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Abstract

This paper presents a method of passive non-line-of-
sight (NLOS) imaging using polarization cues. A key ob-
servation is that the oblique light has a different polarimet-
ric signal. It turns out this effect is due to the polariza-
tion axis rotation, a phenomena which can be used to bet-
ter condition the light transport matrix for non-line-of-sight
imaging. Our analysis and results show that the use of a
polarizer in front of the camera is not only a separate tech-
nique, but it can be seen as an enhancement technique for
more advanced forms of passive NLOS imaging. For ex-
ample, this paper shows that polarization can enhance pas-
sive NLOS imaging both with and without occluders. In all
tested cases, despite the light attenuation from polarization
optics, recovery of the occluded images is improved.

1. Introduction

Non-Line-of-Sight (NLOS) imaging is a very active re-
search topic in the field of computational imaging. The goal
is to visualize a scene that is hidden from the camera’s line
of sight, e.g., “looking around the corners”. Several prior
works have tackled this problem, using methods that range
from (a) time of flight imaging [40\ (18| 26} [30} |25} 128}, 137,
6l 114} 10, 41} 138l 29, 2l]; (b) wave optics [21} [11} [10} |41]];
(c) shadows [5, 136, 142 3, 135]]; and even (d) machine learn-
ing [34, 19, 8]]. This paper takes a different tack, proposing
the use of polarization cues to re-examine the NLOS prob-
lem.

Of particular interest is passive NLOS imaging where
one is unable to control the probing illumination. Such
limited programmable control makes scene reconstruction
very challenging—existing passive NLOS methods [32] of-
fer blurry reconstructions, as compared to active NLOS.
This “blur” in existing passive NLOS methods can be math-
ematically linked to the scene’s light transport matrix. To
obtain better recovery, previous work aims to reduce the
condition number of the light transport matrix. This has
been done, for example, by placing a partial occluder in the
scene to create high-frequency shadows [32].
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Our method is analogous to prior approaches in passive
NLOS, but we make a first attempt to use (linear) polariza-
tion cues to improve the conditioning of the light transport
matrix. Our method creates high-frequency variation in the
light transport matrix by, ideally placing the camera at the
Brewster angle of polarization. In this oblique angle, the
polarizer’s axis varies and changes the intensity depending
on the oblique angle. We refer this effect as effective an-
gle of polarizer. We show in the paper that this oblique
observation provably changes the conditioning of the light
transport matrix. Further, these benefits of polarization can
apply to multiple configurations for passive NLOS. For ex-
ample, polarization can be used to enhance occluder-based
passive NLOS or direct passive NLOS imaging.

In summary, we make the following contributions:

e We bring the polarizer’s effective angle theory to the
computer vision field. The polarizer’s axis depends on
both zenith and azimuth angle of the light ray, which
conveys rich angular information;

e We demonstrate that the polarization cues are able to
improve the conditioning of the light transport for pas-
sive NLOS imaging without scene modifications; and

e We demonstrate that the same polarization cues also
improve other passive NLOS approaches, including
those that use partial occluders.

Scope: While polarization is a fresh signal for use in
NLOS imaging, the quality of passive NLOS (after po-
larization enhancement) does not approach that of active
methods, which have been shown to obtain extremely high-
fidelity reconstructions. However, our polarization en-
hancement is fundamentally more general than the results
we present here. A future extension details how the pro-
posed technique could apply to active NLOS imaging, cov-
ered at the end of this paper as the appendix.

2. Related Work

In this section, we briefly review the related work re-
garding NLOS imaging. For a more comprehensive review



of NLOS imaging, the readers are directed to [22].

Active NLOS imaging. NLOS imaging was first pro-
posed in the context of active, time-resolved imaging by
Raskar and Davis [31]. Later work experimentally demon-
strated and theoretically evolved these ideas through the
use of time of flight imagers, in particular streak cam-
eras [40, 39| 18| 26], amplitude-modulated continuous-
wave cameras [13] [15], and single photon avalanche
diodes (SPAD) and SPAD cameras [30| 25| 28| 37 (6, [14]
411, 38, 29, 2]. There are other methods of perform-
ing active NLOS imaging that do not require time resolved
information. For example, a coherent light source reveals
occluded cues [4]. An object movement can also be tracked
by speckle [33] or synthesis-based approaches [19]. Re-
cent work has used a standard RGB camera and laser source
to realize active NLOS [9]. While active illumination in-
creases the scene information, we choose to focus on en-
hancing the lower-performing, but more flexible configura-
tion of passive NLOS imaging.

Passive NLOS imaging There are fewer works that study
the hard problem of passive NLOS. One promising ap-
proach is to use shadows and corners. Bouman ez al. [3]
use the high-frequency detail of a corner to track occluded
scenes (this work is partially inspired by accidental pin-
hole cameras [36]). An extension of this is proposed in
[32, /42, [12], where a partial obstacle is placed between the
wall and NLOS scene. An orthogonal approach is to im-
age thermal scenes around the corner. Here, heat is pas-
sively emitted by the human body, which simplifies the
NLOS problem to a 1-bounce reflection, enabling high-
quality video of a human figure, in real-time [23] [I7]. Our
technique is complementary, as polarization can enhance
the quality of most methods referenced above.

Analysis of NLOS imaging The recoverability of NLOS
imaging depends on many factors. Kadambi ez al. [16] pro-
pose the first bound on the spatial resolution of NLOS imag-
ing, and in particular active NLOS. Liu et al. analyze
the feature visibility of SPAD-based NLOS imaging. Saun-
ders et al. [32] analyze the aperture of NLOS imaging us-
ing the size of the LOS wall and the obstacles. Pediredla et
al. [29] propose a temporal focusing using ellipsoidal pro-
jection. In this paper, we follow the structure of previous
techniques in analyzing how the condition number of the
light transport matrix is favorably modified through the use
of polarization cues.

Effective angle of polarizer In the LCD development
field, the light leakage of polarizer from oblique view is
a major problem [43] 27]. While they aim to cancel this
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Figure 1: Diagram of the geometry of the problem. The
camera is looking at the wall and the scene point is out of
sight of the camera. On a microfacet model, each reflection
path can be considered as a sum of mirror reflections, hence
the polarization is preserved.

effect, we bring this effect to improve the NLOS imaging
problem.

3. Light Transport: Passive NLOS Imaging

Suppose a camera is pointed toward the line-of-sight
(LOS) wall and the scene is non-line-of-sight (NLOS) to the
camera as shown in Fig. [T, Without loss of generality, we
consider that the NLOS scene is a set of point light sources.
Then, the intensity I (c) at the wall patch c is given by

I(c) = //SES T'(s,c)l(s)ds, (1)

where s is a point of in the scene S, I(s) is the intensity of
the scene point s, and 7'(s, c) is the light transport from the
scene point s to the camera via the wall patch c. It is able to
discretize and superpose the observation, such that

i=TI, (2)

where i is the vectorized observations, T is the light trans-
port matrix, and 1 is the vectorized scene intensities. If the
light transport matrix is known or generatable, the NLOS
intensities can be estimated by least squares sense as

1=THi, (3)

where T+ is the pseudo-inverse matrix of T. The stabil-
ity of solving this linear system depends on how small the
condition number of the matrix is. A key goal of previous
methods has been to improve the conditioning of Eq. (3).

Previous methods of conditioning Eq. (3): Perhaps the
simplest way to decrease the condition number is to use
a favorable bidirectional reflectance distribution function
(BRDF). A trivial case is the mirror, which makes the low-
est condition number because the light transport matrix be-
comes identity. An opposite example is the diffuse wall,
which makes a very large condition number because the sin-
gle light source contributes to the all camera pixels. The



conditioning of using other materials that have specularity
are between the mirror and the diffuse wall because they
somehow preserve high frequency component. Extended
discussion on this topic can be found in [16]. Another
way to improve the conditioning is to place obstacles in the
scene, such as putting a partial obstacle between the wall
and the scene. Saunders et al. place an arbitrary ob-
stacle between the camera and the wall to block the light
rays. This makes a shadow on the wall, which contains
high-frequency information. For more detail, the readers
are referred to papers that use obstacles [32, |42, [12]. Both
of these approaches modify the scene.

4. Light Transport: Polarized NLOS Imaging

We aim to minimize modifications to the scene for con-
ditioning Equation[3|using polarization. Hence, we only use
a polarizer at the camera side. This approach is also able to
conditioning the existing method using partial occluders. If
putting a partial occluder to the scene is tolerable, combin-
ing the existing method and the proposed method improves
the conditioning further.

By putting a polarizer in front of the camera, a small
angular difference of light paths makes a big intensity vari-
ance, thus the conditioning is improved compared to a nor-
mal observation without polarizer. A key observation of this
paper is that the polarizer’s effective axis is slightly rotated
if the light ray is oblique to the polarizer. In other words,
the perpendicular light rays are blocked while oblique light
rays pass through the polarizer. In the following section,
we reveal how the polarization light transport is modeled in
passive NLOS imaging.

Polarized NLOS scenes If the NLOS scene itself is po-
larized, then we can exploit cross-polarization effects to im-
prove the NLOS problem even more. Further detail is de-
ferred to the supplementary material.

4.1. Effective angle of polarizer

We introduce the effective angle of a polarizer, which
is well studied in the area of LCD development [43] 27].
When the light ray is oblique to the polarizer, the light is
‘leaked’ even if two linear polarizers are put crossed. This
is because the effective polarization axis of the polarizer de-
pends on the azimuth and zenith angle of the incident light
ray. Figure [2[a, b) shows pictures of the same scene from
top and oblique views. While the light from the LCD is
blocked on the top view, the content of the LCD is slightly
visible from oblique view even though the polarizer is put
crossed. This effect is angle dependent, therefore it can be
used for analyzing NLOS observations.

Light leakage occurs because the effective angle of the
polarizer changes due to the light ray’s azimuth and zenith
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Figure 2: Polarizer from oblique view. While the LCD
monitor is invisible from top view (a), it is slightly visible
from certain oblique views depending on the zenith and az-
imuth angles (b). (c) The original angle of polarizer from
top view. (d) The effective angle from oblique view. The
polarizer axis is slightly declined. (e) Light leakage pattern
of crossed polarizers from oblique view. These polarizers’
original angles are 45° and —45°, respectively.

angles. From a geometrical calculatiorﬂ the effective angle
@' from the incident light viewpoint is represented as

cos(z)

T\
tan " = tan(f —a)’

)
where @ is the original polarizer’s axis, ie., the polarizer’s
axis from top view, a and z are azimuth and zenith angles of
the incident ray, respectively. Figure[Z[c - e) shows the orig-
inal and effective angles of polarizers and the light leakage
pattern of crossed polarizers. This pattern can be utilized to
improve the NLOS imaging.

4.2. Polarization light transport on rough surface

Now, we consider the polarization light transport model
on a rough surface. In this paper, we employ a micro-
facet model for the rough surface, shown in the inset of
Fig. [T, The surface normal of each facet that reflects the
light source to the camera is identical to the half vector of
the viewing and lighting vectors. Therefore, the light trans-
port T'(s,c) from the scene point s to the camera via the
wall patch c is represented as

T(S’ C) = Q(wiv wO)/\(wia Wo, q)7 (5)

. —_ _Ss—c¢
wi Ts—cll,
— _90—C
“o = To—clly’

IRefer supplementary for the detail.



where € is the BRDF of the rough surface, w, is the view-
ing vector, wj is the incident vector, o is the camera posi-
tion, A is the light leaking/blocking effect due to polarizer,
and q is the polarizer’s axis. The polarizer modulates light
transport by introducing the leakage term A, which makes
the improvement to the light transport matrix.

As we assume the microfacet model, the reflection on
each facet can be modelled as a Fresnel reflection. The
Fresnel reflection is known to be partially polarized and re-
flectances of s and p polarization components R, and R,
can be represented as

_ tan®(¢ — ¢')
R,(¢) = tan2(6+ &)’ (6)
_ sin’*(¢—¢')
R3(¢) - Sin2(¢+¢l)’ (7)
¢ =sin! &f’), ®)

where ¢ is the incident angle, ¢’ is the refractive angle, and
7 is the refractive index of the wall.

When the incident and reflection angle is at Brewster an-
gle, the reflected light is completely linearly polarized. This
is because the reflectance of p polarization becomes zero.
By putting the camera at near the Brewster angle position
as shown in Fig. [3] highly polarized observations can be ob-
tained, thus the observation can be analyzed with a polarizer
in front of the camera.

Placing a polarizer in front of the camera such that the
polarized reflection is blocked at a specific light path, leads
to the observation of a light leakage pattern. Because the
other light paths from neighboring wall points are oblique
to the polarizer’s blocking axis, the leakage pattern can be
observed as shown in the right of Fig. 3]

The leakage pattern A can be modeled as

AMwi, wo,q) = Ry(0r) cos(0') + Rs(0r)sin(8'), (9)

'0;1 = %cos_l(wo - wj)
-1 (=)
¢ =tan (-
gz = cos™ ! (—wonp)

f—a =cos~!(—wq)
wo+cos(z)np

w = _—2°7 7/ P
"wo+COS(Z)np”2

\

where q is the polarizer’s axis, 6}, is the half angle of the
reflection path, @’ is the effective angle of the polarizer, and
n,, is the normal of the polarizer.

Combination with the existing method Polarization
light transport can be combined with existing method such
as putting partial occluder in the scene [32]. The light trans-
port matrix in this case becomes

T(c,s) =T'(c,s)A(wi, wo,q), (10)

LOS wall

Camera Actual observation

Brewster angle
s polarization only on this surface

Figure 3: The Brewster angle geometry. Putting the cam-
era so that light path is at Brewster angle, only one direc-
tional polarization (s polarization component) is reflected
to the camera. Because there is no effect from p polariza-
tion, it is possible to observe a light leakage pattern only
using a polarizer in front of the camera.

where 7" is the light transport matrix of the existing method.
Again, the difference is the existence of A and this improves
the condition number of the light transport matrix.

4.3. Other factors

Polarized scene Although most NLOS scenes are unpo-
larized, in the rare cases where the NLOS scene is polarized,
our method is extremely advantageous. Consider that if the
scene is polarized such as an LCD monitor, Eq. (9) can be
rewritten as

AMwi, wo,q) = I,R,(0r) cos(0”) + I, R,(6r) sin(8'),
(11)

where I, and I is the intensity of p and s polarization com-
ponents of the scene. Here, it is possible to place the polar-
izer at an angle where one of the polarization components
becomes zero. Therefore, there is no restriction of having
the capture setup oriented to the Brewster angle, as in the
general case we have described above. We expand on this
discussion in the supplement, and show results.

Why not rotate the polarizer? This paper relies on tak-
ing 1 image from a polarization filter at 90 degrees (paral-
lel to the reflection plane). A natural question is whether
the filter can be rotated to take multiple pictures. Since we
rely on a leakage pattern, there is little benefit to captur-
ing multiple images, as the variation in polarization images
at angles other than 90 degrees is subtle, while the capture
effort increases linearly. Very specifically, the key improve-
ment from using polarizers comes from the ‘dark band’ in
the image as shown in Fig.[d] Figure [4]shows the observa-
tion image while rotating the polarizer and without the po-
larizer. The dark band, where the light is blocked, appears
only around 90 degrees, while other angles look similar to
the image without the polarizer.

Relationship to AoLP/DoLP The normalized 90 degree
image in Fig. 4 is compatible to the angle of linear polar-
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Figure 4: Comparison to rotating the polarizer. The up-
per row is the captured images of the same exposure time,
and the lower images are normalized at each maximum
value. The dark band, where the light is completely blocked
by polarizer, is a key observation and only appears around
90 degrees.
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Figure 5: Camera position and reflection plane. (a) Using
a single camera position, only one direction is encoded in
the image. The intensity variance of horizontal direction is
not so improved. (b) Using multiple camera positions, the
scene can be encoded by multiple directions.

ization (AoLP) and degree of linear polarization (DoLP) if
the scene is only a single point light source. The benefit of
using an intensity image is that it is linearly addable and re-
quires only a single image at least. On the other hand, AoLP
and DoLP requires a tricky trigonometric calculation and at
least 4 polarization rotations.

Multiple camera positions The leakage pattern appears
parallel to the reflection plane. Figure [5(a) shows the actual
measurement of the wall, where the scene is a point light
source. There is large intensity variance in the vertical di-
rection, and therefore the vertical information is better pre-
served. On the other hand, the horizontal intensity variance
is lower and likely to the unpolarized observations. To over-
come the slim variance in the horizontal direction, it is pos-
sible to capture the scene from multiple camera positions,
enabling the capture of perpendicular reflection planes as
shown in Fig. [5|b).

Standalone

| | wio rotating single multiple |
Cond. num. | 686.8  486.3 357.0 327.9
Percentage - 70.8%  52.0%  47.7%
With partial occluder
| | wio rotating single multiple |

Cond. num. | 1723 170.6 146.1 113.9
Percentage - 99.0% 84.8%  66.1%

Table 1: Condition number comparison. Methods with-
out polarizer, rotating polarizer, crossed polarizer from a
single camera position, and crossed polarizer from multiple
camera positions are compared. Our method has the lowest
condition number.

5. Simulation

Our simulations verify that polarization leakage can be
used to improve the condition number of the light transport
matrix.

Condition number The effectiveness of the method is
confirmed by examining the condition number of light
transport matrices. The lower condition number gives bet-
ter recovery quality. The camera and the light source are
placed 10 cm from the wall and the scene is assumed to be
a set of 3 x 3 point light sources. For a single image obser-
vation, the camera position A is selected, and for multiple
camera settings, positions B and C are used. The condi-
tion number for each setting is summarized in Table[I] Our
method has the smallest condition number, indicating the
potential for about two times better recoverability. Like-
wise, we also show the case when there is a partial occluder
in the same table. We observe through simulation that the
condition number is improved using a polarizer as well.

Improvement w.r.t. wall roughness The effectiveness
of this method depends on the type of the wall. To con-
firm this, the improvement in condition number is evaluated
while changing the roughness of the wall. The roughness
is changed from O (mirror-like) to 1 (completely diffuse).
The plot of the condition number and improvement ratio is
shown in Fig.[6] For all roughness parameters, it is observed
that the polarization cues improve the condition number.
Although the plots of single and multiple cameras look sim-
ilar, we observe that the multiple camera setting is always
slightly better than single camera setting. When the rough-
ness decreases, the wall becomes mirror-like and there is no
improvement using a polarizer because the NLOS scene is
originally visible. The best performance is observed at the
middle of specular and diffuse reflections, where a lot of
materials have such specularities [24].
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Figure 6: Condition number with respect to the rough-
ness of the wall. Lower the better. The roughness ranges 0
(mirror-like) to 1 (diffuse-like). Our method has the lowest
condition number for all roughness parameter.

6. Experiment

Real experiments are consistent with simulations: polar-
ization improves NLOS image reconstruction. For all fol-
lowing experiments, we use ADMM to solve Eq. (2), con-
sisting of a 2D total variation regularizer with a box con-
straint. For clarity, we estimate

1 = argmin [|i — T1||3 + ATVap(1) (12)
1
s.t. 0<X1=<1.

Because this is a convex optimization problem, it can be
solved in a polynomial time. For all cases, the BRDF of the
wall is measured beforehand.

Polarized NLOS Firstly, we evaluate the polarized NLOS
without partial occluder. For numerical evaluation of non-
polarized scene, a projector is used to project the scene im-
age. Figure [7] shows the setup and the result. Two images
are compared with and without the polarizer in front of the
camera. While it is difficult to see the projected scenes if
the polarizer is not used, the scene is visible using the po-
larizer. We also projected more images, which can be found
in the supplementary material. The table shows the numer-
ical evaluation of the results. Peak signal to noise ration
(PSNR), zero-mean normalized cross correlation (ZNCC),
and structural similarity (SSIM) are used. It is confirmed
that the condition number is decreased and the recovered
image is improved for every image metric if the polariza-
tion is used.

Polarized NLOS w/ partial occluder for reflective ob-
jects Here, we show that Polarized NLOS can also en-
hance existing techniques. As shown in Fig. [§] top-left,
we reproduce the partial occluder method from Saunders et

Polarized NLOS without partial occluder

Polarizer LOS wall  Screen

Projector - -
(for numerical evaluation) « Ca&e L

Baseline Scene

Polarization
enhanced

Baseline Polarization enhancement
condition number 2961 2012
PSNR 6.7 dB 7.3dB
ZNCC 0.45 0.65
SSIM 0.25 0.28

Figure 7: Polarized NLOS results without occluder. A
projector is used for numerical evaluation and to make the
scene unpolarized. The scene is recovered with and without
the polarizer in front of the camera. Using polarization, the
recovered images are improved. Improvement is confirmed
by comparing condition number and three image measures.

al. [32]. Reflective object scenes are recovered in this ex-
periment and enhanced by polarization. Figure [§]shows the
setup, the target object, the recovered result by the existing
method, and the enhanced result by polarization. The target
object is lit by an uncontrolled light source. In the results of
the baseline method, it is difficult to see the resolution chart
and the content of the book. On the other hand, our tech-
nique recovers images with higher contrast. The clear tex-
ture of resolution chart and printed materials are visualized
in detail. Our method quantitatively and qualitatively im-
proves the reconstruction. We provide more diverse scenes
in the supplement.

Comparing our enhancement to image processing An
interesting question that is raised is whether the perfor-
mance improvements we obtain could be achieved by ap-
plying image post-processing algorithms to conventional
NLOS (without polarization). Figure 9] shows the result of
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Figure 8: Results for reflective objects. Top-left: the setting of the experiment. The scene is a reflective object (not self-
luminous). Ist row: The photograph of target objects. 2nd row: The recovered images by the baseline method [32]. Bottom
row: The recovered images by our method. High frequency details are recovered. Clear detail of resolution charts, sharp edge
of apple, and the detailed shape of bears are clearly visualized. PSNR values are calculated with homography-transformed

photograph for reference.

projected images and also includes the result of applying
image post-processing. The baseline method in this case is
[32]. Here, a total variation (TV) denoising algorithm [7]
and a deep learning image processor (neural enhance) [1]]
are used. While the image is improved by post processing,
it is impossible to recover the higher frequency component
that is lost on the wall reflection, because recovering lost in-
formation is mathematically impossible. On the other hand,
our method recovers higher frequency detail, which is pre-
served by polarization light transport. PSNR, ZNCC, and
SSIM values show significant improvement.

7. Discussion

In this paper, we propose to use polarizer for condition-
ing the passive NLOS imaging. Throughout our experi-
ment, we confirm that the our method improves the condi-
tioning for general passive NLOS imaging scenarios. As
this approach optically modifies the light transport, it is
mathematically different from any other post image pro-
cessing algorithm based on lower frequency observation.
The results of our method are better than TV denoising and
neural image enhancement.

It is not very sensitive to the Brewster angle position.

This is because the polarization component varies due to
Eq. (9) while the most effective alternation in intensity oc-
curs at the Brewster angle. Indeed, our experiments are per-
formed by putting the camera roughly but not exactly at the
Brewster angle. It is expected that a part of the light path
eventually meets the Brewster angle geometry.

As we assume the polarizers axis is around the blocking
angle, the image is dark and requires a longer exposure. Be-
cause the polarization information theoretically exists at any
polarization angle, it is possible to use another polarization
angle. However, although a shorter exposure can be used,
the ratio of the polarization signal to the mean brightness
gets worse so it is not realistic. This is the tradeoff of the
sensor’s dynamic range and the optical signal-to-bias ratio.

Our method also assumes that the wall preserves the po-
larization property. This holds for many rough surfaces, but
it is generally a subtle signal. The wall that has dominant
subsurface scattering, such as plastic and plaster, is very
challenging because it loses the polarization property and
the ratio of polarization due to Fresnel reflection becomes
low. Possibility of capturing such weak signal depends on
the dynamic range of the sensor. Alternatively, a combi-
nation of rotating a polarizer and an event camera that can



capture relative intensity changes can be utilized, which is
an interesting future direction of capturing weak polariza-
tion signals.

Our results support the idea of using polarization cues
for NLOS light transport analysis. Although we only apply
the idea to the passive NLOS experiments in this paper, the
proposed method can be extended to active NLOS imaging
as shown in the appendix. In conclusion, we hope this paper
spurs interest in using polarization for problems in NLOS
imaging and multipath light transport.

Appendix: On Active NLOS Imaging

Followed by the previous work [2, [13] [28| (18] [40], an
active NLOS imaging using time-of-flight measurement can
be modeled as

. o(||ls — +s—cl|l—ct
pe) = [[[ polle=plrlsmcl o),
ses s —pl”lIs —cl|
Q(wihwol)Q(wicvaC)dsa (13)

Wi = %‘%a
Wor = uo—r?ug’
Wi, = ]|SS__:||2a
Woe = foef;”

where i(¢; p, c) is the temporal transient observation at the
wall patch c by illuminating the wall patch p by a pulsed
light, p is the 3D NLOS albedo, ¢ is the Dirac delta function,
c is the speed of light, and {2 is the BRDF of the LOS wall.
Discretizing, we obtain

i="Tp, (14)

where T is the light transport matrix of active NLOS model
and p is the vectorized NLOS albedo.

Analogous to the passive case, when we put a polarizer
in front of the camera, Eq. (T3) is altered as

) (|[s—mp||+|ls—c| —ct
eme - [[[ o leplti—dl e,
ses s —pll”[Is —<l|
Q(wilawol)Q(wicvch)’\(wimch,q)dsy (15)

where the light transport is modulated by the leakage term
A. Note that the polarization state of active light source is
ignored because the light is assumed to be depolarized at
the NLOS scene reflection.

Simulation We confirm the effectiveness of polarized
NLOS for active NLOS imaging through a simulation. Fig-
ure [T0] shows the condition number of the light transport
matrix changing with scene configurations including wall’s
roughness parameter and the spatial resolution of NLOS
scene. For all configurations, polarization cues improve the
conditioning of the active NLOS imaging.

Polarized NLOS vs. Post image processing
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Figure 9: Polarized NLOS exceeds the quality of conven-
tional NLOS with image processing. The results of polar-
ized NLOS with partial occluders. The result of the baseline
method [32], TV denoised [7], image enhancement by neu-
ral network [[I]], and the result of our method are compared.
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Figure 10: Condition number of active NLOS. The con-
dition number of active NLOS setting is compared. The
spatial resolution « and the wall’s roughness ~ are changed.
Using the polarization cues, the condition number is im-
proved in the active setting for multiple scene configura-
tions.



Supplementary Material: Enhancing NLOS Imaging Using Polarization Cues

) zenith Original angle )
polarizer incident Effective angle
axis \

........ Yo %

azimuth
(a) Geometry (b) Top view (c) Incident view

Figure 11: Effective angle of polarizer.

8. Effective Angle of Polarizer

Let a and z are azimuth and zenith angles of incident
light, respectively, and 6 is the polarizer axis (azimuthial an-
gle) as shown in Fig. [TTfa). From the viewpoint of oblique
incident light as shown in Fig. [IT|c), the vertical axis is
shrunk due to the zenith angle of the incident. The cosine
and sine of the polarizer axis projected on the waveplane of
incident is represented as

= cos(f —‘a +3) (16)
= cos(z)sin(f — a+ 3).

Therefore, the effective angle §’ from incident light view-
point is represented as

a7

9. Polarized NLOS for Polarized Scene

If the scene is polarized, the observation can be modeled
as shown in Eq. (11) in the main text. As the emitted light
is completely linear polarized, the reflection off the micro
facet is also linearly polarized at any angle. Hence, if the
polarizer in front of the camera is placed to block the polar-
ization, the leakage pattern can be clearly observed at any
camera position. The modification to the light transport is
the same as the general case as shown in Eq. (5) in the main
text.

Experiment We provide the result for fully polarized
scene case (LCD monitor) for reference. For comparison,
the scene is recovered with and without polarizer in front
of the camera. The camera is put at a non-Brewster angle.
Figure [T2] shows the results. While the recovered images
without polarizer is blurry, recovered images of our method
recovers clearly recognizable textures. The numerical eval-
uation is summarized in Table [2] and we confirm that po-

w/o polarizer
measurement _ estimate

w/ polarizer
measurement estimate

scene

| il el e n
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Figure 12: Polarized NLOS for polarized scene.
scene is polarized, i.e., LCD monitor. The scene is recov-
ered with and without the polarizer in front of the camera.
Using polarization, the recovered images are improved.

| [PSNR_ZNCC SSIM |

w/o 7.3 0.40 0.30
ours | 104 0.74 0.36

Table 2: Numerical evaluations using multiple image mea-
sures. Mean values of PSNR, ZNCC, and SSIM are eval-
uated. For all scene and measure, our method has better
value.

larization cue improves the quality of NLOS imaging for
polarized scenes.
10. Additional experimental results

Setup detail The RGB camera (FLIR BFS-U3-23S3M-
C) is looking at the LOS wall only and the scene is placed
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Figure 13: Results of other reflective scenes. Our method
improves the NLOS imaging. A non-planar scene such as a
football is also better recovered than the baseline.

beyond the occluder wall. The distance between the scene
and the wall is approximately 40 cm. For the wall, a black
diffusive plate (Thorlabs TPSS5) is used and a slice of its
BRDF is measured beforehand to construct the light trans-
port matrix. Besides, we assume that the geometry of the
wall, the screen, and the camera is known.

Polarized NLOS for reflective objects Figure [[3]is other
results of reflective objects. Our method can improve not
only planar objects such as book pages but also a non-planar
objects such as a football. Our diverse results shows the
applicability to the general NLOS scenes.

Images used for numerical evaluations Figure [T4]is the
rest of alphabet and flag scenes. The experiment setting is
the same as the experiment of the main text. Stand-alone
without and with polarizer, and existing method (putting
partial obstacle) without and with polarizer are compared.
For every scene and setting, the image is improved by using
the polarizer.
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Figure 14: Polarized NLOS with and without partial oc-
cluder. The scene is projected by a projector and the cam-
era is put at the Brewster angle geometry. The scene is re-
covered with and without the polarizer. Using polarization
cues, the recovered images are improved from the baseline.
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