
Incubating Text Classifiers Following User Instructions
with Nothing but LLM

Anonymous ACL submission

Abstract

In this paper, we aim to generate text classifica-001
tion data given arbitrary class definitions (i.e.,002
user instruction), so one can train a small text003
classifier without any human annotation or raw004
corpus. Compared with pioneer attempts, our005
proposed Incubator is the first framework that006
can handle complicated and even mutually de-007
pendent classes (e.g., “TED Talk given by Edu-008
cator” and “Other”) . Specifically, Incubator is009
an LLM firstly tuned on the instruction-to-data010
mappings that we obtained from classification011
datasets and descriptions on HuggingFace to-012
gether with in-context augmentation by GPT-4.013
We then refine Incubator by learning on the014
cluster centers of semantic textual embeddings015
to emphasize the uniformity and semantic di-016
versity in generations. We compare Incubator017
on various classification tasks with strong base-018
lines such as direct LLM-based inference and019
training data generation by prompt engineering.020
Experiments show Incubator is able to (1) per-021
form well on traditional benchmarks, (2) take022
label dependency and user preference into con-023
sideration, and (3) enable logical text mining024
by incubating multiple classifiers.025

1 Introduction026

Text classification plays a vital role in many nat-027

ural language processing (NLP) systems, such as028

email system (Vinitha and Renuka, 2024), text min-029

ing (Allahyari et al., 2017), and recommender sys-030

tems (Mooney and Roy, 2000).031

Different from the traditional supervised way to032

build a text classifier, which fine-tunes models on033

human annotations (Zhang et al., 2015), zero-shot034

text classification reduces manual effort by build-035

ing classifiers with minimal inputs, such as label036

names (Wang et al., 2021; Zhang et al., 2023b;037

Wang et al., 2023a). These zero-shot methods are038

typically based on mining pseudo training data039

from massive raw texts with precise filtering algo-040

rithms, which unfortunately limits their application041
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Figure 1: A comparison of Incubator with different
methods for zero-shot text classification.

to simple labels. For more complex labels, their 042

distributions are extremely scarce in raw texts and 043

filtering algorithms struggle to recall these exam- 044

ples while maintaining their precision. 045

Large language models (LLMs), such as GPT- 046

3 (Brown et al., 2020), have been recently intro- 047

duced to address this problem with their proficient 048

capability to capture the nuance in complex labels. 049

Specifically, people prompt LLMs to generate data 050

based on each label, and then fine-tune small clas- 051

sifiers as the final production (Ye et al., 2022a,b). 052

Existing LLM-based zero-shot text classifica- 053

tion methods, while feasible, face two major chal- 054

lenges, (1) class definitions can go beyond a sim- 055

ple label name, such as “TED Talk given by Ed- 056

ucator” and (2) class definitions can depend on 057

each other. For example, the class “Other” is only 058

meaningful when seeing other classes; As shown 059

in Figure 1, the class “Optimistic” shall not con- 060

tain “Love” when “Love” itself presents as a class. 061

Therefore, the scope of the class with the same 062

textual definition can vary as other classes change. 063

We argue that the LLMs need further instruction- 064

tuning (Ouyang et al., 2022), particularly for classi- 065
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Figure 2: An overview of our framework to build Incubator.

fication data generation. Specifically, we leverage066

public classification datasets with descriptions for067

this tuning. This allows the user to control the LLM068

to generate useful training data for small models069

based on (1) label interdependency and (2) user070

preferences described in the instructions. Conse-071

quently, the LLM-based zero-shot text classifica-072

tion can be simplified as model incubation that073

“User requires a model by an instruction, the LLM074

(Incubator) then generates useful training data to075

incubate such a model.”076

In this paper, we first collect some pairs of077

dataset descriptions and training data samples on078

Huggingface (Wolf et al., 2019a), each formalized079

as a dictionary with each label as a key and a sam-080

ple as the value. These data are beneficial for In-081

cubator to learn label interdependency as the ex-082

amples from different classes are presented jointly.083

Then the data descriptions are manually converted084

to user instructions, which establishes a mapping085

from the user instruction to training data. These086

instructions are augmented by a very strong LLM087

(e.g., GPT-4) using in-context learning (ICL) (Dong088

et al., 2023b) and used to instruction-tune an open-089

source LLM (e.g., LLaMA-2-7b-hf) as our Incuba-090

tor. Note that we can leverage GPT-4 with ICL as091

Incubator too. We recommend open-source LLMs092

as Incubator because of open parameters, inference093

efficiency, and further fine-tuning.094

To alleviate the known negative impact of data095

bias on text classification (Dixon et al., 2018; Li 096

et al., 2021b; Jin et al., 2022) and bias in contents 097

generated by LLMs (Gallegos et al., 2023; Fang 098

et al., 2023), we propose a novel self-diversification 099

technique to increase the data uniformity and diver- 100

sity, utilizing the text representations from a text 101

embedder (Wang et al., 2022). Specifically, we 102

instruct the Incubator many times (e.g., 1024), and 103

then use a clustering algorithm (e.g., K-means) to 104

get the sample nearest to each cluster center, which 105

is considered very semantically different from one 106

another. These samples are incorporated in the 107

same batch to further instruct-tune Incubator to 108

increase the data uniformity and diversity. 109

We conduct experiments to test the instruction- 110

following ability of our Incubator on various tasks 111

to test its basic incubation ability, label interdepen- 112

dency awareness, and user instruction following 113

ability. These tasks involve incubating text classi- 114

fiers for (1) traditional benchmarks, (2) classifica- 115

tion tasks with “Other” as a label, and (3) classifi- 116

cation tasks with user customization for personal 117

preference. We include strong baselines such as 118

directly instructing the LLM to classify texts and 119

prompting LLMs to generate data for each label 120

separately. 121

Experiment results verify our Incubator to be 122

able to (1) incubate strong text classifiers that out- 123

perform the baselines, (2) consider the label inter- 124

dependency and follow the user preference in the 125
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instruction, (3) incubate multiple text classifiers126

and use logical conjunctions to realize advanced127

text mining systems.128

Our contributions in this paper are three-fold.129

• We propose the first instruction-tuning frame-130

work to learn the LLM as an Incubator, which131

incubates text classifiers following user instruc-132

tions.133

• We propose a novel self-diversification technique,134

which utilizes the cluster centers of generated135

samples to increase the uniformity and diversity136

in Incubator generation.137

• We conduct extensive experiments on benchmark138

datasets to demonstrate the superior accuracy of139

the incubated text classifiers.140

• We showcase how to apply Incubator to realize141

advanced text mining systems by incubating mul-142

tiple text classifiers with logical conjunctions1.143

2 Related Works144

2.1 Zero-shot Text Classification145

Traditional zero-shot text classification methods146

are based on text mining in massive raw texts with147

label names (Wang et al., 2021; Zhang et al., 2023b;148

Wang et al., 2023a). A related setup allows incorpo-149

rating some seed words for each class to strengthen150

the text mining precision (Wang et al., 2023b; Dong151

et al., 2023a). With the emergence of LLMs, many152

pioneer studies on LLM-based zero-shot text classi-153

fication propose to prompt LLMs with label names154

and fine-tune small classifiers on those generated re-155

sults (Ye et al., 2022a,b). However, these methods156

are substantially label-wise text generation, which157

fails to consider the whole classification task, in-158

volving label interdependency and user preference.159

Our work aims to fill in this blank by proposing160

a framework that builds customized classifiers ac-161

cording to user instructions.162

2.2 Instruction-tuning163

Following instructions (Zhang et al., 2023a) is a164

fundamental capability for Large Language Mod-165

els (LLMs), crucial for understanding and acting166

upon user commands, thus enhancing their appeal167

to user-specific applications. InstructGPT (Ouyang168

et al., 2022) represents an initial exploration into169

LLMs tailored to follow instructions, revealing170

their capacity to perform tasks as directed by users.171

1The datasets and models used in the experiments will be
released for reproductivity.

ChatGPT (OpenAI, 2023), with its superior ca- 172

pability to follow instructions, bolstered by rein- 173

forcement learning with human feedback (RLHF), 174

has enjoyed considerable acclaim both within and 175

beyond the language research community. Fur- 176

thermore, publicly available LLMs designed for 177

instruction-following, such as LLaMA (Touvron 178

et al., 2023a,b), offer a rich foundation for investi- 179

gating the ability of LLMs to execute instructions. 180

Instruction-tuning not only contributes to the suc- 181

cess of LLMs in text-to-text tasks (Zhang et al., 182

2023a), but is also able to customize image gen- 183

eration (Chae et al., 2023) and text embeddings 184

(Peng et al., 2024). Our work follows this trend 185

to instruction-tune LLMs as Incubator, which cus- 186

tomize classifiers according to user instructions. 187

2.3 Model Incubation 188

The area closest to model incubation is symbolic 189

distillation (West et al., 2022; Li et al., 2023), 190

which distills a teacher model into a different 191

type of student model. Those student models can 192

function very differently from the initial language 193

modeling teacher, such as commonsense reason- 194

ing (West et al., 2022) and information extraction 195

(Zhou et al., 2023). Another relevant domain is 196

training data generation including augmentation. 197

Besides classification data generation (Ye et al., 198

2022a,b; Peng et al., 2023), there also exists gen- 199

eration pipelines for question answering (Do et al., 200

2023; Gou et al., 2023) and natural language gen- 201

eration (Xu et al., 2021). Model incubation differs 202

from previous works as it takes user instruction as 203

the input, which allows a more user-oriented model 204

customization for personal usage. 205

3 Our Incubator Framework 206

Figure 2 offers an overview of our Incubator frame- 207

work, including two stages, (1) Instruction-tuning 208

and (2) Self-diversification. The instruction- 209

tuning stage utilizes the existing resources on the 210

Huggingface platform to learn an LLM as Incu- 211

bator to generate training data based on user in- 212

structions. The self-diversification stage further 213

improves the uniformity and diversity in Incuba- 214

tor generation with an auxiliary text embedder and 215

clustering. We now elaborate on the details of these 216

two stages. 217

3.1 Instruction-tuning for Incubator 218

Instruction-to-data Dataset We select 25 text 219

classification datasets on the Huggingface plat- 220
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form2 to build the initial instruction-to-data dataset221

for instruction-tuning, such as financial news, coun-222

terfactual reviews, and toxic conversations. For223

each dataset, we extract its description and sam-224

ple a few (we select 10) samples per class from it,225

which are formalized as Python dictionaries. The226

keys in the dictionary are labels and each label227

corresponds to one text data as the value. Conse-228

quently, we get 250 instruction-to-data samples as229

the initial dataset. We present a specific case inside230

the dataset in the Appendix B.231

ICL-based Augmentation Directly instruction-232

tuning the LLM on the initial dataset will likely233

introduce overfitting and bias to the Incubator due234

to the limited number of instructions (Song et al.,235

2023). Thus, we address these issues by data aug-236

mentation (Ye et al., 2024) and use ICL (Dong237

et al., 2023b) by GPT-4 (OpenAI, 2023) as the238

implementation (Ho et al., 2023). We show the239

specific prompt for in-context learning in Table 7240

of Appendix C. We have two in-context examples241

that map instructions to training data as Python242

dictionaries, which are randomly sampled in each243

query. Finally, we augment the instruction-to-data244

dataset to 12K samples. This dataset is then used245

to fine-tune the LLM as the Incubator.246

3.2 Self-diversification for Incubator247

Dataset uniformity and diversity are essential to248

text classification (Dixon et al., 2018) while the249

contents from LLMs are generally biased, espe-250

cially when sampling from a single instruction251

(Gallegos et al., 2023; Fang et al., 2023). Thus,252

we propose a novel self-diversification technique to253

improve the generation quality from our Incubator.254

The main idea is to instruction-tune the LLM on255

the same instruction with several semantically dif-256

ferent data samples. We refer to a pre-trained text257

embedder, specifically E5 (Wang et al., 2022), to258

calculate the semantic similarity (Chandrasekaran259

and Mago, 2022). In our implementation, we reuse260

the instructions in the instruction-tuning dataset.261

For each instruction, we generate many (We select262

1024) training data3 and encode the data into the263

latent embedding space. As the data are formalized264

as Python dictionaries, we concatenate the embed-265

dings of the values (texts) corresponding to a fixed266

order of keys.267

2https://huggingface.co/datasets
3Generally, the data share the same label set.

E(d) =
n⊕

i=1

E(d[li])

where E(·), d, li refer to the encoder, the data 268

(dictionary) and the i-th label. ⊕ represents the 269

concatenation operation and n represents the total 270

label number. After all data are encoded, we run a 271

K-means (We select K = 8) clustering algorithm 272

on the embeddings and find the K samples with 273

embeddings that are closest to the cluster centers. 274

These samples, together with the instruction, estab- 275

lish a one-to-many mapping that maps instruction 276

to very semantically diverse data samples. We in- 277

corporate these data in a batch of K and further 278

instruction-tune the LLM on it. Intuitively, this pro- 279

cedure will increase the appearance probability of 280

data with unique semantics to benefit the incubated 281

classifier. 282

4 Experiments 283

We conduct several experiments to evaluate the per- 284

formance of our Incubator. We include experiments 285

on traditional datasets, and revised datasets with 286

the label “Other”. We also evaluate the ability of 287

Incubator to handle complex personal labels and 288

even ones with conjunctive relationships. 289

4.1 Evaluations and Datasets 290

Towards a comprehensive evaluation of our Incuba- 291

tor, we organize the evaluation into three scenarios. 292

(1) Traditional Benchmarks We include 8 tradi- 293

tional text classification benchmarks, such as sen- 294

timent analysis classification (1) SST-2 (Socher 295

et al., 2013), (2) SST-5 (Socher et al., 2013), and (3) 296

Emotion (Saravia et al., 2018), topic classification 297

(4) AG News (Zhang et al., 2015), news location 298

classification (5) NYT-LOC (Mozzherina, 2013), 299

question type classification (6) TREC (Li and Roth, 300

2002), intent classification (7) SNIPS (Coucke 301

et al., 2018), and (8) sentiment classification to- 302

wards a particular public figure Hillary (Barbieri 303

et al., 2020). 304

(2) Label “Other” We also test the ability of In- 305

cubator to handle stronger label interdependency by 306

datasets with “Other”. We convert several datasets 307

by grouping minor categories based on the propor- 308

tion as a single “Other” label, with details men- 309

tioned in the Appendix D. These datasets include 310

unbalanced datasets: Emotion, NYT-LOC, and 311
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Method SST-2 SST-5 Emotion AG News NYT-LOC TREC SNIPS Hillary Average

Prompting 91.43 39.95 46.65 77.65 71.07 60.80 42.29 63.46 61.66

ZeroGen 82.04 39.37 45.40 65.57 78.62 59.10 89.78 57.97 64.73
ProGen 84.07 41.49 46.00 67.72 79.64 59.80 90.21 57.42 65.79
Incubator 90.01 46.06 46.55 69.46 81.86 71.40 93.57 67.31 70.78

-Diversification 85.45 45.29 46.80 69.91 83.58 63.60 91.07 64.01 68.71

Incubator w/ GPT-4 86.99 44.43 47.80 80.79 86.87 77.80 94.14 64.01 72.85

Table 1: Text Classification Benchmark Results. All methods are based on LLaMA-2 except for Incubator w/
GPT-4.

Massive (FitzGerald et al., 2022). These revised312

datasets will be also released for reproducibility313

(3) Complicated Class Definitions To further314

showcase the usefulness of Incubator, we come315

with several complicated instructions for Incubator316

to incubate text classifiers that will be later used317

to mine the desired texts from massive raw doc-318

uments, such as TED Talk Summary4, Steam319

Game Description5, and Text Message6.320

Note that all the datasets in our evaluations are321

excluded from the instruction-tuning data of Incu-322

bator.323

4.2 Implementation Details324

We implement Incubator by tuning LLaMA-325

2 (LLaMA-2-7b-hf) (Touvron et al., 2023b)326

on our constructed instruction-tuning dataset327

with AdamW optimizer (Loshchilov and Hutter,328

2019) and cosine annealing learning rate sched-329

uler (Loshchilov and Hutter, 2017). The specific330

hyperparameters for the optimization are shown in331

Table 6 in Appendix A.332

For all experiments, our Incubator is queried to333

generate 1024 data samples to incubate a small clas-334

sifier, which is selected as RoBERTa-Large (Liu335

et al., 2019). The RoBERTa is fine-tuned with the336

same optimizer and scheduler as for instruction-337

tuning and the hyperparameters for the incubation338

are also presented in Table 6.339

4.3 Compared Methods340

One can directly prompt the LLM, LLaMA-2341

(LLaMA-2-7b-hf), which is the same as the LLM342

used in Incubator, with all the labels and the input343

text in the prompt and ask it to categorize the text344

into one of the labels (Sun et al., 2023). We name345

this method as Prompting.346

4Huggingface: chirunder/gigant/ted_descriptions
5Huggingface: FronkonGames/steam-games-dataset
6Huggingface: chirunder/text_messages

We include strong baselines that generate train- 347

ing data without requiring massive raw texts as 348

follows. 349

• ZeroGen (Ye et al., 2022a): This method 350

prompts LLMs (LLaMA-2-7b-hf) to generate 351

texts based on label descriptions. Different 352

from our Incubator, ZeroGen handles each la- 353

bel separately. Towards a fair comparison with 354

our method, we formalize our instruction-tuning 355

dataset as the template used in ZeroGen to further 356

fine-tune the model. 357

• ProGen (Ye et al., 2022b): This method further 358

develops ZeroGen by an iterative ICL-based aug- 359

mentation. With the classifier obtained from Ze- 360

roGen, ProGen selects the most helpful data ac- 361

cording to the decision boundary of the classifier. 362

These data are used as in-context examples to 363

prompt the LLM to generate more helpful data 364

to strengthen the classifier. 365

Incubator w/ GPT-4: This is a variant of our 366

Incubator that prompts GPT-4 with in-context ex- 367

amples from the Huggingface platform and the 368

instruction to sample the training data. We present 369

this not as a baseline but to showcase that the Incu- 370

bator idea also applies to propriety LLMs. 371

All data generation baselines generate the same 372

amount of data (1024 per class) towards a fair com- 373

parison. 374

4.4 Text Classification Benchmark Results 375

The experiment results on traditional benchmarks 376

are shown in Table 1. The comparison between 377

ZeroGen and ProGen baselines verifies our Incu- 378

bator has a significant advantage over those la- 379

bel interdependency-agnostic methods, which in- 380

dicates the advantage of Incubator to consider the 381

full label set in the instruction. 382

Moreover, the self-diversification procedure is 383

shown to highly contribute to the performance of In- 384

cubator, which boosts the performances on 5 out of 385

8 datasets and achieves comparable performances 386
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Method Emotion NYT-LOC Massive

Prompting 43.15 62.11 57.67

ZeroGen 52.65 69.27 56.46
ProGen 52.80 69.64 57.16
Incubator 56.00 84.19 68.36

- Diversification 55.00 76.39 61.53

Incubator w/ GPT-4 53.40 78.36 73.84

Table 2: Results on datasets with the “Other” class.

on others. Thus, self-diversification is verified to387

be a reliable and beneficial technique to strengthen388

the Incubator.389

We also present the performances of direct in-390

ference based on LLaMA-2-7b-hf, which is gener-391

ally outperformed by the small LMs fine-tuned on392

datasets generated by LLMs. This result is consis-393

tent with the discovery that LLMs are better gen-394

erators than discriminators (Dai et al., 2023). This395

further supports incubating a small model for text396

classification from the LLM rather than directly397

prompting the LLM, not only for efficiency but398

also for performance improvement.399

Finally, we evaluate the ICL-based Incubator400

with GPT-4 as the backbone model. With a signifi-401

cantly larger amount of parameters, Incubator with402

GPT-4 outperforms the one based on LLaMA-2.403

This indicates larger backbone models can further404

scale up the performance of our Incubator. Also,405

tunable models can benefit from self-diversification406

to narrow the gap between the close-source GPT-407

4, which can also be improved once it becomes408

open-source for fine-tuning.409

4.5 Label “Other” Results410

We present the experiment results on datasets with411

miscellaneous (label “Other”) in Table 2. The412

awareness of the miscellaneous category is im-413

portant for classification (Li et al., 2021a), espe-414

cially when limited labels are known in a large415

corpus. For ZeroGen or ProGen, we use the label416

name “Other than ... (other labels)” to prompt417

for generation. We can observe a significantly418

larger gap between the Incubator and the label419

interdependency-agnostic methods, which shows420

the advantage of Incubator on datasets with mis-421

cellaneous. Furthermore, the self-diversification422

shows a more prominent improvement in perfor-423

mance. This phenomenon can be attributed to the424

requirement for a more diverse generation by the425

miscellaneous category.426

4.6 Complicated Class Definition Results 427

We further showcase how Incubator can be applied 428

to satisfy personal demands, such as mining items 429

preferred by an individual. For each raw corpus, 430

we propose four attributes a user might be inter- 431

ested in, such as “About AI” for TED Talks. For 432

each attribute, we create an instruction to build a 433

text classifier with two labels: the target attribute 434

and the miscellaneous label “Other”. We use the in- 435

cubated classifier to score each raw text and select 436

the texts with the top scores. For evaluation, we ask 437

GPT-4 and humans whether the mined texts satisfy 438

the demand with Precision@100 as the metric. 439

The text mining performance is presented in Ta- 440

ble 3. Incubator incubates strong text miners with 441

generally high precision on all setups. Remark- 442

ably, we achieve nearly or exactly 100% precision 443

on several targets. Moreover, our miners are vali- 444

dated to be able to handle different text domains, 445

enabling a broad application of our Incubator. 446

4.7 Incubation with Logical Conjunction 447

We further showcase how to utilize Incubator to 448

satisfy more complicated user demands. We in- 449

crease the label complexity by adding logical con- 450

junctions into labels, that are “and” (∧), “or” (∨), 451

and “not” (¬). The logical conjunctions represent 452

a finer-grained demand from the user. For instance, 453

one may want to search for texts that are “Positive 454

and about food”, as “Positive” ∧ “About food”. 455

To realize such finer-grained text mining, we 456

utilize the maneuverability of Incubator to incubate 457

multiple text miners and combine their scores with 458

logical probabilistic calculations as follows, 459
• P (LA ∧ LB) = P (LA)P (LB) 460
• P (LA ∨ LB) = P (LA) + P (LB)− P (LA ∧ LB) 461
• P (¬LA) = 1− P (LA) 462

where LA, LB are two labels used as the targets for 463

the incubation. Here we view the labels as indepen- 464

dent for simplification. We use the Text Message 465

corpus for text mining. For evaluation, we keep 466

the previous scenario unchanged. We compare two 467

types of incubation scenarios, 468

• Direct Incubation Incubator only incubates one 469

text miner with the full label name, such as “Pos- 470

itive and about food”. 471

• Conjunctive Incubation first decomposes the 472

label name into multiple ones with correspond- 473

ing conjunctions, like decomposing “Positive 474

and about food” into “Positive” ∧ “About food”. 475

Then the score is calculated based on logical 476

probabilistic calculations. 477
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Target TED Summary Target Steam Game Target Text Message

“About AI” 100%/100% “Action” 90%/90% “Positive” 98%/98%
“About Climate” 100%/100% “RTS” 74%/77% “Request” 97%/98%
“By Educator” 94%/94% “Card” 100%/100% “About Food” 98%/98%
“Funny” 75%/80% “Relaxing” 100%/100% “Work-related” 83%/86%

Table 3: Precision@100 (GPT-4 Evaluation/Human Evaluation) of incubated retrievers on unannotated corpora.

Logic Target Direct Incubation Conjuctive Incubation

L1 ∧ L2 “Positive and about food” 85%/85% 88%/88%
L1 ∨ L2 “Positive or negative” 99%/99% 100%/100%
L1 ∧ ¬L2 “Positive but not excited” 74%/72% 89%/86%
L1 ∧ L2 ∧ L3 “Positive, about food, and with dish name” 40%/43% 84%/85%

Table 4: The performance of incubated retrievers with logical conjunctions.

The experiment results are presented in Table 4.478

Conjunctive incubation generally outperforms di-479

rect incubation, which shows the benefit of this480

strategy. As conjunctive incubation also shows481

strong capability on three logical variables, this482

shows how Incubator can be customized to more483

complex settings.484

4.8 Case Studies on Generated Training Data485

To more concretely demonstrate the intermediate486

processes in the incubation, we launch a study on487

the generated texts from the Incubator for classifier488

incubation. We demonstrate the generated training489

data for data mining in the text message corpus in490

Table 5. For each column, there is a piece of text491

generated with the target value and the other one in492

the same Python dictionary with the miscellaneous493

label “Other”.494

The most straightforward observation is the gen-495

erated data correctly follows the label, which guar-496

antees the foundational precision of the incubated497

classifiers. Also, the generated texts incorporate498

a wide range of syntactic structures and semantic499

contents for the training data diversity. For the500

miscellaneous label, we can observe the Incubator501

to cover various potential negative labels. For in-502

stance, the miscellaneous category for “About food”503

includes labels such as “About meeting”, “About504

sports”, “About movie”, which broadens the nega-505

tive set understood by the incubated classifier.506

Finally, we can view some attribute correlations507

between the data in the same generated Python508

dictionary. In the “Positive” example, the three509

samples have the same topic “Project”, “Travel”,510

and “App”. With these data different in the target511

attribute but same in other attributes, the incubated512

classifier can better focus on the target attribute and513
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Figure 3: Incubation dataset size analysis.

eliminate spurious correlations. 514

5 Analyses of Incubator 515

We analyze the properties of the Incubator to 516

deepen the understanding and guide the usage. 517

5.1 Incubation Dataset Size 518

We first adjust the number of data generated from 519

Incubator to investigate how the incubated classifier 520

will be affected. We conduct experiments on TREC 521

and SNIPS datasets with incubation data size from 522

4 to 1024. The results are illustrated in Figure 3. 523

From the shown scaling-up trend, there is a clear 524

threshold (64) on the dataset size, after which the 525

performance gained from generating more training 526

data becomes limited. Thus, we recommend Incu- 527

bator users generate at least 64 data samples for the 528

classifier incubation. 529

5.2 Instruction Robustness 530

We then check the robustness of Incubator to in- 531

structions by testing with different but semantically 532

equal instructions. We rephrase each instruction 533

for TREC and SNIPS into 10 different versions and 534

then run the incubation pipeline for evaluation. 535

The robustness evaluation is presented in Fig- 536

ure 4. We can observe the lexical and syntactical 537
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Target Generated data with target label Generated data with misc label

Hey! I love the new update. It’s awesome! Just checking in on the progress of the project.
“Positive” Wow, you got the tickets for our dream holiday! I’ve booked the flights for next week.

I absolutely love the new design of the app. I’m having trouble logging into my account.

Can you send me the report by end of today? What did you do during the weekend?
“Request” Could you please bring me a coffee? How was your day?

Can you pass me the salt? Hey, did you catch the game last night?

The pizza at Mario’s is the best in town! I have an important meeting at 10am tomorrow.
“About food” I’m craving for a burger and fries! I might go for a run later.

I just tried that new sushi place. Totally worth it! Hey, what time does the movie start?

We need to finalize the report by tomorrow. Hey, do you want to catch a movie tonight?
“Work-related” The meeting is scheduled at 3 PM tomorrow. Do you want to catch up for dinner tonight?

The project deadline has been extended. Hey! What are you up to this weekend?

Table 5: The performance of incubated retrievers with logical conjunctions.
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Figure 4: Analysis of Incubator instruction robustness.
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Figure 5: Analysis of Incubator instruction robustness.

attributes, which is changed in the rephrasing, have538

limited impact on the incubated result. Thus, we539

conclude our Incubator is robust against the varia-540

tions of the same instruction.541

5.3 Efficiency Analysis542

We analyze the time efficiency of the Incubator to543

explore its efficiency in deployment. For dataset544

generation, we run the LLaMA model with the ac-545

celeration by the vllm package (Kwon et al., 2023).546

For the small classifier incubation, we fine-tune the547

model with the trainer in the transformers pack-548

age (Wolf et al., 2019b). We evaluate the time for549

dataset generation and classifier incubation (fine-550

tuning). The time is obtained by averaging the551

results in experiments on the 8 traditional bench-552

marks, which is illustrated in Figure 5. All experi-553

ments are run on a single A100 device.554

For dataset generation, the average time is 555

67.53s. The generation times for all benchmarks 556

are distributed around this average since vllm has 557

a fixed max length limitation for decoding. For 558

classifier incubation, the time is almost linearly de- 559

pendent on the number of labels, which shows an 560

average of 15.16s time cost per class. 561

Thus, the time efficiency of our Incubator is fea- 562

sible to incubate personal classifiers. Also, the 563

main time cost happens in classifier incubation 564

rather than calling the LLM for dataset generation, 565

especially when the label number is large. 566

6 Conclusion and Future Work 567

In summary, this paper proposes a new framework 568

for model incubation by querying an instruction- 569

tuned LLM. Our model, Incubator, is pre-trained 570

on Huggingface resources and ICL-based augmen- 571

tation. The Incubator is further strengthened by a 572

novel self-diversification technique with the help 573

of text embedders. We show the Incubator to be 574

able to incubate strong classifiers for traditional 575

benchmarks and customized text mining, following 576

the demand written in the input instructions. We 577

also include comprehensive analysis to explore the 578

properties of the Incubator for deeper understand- 579

ing and better application guidance. 580

Future work will concentrate on two tracks. 1) 581

Improve the incubation quality: We can incor- 582

porate existing or new methods to improve data 583

generation quality like higher diversity and harder 584

negative samples. 2) Broaden the scope of incu- 585

bated models: The incubated model can be more 586

than classifiers, such as question responder and 587

text summarizer. These models might require more 588

complicated instruction understanding and other 589

techniques for model enhancement. 590
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Limitation591

While Incubator shows strong performance in pro-592

ducing reliable and customized classifiers, it has593

some limitations that can be further improved in594

future works.595

Instruction Effort: Current Incubator requires596

the user to include all label names in the instruction,597

which adds effort for the user to create instructions,598

especially when the label number is large or the599

user is unclear about the label names. A combina-600

tion with existing work (Wang et al., 2023a) might601

be a direction to reduce user efforts further.602

LLM Knowledge Dependence: As an LLM-603

only methods, the Incubator is only able to gener-604

ate text within its knowledge scope. For emerging605

labels, the Incubator still has to rely on delicate ex-606

planations or in-context examples to handle them.607
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A Hyperparameter971

Hyperparameter Instruction-tuning Incubation

Initial LR 2× 10−5 1× 10−5

Batch Size 16 32
Epoch 3 8

Table 6: The hyperparameter setups in our experiments.

B Instruction-tuning Dataset Processing972

Dataset: app_reviews

Description: It is a large dataset of Android applications belonging to 

23 different apps categories, which provides an overview of the types 

of feedback users report on the apps and documents the evolution of 

the related code metrics. The dataset contains about 395 applications of 

the F-Droid repository, including around 600 versions, 280,000 user 

reviews (extracted with specific text mining approaches)

Instruction: Please create a model to anticipate the star rating to 

Android application reviews.

Data: {“1 star”: …, “2 star”: …, “3 star”: …, “4 star”: …, “5 star”: …, }

Figure 6: A case in our instruction-tuning dataset for
Incubator.

C Dataset Generation Prompt973

Role Message

User Generate an imaginative instruction to
build a text classifier and its correspond-
ing samples.

GPT-4 “Input”: “Instruction 1”
“Output”: {“Label 1,1”: “Data 1,1”,
“Label 1,2”: “Data 1,2”, ...}

User Generate an imaginative instruction to
build a text classifier and its correspond-
ing samples.

GPT-4 “Input”: “Instruction 2”
“Output”: {“Label 2,1”: “Data 2,1”,
“Label 2,2”: “Data 2,2”, ...}

User Generate an imaginative instruction to
build a text classifier and its correspond-
ing samples.

Table 7: The prompt used in ICL-based augmentation.

D Revised Dataset with Miscellaneous 974

Dataset Label Other

Emotion Joy, Sadness Love, Anger, Fear, Surprise

NYT-LOC America, Iraq, Britain, German, Canada,
Japan, China France, Russia, Italy

Massive
Calendar, Play, Lists, News, Recommendation,
QA, Email, IoT, Datetime, Social, Alarm, Music,
Weather, Transport Audio, Takeaway, Cooking

Table 8: The revision on datasets for the label “Other”.

As shown in Table 8, the minor categories with 975

low proportion are merged together to an “Other” 976

class. 977
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