HIERARCHY PRUNING FOR UNSEEN DOMAIN DISCOVERY IN PREDICTIVE HEALTHCARE

Anonymous authorsPaper under double-blind review

ABSTRACT

Healthcare providers often divide patient populations into cohorts based on shared clinical factors, such as medical history, to deliver personalized healthcare services. This idea has also been adopted in clinical prediction models, where it presents a vital challenge: capturing both global and cohort-specific patterns while enabling model generalization to unseen domains. Addressing this challenge falls under the scope of domain generalization (DG). However, conventional DG approaches often struggle in clinical settings due to the absence of explicit domain labels and the inherent gap in medical knowledge. To address this, we propose UDONCARE, a hierarchy-guided method that iteratively divides patients into latent domains and decomposes domain-invariant (label) information from patient data. Our method identifies patient domains by pruning medical ontologies (e.g. ICD-9-CM hierarchy). On two public datasets, MIMIC-III and MIMIC-IV, UDONCARE shows superiority over eight baselines across four clinical prediction tasks with substantial domain gaps, highlighting the untapped potential of medical knowledge in guiding clinical domain generalization problems.

1 Introduction

The digitization of clinical data, notably electronic health records (EHR), has transformed healthcare by enabling efficient computational analysis. Current deep learning techniques have also achieved significant gains in diagnosis, mortality, and readmission prediction tasks (Poulain & Beheshti, 2024; Jiang et al., 2024). Still, these models trained on the training (source) data often suffer performance drops when applied to the test (target) data under domain shifts, that is, distributional changes across patient groups, such as data from different hospitals (Perone et al., 2019; Koh et al., 2021). Consequently, handling domain shifts is a prerequisite for alleviating performance degradation in clinical predictive models (Yang et al., 2023a; Wu et al., 2023). It also aligns with the objective of most domain generalization (DG) methods, such as meta-learning (Balaji et al., 2018; Dou et al., 2019), adversarial learning (Ganin et al., 2016; Li et al., 2018b), and latent-domain techniques (Matsuura & Harada, 2020; Wu et al., 2023).

In this work, we focus on tackling DG problem in clinical settings, whereas most recent models have been developed for image classification. However, directly transferring these regular DG methods will encounter two clinical-specific obstacles: (1) Domain IDs, which are naturally defined in image datasets (e.g., dog & cat), are unseen in most EHR datasets, but most DG solutions require the presence of domain IDs (Wu et al., 2023). Some studies treat each patient as unique domain (Dou et al., 2019; Yang et al., 2023a), which is overly fine-grained and unstable. Others rely on broader categorizations (e.g. institute & admission period), which overlook clinical heterogeneity (Zhang et al., 2021a; Guo et al., 2022). (2) Even though some DG methods do not rely on domain IDs (Arjovsky et al., 2019; Liu et al., 2021b), they overlook clinical semantics. For instance, Matsuura & Harada (2020); Wu et al. (2023) cluster patient features to form latent domains, but the resulting partitions are highly sensitive to training data. In practice, patient groups can vary significantly, even over longer admission periods, since they reflect only feature-level similarity without capturing the progression of medical concepts. Hence, it is crucial to construct robust domains with explicit definitions grounded in clinical relevance.

To address these challenges, we explore the following research question: *Instead of assuming the presence of domain IDs, can we leverage medical knowledge to guide models in discovering do-*

mains that are both adaptive and clinically meaningful? In most hospitals, visiting patients are treated based on their medical history, which is expressed through medical concepts shown in their admissions. For instance, when dealing with heart failure patients, hospitals may categorize heart failure as a distinct domain or group it with other cardiovascular diseases. Similarly, in medical ontologies like ICD-9-CM, heart failure corresponds to a leaf node under a higher-level node grouping cardiovascular disease, and such hierarchical relation motivates us to use a pruning algorithm to identify appropriate ancestor nodes for domain partitioning. Building upon this perspective, our work focuses on knowledge-guided partitioning of medical concepts, ensuring alignment with clinical semantics while maintaining flexibility for adaptive generalization.

To this end, we propose UDONCARE, a framework that integrates medical ontologies into an iterative domain discovery process, enabling domain distinction at varying levels of abstraction. It ensures the discovered domains remain consistent with clinical reasoning while supporting robustness against distribution shifts. Specifically, a pruning algorithm is developed to merges similar concepts on hierarchies and generate soft labels as domain IDs for patients. To explicitly remove domain features from patients, we leverage a mutual learning network, which learns domain-invariant (label) representations upon the orthogonal factorization. Finally, domain assignments and feature extraction are updated jointly through an iterative collaborative inference mechanism, allowing the pruning module to adapt domain categorization according to input data and task settings. Our main contributions are enumerated as follows:

- To the best of our knowledge, this is the first work using medical ontologies to tackle clinical DG problems. It reveals the potential of medical ontologies in finding latent domains for handling covariates, rather than serving as feature enrichment (Lu et al., 2021; Jiang et al., 2024).
- UDONCARE shows accurate prediction across four vital predictive tasks on two public datasets, outperforming both clinical DG baselines (Yao et al., 2022; Wu et al., 2023) and regular DG baselines. UDONCARE boosts the AUPRC score by 5 − 20% over the best baselines.
- We conduct detailed analyses to show that UDONCARE addresses domain shifts through accurate domain partitioning and invariant feature learning, without sacrificing computational overhead.

2 Preliminary

EHR Dataset. Given an EHR dataset \mathcal{S} , the i-th patient's data $\mathbf{x}^{(i)}$ consists of a longitudinal sequence of visits $\{V_1^{(i)}, V_2^{(i)}, \dots, V_T^{(i)}\}$. We omit the patient index i to illustrate our method using single patient data \mathbf{x} . Medical codes c_i in admissions can be also categorized into K distinct feature keys. In this work, we identify feature keys from the vocabulary of medical concepts $\mathcal{C} \in \{\mathcal{D}, \mathcal{P}, \mathcal{M}\}$, where $\mathcal{D}, \mathcal{P}, \mathcal{M}$ denote the sets of diseases, procedures, and drugs, respectively.

EHR Predictive Models. For clinical prediction, models trained on EHR data typically aim to predict clinical outcomes $\mathbf{y} \in \{0,1\}^d$ at a future visit V_{t+1} , where d is the number of labels. To learn temporal changes of feature key k, most studies develop a feature extractor $f_{\phi,k}(\cdot): \mathbf{x}_k \mapsto \mathbf{p}_k$ to encode the admission sequence \mathbf{x}_k into a patient-level embedding \mathbf{p}_k , which can then be concatenated with embeddings from other keys or used directly for downstream predictions:

$$\mathbf{p} = \mathbf{p}_1 \oplus \cdots \oplus \mathbf{p}_k \oplus \cdots \oplus \mathbf{p}_K$$
, where $\mathbf{p}_k = f_{\phi,k}(\mathbf{x}_k) \in \mathbb{R}^h$. (1)

Here, $f_{\phi,k}$ is the encoder for feature key k, \oplus denotes vector concatenation across K feature keys, and h is the embedding dimension. Most studies assume that these learned embeddings effectively capture patient's medical history, and \mathbf{p} is then passed to a label predictor (e.g. MLP).

Concept-Specific Hierarchy. In EHR data, certain medical concept $c_i \in \mathcal{C}$ always originates from a hierarchical encoding system, such as ICD-9 (Organization et al., 1988) and ATC (Nahler & Nahler, 2009) codes. We define a concept-specific hierarchy \mathcal{H} of H levels, and denote $n_i^{(h)}$ as the i-th node on level h. Leaf nodes at level H represent actual codes via the mapping $m:c_i\mapsto n_i^{(H)}$ with node feature \mathbf{e}_i stored in $f_{\phi,k}$, and $\mathrm{Desc}(\cdot)$ denotes the set of descendant nodes. Note that, the root node $n_1^{(1)}$ at the top level subsumes all nodes in \mathcal{H} , and any two leaf nodes $n_i^{(H)}$ and $n_j^{(H)}$ share at least one common ancestor. In this work, we only focus on the disease hierarchy (i.e. ICD-9-CM), as incorporating treatments and drugs yields only marginal gains (see Appendix F). However, UDONCARE can be extended to incorporate additional feature keys or ontologies if needed.

Figure 1: **The Overall Framework of UDONCARE.** The forward structure adds a domain pathway for mutual learning, extending beyond the backbone pathway of conventional predictive models. During training, we first feed patient data \mathbf{x} into the backbone pathway, which learns patient features \mathbf{p} through $f_{\phi,k}(\cdot)$ and produces the output prediction \hat{y}_p . In parallel, we obtain \hat{y}_h from invariant features \mathbf{h} along the domain pathway by applying DiscoveryAlgo(\cdot), $g_{\theta,k}(\cdot)$, and $h(\cdot)$. Here we iteratively adapt latent domains in \mathbf{M} and update parameters on both pathways by ground truths y.

3 METHODOLOGY

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125 126 127

128 129

130

131 132

133

134 135

136

137 138

139

140

141

142

143

144

145

146

147

148

149 150

151

152 153

154

156

157

158

159

160

161

To generalize $f_{\phi}(\cdot)$ on target data despite domain shifts, we develop a hierarchy-guided framework that iteratively divides patients into latent domains and decompose domain-invariant features for downstream health risk predictions. It iteratively operates two main steps:

Step 1: Develop a pruning algorithm for medical hierarchies to discover latent domains;

Step 2: Learn invariant (label) information by factorizing patient features in projection space.

Figure 1 presents a workflow of UDONCARE. In general, we aim to show how medical knowledge can guide domain generalization for clinical prediction, rather than merely augment features.

3.1 Step 1: Hierarchy-Guided Domain Discovery

While domain IDs are unobserved in EHR datasets, it is intuitive that patients with similar medical histories (concepts) often belong to the same domain. We can divide patient cohorts by treating the multi-hot vector \mathbf{v}_t from admissions as a soft domain label. However, the number of latent domains grows exponentially with the larger vocabulary size $|\mathcal{C}|$ (i.e. $2^{|\mathcal{C}|}$). Here, we design a hierarchy-guided domain discovery algorithm that assigns and updates domain IDs for patients' admissions. Our goal is to prune overly fine-grained nodes, thereby forming a smaller set of ancestors that still covers all concepts. Given a set of patient samples $\{\mathbf{x}^{(i)}\}_{i=1}^{N_{\mathrm{tr}}}$, we construct a assignment matrix \mathbf{M} to query domain IDs via

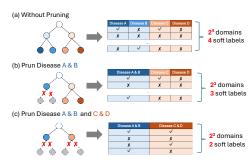


Figure 2: A simple illustration of hierarchyguided domain discovery.

$$\mathbf{M} := \operatorname{DiscoveryAlgo}\left(\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N_{\operatorname{tr}}}\right) \in \left\{0,1\right\}^{N_{\operatorname{tr}} \times |\mathcal{C}'|}, \tag{2}$$

where $N_{\rm tr}$ is the number of training patients, $|\mathcal{C}'|$ is the pruned vocabulary size of medical concepts. It merges fine-grained codes into fewer, higher-level clusters, allowing patients with or without a particular disease to occupy different latent domains as needed.

Initialization on Domain IDs. Following the previous settings (Lu et al., 2021; Jiang et al., 2024), we only focus on patients with multiple admission, where there are $T \geq 2$ records. This sequence should be then converted into a single vector that consolidates all prior visits. Hence, we aggregate patient data $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T\}$ into a unified representation $\mathbf{X} = \bigvee_{t=1}^T \mathbf{x}_t$, where medical concepts

shown in each admission are merged to form a comprehensive medical history. Note that, \mathbf{X} is the most fine-grained domain assignment, which initializes $\operatorname{DiscoveryAlgo}(\cdot)$.

Initialization on Node Features. After getting X for each patient, concept-specific ontology $\mathcal H$ with node features are required to decide whether fine-grained medical concepts group diseases into higher-level clusters or are preserved. We initialize leaf-node features $\mathbf{e}_i \in \mathbb{R}^h$ by: (1) for **present code** c_i in $\mathcal S$, \mathbf{e}_i is initialized from embedding layer $\mathrm{E}(e_1,\ldots,e_{|\mathcal C|})$ in $f_{\phi,k}(\cdot)$; (2) for **absent code** c_i in $\mathcal S$, \mathbf{e}_i is its embedding of entity name through ClinicalBERT (Huang et al., 2019). The feature of a parent node $\mathbf{e}_{n_i}^{(h-1)}$ is then computed from the embeddings of its descendants at level h:

$$\mathbf{e}_i^{(h-1)} := \frac{1}{|\operatorname{Desc}(n_i^{(h-1)})|} \sum_{n \in \operatorname{Desc}(n_i)} \mathbf{e}_n^{(h)} \tag{3}$$

It extends $E(e_1, \ldots, e_{|\mathcal{C}|})$ to $E(e_1, \ldots, e_{|\mathcal{H}|})$ over the entire hierarchy. Still, it fails to capture the hierarchical distances in \mathcal{H} . For example, two codes might be totally different despite sharing the same parent node. Therefore, we mimic the principle of hierarchical clustering (Johnson, 1967) by propagating node features upward based on feature similarity. For each most similar node pair (d_i, d_j) , their lowest common ancestor $LCA(d_i, d_j)$ is updated by averaging their embeddings:

$$\mathbf{e}_{\mathrm{LCA}(d_i,d_j)} \leftarrow \mathrm{Average}(\mathbf{e}_{\mathrm{LCA}(d_i,d_j)},\mathbf{e}_{d_i},\mathbf{e}_{d_j}). \tag{4}$$

This process continues until the maximum similarity among remaining pairs falls below a threshold $\rho=0.3$, yielding hierarchy-aware embeddings that integrate structural positions with features. See Appendix H for more details about the information flow.

Node Scoring. For each node $n \in \mathcal{H}$, we define S(n) to identify which node is a good "candidate" for final selection. Motivated by the idea of information gains (Song & Ying, 2015), S(n) involves three indicators, coverage cov(n), purity pur(n), and depth dep(n), via

$$S(n) = \alpha \cdot \exp(\operatorname{pur}(n)) + (1 - \alpha) \left(\operatorname{cov}(n) \times \operatorname{dep}(n) \right)$$
$$= \alpha \cdot \exp\left(\mathbb{E}_{m \in \mathcal{M}} \left[\operatorname{sim}(\mathbf{e}_n, \mathbf{e}_m) \right] \right) + (1 - \alpha) \left(\frac{|\mathcal{M}|}{|\mathcal{L}|} \cdot \frac{h}{H} \right)$$
(5)

where \mathcal{M} is equivalent to $\operatorname{Desc}(n)$; $\mathbb{E}(\cdot)$ denotes the mathematical expectation; α and $\exp(\cdot)$ act as scaling factors, which regularize the selection avoiding either too low or high level. Consequently, the score matrix $S(s_1, \ldots, s_{|\mathcal{H}|})$ is obtained after scoring all nodes in the hierarchy.

Hierarchy Pruning. Once S(n) is computed, we perform a bottom-up pass over \mathcal{H} to generate a candidate set of pruned nodes. Let p be the parent node with children $\{c_1, \ldots, c_r\}$. There are three possible situations upon comparing score S(p) with its children scores $\{S(c_i)\}^r$:

- If $S(p) > \max(\{S(c_i)\}^r)$, we include parent node p and exclude its children.
- If $S(p) < \min(\{S(c_i)\}^r)$, we discard parent node p and select all children.
- Otherwise, we tentatively discard p but mark it for further resolution in the next step.

After the first iteration on the score matrix, a candidate subset \mathcal{C}_0 will be generated. However, such a result can be considered as a local optimum solution, since marked candidates still require further evaluation. Here a list of tuples A of length N is adopted to trade off each flagged parent-child pair $A[n] := (p, \{c_1, \ldots, c_r\})$ to find an optimal result via a chosen search strategy.

Domain Searching. Given N flagged pairs, the complexity of a typical search approach grows exponentially (i.e. $O(2^N)$) in the number of pairs. To search near-optimal pruning results, we employ a rectified Beam-Search algorithm (Lowerre, 1976) for more efficient optimization. We compute a global clustering metric, Silhouette Score (Shahapure & Nicholas, 2020), to evaluate how well each pruned node separates its assigned leaves from others. For each flagged pairs, we either (1) unify them by including the parent or (2) retain the children as distinct pruned nodes, whichever achieves higher scores. This process iterates over all flagged nodes in order by updating pruning subsets in $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_N\}$ to make selection \mathcal{C}' with the optimal evaluation result.

Domain Decision. To this end, we obtain an updated vocabulary $\mathcal{C}' \subseteq \mathcal{H}$ of selected higher-level nodes and update the domain-assignment matrix \mathbf{M} by linking each patient's admission records (originally from \mathcal{C}) to these pruned clusters in \mathcal{C}' , where $|\mathcal{C}'| \leq |\mathcal{C}|$. If patient $p^{(i)}$ has at least one leaf code d that descends from the pruned node $p_j \in \mathcal{C}'$, we update $\mathbf{M}[i,j]=1$; otherwise, $\mathbf{M}[i,j]=0$. Note that, the output matrix \mathbf{M} define domain categorization in terms of node features.

3.2 STEP 2. MUTUAL FORWARD LEARNING

Each domain can be viewed as a latent representation \mathbf{r} sampled from a meta domain distribution $p(\cdot)$, so that we can identify \mathbf{r} and then factorize $p(y|\mathbf{x})$ into $\int p(y|\mathbf{x},\mathbf{r})p(\mathbf{r}|\mathbf{x})\,d\mathbf{r}$ by approximating $q(\mathbf{r}) \sim p(\mathbf{r}|\mathbf{x})$ given data samples \mathbf{x} . Subsequently, a domain encoder $p(\mathbf{r}|\mathbf{x})$ and a label predictor $p(y|\mathbf{x},\mathbf{r})$ are needed for inference. Here we parameterize the domain encoder $p(\mathbf{r}|\mathbf{x})$ as a network $g_{\theta}(\cdot)$ with parameter θ . Since the pruned output matrix \mathbf{M} (see Section 3.1) maps each training sample \mathbf{x} to \mathbf{m} (soft-label domain IDs), we apply $g_{\theta}(\cdot)$ to \mathbf{m} to estimate the domain factor $\mathbf{r} := g_{\theta}(\mathbf{m})$. Although \mathbf{r} represents a probabilistic domain variable, we implement g_{θ} as a deterministic Multi-Layer Perceptron (MLP) for the prediction task. Next, we compute invariant features using a non-parametric function $h(\cdot): (\mathbf{r}, \mathbf{p}) \mapsto \mathbf{h}$, which fuses \mathbf{r} (domain-level representation) and \mathbf{p} (patient-level representation) as input features for the label predictor $p(y|\mathbf{x},\mathbf{r})$.

Self-Supervised Domain Encoder. The main concerns on training domain encoder is how to ensure $g_{\theta}(\cdot)$ can extract valid domain information from patients, which is ignored by some works (Finn et al., 2017; Li et al., 2018a; Yang et al., 2023a). A regulation method is then developed during the encoder training phase. Concretely, pseudo domain labels m help us divide patients into latent domains, where averaging patient-specific features $\bar{\mathbf{p}}$ could provide guidance for $g_{\theta}(\cdot)$ in identifying domain information. Hence, we adopt a pretraining task and update θ based on patient embeddings \mathbf{p} from $f_{\phi}(\cdot)$ by minimizing loss function

$$\mathcal{L}_r[g_{\theta}(\mathbf{m}), \bar{\mathbf{p}}] := \text{MSE}(\mathbf{r}, \ \mathbb{E}[\mathbf{p}|\mathbf{m}]) + \frac{\|\mathbf{r}_{\mu} - \mathbf{p}_{\mu}\|_{\mathcal{F}}^2}{\|\mathbf{p}_{\mu}\|_{\mathcal{F}}^2}.$$
 (6)

where $\mathbb{E}[\mathbf{p}|\mathbf{m}]$ denotes the average embedding associated with domain IDs, and $\|\mathbf{r}_{\mu} - \mathbf{p}_{\mu}\|_{\mathcal{F}}^2$ measures the Maximum Mean Discrepancy (Borgwardt et al., 2006) with the norm \mathcal{F} to reduce distributional gaps. The subscript μ indicates batch-level averages. The domain encoder $g_{\theta}(\cdot)$ can then approximate domain features \mathbf{r} through both patient-level inputs \mathbf{p} and \mathbf{m} .

Invariant Feature Projection Learning. In equation 6, both $\bf r$ and $\bf p$ are rescaled into a shared vector space with comparable magnitudes. Hence, we can directly apply an orthogonal projection approach (as in early studies (Bousmalis et al., 2016; Shen et al., 2022; Yang et al., 2023a)) to obtain the invariant feature $\bf h$ by subtracting the parallel component of $\bf p$ in this shared vector space. We formalize this in $h(\cdot)$ as shown in equation 7:

$$\mathbf{h} := \mathbf{p} - \tilde{\mathbf{r}}, \text{ where } \tilde{\mathbf{r}} = \mathbf{r} \cdot \langle \frac{\mathbf{p}}{\|\mathbf{r}\|}, \frac{\mathbf{r}}{\|\mathbf{r}\|} \rangle.$$
 (7)

Here, $\tilde{\mathbf{r}}$ is the component of \mathbf{p} that is parallel to \mathbf{r} with domain covariates, while \mathbf{h} is the remainder and thus invariant to domain shifts. We thus obtain invariant features \mathbf{h} without additional parameters, and $h(\cdot)$ serves as an essential pre-processing step before making prediction.

3.3 Training and Inference

Iterative Training. To train UDONCARE, we feed each data sample $\mathbf x$ into the hierarchy-pruning module to obtain its latent domain $\mathbf m$, and then perform two cross-reference steps under a mutual learning architecture. Rather than updating the model continuously in each epoch, we adopt an iterative training strategy, which prior studies (Cui et al., 2019; Sofiiuk et al., 2022) have shown can reduce training time while maintaining comparable predictive performance. We iteratively update the model weights and regenerate domain assignments every 20 epochs in our experiment. Before each iteration, we reinitialize the parameters in $g_{\theta}(\cdot)$, because the input shape of $\mathbf m$ may change due to updated code-level embeddings. We also provide the pseudo-code of UDONCARE in Appendix B.

Mutual Inference. After the orthogonal projection, we apply the network $q_{\xi}(\cdot)$ (operates on space \mathbf{p}) as a post-step to parameterize the label predictor $p(y|\mathbf{x},\mathbf{r})$; It is also available to parameterize $p(y|\mathbf{x})$ through the regular decoder network $d_{\eta}(\cdot)$ fed by patient embeddings from backbone $f_{\phi}(\cdot)$.

$$p(y|\mathbf{x}) \sim \hat{y}_p = d_{\eta}(\mathbf{p}) = d_{\eta}(f_{\phi}(\mathbf{x}))$$

$$p(y|\mathbf{x}, \mathbf{r}) \sim \hat{y}_h = q_{\xi}(\mathbf{h}) = q_{\xi}(h(g_{\theta}(\mathbf{m}), \mathbf{p}))$$
(8)

¹For example, we set iterations I=3 and epochs N=100 by first obtaining pretrained parameters for 40 epochs and then updating $\mathbf M$ iteratively every 20 epochs, yielding a total of 100 epochs.

Table 1: Statistics of MIMIC-III and MIMIC-IV datasets.

Dataset	# patients	Max. # visit	Avg. # visit	Avg. # \mathcal{D} /visit	Avg. #P/visit	Avg. #M/visit
MIMIC-III	6,497	42	2.66	13.06	4.54	33.71
MIMIC-IV	49,558	55	3.66	13.38	4.70	43.89

Both $q_{\xi}(\cdot)$ and $d_{\eta}(\cdot)$ are linear classifiers with learnable parameter matrices. A loss function \mathcal{L} is then applied to add label supervision for downstream predictive tasks. We integrate these two predictors into a collaborative framework, with the mutual inference objective:

$$\mathcal{L}_{p} = \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{S}_{train}} \ell(\hat{y}_{p}, y) + \lambda \cdot D_{\text{KL}}(\hat{y}_{p} || \tilde{y})$$

$$\mathcal{L}_{h} = \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{S}_{train}} \ell(\hat{y}_{h}, y) + \lambda \cdot D_{\text{KL}}(\hat{y}_{h} || \tilde{y})$$
(9)

where $D_{\mathrm{KL}}(\hat{y}_* \parallel \tilde{y})$ denotes the KL Divergence (Van Erven & Harremos, 2014), $\ell(\cdot)$ denotes the binary cross-entropy, and \tilde{y} is the average probability of \hat{y}_p and \hat{y}_h . These two losses are calculated jointly to let d_η and q_ξ regularize one another, stabilizing the learning of q_ξ with less parameters. Following the domain generalization setting, we adopt \hat{y}_h as the final prediction.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Predictive Tasks. We evaluate our approach on four representative tasks: (1) **Mortality Prediction**, which determines whether a patient will pass away by a specified time horizon after discharge. This is a binary classification task. (2) **Readmission Prediction**, which checks if a patient will be readmitted within a predefined window (e.g., next 15 days) following discharge. This is also framed as a binary classification. (3) **Diagnosis Prediction**, which forecasts the set of diagnoses (ICD-9-CM codes) for the patient's next hospital visit based on prior visits. This requires multi-label classification. (4) **Drug Recommendation**, which suggests a set of medications (ATC-4 codes (Nahler & Nahler, 2009)) for the upcoming visit, also formulated as multi-label classification. These tasks reflect diverse clinical needs and provide a rigorous benchmark for evaluating DG methods.

Datasets & Data Split. We conduct experiments on two publicly available EHR databases, **MIMIC-III** and **MIMIC-IV**, which are widely used in clinical prediction (Johnson et al., 2016; 2023). MIMIC-III covers ICU admissions from 2001 to 2012, while MIMIC-IV spans 2008 to 2019. To avoid overlapping time ranges with MIMIC-III, we only retain patients from the years 2013-2019 in MIMIC-IV. For each set of experiments, we extract 6,497 and 49,558 patients with multiple visits ($T \ge 2$) from both datasets as shown in Table 1. Different from random data splitting, we evaluate our model's performance across temporal gaps, following the approach in SLDG (Wu et al., 2023). We define a temporal grid based on the year of each patient's most recent visit. Specifically, patients in MIMIC-IV (MIMIC-III) whose last visit occurred after 2017 (2010) are assigned to the target test set, while those with earlier visits are used as the source training/validation set. We also divide the dataset into training, validation, and test subsets using a fixed ratio of 75%:10%:15%.

Evaluation Metrics. Both readmission and mortality prediction are binary classification tasks, we calculate the Area Under the Precision-Recall Curve (AUPRC) and the Area Under the Receiver Operating Characteristic Curve (AUROC) scores due to the imbalanced label distribution. For the drug recommendation task, we evaluate predictions of all DG approaches by AUPRC and F1-score, following the same setting as ManyDG (Yang et al., 2023a) (i.e. d < 120). For the diagnosis prediction tasks, we decide accurate prediction by weighted F_1 score as in Timeline and top-10 recall as in DoctorAI (Choi et al., 2016), since the former one measures the overall prediction on all classes (i.e. d > 4500) and the latter one have concentration on positive code with low frequency.

Baselines. We compare UDONCARE with two naïve baselines, five general DG baselines and two most recent clinical DG baselines: (1) Naïve Baselines: **Oracle**, trained backbone encoder directly on the target data, and **Base**, trained solely on the source data. The difference between metrics from Oracle (upper bound) and Base (lower bound) can show the distribution gaps between source and target data. (2) Typical DG Baselines: **DANN** (Ganin et al., 2016), **CondAdv** (Isola et al., 2017), **MLDG** (Li et al., 2018a), **IRM** (Arjovsky et al., 2019), and **PCL** (Yao et al., 2022). (3) Clinical DG

Table 2: Performance comparison of four prediction tasks on MIMIC-III/MIMIC-IV. We report the average performance (%) and the standard deviation (in bracket) over 5 runs.

		Task 1: Morta	lity Prediction	ı	Task 2: Readmission Prediction				
Model	MIM	IC-III	MIM	MIMIC-IV		MIMIC-III		MIMIC-IV	
	AUPRC	AUROC	AUPRC	AUROC	AUPRC	AUROC	AUPRC	AUROC	
Oracle	16.73 (0.51)	70.35 (0.55)	8.46 (0.53)	68.92 (0.47)	73.42 (0.47)	69.74 (0.51)	67.37 (0.12)	66.89 (0.11)	
Base	11.31 (0.62)	55.21 (0.95)	3.97 (0.47)	59.13 (0.76)	50.13 (0.88)	45.27 (0.71)	48.34 (0.24)	45.72 (0.31)	
DANN	12.54 (0.55)	63.08 (0.72)	4.41 (0.45)	63.82 (0.46)	58.29 (0.63)	49.22 (0.78)	53.13 (0.11)	47.91 (0.23)	
CondAdv	13.75 (0.49)	65.53 (0.57)	5.65 (0.62)	64.27 (0.68)	61.31 (0.45)	52.45 (0.51)	56.95 (0.14)	50.77 (0.19)	
MLDG	13.12 (0.47)	64.48 (0.61)	4.75 (0.38)	62.75 (0.57)	60.12 (0.53)	51.03 (0.62)	55.62 (0.23)	49.57 (0.28)	
IRM	13.74 (0.45)	65.21 (0.58)	4.14 (0.52)	62.36 (0.61)	60.97 (0.47)	52.02 (0.58)	56.40 (0.14)	50.58 (0.17)	
PCL	13.52 (0.52)	64.79 (0.58)	5.35 (0.49)	64.70 (0.55)	60.47 (0.46)	51.56 (0.55)	56.08 (0.28)	50.99 (0.26)	
ManyDG	14.24 (0.51)	65.98 (0.55)	6.06 (0.31)	64.66 (0.32)	62.38 (0.42)	53.19 (0.54)	57.81 (0.25)	52.34 (0.24)	
SLDG	13.07 (0.50)	63.89 (0.60)	4.58 (0.44)	63.24 (0.60)	59.78 (0.49)	50.81 (0.53)	56.92 (0.14)	52.85 (0.16)	
UDONCARE	15.82 (0.33)	69.04 (0.42)	6.81 (0.27)	66.73 (0.48)	71.17 (0.35)	67.28 (0.39)	61.61 (0.10)	58.62 (0.25)	

	Task 3: Drug Recommendation				Task 4: Diagnosis Prediction			
Model	MIMIC-III		MIMIC-IV		MIMIC-III		MIMIC-IV	
	AUPRC	F1-score	AUPRC	F1-score	\mathbf{w} - \mathbf{F}_1	R@10	\mathbf{w} - \mathbf{F}_1	R@10
Oracle	80.25 (0.12)	67.23 (0.31)	74.31 (0.25)	61.28 (0.22)	26.73 (0.12)	39.22 (0.18)	28.12 (0.11)	40.53 (0.16)
Base	68.54 (0.13)	47.65 (0.32)	66.94 (0.18)	53.13 (0.18)	21.51 (0.14)	30.83 (0.20)	20.07 (0.12)	31.52 (0.18)
DANN	75.32 (0.21)	60.82 (0.34)	69.63 (0.27)	53.43 (0.26)	21.84 (0.13)	34.51 (0.22)	24.05 (0.14)	35.21 (0.20)
CondAdv	76.81 (0.19)	64.18 (0.28)	71.48 (0.15)	55.62 (0.29)	22.81 (0.11)	36.48 (0.20)	26.13 (0.12)	37.35 (0.18)
MLDG	74.92 (0.22)	59.13 (0.31)	70.29 (0.27)	56.77 (0.16)	21.54 (0.15)	33.93 (0.21)	24.17 (0.13)	34.72 (0.19)
IRM	69.23 (0.19)	62.47 (0.33)	69.12 (0.14)	54.57 (0.18)	22.41 (0.14)	33.07 (0.22)	23.54 (0.15)	34.12 (0.21)
ManyDG	77.04 (0.20)	63.94 (0.30)	71.26 (0.19)	55.27 (0.19)	23.12 (0.12)	36.17 (0.21)	25.91 (0.13)	37.04 (0.20)
UDONCARE	78.31 (0.18)	66.42 (0.32)	73.07 (0.33)	59.23 (0.14)	24.79 (0.10)	38.05 (0.19)	27.31 (0.11)	39.41 (0.17)

Baselines: ManyDG (Yang et al., 2023a), and SLDG (Wu et al., 2023). Since drug recommendation and diagnosis prediction are multi-label classification, we drop PCL and SLDG in these two tasks due to their setting limitation. More details of the baselines can be found in Appendix C, and UDONCARE is implemented as described in Appendix D.

4.2 MAIN RESULTS

Table 2 presents results on four classification tasks using MIMIC-III and MIMIC-IV. First, the performance gap between the Oracle and Base methods is substantial, showing the presence of considerable domain differences. Focusing on mortality prediction in MIMIC-III, DANN (Ganin et al., 2016) and MLDG (Li et al., 2018a), both relying on coarse domain partitions—show minimal improvements, likely due to difficulties in extracting consistent features from coarse partitions. PCL (Yao et al., 2022) exhibits a slight gain through proxy-to-sample relationships. Meanwhile, IRM (Arjovsky et al., 2019) and CondAdv (Isola et al., 2017) perform better by incorporating regularization or recurrent structures for binary temporal event prediction. Among clinical-specific baselines, ManyDG (Yang et al., 2023a) achieves the best results by leveraging mutual reconstruction, and SLDG (Wu et al., 2023) sees only modest improvement due to its reliance on the most recent admissions. Notably, UDONCARE surpasses all baselines across all tasks. Specifically, UDONCARE boosts the AUPRC score by around 5% for mortality in MIMIC-III, 8% for mortality in MIMIC-IV, and around 21% and 19% for readmission in MIMIC-III and MIMIC-IV, respectively. We further extend our experiments by adopting GAMENet (Shang et al., 2019b) and CGL (Lu et al., 2021) as the backbone (see Appendix E), which further strengthens the advantages of UDONCARE.

4.3 More Quantitative Analysis

Effectiveness of Decomposition. Following the setting of Shen et al. (2022); Yang et al. (2023a), a linear classifier d can be trained on the embedding to predict either (i) labels or (ii) domains. After training such a predictor, the cosine similarity can be calculated in terms of the learned weights to quantify the feature dimension overlaps. Note that \mathbf{p} , $\tilde{\mathbf{r}}$, and \mathbf{h} are normalized dimension-wise to ensure that each dimension is comparable. The results are shown in Table 3. In general, the third row has lower cosine similarities than the first two rows, which indicates that there is mostly nonoverlap between feature dimensions predicting labels and domains. Moreover, the first two rows give relatively higher similarity and imply the domain and label information are separated from p

384

385 386

387

388

389 390

391

392

393

394

395

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Table 3: Cosine similarity of linear weights on \mathbf{p} , $\tilde{\mathbf{r}}$, and \mathbf{h}

Cosine Similarity	Mortality Prediction	Readmission Prediction	Drug Recommendation	Diagnosis Prediction
$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{h} \to \text{labels})$	0.7831 ± 0.0174	0.4813 ± 0.0391	0.6546 ± 0.0237	0.8654 ± 0.0198
$W_d(\mathbf{p} \to \text{domains}) \text{ vs. } W_d(\widetilde{\mathbf{r}} \to \text{domains})$	0.3427 ± 0.0088	0.1957 ± 0.0314	0.2753 ± 0.0274	0.2133 ± 0.0036
$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{p} \to \text{domains})$	0.1239 ± 0.0126	0.0794 ± 0.0392	0.1251 ± 0.0212	0.0972 ± 0.0095

^{*} $W_d(\cdot)$ represents the learned linear weights. As an illustration, $W(\mathbf{p} \to \text{domains})$ denotes training a linear model on \mathbf{p} to predict domain IDs, after which the weights are extracted. Cosine similarity scores are averaged across all classes and evaluated over 3 runs.

into domain features $\tilde{\mathbf{r}}$ (scaling from \mathbf{r}) and invariant features \mathbf{h} . It provides the quantitative evidence that UDONCARE stores domain and label information along distinct dimensions. Under the same setting, we also present the convergence process in detail (see Appendix G).

Ablation Analysis. We evaluate whether the designed domain-discovery algorithm is effective for prediction. Given a lookup embedding table for condition concepts, we need to group similar codes to reduce dimensionality. Hence, (a) k-Means clustering, (b) hierarchical clustering, and (c) tree pruning of the information gain algorithms can be adopted to simplify the process. We use drug recommendation tasks as an example to assess performance. The results can be found in Figure 3. The left figure illustrates the trade-off between accuracy and computing time at three iterations. We observe that k-Means performs the worst, largely because of its limitations in determining the optimal number of clusters via grid search. Hierarchical clustering performs better than k-Means but lacks

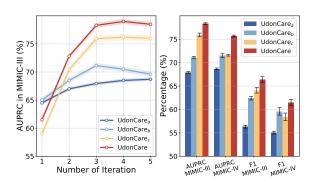


Figure 3: **Effectiveness of Domain Discovery.** The left figure shows the effect of the number of iteration on AUPRC in MIMIC-III dataset, and the right one shows comparison among variants upon UDONCARE.

structured guidance from the medical hierarchy. Tree pruning outperforms both methods by leveraging medical ontologies, demonstrating the importance of knowledge-driven clustering. Moreover, UDONCARE outperforms all these methods by incorporating more precise domain IDs through iterative beam-search updates. These results highlight the critical role of medical ontologies in domain discovery and the advantages of adaptive refinement for learning meaningful structures.

Effect of Training Data Size. Next, inspired by Yang et al. (2023a); Jiang et al. (2024), we investigate how the volume of training data impacts model performance by conducting a comprehensive experiment in which the training set size ranges from 1% to 100%. Such a comparison is meaningful for examining how well models generalize with few domain samples. We evaluate drug recommendation on MIMIC-IV, since its complexity poses a challenging setting for prediction under varying EHR data sizes. All reported metrics are averaged over five independent runs. The results in Figure 4 indicate that all models show reduced performance in both AUPRC and F1-score when

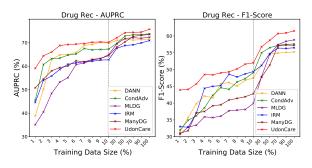


Figure 4: **Performance by Training Size.** We evaluate drug recommendation on MIMIC-IV, and values on the x-axis indicate % of the entire training data. The dotted lines divide two ranges: [1, 10] and [10, 100].

labeled data are scarce, particularly below 10% of the training set. However, UDONCARE maintains a considerable edge over other baselines, suggesting that its co-training strategies effectively minimize information loss even when domain features are limited. Notably, MLDG lacks a certain level of resilience against data limitation, likely due to unique domain assignment, which might not work for the situation that existing patients with only few admissions (less than 3) on EHR datasets.

Runtime Analysis Lastly, we compare the training time of UDONCARE with two other clinical DG baselines, ManyDG and SLDG, as shown in Table 4. All runtimes are measured on an NVIDIA L40S GPU. We find that an iterative training strategy effectively balances computational overhead and performance for the entire framework. We observe that UDONCARE requires a training time comparable to SLDG, since both rely on iterative pa-

Table 4: Running Time Comparison of Drug Recommendation (seconds per epoch). Note that SLDG only use the most recent admissions for prediction.

Model	MIMIC-III	MIMIC-IV
Base	3.206 ± 0.1219	6.943 ± 0.2342
ManyDG	5.462 ± 0.2648	9.215 ± 0.3781
SLDG	4.518 ± 0.0256	8.439 ± 0.1329
UDONCARE	4.320 ± 0.1473	7.871 ± 0.2415

rameter updates that reduce the frequency of model adjustments during inference. ManyDG consumes more time than others, primarily because its domain assumption spawns numerous latent domains for subsequent computations.

5 RELATED WORK

Domain Generalization (DG). DG is pursuing adjusted models which are specially designed to remove domain-covariate features from hidden representation (Muandet et al., 2013). A significant amount of work has been dedicated to solve performance drops on target domain across diverse scenarios like computer vision (Zhou et al., 2022; Ding et al., 2022), and they can be generally categorized as three different ways: (i) An intuitive way is to minimize the empirical source risk, either domain alignment (Ganin et al., 2016; Li et al., 2018b; Zhao et al., 2020) and invariant learning technique (Liu et al., 2021a; Zhang et al., 2022a; Wang et al., 2022) aim to convey little domain characteristics to acquire task-specific features. (ii) Contrastive learning (Kim et al., 2021; Jeon et al., 2021; Yao et al., 2022) becomes an alternative for data augmentation, studies employed the contrastive loss function to reduce the gap of representation distribution in one category. (iii) Metalearning (Balaji et al., 2018; Dou et al., 2019) and ensemble-learning (Cha et al., 2021; Chu et al., 2022) approaches handle domain shifts through dynamic loss functions. However, they typically predefine either numerous or few domains in clinical settings (Wu et al., 2023), which motivates us to design a precise and efficient way to discover latent domains from learnable parameters.

DG in Clinical Prediction. Empirical evidence (Perone et al., 2019; Koh et al., 2021) has shown that EHR predictive models often suffer performance drops when transferred to new records with different data distributions. To address this, most existing works (Zhao et al., 2020; Zhang et al., 2021b) consider domain adaptation to handle potential domain shifts across multiple hospitals (Reps et al., 2022; Zhang et al., 2022b) and different time periods (Guo et al., 2022). Recently, a growing number of studies (Guo et al., 2022; Hai et al., 2024) consider model generalization by mitigating the patient-specific domain shifts, providing a more flexible alternative in more scenarios. For instance, Yang et al. (2023a) learns invariant features by treating each patient as a unique domain; Wu et al. (2023) develops a mixture-of-domain method to divide patients into latent domains by features of medical concepts. However, they primarily address domain categorization with simplifying heuristics such as linear dependencies (Li et al., 2020), while the potential of incorporating medical knowledge beyond EHR data remains unexplored in clinical DG problems.

An additional discussion about ontology-based predictive models can be found in Appendix A.

6 Conclusion

This paper develops UDONCARE, a novel framework for unseen domain discovery in predictive healthcare. Under the guidance of medical ontologies, our method discovers and iteratively adapts domain categorization. Extensive evaluations on two MIMIC datasets demonstrate that UDONCARE outperforms state-of-the-art baselines across multiple tasks. For example, in mortality prediction, UDONCARE surpasses other baselines by 4-8% in AUPRC; On readmission tasks, it also gains up to 6%, while drug recommendation has 5-10% improvements. Despite these gains, UDONCARE remains comparable computational efficiency to other clinical DG baselines. These results demonstrate the good model generalization with knowledge-driven domain discovery in clinical practices. Future work can further reveal more benefits of medical knowledge in robust clinical predictions.

ETHICS STATEMENT

We acknowledge that we have read and adhered to the ICLR Code of Ethics in the preparation and presentation of this work. In line with the principles of responsible stewardship, we are committed to upholding high standards of scientific excellence, honesty, and transparency in our research. We have conducted and presented this work with integrity, giving proper acknowledgment to the contributions of others and ensuring that our findings are reported accurately and reproducibly. We recognize the importance of minimizing potential harms and have reflected on the broader societal impacts of our research, including implications for human well-being and the natural environment. Consistent with the values of fairness and inclusivity, we support the equitable participation of all individuals in research and seek to promote accessibility and inclusiveness in both our methods and outcomes. We further respect the privacy and confidentiality of data that inform scientific discovery, and we endeavor to ensure that our work contributes positively to society, advances knowledge responsibly, and aligns with the long-term public good. At present, we do not identify any specific ethical concerns associated with this research.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. Details of the proposed method (Section 3.1 and Section 3.2) with training & inference procedures (Section 3.3) are provided, with pseudo code (Appendix B), implementation details (Appendix D) and complete results (Section 4.2 and Section 4.3) included. A complete description of the data processing steps is also provided in the supplementary materials. Furthermore, we supply anonymized source code of UDONCARE in the supplementary materials to facilitate replication of our experiments.

REFERENCES

- Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization, 2019.
- Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain generalization using meta-regularization. *Advances in neural information processing systems*, 31: 1006–1016, 2018.
 - Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bernhard Schölkopf, and Alex J Smola. Integrating structured biological data by kernel maximum mean discrepancy. *Bioinformatics*, 22(14):e49–e57, 2006.
 - Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan. Domain separation networks. In *Advances in Neural Information Processing Systems* 29, 2016, pp. 343–351, Barcelona, Spain, 2016. NeurIPS.
 - Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Information Processing Systems, 34:22405–22418, 2021.
 - Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and Jimeng Sun. Doctor ai: Predicting clinical events via recurrent neural networks, 2016.
 - Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F. Stewart, and Jimeng Sun. GRAM: graph-based attention model for healthcare representation learning. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 787–795, Halifax, NS, Canada, 2017. ACM.
 - Xu Chu, Yujie Jin, Wenwu Zhu, Yasha Wang, Xin Wang, Shanghang Zhang, and Hong Mei. Dna: Domain generalization with diversified neural averaging. In *International conference on machine learning*, pp. 4010–4034, Baltimore, Maryland, USA, 2022. PMLR, PMLR.
 - Runpeng Cui, Hu Liu, and Changshui Zhang. A deep neural framework for continuous sign language recognition by iterative training. *IEEE Transactions on Multimedia*, 21(7):1880–1891, 2019.
 - Yu Ding, Lei Wang, Bin Liang, Shuming Liang, Yang Wang, and Fang Chen. Domain generalization by learning and removing domain-specific features, 2022.
 - Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization via model-agnostic learning of semantic features. *Advances in neural information processing systems*, 32:6447–6458, 2019.
 - Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *International conference on machine learning*, pp. 1126–1135, Toulon, France, 2017. PMLR, ICLR.
 - Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. *Journal of machine learning research*, 17(59):1–35, 2016.
 - Lin Lawrence Guo, Stephen R Pfohl, Jason Fries, Alistair EW Johnson, Jose Posada, Catherine Aftandilian, Nigam Shah, and Lillian Sung. Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine. *Scientific reports*, 12(1):2726, 2022.
 - Ameen Abdel Hai, Mark G Weiner, Alice Livshits, Jeremiah R Brown, Anuradha Paranjape, Wenke Hwang, Lester H Kirchner, Nestoras Mathioudakis, Esra Karslioglu French, Zoran Obradovic, et al. Domain generalization for enhanced predictions of hospital readmission on unseen domains among patients with diabetes. *Artificial intelligence in medicine*, 158:103010, 2024.
 - Pengfei Hu, Chang Lu, Fei Wang, and Yue Ning. Dualmar: Medical-augmented representation from dual-expertise perspectives. *arXiv preprint*, arXiv:2410.19955, 2024.

- Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. Clinicalbert: Modeling clinical notes and predicting hospital readmission, 2019.
 - Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks, 2017.
 - Seogkyu Jeon, Kibeom Hong, Pilhyeon Lee, Jewook Lee, and Hyeran Byun. Feature stylization and domain-aware contrastive learning for domain generalization. In *Proceedings of the 29th ACM International Conference on Multimedia*, pp. 22–31, Virtual Event, China, 2021. ACM.
 - Pengcheng Jiang, Cao Xiao, Adam Richard Cross, and Jimeng Sun. Graphcare: Enhancing health-care predictions with personalized knowledge graphs, 2024.
 - Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely accessible critical care database. *Scientific data*, 3(1):1–9, 2016.
 - Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng, Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible electronic health record dataset. *Scientific data*, 10(1):1, 2023.
 - Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.
 - Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. Selfreg: Self-supervised contrastive regularization for domain generalization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 9619–9628, Montreal, QC, Canada, 2021. IEEE.
 - Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In *International conference on machine learning*, pp. 5637–5664. PMLR, 2021.
 - Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Learning to generalize: Metalearning for domain generalization. In *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence*, pp. 3490–3497, New Orleans, Louisiana, USA, 2018a. AAAI Press.
 - Haoliang Li, YuFei Wang, Renjie Wan, Shiqi Wang, Tie-Qiang Li, and Alex Kot. Domain generalization for medical imaging classification with linear-dependency regularization. *Advances in neural information processing systems*, 33:3118–3129, 2020.
 - Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao. Deep domain generalization via conditional invariant adversarial networks. In *ECCV*, pp. 624–639, Munich, Germany, 2018b. Springer.
 - Chang Liu, Lichen Wang, Kai Li, and Yun Fu. Domain generalization via feature variation decorrelation. In *Proceedings of the 29th ACM International Conference on Multimedia*, pp. 1683–1691, Virtual Event, China, 2021a. ACM.
 - Yunan Liu, Shanshan Zhang, Yang Li, and Jian Yang. Learning to adapt via latent domains for adaptive semantic segmentation. *Advances in Neural Information Processing Systems*, 34:1167–1178, 2021b.
 - Bruce T Lowerre. The harpy speech recognition system. Carnegie Mellon University, 1976.
 - Chang Lu, Chandan K. Reddy, Prithwish Chakraborty, Samantha Kleinberg, and Yue Ning. Collaborative graph learning with auxiliary text for temporal event prediction in healthcare. In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence*, pp. 3529–3535, Montreal, Canada, 2021. ijcai.org.
 - Toshihiko Matsuura and Tatsuya Harada. Domain generalization using a mixture of multiple latent domains. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 11749–11756, 2020.

- Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant feature representation. In *International Conference on Machine Learning*, pp. 10–18, Atlanta, GA, USA, 2013. PMLR, JMLR.org.
 - Gerhard Nahler and Gerhard Nahler. Anatomical therapeutic chemical classification system (atc), 2009.
 - World Health Organization et al. International classification of diseases—ninth revision (icd-9), 1988.
 - Christian S Perone, Pedro Ballester, Rodrigo C Barros, and Julien Cohen-Adad. Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. *NeuroImage*, 194: 1–11, 2019.
 - Raphael Poulain and Rahmatollah Beheshti. Graph transformers on ehrs: Better representation improves downstream performance, 2024.
 - Jenna Marie Reps, Ross D Williams, Martijn J Schuemie, Patrick B Ryan, and Peter R Rijnbeek. Learning patient-level prediction models across multiple healthcare databases: evaluation of ensembles for increasing model transportability. *BMC medical informatics and decision making*, 22 (1):142, 2022.
 - Ketan Rajshekhar Shahapure and Charles Nicholas. Cluster quality analysis using silhouette score, 2020.
 - Junyuan Shang, Tengfei Ma, Cao Xiao, and Jimeng Sun. Pre-training of graph augmented transformers for medication recommendation. In *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence*, pp. 5953–5959, Macao, China, 2019a. ijcai.org.
 - Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, and Jimeng Sun. Gamenet: Graph augmented memory networks for recommending medication combination. In proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 1126–1133, 2019b.
 - Kendrick Shen, Robbie M. Jones, Ananya Kumar, Sang Michael Xie, Jeff Z. HaoChen, Tengyu Ma, and Percy Liang. Connect, not collapse: Explaining contrastive learning for unsupervised domain adaptation. In *International Conference on Machine Learning, ICML 2022*, volume 162, pp. 19847–19878, Baltimore, Maryland, USA, 2022. PMLR.
 - Konstantin Sofiiuk, Ilya A Petrov, and Anton Konushin. Reviving iterative training with mask guidance for interactive segmentation, 2022.
 - Yan-Yan Song and LU Ying. Decision tree methods: applications for classification and prediction. *Shanghai archives of psychiatry*, 27(2):130, 2015.
 - Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. *IEEE Transactions on Information Theory*, 60(7):3797–3820, 2014.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.03762.
 - Yufei Wang, Haoliang Li, Hao Cheng, Bihan Wen, Lap-Pui Chau, and Alex Kot. Variational disentanglement for domain generalization, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=fudOtITMIZ.
 - Zhenbang Wu, Huaxiu Yao, David M. Liebovitz, and Jimeng Sun. An iterative self-learning framework for medical domain generalization. In *NeurIPS*, pp. 54833–54854, New Orleans LA, USA, 2023.
 - Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Bowen Jin, May D Wang, Joyce C Ho, and Carl Yang. Ram-ehr: Retrieval augmentation meets clinical predictions on electronic health records, 2024.
 - Yongxin Xu, Xu Chu, Kai Yang, Zhiyuan Wang, Peinie Zou, Hongxin Ding, Junfeng Zhao, Yasha Wang, and Bing Xie. Sequential training with external medical knowledge graph for diagnosis prediction in healthcare data, 2023.

- Chaoqi Yang, M Brandon Westover, and Jimeng Sun. Manydg: Many-domain generalization for healthcare applications. *ICLR*, 2023a.
 - Chaoqi Yang, Zhenbang Wu, Patrick Jiang, Zhen Lin, Junyi Gao, Benjamin P Danek, and Jimeng Sun. Pyhealth: A deep learning toolkit for healthcare applications. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5788–5789, 2023b.
 - Xufeng Yao, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi Sun, Ran Chen, Ruiyu Li, and Bei Yu. Pcl: Proxy-based contrastive learning for domain generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7097–7107, New Orleans, LA, USA, 2022. IEEE.
 - Hanlin Zhang, Yi-Fan Zhang, Weiyang Liu, Adrian Weller, Bernhard Schölkopf, and Eric P Xing. Towards principled disentanglement for domain generalization. In *CVPR*, pp. 8024–8034, New Orleans, LA, USA, 2022a. IEEE.
 - Haoran Zhang, Natalie Dullerud, Laleh Seyyed-Kalantari, Quaid Morris, Shalmali Joshi, and Marzyeh Ghassemi. An empirical framework for domain generalization in clinical settings. In *Proceedings of the conference on health, inference, and learning*, pp. 279–290, 2021a.
 - Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea Finn. Adaptive risk minimization: Learning to adapt to domain shift. *Advances in Neural Information Processing Systems*, 34:23664–23678, 2021b.
 - Tianran Zhang, Muhao Chen, and Alex AT Bui. Adadiag: Adversarial domain adaptation of diagnostic prediction with clinical event sequences. *Journal of biomedical informatics*, 134:104168, 2022b.
 - Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain generalization via entropy regularization. *NeurIPS*, 33:16096–16107, 2020.
 - Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(4):4396–4415, 2022.

APPENDIX

756

758

759 760

761

762

764

765

766

767

768

769

770

771

772773774

775776

777

778 779

781

782 783

784

785

786

787

788

789

790

791

792

793

794

796

798

799

800

801

802

807 808

809

A RELATED WORK: HIERARCHY-AWARE PREDICTIVE MODELING

Some EHR Predictive models (Choi et al., 2017; Shang et al., 2019a; Lu et al., 2021) utilize hierarchical medical classifications like ICD-9 (Organization et al., 1988) and ATC (Nahler & Nahler, 2009) to determine medical concept similarity by assuming diseases closer in the hierarchy share more characteristics, as reflected in similar embeddings. However, this method can be biased as it typically fails to capture complex relationships beyond simple parent-child links, such as complications or comorbidity, leading to sub-optimal predictions (Xu et al., 2023; 2024; Hu et al., 2024). Moreover, there is few research integrating these hierarchical structures with DG techniques, which could enhance model robustness across diverse healthcare settings. Properly leveraging hierarchical relationships in DG could improve the domain discovery process, ensuring models account for variance in disease manifestation across different patient demographics and regional practices. Thus, integrating hierarchy-aware modeling with DG approaches holds potential for developing more accurate and personalized predictive models in EHR, catering to the nuanced needs of global healthcare environments.

B PSEUDO CODE FOR UDONCARE

Since the training and inference phase has been explained in the main paper, we conduct our pseudo code by two consecutive phases:

Algorithm 1 Overview of UDONCARE

```
Input: EHR dataset S with patient's data \{\mathbf{x}^{(i)}\}_{i=1}^{N_{\mathrm{tr}}}; Feature extractor f_{\phi} with defined backbone (e.g. Transformer).
```

```
1: // When iteration I=3 and epochs N=100
 2: for epoch \in \{1, 2, \dots, 40\} do
         // Backbone Pathway
         Decode \hat{y}_p \leftarrow d_{\eta}(f_{\phi,k}(x)) with Equation 8;
 4:
 5: end for
 6: Obtain learned \phi; Initialize the hierarchy \mathcal{H};
 7: for iteration \in \{1, 2, 3\} do
         // Hierarchy-Guided Domain Discovery
         Define & Update look-up table M via Step 1-4;
 9:
10:
         Assign domain IDs \mathcal{M} : \mathbf{x} \mapsto \mathbf{m} with Equation 2;
         // Self-Supervised Domain Encoding
11:
12:
         Initialize g_{\theta}; Pretrain g_{\theta} by minimizing Equation 6;
13:
         for epoch \in \{1, 2, ..., 20\} do
14:
             // Domain Pathway
15:
             Obtain patient embeddings p with Equation 1;
16:
             Get domain features r by g_{\theta}(\mathbf{m});
17:
             Decompose invariant features h with Equation 7;
18:
             Decode \hat{y}_p, \hat{y}_h with Equation 8;
             Minimize co-training loss \mathcal{L}_p, \mathcal{L}_h with Equation 9;
19:
20:
         end for
21: end for
```

Output: Trained models f_{ϕ} , g_{θ} , d_{η} , q_{ξ} ; final prediction \hat{y}_h .

C BASELINES

Beyond Base and Oracle, we select 5 approaches following general DG setting and select 2 highly related baselines tackling clinical DG problems to compare the performance with UDONCARE:

811

812

813

814

815

816

817 818

819 820

821

822

823

824

825

826 827

828 829

830 831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

848 849

850 851

852

853

854

855

856

858 859

860 861

862

863

- Domain-adversarial neural networks (DANN) (Ganin et al., 2016) use gradient reversal layer for domain adaptation, and we adopt it for the generalization setting by letting the discriminator only predict training domains.
- Conditional adversarial net (CondAdv) (Isola et al., 2017) concatenates the label probability and the feature embedding to predict domains in an adversarial way.
- Meta-learning for domain generalization (MLDG) (Li et al., 2018a) adopts the model-agnostic meta learning (MAML) (Finn et al., 2017) framework for domain generalization.
- Invariant risk minimization (IRM) (Arjovsky et al., 2019) learns domain invariant features by regularizing squared gradient norm.
- Proxy-based contrastive learning (PCL) (Yao et al., 2022) build a new supervised contrastive loss from class proxies and negative samples.
- Many-domain generalization for healthcare (ManyDG) (Yang et al., 2023a) with auto-encoder structures to learn invariant features with unique domain separation for each patient.
- Self-learning framework for domain generalization (SLDG) (Wu et al., 2023) discovers latent domains by decoupled domain-specific classifiers for clinical prediction.

Note that, for baselines that rely on domain IDs, we use admission time as the domain definition.

D IMPLEMENTATION DETAILS

Considering the common use of the Encoder-Decoder structure for clinical prediction, we adopt the Transformer (Vaswani et al., 2023) as the backbone feature extractor f_{ϕ} in UDONCARE and all baselines. Specifically, we follow the implementation adapted from PyHealth (Yang et al., 2023b), consisting of three layers with a hidden size of 64, 4 attention heads, and a dropout rate of 0.2. The position encoding is applied across patient visits to capture temporal order. Diagnosis, treatment, and medication codes are embedded as separate feature keys using an embedding look-up table. The MLP classifiers used for both original and domain-invariant representations contain two hidden layers with sizes [64, 32], ReLU activations, and a dropout rate of 0.2, with task-specific output activations. We use the Adam optimizer for training, and all remaining hyperparameters follow the settings in PyHealth. For domain discovery, the score function uses $\alpha = 0.5$, and the KL divergence loss coefficient λ is set to 1.0 on MIMIC-III and 1.5 on MIMIC-IV. All models are trained for 100 epochs, and the best model is selected based on the AUPRC score monitored on the source validation set. We set the learning rate to 1×10^{-4} for f_{ϕ} and 5×10^{-5} for g_{θ} , batch size to 32, iteration to 3, and self-supervised epoch to 30. We tune α and λ based on validation performance. All experiments are conducted using Python 3.10 and PyTorch 2.3.1 with CUDA 12.4 on a server equipped with AMD EPYC 9254 24-Core Processors and NVIDIA L40S GPUs.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RESULTS WITH GAMENET BACKBONE

We extend the main experiments by replacing the Transformer backbone with GAMENet (Shang et al., 2019b), a model specifically designed for drug recommendation tasks. Therefore, we evaluate its performance on the drug recommendation task using both MIMIC-III and MIMIC-IV. As shown in Table 5, the gap between Oracle and Base again highlights the domain shift between datasets. Standard domain generalization methods (e.g., DANN, IRM) provide limited improvements, while adversarial and meta-learning approaches (CondAdv, MLDG) show moderate gains. ManyDG performs well on MIMIC-IV, but our proposed UDONCARE achieves the best overall results, with consistent improvements in both AUPRC and F1-score. These findings confirm that UDONCARE generalizes effectively even with a domain-specific backbone.

E.2 RESULTS WITH CGL BACKBONE

We also extend the main experiments by replacing the Transformer backbone with CGL (Lu et al., 2021), a model specifically designed for diagnosis prediction tasks. Following the original CGL

Table 5: Performance of Drug Recommendation with GAMENet.

Model	MIM	IC-III	MIMIC-IV		
1/10401	AUPRC	F1-score	AUPRC	F1-score	
Oracle	79.57 (0.32)	68.14 (0.27)	75.92 (0.27)	64.57 (0.36)	
Base	72.49 (0.17)	58.32 (0.21)	67.88 (0.30)	58.26 (0.27)	
DANN	74.24 (0.09)	59.21 (0.17)	72.18 (0.13)	60.35 (0.18)	
CondAdv	73.38 (0.11)	62.94 (0.13)	70.86 (0.28)	59.55 (0.27)	
MLDG	75.26 (0.14)	63.33 (0.16)	71.49 (0.19)	61.19 (0.38)	
IRM	72.13 (0.21)	59.87 (0.25)	71.35 (0.20)	60.87 (0.34)	
ManyDG	76.84 (0.10)	64.58 (0.30)	74.18 (0.24)	62.23 (0.29)	
UdonCare	77.56 (0.15)	65.79 (0.24)	74.83 (0.21)	61.94 (0.32)	

setting, we only consider conditions as input features, which naturally leads to some performance degradation compared to the main experiment results. Therefore, we evaluate its performance on the diagnosis prediction task using both MIMIC-III and MIMIC-IV. As shown in Table 6, the gap between Oracle and Base again highlights the domain shift between datasets. Standard domain generalization methods (e.g., DANN, IRM) provide limited improvements, while adversarial and metalearning approaches (CondAdv, MLDG) show moderate gains. ManyDG performs competitively, but our proposed UDONCARE still achieves the best overall results, with consistent improvements across both w-F₁ and R@10. These findings confirm that UDONCARE generalizes effectively even with a task-specific backbone.

Table 6: Performance of Diagnosis Prediction with CGL.

Model	MIM	IC-III	MIMIC-IV		
1120401	\mathbf{w} - \mathbf{F}_1	R@10	\mathbf{w} - \mathbf{F}_1	R@10	
Oracle	25.71 (0.18)	38.01 (0.21)	27.09 (0.22)	39.42 (0.19)	
Base	19.05 (0.14)	30.01 (0.24)	19.22 (0.25)	30.64 (0.18)	
DANN	20.35 (0.20)	33.56 (0.27)	23.02 (0.15)	34.07 (0.23)	
CondAdv	21.55 (0.13)	35.11 (0.22)	25.02 (0.28)	36.51 (0.16)	
MLDG	20.12 (0.26)	32.81 (0.19)	23.15 (0.19)	33.27 (0.21)	
IRM	21.02 (0.12)	32.11 (0.25)	22.41 (0.27)	33.01 (0.22)	
ManyDG	22.01 (0.23)	35.11 (0.20)	24.12 (0.17)	36.02 (0.29)	
UdonCare	23.89 (0.20)	37.12 (0.24)	26.02 (0.15)	38.21 (0.18)	

F Domain Discovery with More Feature Keys

To examine whether latent domain discovery benefits from richer feature information, we further incorporate procedure and medication codes as additional keys in UDONCARE. As shown in Table 7, the overall gains across prediction tasks are marginal and vary inconsistently across datasets. While certain metrics observe slight improvements, others remain unchanged or even decline. This suggests that introducing treatments and drugs into the domain partitioning process does not lead to stable enhancements. These findings are consistent with our conclusion that relying on the disease hierarchy (ICD-9-CM) provides a more effective and reliable basis for latent domain discovery, whereas incorporating additional feature keys yields only limited benefits.

G CONVERGENCE ANALYSIS VIA ITERATIVE LEARNING

While the pruning-based algorithm provides efficiency, its iterative nature makes it non-trivial to characterize convergence using a simple continuous optimization view. To further substantiate the convergence property of our approach, we extend the cosine similarity experiment described in Section 4.3. Specifically, instead of reporting a single snapshot after three iterations, we monitor the cosine similarity values across iterations. As shown in Table 8, the results exhibit a clear trend: at the

AUPRC

80.52 (0.13)

68.39 (0.14)

78.62 (0.20)

F1-score

67.48 (0.29)

47.82 (0.34)

66.12 (0.30)

Table 7: Performance comparison of four prediction tasks on MIMIC-III/MIMIC-IV. We report the average performance (%) and the standard deviation (in bracket) over 5 runs.

ò	7	4	-	١,	,
()	d	2	1	
()	d	2	2	
()	d	2	3	
()	d	2	4	
()	í	2	E	

918

919

020

923	
924	
925	
926	
927	
928	

y	20	
9	29	
9	30	
9	31	

Oracle

UDONCARE

9	3	1	
9	3	2	
9	3	3	

939 940 941 942 943

944 945 946

947

948

949

950

951

956 957

962

967 968

969

970

Task 1: Mortality Prediction Task 2: Readmission Prediction Model MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV AUPRC AUPRC AUPRC AUROC AUROC AUPRO AUROC AUROC 16.54 (0.49) 70.12 (0.58) 8.79 (0.50) 68.61 (0.44) 73.11 (0.50) 70.02 (0.47) 67.51 (0.14) 67.28 (0.13) Oracle 55.59 (0.98) 45.96 (0.30) 11.62 (0.60) 4.21 (0.45) 59.02 (0.73) 50.44 (0.83) 45.03 (0.68) 48.18 (0.21) Base 16.03 (0.35) 66.45 (0.46) 71.45 (0.33) 58.38 (0.23) UDONCARE 69.26 (0.40) 6.59 (0.29) 67.61 (0.36) 61.81 (0.11) Task 4: Diagnosis Prediction Task 3: Drug Recommendation MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV Model

F1-score

61.61 (0.23)

53.47 (0.20)

59.49 (0.15)

w-F

26.53 (0.14)

21.69 (0.15)

24.55 (0.12)

R@10

39.57 (0.20)

38.26 (0.21)

 $w-F_1$

27.92 (0.12)

20.22 (0.13)

27.11 (0.12)

R@10

40.68 (0.17)

31.65 (0.20)

39.63 (0.18)

AUPRC

74.62 (0.27)

66.62 (0.20)

72.79 (0.35)

Table 8: Cosine similarity of linear weights on p, \tilde{r} , and h across epochs.

Epoch	Cosine Similarity	Mortality Prediction	Readmission Prediction	Drug Recommendation	Diagnosis Prediction
	$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{h} \to \text{labels})$	0.5283	0.2935	0.3829	0.6259
40	$W_d(\mathbf{p} \to \text{domains}) \text{ vs. } W_d(\widetilde{\mathbf{r}} \to \text{domains})$	0.4615	0.4908	0.5275	0.4705
	$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{p} \to \text{domains})$	0.2495	0.2695	0.2993	0.3826
	$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{h} \to \text{labels})$	0.7245	0.4119	0.6080	0.8318
60	$W_d(\mathbf{p} \to \text{domains}) \text{ vs. } W_d(\widetilde{\mathbf{r}} \to \text{domains})$	0.3960	0.2195	0.3450	0.2712
	$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{p} \to \text{domains})$	0.1842	0.1007	0.1812	0.1437
	$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{h} \to \text{labels})$	0.7761	0.4686	0.6392	0.8523
80	$W_d(\mathbf{p} \to \text{domains}) \text{ vs. } W_d(\widetilde{\mathbf{r}} \to \text{domains})$	0.3508	0.2012	0.2807	0.2208
	$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{p} \to \text{domains})$	0.1312	0.0853	0.1296	0.1017
	$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{h} \to \text{labels})$	0.7831	0.4813	0.6546	0.8654
100	$W_d(\mathbf{p} \to \text{domains}) \text{ vs. } W_d(\widetilde{\mathbf{r}} \to \text{domains})$	0.3427	0.1957	0.2753	0.2133
	$W_d(\mathbf{p} \to \text{labels}) \text{ vs. } W_d(\mathbf{p} \to \text{domains})$	0.1239	0.0794	0.1251	0.0972

^{*} $W_d(\cdot)$ represents the learned linear weights. Cosine similarity scores are averaged across all classes and evaluated over 3 runs.

early stage of training (epoch 40), the similarities between $W_d(\mathbf{p} \to \text{labels})$ and $W_d(\mathbf{h} \to \text{labels})$ are relatively low, while the cross-domain similarities $(W_d(\mathbf{p} \to \text{domains}) \text{ vs. } W_d(\tilde{\mathbf{r}} \to \text{domains}))$ are comparatively high. This indicates that the model has not yet disentangled domain- and labelrelated features. As the training proceeds (epoch 60 and 80), the similarities gradually align with the final values at epoch 100, where the decomposition becomes stable and consistent with the results reported in Table 3. These observations provide additional evidence that the iterative learning strategy enables the model to converge in terms of separating label-invariant and domain-specific information. More importantly, by tracking cosine similarity dynamics, we validate that pruning and iterative decomposition jointly lead to a stable representation space, rather than an artifact of a single training snapshot.

Η **UPWARD INFORMATION FLOW**

Considering the hierarchical structure of medical knowledge, a tree-based method (i.e. pruning algorithm) can be naturally adopted for deciding whether we group diseases into higher-level clusters. However, before applying this pruning algorithm to the domain discovery phase, we must ensure that embeddings for all nodes in the hierarchy are available. Since only the leaf-node embeddings $E(e_1,\ldots,e_{|\mathcal{C}|})$ are obtained from $f_{\phi}(\cdot)$, we propose a unidirectional information flow to initialize and propagate these embeddings upward in a structured yet flexible manner.

First, for each diagnostic code d_i , we can initialize its embedding $\mathbf{e}_{d_i} \in \mathbb{R}^h$ in terms of one of two scenarios:

- 1. For present code d_i in the dataset, e_{d_i} is initialized by embedding table in disease-specific extractor $f_{\phi,d}(\cdot)$.
- 2. For absent code d_i in the dataset, e_{d_i} is initialized by its entity name through the pretrained ClinicalBERT (Huang et al., 2019).

 We then propagate these embeddings level by level through the hierarchy. The embedding of a parent node $e_{n_i}^{(h-1)}$ is computed from the embeddings of its descendants at level h:

$$\mathbf{e}_{i}^{(h-1)} := \frac{1}{|\operatorname{Desc}(n_{i}^{(h-1)})|} \sum_{n \in \operatorname{Desc}(n_{i})} \mathbf{e}_{n}^{(h)} \tag{10}$$

However, these initial embeddings do not capture the hierarchical distances between node pairs. For example, two codes might have significantly different embeddings despite sharing the same parent node. To address this, and inspired by hierarchical clustering (Johnson, 1967), we rectify these embeddings by considering their relative positions. Following the mechanism of hierarchical clustering, we first calculate cosine similarities of embeddings between pairs (d_i, d_j) of leaf nodes or newly formed sub-clusters. The pair with the highest similarity is identified, and their lowest common ancestor $LCA(d_i, d_j)$ in the existing hierarchy is retrieved. The ancestor embedding can be then rectified by incorporating \mathbf{e}_{d_i} and \mathbf{e}_{d_i} :

$$\mathbf{e}_{\mathrm{LCA}(d_i,d_i)} \leftarrow \mathrm{Average}(\mathbf{e}_{\mathrm{LCA}(d_i,d_i)},\mathbf{e}_{d_i},\mathbf{e}_{d_i}). \tag{11}$$

Any node not identified as an LCA remains at its average-based embedding from equation 3, and the process repeats until the highest similarity among remaining pairs falls below a predefined threshold. Given the initial embedding table $E(e_1,\ldots,e_{|\mathcal{C}|})$, this upward flow extends it to $E(e_1,\ldots,e_{|\mathcal{H}|})$ over the entire hierarchy \mathcal{H} . Finally, by incorporating both hierarchical structure and feature similarity through information flow, the resulting node embeddings can capture richer representations upon clinical concept relationships.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used large language models (LLMs) solely as a general-purpose tool to improve writing fluency and polish the presentation of the text. All ideas, experimental designs, analyses, and conclusions are our own, and the responsibility for the content rests entirely with the authors.