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ABSTRACT

Healthcare providers often divide patient populations into cohorts based on shared
clinical factors, such as medical history, to deliver personalized healthcare ser-
vices. This idea has also been adopted in clinical prediction models, where
it presents a vital challenge: capturing both global and cohort-specific patterns
while enabling model generalization to unseen domains. Addressing this chal-
lenge falls under the scope of domain generalization (DG). However, conventional
DG approaches often struggle in clinical settings due to the absence of explicit
domain labels and the inherent gap in medical knowledge. To address this, we
propose UDONCARE, a hierarchy-guided method that iteratively divides patients
into latent domains and decomposes domain-invariant (label) information from
patient data. Our method identifies patient domains by pruning medical ontologies
(e.g. ICD-9-CM hierarchy). On two public datasets, MIMIC-III and MIMIC-IV,
UDONCARE shows superiority over eight baselines across four clinical prediction
tasks with substantial domain gaps, highlighting the untapped potential of medical
knowledge in guiding clinical domain generalization problems.

1 INTRODUCTION

The digitization of clinical data, notably electronic health records (EHR), has transformed healthcare
by enabling efficient computational analysis. Current deep learning techniques have also achieved
significant gains in diagnosis, mortality, and readmission prediction tasks (Poulain & Beheshti,
2024; Jiang et al., 2024). Still, these models trained on the training (source) data often suffer perfor-
mance drops when applied to the test (target) data under domain shifts, that is, distributional changes
across patient groups, such as data from different hospitals (Perone et al., 2019; Koh et al., 2021).
Consequently, handling domain shifts is a prerequisite for alleviating performance degradation in
clinical predictive models (Yang et al., 2023a; Wu et al., 2023). It also aligns with the objective of
most domain generalization (DG) methods, such as meta-learning (Balaji et al., 2018; Dou et al.,
2019), adversarial learning (Ganin et al., 2016; Li et al., 2018b), and latent-domain techniques (Mat-
suura & Harada, 2020; Wu et al., 2023).

In this work, we focus on tackling DG problem in clinical settings, whereas most recent models have
been developed for image classification. However, directly transferring these regular DG methods
will encounter two clinical-specific obstacles: (1) Domain IDs, which are naturally defined in im-
age datasets (e.g., dog & cat), are unseen in most EHR datasets, but most DG solutions require the
presence of domain IDs (Wu et al., 2023). Some studies treat each patient as unique domain (Dou
et al., 2019; Yang et al., 2023a), which is overly fine-grained and unstable. Others rely on broader
categorizations (e.g. institute & admission period), which overlook clinical heterogeneity (Zhang
et al., 2021a; Guo et al., 2022). (2) Even though some DG methods do not rely on domain IDs (Ar-
jovsky et al., 2019; Liu et al., 2021b), they overlook clinical semantics. For instance, Matsuura
& Harada (2020); Wu et al. (2023) cluster patient features to form latent domains, but the result-
ing partitions are highly sensitive to training data. In practice, patient groups can vary significantly,
even over longer admission periods, since they reflect only feature-level similarity without capturing
the progression of medical concepts. Hence, it is crucial to construct robust domains with explicit
definitions grounded in clinical relevance.

To address these challenges, we explore the following research question: Instead of assuming the
presence of domain IDs, can we leverage medical knowledge to guide models in discovering do-
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mains that are both adaptive and clinically meaningful? In most hospitals, visiting patients are
treated based on their medical history, which is expressed through medical concepts shown in their
admissions. For instance, when dealing with heart failure patients, hospitals may categorize heart
failure as a distinct domain or group it with other cardiovascular diseases. Similarly, in medical
ontologies like ICD-9-CM, heart failure corresponds to a leaf node under a higher-level node group-
ing cardiovascular disease, and such hierarchical relation motivates us to use a pruning algorithm
to identify appropriate ancestor nodes for domain partitioning. Building upon this perspective, our
work focuses on knowledge-guided partitioning of medical concepts, ensuring alignment with clin-
ical semantics while maintaining flexibility for adaptive generalization.

To this end, we propose UDONCARE, a framework that integrates medical ontologies into an it-
erative domain discovery process, enabling domain distinction at varying levels of abstraction. It
ensures the discovered domains remain consistent with clinical reasoning while supporting robust-
ness against distribution shifts. Specifically, a pruning algorithm is developed to merges similar
concepts on hierarchies and generate soft labels as domain IDs for patients. To explicitly remove do-
main features from patients, we leverage a mutual learning network, which learns domain-invariant
(label) representations upon the orthogonal factorization. Finally, domain assignments and feature
extraction are updated jointly through an iterative collaborative inference mechanism, allowing the
pruning module to adapt domain categorization according to input data and task settings. Our main
contributions are enumerated as follows:

• To the best of our knowledge, this is the first work using medical ontologies to tackle clinical DG
problems. It reveals the potential of medical ontologies in finding latent domains for handling
covariates, rather than serving as feature enrichment (Lu et al., 2021; Jiang et al., 2024).

• UDONCARE shows accurate prediction across four vital predictive tasks on two public datasets,
outperforming both clinical DG baselines (Yao et al., 2022; Wu et al., 2023) and regular DG
baselines. UDONCARE boosts the AUPRC score by 5− 20% over the best baselines.

• We conduct detailed analyses to show that UDONCARE addresses domain shifts through accurate
domain partitioning and invariant feature learning, without sacrificing computational overhead.

2 PRELIMINARY

EHR Dataset. Given an EHR dataset S, the i-th patient’s data x(i) consists of a longitudinal
sequence of visits {V (i)

1 , V
(i)
2 , . . . , V

(i)
T }. We omit the patient index i to illustrate our method

using single patient data x. Medical codes ci in admissions can be also categorized into K dis-
tinct feature keys. In this work, we identify feature keys from the vocabulary of medical concepts
C ∈ {D,P,M}, where D,P,M denote the sets of diseases, procedures, and drugs, respectively.

EHR Predictive Models. For clinical prediction, models trained on EHR data typically aim to
predict clinical outcomes y ∈ {0, 1}d at a future visit Vt+1, where d is the number of labels. To
learn temporal changes of feature key k, most studies develop a feature extractor fϕ,k(·) : xk 7→
pk to encode the admission sequence xk into a patient-level embedding pk, which can then be
concatenated with embeddings from other keys or used directly for downstream predictions:

p = p1 ⊕ · · · ⊕ pk ⊕ · · · ⊕ pK , where pk = fϕ,k(xk) ∈ Rh. (1)

Here, fϕ,k is the encoder for feature key k, ⊕ denotes vector concatenation across K feature keys,
and h is the embedding dimension. Most studies assume that these learned embeddings effectively
capture patient’s medical history, and p is then passed to a label predictor (e.g. MLP).

Concept-Specific Hierarchy. In EHR data, certain medical concept ci ∈ C always originates from a
hierarchical encoding system, such as ICD-9 (Organization et al., 1988) and ATC (Nahler & Nahler,
2009) codes. We define a concept-specific hierarchyH of H levels, and denote n(h)

i as the i-th node
on level h. Leaf nodes at level H represent actual codes via the mapping m : ci 7→ n

(H)
i with

node feature ei stored in fϕ,k, and Desc(·) denotes the set of descendant nodes. Note that, the root
node n

(1)
1 at the top level subsumes all nodes in H, and any two leaf nodes n

(H)
i and n

(H)
j share

at least one common ancestor. In this work, we only focus on the disease hierarchy (i.e. ICD-9-
CM), as incorporating treatments and drugs yields only marginal gains (see Appendix F). However,
UDONCARE can be extended to incorporate additional feature keys or ontologies if needed.
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Figure 1: The Overall Framework of UDONCARE. The forward structure adds a domain pathway
for mutual learning, extending beyond the backbone pathway of conventional predictive models.
During training, we first feed patient data x into the backbone pathway, which learns patient features
p through fϕ,k(·) and produces the output prediction ŷp. In parallel, we obtain ŷh from invariant
features h along the domain pathway by applying DiscoveryAlgo(·), gθ,k(·), and h(·). Here we
iteratively adapt latent domains in M and update parameters on both pathways by ground truths y.

3 METHODOLOGY

To generalize fϕ(·) on target data despite domain shifts, we develop a hierarchy-guided framework
that iteratively divides patients into latent domains and decompose domain-invariant features for
downstream health risk predictions. It iteratively operates two main steps:

Step 1: Develop a pruning algorithm for medical hierarchies to discover latent domains;

Step 2: Learn invariant (label) information by factorizing patient features in projection space.

Figure 1 presents a workflow of UDONCARE. In general, we aim to show how medical knowledge
can guide domain generalization for clinical prediction, rather than merely augment features.

3.1 STEP 1: HIERARCHY-GUIDED DOMAIN DISCOVERY

24 domains
4 soft labels

(a) Without Pruning

(c) Prun Disease A & B  and C & D

✗ ✗ ✗ ✗

22 domains
2 soft labels

23 domains
3 soft labels

(b) Prun Disease A & B

✗ ✗

Figure 2: A simple illustration of hierarchy-
guided domain discovery.

While domain IDs are unobserved in EHR datasets,
it is intuitive that patients with similar medical histo-
ries (concepts) often belong to the same domain. We
can divide patient cohorts by treating the multi-hot
vector vt from admissions as a soft domain label.
However, the number of latent domains grows ex-
ponentially with the larger vocabulary size |C| (i.e.
2|C|). Here, we design a hierarchy-guided domain
discovery algorithm that assigns and updates domain
IDs for patients’ admissions. Our goal is to prune
overly fine-grained nodes, thereby forming a smaller
set of ancestors that still covers all concepts. Given
a set of patient samples {x(i)}Ntr

i=1, we construct a
assignment matrix M to query domain IDs via

M := DiscoveryAlgo
(
{x(i)}Ntr

i=1

)
∈ {0, 1}Ntr×|C

′
|, (2)

where Ntr is the number of training patients, |C′ | is the pruned vocabulary size of medical concepts.
It merges fine-grained codes into fewer, higher-level clusters, allowing patients with or without a
particular disease to occupy different latent domains as needed.

Initialization on Domain IDs. Following the previous settings (Lu et al., 2021; Jiang et al., 2024),
we only focus on patients with multiple admission, where there are T ≥ 2 records. This sequence
should be then converted into a single vector that consolidates all prior visits. Hence, we aggregate
patient data {x1,x2, . . . ,xT } into a unified representation X =

∨T
t=1 xt, where medical concepts

3
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shown in each admission are merged to form a comprehensive medical history. Note that, X is the
most fine-grained domain assignment, which initializes DiscoveryAlgo(·).
Initialization on Node Features. After getting X for each patient, concept-specific ontology H
with node features are required to decide whether fine-grained medical concepts group diseases into
higher-level clusters or are preserved. We initialize leaf-node features ei ∈ Rh by: (1) for present
code ci in S, ei is initialized from embedding layer E(e1, . . . , e|C|) in fϕ,k(·); (2) for absent code
ci in S, ei is its embedding of entity name through ClinicalBERT (Huang et al., 2019). The feature
of a parent node e

(h−1)
ni is then computed from the embeddings of its descendants at level h:

e
(h−1)
i :=

1

|Desc(n
(h−1)
i )|

∑
n∈Desc(ni)

e(h)n (3)

It extends E(e1, . . . , e|C|) to E(e1, . . . , e|H|) over the entire hierarchy. Still, it fails to capture the
hierarchical distances in H. For example, two codes might be totally different despite sharing the
same parent node. Therefore, we mimic the principle of hierarchical clustering (Johnson, 1967)
by propagating node features upward based on feature similarity. For each most similar node pair
(di, dj), their lowest common ancestor LCA(di, dj) is updated by averaging their embeddings:

eLCA(di,dj) ← Average
(
eLCA(di,dj), edi

, edj

)
. (4)

This process continues until the maximum similarity among remaining pairs falls below a threshold
ρ = 0.3, yielding hierarchy-aware embeddings that integrate structural positions with features. See
Appendix H for more details about the information flow.

Node Scoring. For each node n ∈ H, we define S(n) to identify which node is a good “candidate”
for final selection. Motivated by the idea of information gains (Song & Ying, 2015), S(n) involves
three indicators, coverage cov(n), purity pur(n), and depth dep(n), via

S(n) = α · exp(pur(n)) + (1− α)
(
cov(n)× dep(n)

)
= α · exp

(
Em∈M[sim(en, em)]

)
+ (1− α)(

|M|
|L|
· h
H

) (5)

whereM is equivalent to Desc(n); E(·) denotes the mathematical expectation; α and exp(·) act as
scaling factors, which regularize the selection avoiding either too low or high level. Consequently,
the score matrix S(s1, . . . , s|H|) is obtained after scoring all nodes in the hierarchy.

Hierarchy Pruning. Once S(n) is computed, we perform a bottom-up pass over H to generate a
candidate set of pruned nodes. Let p be the parent node with children {c1, . . . , cr}. There are three
possible situations upon comparing score S(p) with its children scores {S(ci)}r:

• If S(p) > max({S(ci)}r), we include parent node p and exclude its children.
• If S(p) < min({S(ci)}r), we discard parent node p and select all children.
• Otherwise, we tentatively discard p but mark it for further resolution in the next step.

After the first iteration on the score matrix, a candidate subset C0 will be generated. However, such
a result can be considered as a local optimum solution, since marked candidates still require further
evaluation. Here a list of tuples A of length N is adopted to trade off each flagged parent-child pair
A[n] := (p, {c1, . . . , cr}) to find an optimal result via a chosen search strategy.

Domain Searching. Given N flagged pairs, the complexity of a typical search approach grows
exponentially (i.e. O(2N )) in the number of pairs. To search near-optimal pruning results, we
employ a rectified Beam-Search algorithm (Lowerre, 1976) for more efficient optimization. We
compute a global clustering metric, Silhouette Score (Shahapure & Nicholas, 2020), to evaluate
how well each pruned node separates its assigned leaves from others. For each flagged pairs, we
either (1) unify them by including the parent or (2) retain the children as distinct pruned nodes,
whichever achieves higher scores. This process iterates over all flagged nodes in order by updating
pruning subsets in {C1, C2, . . . , CN} to make selection C′ with the optimal evaluation result.

Domain Decision. To this end, we obtain an updated vocabulary C′ ⊆ H of selected higher-level
nodes and update the domain-assignment matrix M by linking each patient’s admission records
(originally from C) to these pruned clusters in C′, where |C′| ≤ |C|. If patient p(i) has at least
one leaf code d that descends from the pruned node pj ∈ C′, we update M[i, j] = 1; otherwise,
M[i, j] = 0. Note that, the output matrix M define domain categorization in terms of node features.
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3.2 STEP 2. MUTUAL FORWARD LEARNING

Each domain can be viewed as a latent representation r sampled from a meta domain distribution
p(·), so that we can identify r and then factorize p(y|x) into

∫
p(y|x, r)p(r|x) dr by approximating

q(r) ∼ p(r|x) given data samples x. Subsequently, a domain encoder p(r|x) and a label predictor
p(y|x, r) are needed for inference. Here we parameterize the domain encoder p(r|x) as a network
gθ(·) with parameter θ. Since the pruned output matrix M (see Section 3.1) maps each training
sample x to m (soft-label domain IDs), we apply gθ(·) to m to estimate the domain factor r :=
gθ(m). Although r represents a probabilistic domain variable, we implement gθ as a deterministic
Multi-Layer Perceptron (MLP) for the prediction task. Next, we compute invariant features using
a non-parametric function h(·) : (r,p) 7→ h, which fuses r (domain-level representation) and p
(patient-level representation) as input features for the label predictor p(y|x, r).
Self-Supervised Domain Encoder. The main concerns on training domain encoder is how to ensure
gθ(·) can extract valid domain information from patients, which is ignored by some works (Finn
et al., 2017; Li et al., 2018a; Yang et al., 2023a). A regulation method is then developed during
the encoder training phase. Concretely, pseudo domain labels m help us divide patients into latent
domains, where averaging patient-specific features p̄ could provide guidance for gθ(·) in identifying
domain information. Hence, we adopt a pretraining task and update θ based on patient embeddings
p from fϕ(·) by minimizing loss function

Lr[gθ(m), p̄] := MSE(r, E[p|m]) +
∥rµ − pµ∥2F
∥pµ∥2F

. (6)

where E[p|m] denotes the average embedding associated with domain IDs, and ∥rµ − pµ∥2F mea-
sures the Maximum Mean Discrepancy (Borgwardt et al., 2006) with the norm F to reduce distri-
butional gaps. The subscript µ indicates batch-level averages. The domain encoder gθ(·) can then
approximate domain features r through both patient-level inputs p and m.

Invariant Feature Projection Learning. In equation 6, both r and p are rescaled into a shared
vector space with comparable magnitudes. Hence, we can directly apply an orthogonal projection
approach (as in early studies (Bousmalis et al., 2016; Shen et al., 2022; Yang et al., 2023a)) to obtain
the invariant feature h by subtracting the parallel component of p in this shared vector space. We
formalize this in h(·) as shown in equation 7:

h := p− r̃, where r̃ = r · ⟨ p

∥r∥
,

r

∥r∥
⟩. (7)

Here, r̃ is the component of p that is parallel to r with domain covariates, while h is the remainder
and thus invariant to domain shifts. We thus obtain invariant features h without additional parame-
ters, and h(·) serves as an essential pre-processing step before making prediction.

3.3 TRAINING AND INFERENCE

Iterative Training. To train UDONCARE, we feed each data sample x into the hierarchy-pruning
module to obtain its latent domain m, and then perform two cross-reference steps under a mutual
learning architecture. Rather than updating the model continuously in each epoch, we adopt an
iterative training strategy, which prior studies (Cui et al., 2019; Sofiiuk et al., 2022) have shown can
reduce training time while maintaining comparable predictive performance.1 We iteratively update
the model weights and regenerate domain assignments every 20 epochs in our experiment. Before
each iteration, we reinitialize the parameters in gθ(·), because the input shape of m may change due
to updated code-level embeddings. We also provide the pseudo-code of UDONCARE in Appendix B.

Mutual Inference. After the orthogonal projection, we apply the network qξ(·) (operates on space
p) as a post-step to parameterize the label predictor p(y|x, r); It is also available to parameterize
p(y|x) through the regular decoder network dη(·) fed by patient embeddings from backbone fϕ(·).

p(y|x) ∼ ŷp = dη(p) = dη(fϕ(x))

p(y|x, r) ∼ ŷh = qξ(h) = qξ(h(gθ(m),p)) (8)

1For example, we set iterations I = 3 and epochs N = 100 by first obtaining pretrained parameters for 40
epochs and then updating M iteratively every 20 epochs, yielding a total of 100 epochs.
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Table 1: Statistics of MIMIC-III and MIMIC-IV datasets.

Dataset # patients Max. # visit Avg. # visit Avg. #D/visit Avg. #P/visit Avg. #M/visit

MIMIC-III 6,497 42 2.66 13.06 4.54 33.71
MIMIC-IV 49,558 55 3.66 13.38 4.70 43.89

Both qξ(·) and dη(·) are linear classifiers with learnable parameter matrices. A loss function L
is then applied to add label supervision for downstream predictive tasks. We integrate these two
predictors into a collaborative framework, with the mutual inference objective:

Lp = E(x,y)∼Strain
ℓ(ŷp, y) + λ ·DKL(ŷp|| ỹ)

Lh = E(x,y)∼Strain
ℓ(ŷh, y) + λ ·DKL(ŷh|| ỹ) (9)

where DKL(ŷ∗ ∥ ỹ) denotes the KL Divergence (Van Erven & Harremos, 2014), ℓ(·) denotes the
binary cross-entropy, and ỹ is the average probability of ŷp and ŷh. These two losses are calculated
jointly to let dη and qξ regularize one another, stabilizing the learning of qξ with less parameters.
Following the domain generalization setting, we adopt ŷh as the final prediction.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Predictive Tasks. We evaluate our approach on four representative tasks: (1) Mortality Predic-
tion, which determines whether a patient will pass away by a specified time horizon after discharge.
This is a binary classification task. (2) Readmission Prediction, which checks if a patient will be
readmitted within a predefined window (e.g., next 15 days) following discharge. This is also framed
as a binary classification. (3) Diagnosis Prediction, which forecasts the set of diagnoses (ICD-9-CM
codes) for the patient’s next hospital visit based on prior visits. This requires multi-label classifi-
cation. (4) Drug Recommendation, which suggests a set of medications (ATC-4 codes (Nahler
& Nahler, 2009)) for the upcoming visit, also formulated as multi-label classification. These tasks
reflect diverse clinical needs and provide a rigorous benchmark for evaluating DG methods.

Datasets & Data Split. We conduct experiments on two publicly available EHR databases,
MIMIC-III and MIMIC-IV, which are widely used in clinical prediction (Johnson et al., 2016;
2023). MIMIC-III covers ICU admissions from 2001 to 2012, while MIMIC-IV spans 2008 to
2019. To avoid overlapping time ranges with MIMIC-III, we only retain patients from the years
2013–2019 in MIMIC-IV. For each set of experiments, we extract 6,497 and 49,558 patients with
multiple visits (T ≥ 2) from both datasets as shown in Table 1. Different from random data splitting,
we evaluate our model’s performance across temporal gaps, following the approach in SLDG (Wu
et al., 2023). We define a temporal grid based on the year of each patient’s most recent visit. Specif-
ically, patients in MIMIC-IV (MIMIC-III) whose last visit occurred after 2017 (2010) are assigned
to the target test set, while those with earlier visits are used as the source training/validation set. We
also divide the dataset into training, validation, and test subsets using a fixed ratio of 75%:10%:15%.

Evaluation Metrics. Both readmission and mortality prediction are binary classification tasks, we
calculate the Area Under the Precision-Recall Curve (AUPRC) and the Area Under the Receiver
Operating Characteristic Curve (AUROC) scores due to the imbalanced label distribution. For the
drug recommendation task, we evaluate predictions of all DG approaches by AUPRC and F1-score,
following the same setting as ManyDG (Yang et al., 2023a) (i.e. d < 120). For the diagnosis
prediction tasks, we decide accurate prediction by weighted F1 score as in Timeline and top-10
recall as in DoctorAI (Choi et al., 2016), since the former one measures the overall prediction on all
classes (i.e. d > 4500) and the latter one have concentration on positive code with low frequency.

Baselines. We compare UDONCARE with two naı̈ve baselines, five general DG baselines and two
most recent clinical DG baselines: (1) Naı̈ve Baselines: Oracle, trained backbone encoder directly
on the target data, and Base, trained solely on the source data. The difference between metrics from
Oracle (upper bound) and Base (lower bound) can show the distribution gaps between source and
target data. (2) Typical DG Baselines: DANN (Ganin et al., 2016), CondAdv (Isola et al., 2017),
MLDG (Li et al., 2018a), IRM (Arjovsky et al., 2019), and PCL (Yao et al., 2022). (3) Clinical DG
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Table 2: Performance comparison of four prediction tasks on MIMIC-III/MIMIC-IV. We report
the average performance (%) and the standard deviation (in bracket) over 5 runs.

Model
Task 1: Mortality Prediction Task 2: Readmission Prediction

MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV
AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

Oracle 16.73 (0.51) 70.35 (0.55) 8.46 (0.53) 68.92 (0.47) 73.42 (0.47) 69.74 (0.51) 67.37 (0.12) 66.89 (0.11)

Base 11.31 (0.62) 55.21 (0.95) 3.97 (0.47) 59.13 (0.76) 50.13 (0.88) 45.27 (0.71) 48.34 (0.24) 45.72 (0.31)
DANN 12.54 (0.55) 63.08 (0.72) 4.41 (0.45) 63.82 (0.46) 58.29 (0.63) 49.22 (0.78) 53.13 (0.11) 47.91 (0.23)
CondAdv 13.75 (0.49) 65.53 (0.57) 5.65 (0.62) 64.27 (0.68) 61.31 (0.45) 52.45 (0.51) 56.95 (0.14) 50.77 (0.19)
MLDG 13.12 (0.47) 64.48 (0.61) 4.75 (0.38) 62.75 (0.57) 60.12 (0.53) 51.03 (0.62) 55.62 (0.23) 49.57 (0.28)
IRM 13.74 (0.45) 65.21 (0.58) 4.14 (0.52) 62.36 (0.61) 60.97 (0.47) 52.02 (0.58) 56.40 (0.14) 50.58 (0.17)
PCL 13.52 (0.52) 64.79 (0.58) 5.35 (0.49) 64.70 (0.55) 60.47 (0.46) 51.56 (0.55) 56.08 (0.28) 50.99 (0.26)
ManyDG 14.24 (0.51) 65.98 (0.55) 6.06 (0.31) 64.66 (0.32) 62.38 (0.42) 53.19 (0.54) 57.81 (0.25) 52.34 (0.24)
SLDG 13.07 (0.50) 63.89 (0.60) 4.58 (0.44) 63.24 (0.60) 59.78 (0.49) 50.81 (0.53) 56.92 (0.14) 52.85 (0.16)

UDONCARE 15.82 (0.33) 69.04 (0.42) 6.81 (0.27) 66.73 (0.48) 71.17 (0.35) 67.28 (0.39) 61.61 (0.10) 58.62 (0.25)

Model
Task 3: Drug Recommendation Task 4: Diagnosis Prediction

MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV
AUPRC F1-score AUPRC F1-score w-F1 R@10 w-F1 R@10

Oracle 80.25 (0.12) 67.23 (0.31) 74.31 (0.25) 61.28 (0.22) 26.73 (0.12) 39.22 (0.18) 28.12 (0.11) 40.53 (0.16)

Base 68.54 (0.13) 47.65 (0.32) 66.94 (0.18) 53.13 (0.18) 21.51 (0.14) 30.83 (0.20) 20.07 (0.12) 31.52 (0.18)
DANN 75.32 (0.21) 60.82 (0.34) 69.63 (0.27) 53.43 (0.26) 21.84 (0.13) 34.51 (0.22) 24.05 (0.14) 35.21 (0.20)
CondAdv 76.81 (0.19) 64.18 (0.28) 71.48 (0.15) 55.62 (0.29) 22.81 (0.11) 36.48 (0.20) 26.13 (0.12) 37.35 (0.18)
MLDG 74.92 (0.22) 59.13 (0.31) 70.29 (0.27) 56.77 (0.16) 21.54 (0.15) 33.93 (0.21) 24.17 (0.13) 34.72 (0.19)
IRM 69.23 (0.19) 62.47 (0.33) 69.12 (0.14) 54.57 (0.18) 22.41 (0.14) 33.07 (0.22) 23.54 (0.15) 34.12 (0.21)
ManyDG 77.04 (0.20) 63.94 (0.30) 71.26 (0.19) 55.27 (0.19) 23.12 (0.12) 36.17 (0.21) 25.91 (0.13) 37.04 (0.20)

UDONCARE 78.31 (0.18) 66.42 (0.32) 73.07 (0.33) 59.23 (0.14) 24.79 (0.10) 38.05 (0.19) 27.31 (0.11) 39.41 (0.17)

Baselines: ManyDG (Yang et al., 2023a), and SLDG (Wu et al., 2023). Since drug recommendation
and diagnosis prediction are multi-label classification, we drop PCL and SLDG in these two tasks
due to their setting limitation. More details of the baselines can be found in Appendix C, and
UDONCARE is implemented as described in Appendix D.

4.2 MAIN RESULTS

Table 2 presents results on four classification tasks using MIMIC-III and MIMIC-IV. First, the per-
formance gap between the Oracle and Base methods is substantial, showing the presence of consider-
able domain differences. Focusing on mortality prediction in MIMIC-III, DANN (Ganin et al., 2016)
and MLDG (Li et al., 2018a), both relying on coarse domain partitions—show minimal improve-
ments, likely due to difficulties in extracting consistent features from coarse partitions. PCL (Yao
et al., 2022) exhibits a slight gain through proxy-to-sample relationships. Meanwhile, IRM (Ar-
jovsky et al., 2019) and CondAdv (Isola et al., 2017) perform better by incorporating regulariza-
tion or recurrent structures for binary temporal event prediction. Among clinical-specific baselines,
ManyDG (Yang et al., 2023a) achieves the best results by leveraging mutual reconstruction, and
SLDG (Wu et al., 2023) sees only modest improvement due to its reliance on the most recent ad-
missions. Notably, UDONCARE surpasses all baselines across all tasks. Specifically, UDONCARE
boosts the AUPRC score by around 5% for mortality in MIMIC-III, 8% for mortality in MIMIC-IV,
and around 21% and 19% for readmission in MIMIC-III and MIMIC-IV, respectively. We further
extend our experiments by adopting GAMENet (Shang et al., 2019b) and CGL (Lu et al., 2021) as
the backbone (see Appendix E), which further strengthens the advantages of UDONCARE.

4.3 MORE QUANTITATIVE ANALYSIS

Effectiveness of Decomposition. Following the setting of Shen et al. (2022); Yang et al. (2023a),
a linear classifier d can be trained on the embedding to predict either (i) labels or (ii) domains. After
training such a predictor, the cosine similarity can be calculated in terms of the learned weights to
quantify the feature dimension overlaps. Note that p, r̃, and h are normalized dimension-wise to
ensure that each dimension is comparable. The results are shown in Table 3. In general, the third
row has lower cosine similarities than the first two rows, which indicates that there is mostly non-
overlap between feature dimensions predicting labels and domains. Moreover, the first two rows
give relatively higher similarity and imply the domain and label information are separated from p
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Table 3: Cosine similarity of linear weights on p, r̃, and h

Cosine Similarity Mortality Prediction Readmission Prediction Drug Recommendation Diagnosis Prediction

Wd(p→ labels) vs. Wd(h→ labels) 0.7831± 0.0174 0.4813± 0.0391 0.6546± 0.0237 0.8654± 0.0198
Wd(p→ domains) vs. Wd(r̃→ domains) 0.3427± 0.0088 0.1957± 0.0314 0.2753± 0.0274 0.2133± 0.0036
Wd(p→ labels) vs. Wd(p→ domains) 0.1239± 0.0126 0.0794± 0.0392 0.1251± 0.0212 0.0972± 0.0095

∗Wd(·) represents the learned linear weights. As an illustration, W (p → domains) denotes training a linear model on p to predict domain
IDs, after which the weights are extracted. Cosine similarity scores are averaged across all classes and evaluated over 3 runs.

into domain features r̃ (scaling from r) and invariant features h. It provides the quantitative evidence
that UDONCARE stores domain and label information along distinct dimensions. Under the same
setting, we also present the convergence process in detail (see Appendix G).
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Figure 3: Effectiveness of Domain Discovery. The
left figure shows the effect of the number of iteration on
AUPRC in MIMIC-III dataset, and the right one shows
comparison among variants upon UDONCARE.

Ablation Analysis. We evaluate whether
the designed domain-discovery algorithm
is effective for prediction. Given a lookup
embedding table for condition concepts,
we need to group similar codes to reduce
dimensionality. Hence, (a) k-Means clus-
tering, (b) hierarchical clustering, and (c)
tree pruning of the information gain algo-
rithms can be adopted to simplify the pro-
cess. We use drug recommendation tasks
as an example to assess performance. The
results can be found in Figure 3. The left
figure illustrates the trade-off between ac-
curacy and computing time at three itera-
tions. We observe that k-Means performs
the worst, largely because of its limitations
in determining the optimal number of clus-
ters via grid search. Hierarchical cluster-
ing performs better than k-Means but lacks
structured guidance from the medical hierarchy. Tree pruning outperforms both methods by lever-
aging medical ontologies, demonstrating the importance of knowledge-driven clustering. Moreover,
UDONCARE outperforms all these methods by incorporating more precise domain IDs through iter-
ative beam-search updates. These results highlight the critical role of medical ontologies in domain
discovery and the advantages of adaptive refinement for learning meaningful structures.

1 2 3 4 5 6 7 8 9 10 30 50 70 90 10
0

Training Data Size (%)

30

40

50

60

70

AU
PR

C 
(%

)

Drug Rec - AUPRC

DANN
CondAdv
MLDG
IRM
ManyDG
UdonCare

1 2 3 4 5 6 7 8 9 10 30 50 70 90 10
0

Training Data Size (%)

30

35

40

45

50

55

60

F1
-S

co
re

 (%
)

Drug Rec - F1-Score

DANN
CondAdv
MLDG
IRM
ManyDG
UdonCare

Figure 4: Performance by Training Size. We evaluate
drug recommendation on MIMIC-IV, and values on the
x-axis indicate % of the entire training data. The dotted
lines divide two ranges: [1, 10] and [10, 100].

Effect of Training Data Size. Next,
inspired by Yang et al. (2023a); Jiang
et al. (2024), we investigate how the vol-
ume of training data impacts model per-
formance by conducting a comprehensive
experiment in which the training set size
ranges from 1% to 100%. Such a com-
parison is meaningful for examining how
well models generalize with few domain
samples. We evaluate drug recommenda-
tion on MIMIC-IV, since its complexity
poses a challenging setting for prediction
under varying EHR data sizes. All re-
ported metrics are averaged over five inde-
pendent runs. The results in Figure 4 indi-
cate that all models show reduced perfor-
mance in both AUPRC and F1-score when
labeled data are scarce, particularly below 10% of the training set. However, UDONCARE maintains
a considerable edge over other baselines, suggesting that its co-training strategies effectively mini-
mize information loss even when domain features are limited. Notably, MLDG lacks a certain level
of resilience against data limitation, likely due to unique domain assignment, which might not work
for the situation that existing patients with only few admissions (less than 3) on EHR datasets.
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Table 4: Running Time Comparison of Drug Rec-
ommendation (seconds per epoch). Note that SLDG
only use the most recent admissions for prediction.

Model MIMIC-III MIMIC-IV
Base 3.206 ± 0.1219 6.943 ± 0.2342
ManyDG 5.462 ± 0.2648 9.215 ± 0.3781
SLDG 4.518 ± 0.0256 8.439 ± 0.1329
UDONCARE 4.320 ± 0.1473 7.871 ± 0.2415

Runtime Analysis Lastly, we compare
the training time of UDONCARE with
two other clinical DG baselines, ManyDG
and SLDG, as shown in Table 4. All
runtimes are measured on an NVIDIA
L40S GPU. We find that an iterative train-
ing strategy effectively balances computa-
tional overhead and performance for the
entire framework. We observe that UDON-
CARE requires a training time comparable
to SLDG, since both rely on iterative pa-
rameter updates that reduce the frequency of model adjustments during inference. ManyDG con-
sumes more time than others, primarily because its domain assumption spawns numerous latent
domains for subsequent computations.

5 RELATED WORK

Domain Generalization (DG). DG is pursuing adjusted models which are specially designed to
remove domain-covariate features from hidden representation (Muandet et al., 2013). A significant
amount of work has been dedicated to solve performance drops on target domain across diverse
scenarios like computer vision (Zhou et al., 2022; Ding et al., 2022), and they can be generally
categorized as three different ways: (i) An intuitive way is to minimize the empirical source risk,
either domain alignment (Ganin et al., 2016; Li et al., 2018b; Zhao et al., 2020) and invariant learning
technique (Liu et al., 2021a; Zhang et al., 2022a; Wang et al., 2022) aim to convey little domain
characteristics to acquire task-specific features. (ii) Contrastive learning (Kim et al., 2021; Jeon
et al., 2021; Yao et al., 2022) becomes an alternative for data augmentation, studies employed the
contrastive loss function to reduce the gap of representation distribution in one category. (iii) Meta-
learning (Balaji et al., 2018; Dou et al., 2019) and ensemble-learning (Cha et al., 2021; Chu et al.,
2022) approaches handle domain shifts through dynamic loss functions. However, they typically
predefine either numerous or few domains in clinical settings (Wu et al., 2023), which motivates us
to design a precise and efficient way to discover latent domains from learnable parameters.

DG in Clinical Prediction. Empirical evidence (Perone et al., 2019; Koh et al., 2021) has shown
that EHR predictive models often suffer performance drops when transferred to new records with
different data distributions. To address this, most existing works (Zhao et al., 2020; Zhang et al.,
2021b) consider domain adaptation to handle potential domain shifts across multiple hospitals (Reps
et al., 2022; Zhang et al., 2022b) and different time periods (Guo et al., 2022). Recently, a growing
number of studies (Guo et al., 2022; Hai et al., 2024) consider model generalization by mitigating
the patient-specific domain shifts, providing a more flexible alternative in more scenarios. For in-
stance, Yang et al. (2023a) learns invariant features by treating each patient as a unique domain; Wu
et al. (2023) develops a mixture-of-domain method to divide patients into latent domains by fea-
tures of medical concepts. However, they primarily address domain categorization with simplifying
heuristics such as linear dependencies (Li et al., 2020), while the potential of incorporating medical
knowledge beyond EHR data remains unexplored in clinical DG problems.

An additional discussion about ontology-based predictive models can be found in Appendix A.

6 CONCLUSION

This paper develops UDONCARE, a novel framework for unseen domain discovery in predictive
healthcare. Under the guidance of medical ontologies, our method discovers and iteratively adapts
domain categorization. Extensive evaluations on two MIMIC datasets demonstrate that UDONCARE
outperforms state-of-the-art baselines across multiple tasks. For example, in mortality prediction,
UDONCARE surpasses other baselines by 4-8% in AUPRC; On readmission tasks, it also gains up
to 6%, while drug recommendation has 5-10% improvements. Despite these gains, UDONCARE
remains comparable computational efficiency to other clinical DG baselines. These results demon-
strate the good model generalization with knowledge-driven domain discovery in clinical practices.
Future work can further reveal more benefits of medical knowledge in robust clinical predictions.
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APPENDIX

A RELATED WORK: HIERARCHY-AWARE PREDICTIVE MODELING

Some EHR Predictive models (Choi et al., 2017; Shang et al., 2019a; Lu et al., 2021) utilize hier-
archical medical classifications like ICD-9 (Organization et al., 1988) and ATC (Nahler & Nahler,
2009) to determine medical concept similarity by assuming diseases closer in the hierarchy share
more characteristics, as reflected in similar embeddings. However, this method can be biased as it
typically fails to capture complex relationships beyond simple parent-child links, such as compli-
cations or comorbidity, leading to sub-optimal predictions (Xu et al., 2023; 2024; Hu et al., 2024).
Moreover, there is few research integrating these hierarchical structures with DG techniques, which
could enhance model robustness across diverse healthcare settings. Properly leveraging hierarchical
relationships in DG could improve the domain discovery process, ensuring models account for vari-
ance in disease manifestation across different patient demographics and regional practices. Thus,
integrating hierarchy-aware modeling with DG approaches holds potential for developing more ac-
curate and personalized predictive models in EHR, catering to the nuanced needs of global health-
care environments.

B PSEUDO CODE FOR UDONCARE

Since the training and inference phase has been explained in the main paper, we conduct our pseudo
code by two consecutive phases:

Algorithm 1 Overview of UDONCARE

Input: EHR dataset S with patient’s data {x(i)}Ntr
i=1; Feature extractor fϕ with defined backbone

(e.g. Transformer).

1: // When iteration I = 3 and epochs N = 100
2: for epoch ∈ {1, 2, . . . , 40} do
3: // Backbone Pathway
4: Decode ŷp ← dη(fϕ,k(x)) with Equation 8;
5: end for
6: Obtain learned ϕ; Initialize the hierarchyH;
7: for iteration ∈ {1, 2, 3} do
8: // Hierarchy-Guided Domain Discovery
9: Define & Update look-up table M via Step 1-4;

10: Assign domain IDsM : x 7→m with Equation 2;
11: // Self-Supervised Domain Encoding
12: Initialize gθ; Pretrain gθ by minimizing Equation 6;
13: for epoch ∈ {1, 2, . . . , 20} do
14: // Domain Pathway
15: Obtain patient embeddings p with Equation 1;
16: Get domain features r by gθ(m);
17: Decompose invariant features h with Equation 7;
18: Decode ŷp, ŷh with Equation 8;
19: Minimize co-training loss Lp,Lh with Equation 9;
20: end for
21: end for
Output: Trained models fϕ, gθ, dη , qξ; final prediction ŷh.

C BASELINES

Beyond Base and Oracle, we select 5 approaches following general DG setting and select 2 highly
related baselines tackling clinical DG problems to compare the performance with UDONCARE:
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• Domain-adversarial neural networks (DANN) (Ganin et al., 2016) use gradient reversal layer
for domain adaptation, and we adopt it for the generalization setting by letting the discriminator
only predict training domains.

• Conditional adversarial net (CondAdv) (Isola et al., 2017) concatenates the label probability and
the feature embedding to predict domains in an adversarial way.

• Meta-learning for domain generalization (MLDG) (Li et al., 2018a) adopts the model-agnostic
meta learning (MAML) (Finn et al., 2017) framework for domain generalization.

• Invariant risk minimization (IRM) (Arjovsky et al., 2019) learns domain invariant features by
regularizing squared gradient norm.

• Proxy-based contrastive learning (PCL) (Yao et al., 2022) build a new supervised contrastive
loss from class proxies and negative samples.

• Many-domain generalization for healthcare (ManyDG) (Yang et al., 2023a) with auto-encoder
structures to learn invariant features with unique domain separation for each patient.

• Self-learning framework for domain generalization (SLDG) (Wu et al., 2023) discovers latent
domains by decoupled domain-specific classifiers for clinical prediction.

Note that, for baselines that rely on domain IDs, we use admission time as the domain definition.

D IMPLEMENTATION DETAILS

Considering the common use of the Encoder-Decoder structure for clinical prediction, we adopt
the Transformer (Vaswani et al., 2023) as the backbone feature extractor fϕ in UDONCARE and all
baselines. Specifically, we follow the implementation adapted from PyHealth (Yang et al., 2023b),
consisting of three layers with a hidden size of 64, 4 attention heads, and a dropout rate of 0.2. The
position encoding is applied across patient visits to capture temporal order. Diagnosis, treatment,
and medication codes are embedded as separate feature keys using an embedding look-up table.
The MLP classifiers used for both original and domain-invariant representations contain two hidden
layers with sizes [64, 32], ReLU activations, and a dropout rate of 0.2, with task-specific output
activations. We use the Adam optimizer for training, and all remaining hyperparameters follow the
settings in PyHealth. For domain discovery, the score function uses α = 0.5, and the KL divergence
loss coefficient λ is set to 1.0 on MIMIC-III and 1.5 on MIMIC-IV. All models are trained for 100
epochs, and the best model is selected based on the AUPRC score monitored on the source validation
set. We set the learning rate to 1×10−4 for fϕ and 5×10−5 for gθ, batch size to 32, iteration to 3, and
self-supervised epoch to 30. We tune α and λ based on validation performance. All experiments are
conducted using Python 3.10 and PyTorch 2.3.1 with CUDA 12.4 on a server equipped with AMD
EPYC 9254 24-Core Processors and NVIDIA L40S GPUs.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RESULTS WITH GAMENET BACKBONE

We extend the main experiments by replacing the Transformer backbone with GAMENet (Shang
et al., 2019b), a model specifically designed for drug recommendation tasks. Therefore, we evaluate
its performance on the drug recommendation task using both MIMIC-III and MIMIC-IV. As shown
in Table 5, the gap between Oracle and Base again highlights the domain shift between datasets.
Standard domain generalization methods (e.g., DANN, IRM) provide limited improvements, while
adversarial and meta-learning approaches (CondAdv, MLDG) show moderate gains. ManyDG per-
forms well on MIMIC-IV, but our proposed UDONCARE achieves the best overall results, with
consistent improvements in both AUPRC and F1-score. These findings confirm that UDONCARE
generalizes effectively even with a domain-specific backbone.

E.2 RESULTS WITH CGL BACKBONE

We also extend the main experiments by replacing the Transformer backbone with CGL (Lu et al.,
2021), a model specifically designed for diagnosis prediction tasks. Following the original CGL
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Table 5: Performance of Drug Recommendation with GAMENet.

Model MIMIC-III MIMIC-IV
AUPRC F1-score AUPRC F1-score

Oracle 79.57 (0.32) 68.14 (0.27) 75.92 (0.27) 64.57 (0.36)
Base 72.49 (0.17) 58.32 (0.21) 67.88 (0.30) 58.26 (0.27)
DANN 74.24 (0.09) 59.21 (0.17) 72.18 (0.13) 60.35 (0.18)
CondAdv 73.38 (0.11) 62.94 (0.13) 70.86 (0.28) 59.55 (0.27)
MLDG 75.26 (0.14) 63.33 (0.16) 71.49 (0.19) 61.19 (0.38)
IRM 72.13 (0.21) 59.87 (0.25) 71.35 (0.20) 60.87 (0.34)
ManyDG 76.84 (0.10) 64.58 (0.30) 74.18 (0.24) 62.23 (0.29)
UdonCare 77.56 (0.15) 65.79 (0.24) 74.83 (0.21) 61.94 (0.32)

setting, we only consider conditions as input features, which naturally leads to some performance
degradation compared to the main experiment results. Therefore, we evaluate its performance on
the diagnosis prediction task using both MIMIC-III and MIMIC-IV. As shown in Table 6, the gap
between Oracle and Base again highlights the domain shift between datasets. Standard domain gen-
eralization methods (e.g., DANN, IRM) provide limited improvements, while adversarial and meta-
learning approaches (CondAdv, MLDG) show moderate gains. ManyDG performs competitively,
but our proposed UDONCARE still achieves the best overall results, with consistent improvements
across both w-F1 and R@10. These findings confirm that UDONCARE generalizes effectively even
with a task-specific backbone.

Table 6: Performance of Diagnosis Prediction with CGL.

Model MIMIC-III MIMIC-IV
w-F1 R@10 w-F1 R@10

Oracle 25.71 (0.18) 38.01 (0.21) 27.09 (0.22) 39.42 (0.19)
Base 19.05 (0.14) 30.01 (0.24) 19.22 (0.25) 30.64 (0.18)
DANN 20.35 (0.20) 33.56 (0.27) 23.02 (0.15) 34.07 (0.23)
CondAdv 21.55 (0.13) 35.11 (0.22) 25.02 (0.28) 36.51 (0.16)
MLDG 20.12 (0.26) 32.81 (0.19) 23.15 (0.19) 33.27 (0.21)
IRM 21.02 (0.12) 32.11 (0.25) 22.41 (0.27) 33.01 (0.22)
ManyDG 22.01 (0.23) 35.11 (0.20) 24.12 (0.17) 36.02 (0.29)
UdonCare 23.89 (0.20) 37.12 (0.24) 26.02 (0.15) 38.21 (0.18)

F DOMAIN DISCOVERY WITH MORE FEATURE KEYS

To examine whether latent domain discovery benefits from richer feature information, we further
incorporate procedure and medication codes as additional keys in UDONCARE. As shown in Ta-
ble 7, the overall gains across prediction tasks are marginal and vary inconsistently across datasets.
While certain metrics observe slight improvements, others remain unchanged or even decline. This
suggests that introducing treatments and drugs into the domain partitioning process does not lead
to stable enhancements. These findings are consistent with our conclusion that relying on the dis-
ease hierarchy (ICD-9-CM) provides a more effective and reliable basis for latent domain discovery,
whereas incorporating additional feature keys yields only limited benefits.

G CONVERGENCE ANALYSIS VIA ITERATIVE LEARNING

While the pruning-based algorithm provides efficiency, its iterative nature makes it non-trivial to
characterize convergence using a simple continuous optimization view. To further substantiate the
convergence property of our approach, we extend the cosine similarity experiment described in
Section 4.3. Specifically, instead of reporting a single snapshot after three iterations, we monitor the
cosine similarity values across iterations. As shown in Table 8, the results exhibit a clear trend: at the
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Table 7: Performance comparison of four prediction tasks on MIMIC-III/MIMIC-IV. We report
the average performance (%) and the standard deviation (in bracket) over 5 runs.

Model
Task 1: Mortality Prediction Task 2: Readmission Prediction

MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV
AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

Oracle 16.54 (0.49) 70.12 (0.58) 8.79 (0.50) 68.61 (0.44) 73.11 (0.50) 70.02 (0.47) 67.51 (0.14) 67.28 (0.13)
Base 11.62 (0.60) 55.59 (0.98) 4.21 (0.45) 59.02 (0.73) 50.44 (0.83) 45.03 (0.68) 48.18 (0.21) 45.96 (0.30)
UDONCARE 16.03 (0.35) 69.26 (0.40) 6.59 (0.29) 66.45 (0.46) 71.45 (0.33) 67.61 (0.36) 61.81 (0.11) 58.38 (0.23)

Model
Task 3: Drug Recommendation Task 4: Diagnosis Prediction

MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV
AUPRC F1-score AUPRC F1-score w-F1 R@10 w-F1 R@10

Oracle 80.52 (0.13) 67.48 (0.29) 74.62 (0.27) 61.61 (0.23) 26.53 (0.14) 39.57 (0.20) 27.92 (0.12) 40.68 (0.17)
Base 68.39 (0.14) 47.82 (0.34) 66.62 (0.20) 53.47 (0.20) 21.69 (0.15) 31.11 (0.18) 20.22 (0.13) 31.65 (0.20)
UDONCARE 78.62 (0.20) 66.12 (0.30) 72.79 (0.35) 59.49 (0.15) 24.55 (0.12) 38.26 (0.21) 27.11 (0.12) 39.63 (0.18)

Table 8: Cosine similarity of linear weights on p, r̃, and h across epochs.
Epoch Cosine Similarity Mortality Prediction Readmission Prediction Drug Recommendation Diagnosis Prediction

40
Wd(p→ labels) vs. Wd(h→ labels) 0.5283 0.2935 0.3829 0.6259

Wd(p→ domains) vs. Wd(r̃→ domains) 0.4615 0.4908 0.5275 0.4705
Wd(p→ labels) vs. Wd(p→ domains) 0.2495 0.2695 0.2993 0.3826

60
Wd(p→ labels) vs. Wd(h→ labels) 0.7245 0.4119 0.6080 0.8318

Wd(p→ domains) vs. Wd(r̃→ domains) 0.3960 0.2195 0.3450 0.2712
Wd(p→ labels) vs. Wd(p→ domains) 0.1842 0.1007 0.1812 0.1437

80
Wd(p→ labels) vs. Wd(h→ labels) 0.7761 0.4686 0.6392 0.8523

Wd(p→ domains) vs. Wd(r̃→ domains) 0.3508 0.2012 0.2807 0.2208
Wd(p→ labels) vs. Wd(p→ domains) 0.1312 0.0853 0.1296 0.1017

100
Wd(p→ labels) vs. Wd(h→ labels) 0.7831 0.4813 0.6546 0.8654

Wd(p→ domains) vs. Wd(r̃→ domains) 0.3427 0.1957 0.2753 0.2133
Wd(p→ labels) vs. Wd(p→ domains) 0.1239 0.0794 0.1251 0.0972

∗ Wd(·) represents the learned linear weights. Cosine similarity scores are averaged across all classes and evaluated over 3 runs.

early stage of training (epoch 40), the similarities between Wd(p → labels) and Wd(h → labels)
are relatively low, while the cross-domain similarities (Wd(p → domains) vs. Wd(r̃ → domains))
are comparatively high. This indicates that the model has not yet disentangled domain- and label-
related features. As the training proceeds (epoch 60 and 80), the similarities gradually align with
the final values at epoch 100, where the decomposition becomes stable and consistent with the
results reported in Table 3. These observations provide additional evidence that the iterative learning
strategy enables the model to converge in terms of separating label-invariant and domain-specific
information. More importantly, by tracking cosine similarity dynamics, we validate that pruning
and iterative decomposition jointly lead to a stable representation space, rather than an artifact of a
single training snapshot.

H UPWARD INFORMATION FLOW

Considering the hierarchical structure of medical knowledge, a tree-based method (i.e. pruning al-
gorithm) can be naturally adopted for deciding whether we group diseases into higher-level clusters.
However, before applying this pruning algorithm to the domain discovery phase, we must ensure
that embeddings for all nodes in the hierarchy are available. Since only the leaf-node embeddings
E(e1, . . . , e|C|) are obtained from fϕ(·), we propose a unidirectional information flow to initialize
and propagate these embeddings upward in a structured yet flexible manner.

First, for each diagnostic code di, we can initialize its embedding edi
∈ Rh in terms of one of two

scenarios:

1. For present code di in the dataset, edi
is initialized by embedding table in disease-specific

extractor fϕ,d(·).

2. For absent code di in the dataset, edi
is initialized by its entity name through the pretrained

ClinicalBERT (Huang et al., 2019).
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We then propagate these embeddings level by level through the hierarchy. The embedding of a
parent node e

(h−1)
ni is computed from the embeddings of its descendants at level h:

e
(h−1)
i :=

1

|Desc(n
(h−1)
i )|

∑
n∈Desc(ni)

e(h)n (10)

However, these initial embeddings do not capture the hierarchical distances between node pairs.
For example, two codes might have significantly different embeddings despite sharing the same
parent node. To address this, and inspired by hierarchical clustering (Johnson, 1967), we rectify
these embeddings by considering their relative positions. Following the mechanism of hierarchical
clustering, we first calculate cosine similarities of embeddings between pairs (di, dj) of leaf nodes
or newly formed sub-clusters. The pair with the highest similarity is identified, and their lowest
common ancestor LCA(di, dj) in the existing hierarchy is retrieved. The ancestor embedding can
be then rectified by incorporating edi

and edj
:

eLCA(di,dj) ← Average
(
eLCA(di,dj), edi , edj

)
. (11)

Any node not identified as an LCA remains at its average-based embedding from equation 3, and the
process repeats until the highest similarity among remaining pairs falls below a predefined threshold.
Given the initial embedding table E(e1, . . . , e|C|), this upward flow extends it to E(e1, . . . , e|H|) over
the entire hierarchy H. Finally, by incorporating both hierarchical structure and feature similarity
through information flow, the resulting node embeddings can capture richer representations upon
clinical concept relationships.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used large language models (LLMs) solely as a general-purpose tool to
improve writing fluency and polish the presentation of the text. All ideas, experimental designs,
analyses, and conclusions are our own, and the responsibility for the content rests entirely with the
authors.
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