gilmer et al., 2017), while Zhao et al. (2021a) interpolate
nodes to enrich the minority classes. On the contrary, some implement graph or subgraph sampling
by dropping nodes for different purposes, such as scaling up GNNs (Hamilton et al., 2017), en-
abling contrastive learning (Qiu et al., 2020), and prohibiting over-fitting and over-smoothing (Rong
et al., 2019). Nonetheless, few of those graph sampling or node dropping approaches manage to find
augmented graph instances from the input graph that best preserve the original properties.

7 CONCLUSION

This paper proposes a subgraph matching technique called MatchExplainer for GNN explanations.
Distinct from the popular trend of using a parameterized network that lacks interpretability, we de-
sign a non-parametric algorithm to search for the most informative joint subgraph between a pair of
graphs. Furthermore, we combine MatchExplainer with the classic graph augmentation method and
show its great capacity in ameliorating the false positive sampling challenge. Experiments convinc-
ingly demonstrate the efficacy of our MatchExplainer by winning over parametric approaches with
significant margins.
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A EXPERIMENTAL DETAILS

Explaining GNNs. All experiments are conducted on a single A100 PCIE GPU (40GB). For the
parametric methods containing GNNExplainer, PGExplainer, PGM-Explainer, and Refine, we use
the reported performance in Wang et al. (2021b). Regarding the re-implementation of Refine in
BA-3Motif, we use the original code with the same hyperparamters, and we adopt Adam opti-
mizer (Kingma & Ba, 2014) and set the learning rate of pre-training and fine-tuning as 1e-3 and
1e-4, respectively.

Graph augmentations. All experiments are also implemented on a single A100 PCIE GPU
(40GB). We employ three sorts of different GNN variants (GCN, GAT, and GIN) to fit these datasets
and verify the efficacy of various graph augmentation methods. We employ Adam optimizer for
model training. For MUTAG, the batch size is 128 and the learning rate is 1e-3. For BA3-Motif, the
batch size is 128 and the learning rate is 1e-3. For VG-5, the batch size is 256 and the learning rate
is 0.5 * 1e-3. We fix the number of epochs to 100 for all datasets.

B EXPLANATIONS FOR GRAPH CLASSIFICATION MODELS

In this section, we report visualizations of explanations in Figure 2.

Prediction:

Mutagenic

Prediction:

Non-

mutagenic

Figure 2: Explanatory subgraphs in Mutagenicity, where 50% nodes are highlighted.
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