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Figure 1: Example of the voxel based moving object tracking approach used to track a person in an indoor setting.

ABSTRACT
Modern head-mounted displays (HMDs) carry a plethora of sensors,

comparable to autonomous systems such as robots or self-driving

cars. We can thus leverage algorithms and methods developed for

those systems to support and help users wearing HMDs. Using the

HoloLens 2 as our system of choice, we explore differentmethods for

tracking moving objects. An exhaustive review of current methods

and their applicability to HMDs is conducted. Two methods are

selected as basis for implementation - a voxel grid based and cluster

based approach. We modify the two approaches to be suitable for

use on HMDs. After qualitative analysis, they were compared to a

ground truth obtained via a marker tracking system. The overall

accuracy of tracking moving humans was shown to be between 15

and 25 cm. Though the primary motivation was to facilitate human-

robot collaboration in indoor industrial facilities via augmented

reality glasses, the research can easily be applied to any Mixed

Reality (MR) device possessing appropriate sensors. Likewise, such

systems may be of use outdoors as MR slowly exits into the open.
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1 INTRODUCTION
Moving object detection (MOD) and tracking (MOT) are impor-

tant tasks in the contexts of both human-robot interaction and

autonomous driving. Therefore, there exist numerous approaches

for tackling those tasks. So far, virtually all of these approaches use

sensors which are either mounted on a mobile robot[5, 8, 43], placed

in fixed locations in the environment[26, 27, 33, 41] or mounted

on a car[4, 14, 19]. Though MOT is paramount for safety in both

robotics and self-driving cars, there are also contexts in which it

may be useful to implement it on wearables such as HMDs, creat-

ing MOTH. In the context of human-robot interaction, tracking of

moving robot arms or mobile robots ensure situational awareness

https://doi.org/ 
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and an additional level of safety. Tracking data may also be used

for collaborative localisation and referencing, both between robots

and HMDs as well as between HMDs themselves.

Though the main motivation for this work was Human-Robot

Interaction (HRI) in an industrial setting, MOTH may also be of use

in recreation e.g. warning bicycle drivers of possible collisions or

tracking trajectories of a basketball to improve aim.

MOT is well researched in the context of autonomous systems.

This large body of research is used as basis for developing MOTH.

Themain difference is that autonomous system do not have as much

weight or computational restrictions as HMDs. Use of relatively

heavy LiDARs and 360
◦
cameras, as well as computationally expen-

sive deep learning approaches is quite common. Thus a detailed

review of MOT approaches for autonomous systems is needed as

well as a thorough analysis of their applicability on HMDs.

The main contributions of the present work are:

• Detailed analysis of applicability of MOT approaches devel-

oped for autonomous systems for HMDs

• Adapting selected approaches for use on HMDs

• Qualitative and quantitative tests of the developed algo-

rithms

2 STATE OF THE ART
MOD refers to the segmentation of non-stationary objects of inter-

est from the surrounding area or region [23] in a sequence of data,

captured using one or multiple sensors, such as monocular and

stereo cameras, time-of-flight (ToF) or LiDAR sensors, Radar etc.

[2]. Tracking dynamic object over time is the task of MOT. These

two tasks are related as MOT uses the results of MOD as its input

in most cases. MOD approaches may work in 2D space (images),

3D space (range data), or a combination of both [2].

2.1 Image based approaches
Klappstein et al. [22] proposed a MOD algorithm which computes

the optical flow and disparity map of an RGB stereo pair. The

approach reconstructs the 3D position of each pixel and assigns it a

velocity. The egomotion of the camera can be calculated, and points

deviating from the egomotion - moving objects - can be segmented

out using a graph-cut algorithm. The paper lacks a quantitative

evaluation which makes comparison to other approaches difficult.

In [20],MOT for a stationary monocular camera was presented.

The optical flow is estimated on a greyscale image. After applying a

median filter for outlier removal, moving objects are detected via a

thresholding function. For each segmented moving object a motion

vector is calculated. The authors reported an accuracy of 90%.

Lin et al. [24] use a disparity map converted to a depth image.

The ground plane is detected, and objects above the plane are

segmented out. For each object, SURF [6] features are extracted

and matched against the features from the previous frame. The

camera motion is estimated using visual odometry. SURF feature

matching is used to distinguish between moving and static objects

using an adaptive threshold. Tests using three video sequences

found 745 and 96 misclassifications for moving and static objects

respectively. However, neither the amount of correct classifications

nor the amount of total objects was given.

Popović et al. [34] proposed an approach that tracks the disparity
of each pixel using Kalman filters. By comparing the calculated and

predicted disparity maps, pixels corresponding to potential moving

objects are detected. Initial detections are refined by searching for

areas with large differences using a sliding window approach. The

detected areas are iteratively merged using a greedy algorithm. The

authors compared their algorithm against OpenCV’s Semi-Global

Mapping (SGM) implementation and found that their proposed al-

gorithm "had on average fewer outliers in 6 out of 7 sequences"[34]

while also being faster to compute.

Recent MOD and MOT approaches rely mostly on neural net-

works. In [1] a 2D object tracking framework for usage in AR on

smartphones was presented. ORB [40] features and optical flow are

used to track moving objects, while the neural network is used only

to detect new objects or objects which are not reliably tracked by

the classical tracker. On a test set of 80 videos, the average classifica-

tion precision was slightly above 60%, with an average Intersection

Over Union (IOU) of slightly below 40%, both similar to the baseline

of always using Tiny YOLO for object detection, while requiring

on average 34.5% less power.

Ramzy et al.[38] presented two neural network architectures

for MOD. One uses the RGB image as input and the other the

optical flow. The outputs are fused using either Long short-term

memory (LSTM) or a gated recurrent unit (GRU), while a decoder

finally applies a pixel mask of moving objects on the input image.

Experimental evaluation on the KITTI-Motion dataset found that

the two network architectures achieved a mean IOU of 82.5% (GRU)

and 83.7% (LTSM) while being able to process 23 and 21 frames per

second respectively on a Titan X Pascal GPU.[38]

2.2 Range sensor based approaches
The first group relies on voxelization of the captured point cloud

data, such as [3, 4, 8, 15, 32]. While some of these approaches use the

voxelized representation to detect moving objects based on voxels

whose occupancy changes between consecutive frames[4, 8], other

approaches first build an occupancy map of all static voxels which

is then used as a binary filter to remove all points belonging to

moving objects[32]. Alternatively, such a voxelized representation

may also be used for segmentation of the captured point cloud into

individual objects which are then processed further[15].

Azim et al.[4] compare the voxelized representation of current

and previous frames on a per-voxel-basis, each voxel being classified

either static or dynamic. Static voxels are used to generate a map

of the static environment, whereas dynamic voxels are clustered

to detect moving objects. Objects are classified based on their size,

before being tracked using a Kalman filter with amodified GNNdata

association scheme. The approach was evaluated with a vehicle-

mounted Velodyne HDL-64 LIDAR in urban traffic scenarios. It

performed adequately despite considerable amount of noise, though

there was no ground-truth comparison.

In [8] a preprocessing step is applied to the captured point cloud

by detecting and removing the ground plane, followed by a down-

sampling step before generating the voxel grid. The tracking and

detection are performed using a Kalman filter with joint proba-

bilistic data association. The approach was tested in an indoor and

an outdoor scene with a Velodyne HDL-32E LiDAR mounted to a
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mobile platform. Qualitative analysis provided adequate results at

5 FPS, though, again, ground truth was unavailable.

Other approaches cluster the point cloud objects after the ground

plane is removed [11, 17, 29, 44–46]. The clusters can then be pro-

cessed further to distinguish between static and moving objects.

In [17] data from a geospatial map, such as OpenStreetMap, is

used to remove points corresponding to objects outside the road,

such as buildings. The remaining points are clustered based on their

Euclidean distance, before being compared to the previous frame.

The motion vector for each match is calculated, based on which

the object is classified as being static or dynamic. The latter are

tracked using a Kalman filter. In an experimental evaluation based

on a driving sequence of the KITTI dataset, the approach tracked a

cyclist with an error below 0.25 meters. However, the authors also

found that some static objects were falsely classified as dynamic.

The approach by Yan et al. [45, 46] removes the ground plane

using a threshold filter on the points’ z-value. The remaining points

are clustered with an adaptive euclidean distance threshold. An

unscented Kalman Filter is used for tracking while a Support Vector

Machine (SVM) classifies the clusters as humans or other objects.

The SVM can be retrained online. The clustering algorithm’s run-

time is 74.4 milliseconds per frame on an Intel Core i7 7560U CPU.

An online trained classifier achieved an average precision of 59.8%

with a stationary mobile robot and 41.2% with a mobile one.

In [19], 3D flow field analysis is used to detect moving objects.

Points belonging to a smooth flow between two consecutive point

clouds belong to the static environment, while clusters of points

with sparse flow are moving objects. An Intel Core i7 CPU took

5.57 seconds to process 87 frames using the proposed algorithm,

resulting in 15 Fps. The moving object detector has a recall of 90.1%

and a true negative rate of 98.5%.

Recent approaches, such as [7, 12, 30, 31, 47], tend to use neural

networks. Nakamura et al. [30] proposed a technique to avoid mo-

mentary missed detections by using a Point Pillar network, which

analyses a 2D array of pillars, instead of using a voxel-based ap-

proach. The network outputs the 3D bounding boxes and the classes

of the detected objects. The approach was able to process between

12.10 and 16.84 FPS, with an average precision between 29.42% and

89.83%, depending on the exact implementation.

Fang et al. [12] present a single object tracking approach using

a neural network with two sub-nets working on raw point cloud

data. The approach was able to process 20.8 frames per second on a

Nvidia GTX 1080Ti, tracking a single car in the KITTI dataset with

a 3D success of 57.25%, a 3D precision of 75.03%, a bird’s-eye-view

success of 73.02% and a bird’s-eye-view precision of 79.45%.

2.3 Fusion based approaches
Fusion based approaches fuse 2D image data and range sensor data.

Approaches such as [9, 10, 18, 21] accomplish this by detecting

possible moving objects for each type of sensor separately. The

detections are then fused and validated, before being tracked.

Chavez-Garcia et al. [9] employed two object detectors for data

obtained by a RADAR and a LiDAR sensor respectively, while a

camera was used to determine object classes. The classifications

are fused using Bayesian based fusion and Evidental Theory, and

tracked using a model-based MOT approach. The approach was

found to have an average processing time of 40 milliseconds per

frame in urban areas and 30 milliseconds per frame on highways

and in rural areas. It was able to detect between 83.3% and 100%

of all objects correctly depending on object class and test scenario,

while misclassifying between 0.1% and 10.8% of all objects.

Approaches presented in [28, 35], use one type of sensor to

detect objects and use the other types of sensors to enrich the

found detections with additional information.

Neural network based approaches, such as [14, 39], employ neu-

ral networks in an almost end-to-end fashion. The data obtained

from the camera and the LiDAR sensor is given to the network as

input, either in raw form or with some additional preprocessing

steps, and the network outputs the found detections.

In [39], the network receives a raw RGB image, the optical flow

calculated from that image, and an optical flow calculated from a

point cloud obtained by a LiDAR sensor. The network processes

the given input data and outputs a 2D motion mask indicating

which pixels of the RGB image correspond to moving objects. An

IOU of 75.3% was achieved on the KITTI dataset and 71.2% on the

Dark-KITTI dataset. Running on a Nvidia Titan X Pascal GPU, the

network was able to process 18 frames per second.

3 SELECTION OF ALGORITHMS
The three main criteria for selection were processing power re-

quirements, speed and precision. Though information is processed

on a desktop PC due to our use-case of interacting with industrial

robot arms, the algorithms should also be able to run on board a

HoloLens 2. The desktop PC used had a Intel Core i7-4790K (4 Cores,

8 Threads @ 4.0 GHz) with 16 GB RAM and an Nvidia GTX 750 Ti

running an Kubuntu 16.04 (64-bit) OS. The processor power is com-

parable to the HoloLens 2 (Snapdragon 850 - 8 cores @ 2.96 GHz).

Approaches that make heavy use of the GPU or require more pow-

erful processors were therefore disregarded. This included basically

all neural network approaches as well as sensor fusion-based ap-

proaches. Other requirements were near-online tracking capability

as well as the best tracking precision possible.

The first selected approach is [4]. This was partly driven due to

the use of a voxel based representation which made it suitable to

be combined with the AR based robot cell setup proposed in [36].

Though the approach [4] was published almost ten years ago, it

does not mean that voxel based approaches are outdated. There

exists newer work such as [3], [25] and [47] which also voxelize the

environment. However, the former approach did not meet real-time

requirements due to only achieving 0.3 frames per second on "a

quad core 3.4 GHz processor"[3] and the latter two approaches rely

on neural networks for detecting objects in voxels,thus do net meet

the hardware constraints stated before.

The second chosen approach was proposed in [45, 46] due to

four reasons: I) in addition to tracking moving objects, it can dis-

tinguish between humans and non-human objects, II) it offers a
clustering precision of 89.8% and an average human classification

precision of 59.8% while III) requiring a low processing effort with

an average clustering time of 74.4 milliseconds per frame on an

Intel Core i7-7560U, and IV) it was already tested successfully in

indoor environments which corresponds to our original use case. A

similar yet newer approach is presented in [44], though it does not
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perform object classification. In addition, the exact runtime is not

given, but it appeared capable of running online on an Intel Core

i5-8265U. Finally, the results are only described qualitatively, with

no quantitative evaluation regarding accuracy or precision.

A third approach was considered, selected from the image based

approaches, as the two MOT approaches chosen rely solely on in-

formation obtained from the HoloLens 2’s depth sensor and its

self-localization capability. Due to the hardware constraints, recent

vision-based approaches were rejected as they rely on deep neu-

ral networks. This left four classical vision-based approaches as

possible choices [20, 22, 24, 34]. The approach of Kale et al. [20] is
constrained to tracking objects in 2D image space as it employs

only a single camera, whereas the other three approaches benefit

from stereo vision for full 3D MOT. The other three approaches

are quite similar, yet can not be compared directly with each other

due to different evaluation metrics. The approach of Popović et al.
[34] was chosen as it appears to run comparatively faster than the

computationally cheap OpenCV methods, while also being able

to deliver a filtered point cloud of the moving objects from the

disparity map difference. Unfortunately, it was quickly found that

the camera frames of the HoloLens2 were unsynchronised, even

though they were both captured at the same time and streamed

to the PC inside the same message. Having parallel read threads

likewise didn’t solve the problem, nor has implementing a 5 bin

ring buffer for each of the stereo images. Each element’s timestamp

was compared to the timestamps of all elements in the other buffer.

However, it proved to be impossible to get properly synchronised

images using HoloLens2ForCV. Though rejected, it may still be

interesting if syncronized camera data is available.

4 IMPLEMENTATION
The system consisted of a HoloLens 2 and a desktop PC running the

Robot Operating System (ROS) [37] on a Kubuntu 16.04 OS. Using

the research mode of the HoloLens 2 and HoloLens2ForCV
1
the

raw 2D depth image may be acquired. This image was encoded as a

JSONmessage and streamed to the desktop PC using ROSBridge
2
to

facilitate our use-case of human-robot interaction. The depth stream

was then converted to a point cloud, which was downsampled

and a radius outlier removal filter used before being registered to

the global point cloud. Though this approach was adequate with

previous work[36] done with the 1st generation HoloLens, the point

cloud of the HoloLens 2 proved to be too noisy due to the higher

resolution and range. Noisy border pixels were removed from the

depth stream and smoothed out with a 3x3 median filter. Euclidean

clustering was used to disregard small clusters. To improve speed,

the filtering and clustering steps were applied directly in the 2D

depth image space instead of the point cloud. The speed increase

comes both from the dimensionality reduction, as well as from the

fact that, unlike the point cloud, the depth image is an organized

construct facilitating nearest-neighbour searching. A 2D clustering

algorithmwas used to group neighbouring pixels with similar depth

value. This proved to remove all the edge cases, such that the radius

outlier removal and the median filter we’re no longer necessary.

The final algorithm is then as follows.

1
https://github.com/microsoft/HoloLens2ForCV

2
http://wiki.ros.org/rosbridge_suite

Algorithm 1Algorithm for obtaining a point cloud from aHololens

2 depth image

Input: Depth image 𝑑𝑒𝑝𝑡ℎ𝐼𝑚𝑎𝑔𝑒 ,

Pixel undistortion map 𝑝𝑖𝑥𝑒𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠
Output: Point cloud 𝑝𝑜𝑖𝑛𝑡𝑠

1: Initialize 𝑝𝑜𝑖𝑛𝑡𝑠 as an empty point cloud

2: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← EuclideanClustering(𝑑𝑒𝑝𝑡ℎ𝐼𝑚𝑎𝑔𝑒 )
3: for each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
4: if 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 contains more than 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 points then
5: Initialize 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠 as an empty point cloud

6: for each 𝑝𝑖𝑥𝑒𝑙 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 do
7: if 𝑝𝑖𝑥𝑒𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 has an undistortion mapping for 𝑝𝑖𝑥𝑒𝑙 then
8: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← undistortion mapping stored for 𝑝𝑖𝑥𝑒𝑙

9: 𝑑𝑒𝑝𝑡ℎ ← depth value stored in 𝑑𝑒𝑝𝑡ℎ𝐼𝑚𝑎𝑔𝑒 at 𝑝𝑖𝑥𝑒𝑙

10: if𝑚𝑖𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑑𝑒𝑝𝑡ℎ ≤ 𝑚𝑎𝑥𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
11: 𝑝𝑜𝑖𝑛𝑡 ← 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 · 𝑑𝑒𝑝𝑡ℎ
12: Add 𝑝𝑜𝑖𝑛𝑡 to 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠

13: Downsample 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠 for a more uniform point density

14: Add 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠 to 𝑝𝑜𝑖𝑛𝑡𝑠

15: Transform all points in 𝑝𝑜𝑖𝑛𝑡𝑠 from camera space to world space

5 VOXEL GRID BASED APPROACH
Though in [4] a Velodyne HDL-64E LiDAR was used, the authors

explicitly stated that the approach is applicable to any range sensor,

including the time-of-flight (ToF) sensor of the HoloLens 2.

In [4], the point cloud is transformed into a voxel occupancy

grid. Each voxel in the environment is marked as either free with

some probability 𝑙𝑓 𝑟𝑒𝑒 , occupied with probability 𝑙𝑜𝑐𝑐 or unknown.

These are assigned using a beam based inverse sensor model, in

which beams are projected towards the detected obstacles from

the sensor’s position. All the voxels that the ray intersects before

hitting the obstacle will be marked free.

In this work, the voxel grid was created using OctoMap [16]

with 10cm edge size. When using a sensor with a limited field of

view (FoV), the beam based sensor model may lead to false free

voxels on the edge of the FoV. Fig. 2 illustrates this edge case. As

the beams on the edge of the FoV hit objects A an B, the voxels

these beams intersect are erroneously marked as free. These false

negatives should be minimized.

The original algorithm was modified to remove all free voxels

that border unknown voxels. In the example given, this removes all

the false negatives except(4,7). It also means that some voxels, such

as (9,6) will be labelled as unknown instead of free. This trade-off

is acceptable to remove the large numbers of false negatives.

In Fig. 2, there are also two beams which do not hit an obstacle

and therefore have no points associated with them, causing the

information about the free space they intersect to be lost. Pagad et
al. [32] proposed the introduction of artificial endpoints. A virtual

sphere of radius 𝑟 would be created and all voxels that the beam

intersects between the camera position and the virtual sphere could

be considered free. Applying this to the HoloLens 2, however, is not

feasible as depth pixels without measurement may be also caused

beams hitting reflective surfaces at shallow angles (such as glass or

monitors) as well as discarded data due to multi-path interference,

both common in indoors environments. Artificial endpoints might

still be useful in outdoor scenes, however.

Moving object detection is achieved by comparing the occupancy

state 𝑆𝑡 of each voxel observed in the current frame with its occu-

pancy state 𝑆𝑡−1 from the previous frame. There are six possible

cases which may occur for each voxel:

https://github.com/microsoft/HoloLens2ForCV
http://wiki.ros.org/rosbridge_suite
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Figure 2: A case in which voxels may falsely be classified as
being free. Red voxels are occupied, green voxels are free,
yellowish green voxels are misclassified as free and white
voxels have an unknown occupancy.

(1) 𝑆𝑡−1 = 𝑓 𝑟𝑒𝑒 and 𝑆𝑡 = 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 : The voxel is added to a list

of possible dynamic voxels.

(2) 𝑆𝑡−1 = 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 and 𝑆𝑡 = 𝑓 𝑟𝑒𝑒: If the voxel is observed as

free over multiple consecutive frames, it is removed from

the list of possible dynamic voxels.

(3) 𝑆𝑡−1 = 𝑆𝑡 = 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 : Voxel is part of the map of the static

environment.

(4) 𝑆𝑡−1 = 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝑆𝑡 = 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 : Voxel assumed static

and added to the map of the static environment.

(5) 𝑆𝑡−1 = 𝑆𝑡 = 𝑓 𝑟𝑒𝑒: The voxel remains free in the map of the

static environment

(6) 𝑆𝑡−1 = 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝑆𝑡 = 𝑓 𝑟𝑒𝑒 : The voxel is added as free

space to the map of the static environment.

We implemented a check ensuring that all possible dynamic

voxels have been observed recently. In case a possible dynamic

voxel has not been observed in the last 15 frames, it is assumed

to be no longer within the sensor’s field of view and is therefore

removed from the list of possible dynamic objects.

The ToF depth sensor of HoloLens 2 produces noisier measure-

ments than a LiDAR sensor, which caused voxels directly above

the floor to sometimes be detected as dynamic. As these voxels

will cause issues when clustering dynamic voxels, they need to be

detected and discarded. These voxels are detected by estimating

the height of the floor and removing all dynamic voxels which are

directly above the estimated floor height. For each frame, the height

of the lowest occupied voxel is determined as the new potential

floor height. If this new potential floor height is below the currently

estimated floor height and there are more than 100 occupied voxels

at that height, the currently estimated floor height is set to the new

potential floor height.

The list of voxels possibly belonging to dynamic objects is then

clustered using a region growing algorithm, with clusters not con-

taining enough voxels being discarded.

In [4], each cluster is then classified into one of four classes -

car, bicycle/motorbike, bus/truck and pedestrian. The classification

criteria used are the size of the bounding box and the ratios be-

tween bounding box dimensions. This simple classification works

in the autonomous driving scenario where classes have large size

differences, however for most foreseeable MOTH scenarios such a

classification is not applicable.

For tracking, the authors proposed using Global Nearest Neigh-

bour (GNN) to search for neighbouring clusters in two different

frames. If the clusters are different classes, they are discarded, oth-

erwise they are added to the current track estimated with a Kalman

filter. For track management, any observation which could not be

associated with an already existing track is either noise or a candi-

date for a new track. Each unassociated observation results in the

creation of a new track is marked as being not confirmed. Once

a non-confirmed track gets associated to observations in the next

frames, the track is marked as confirmed, otherwise it is discarded.

To summarise, the method described in [4] was implemented

and modified to adapt to the HoloLens 2. We modified the method

to filter out voxels which may be misclassified due to the limited

FoV of the ToF sensor. We proved the use of artificial endpoints

described in [32] to not be feasible in indoor environments. We

implemented an additional check on dynamic voxels. Finally, we

estimated the floor height to remove the noisy voxels present there.

6 CLUSTERING BASED APPROACH
The approach proposed in [46] consists of four components: a

cluster detector which segments the point cloud observed by the

sensor into multiple clusters; a human classifier which labels each

cluster as being a human or a non-human; a multi-target tracker

that tracks the clusters over time; a sample generator that can use

the clusters, their corresponding labels and the tracking information

to generate additional training data for retraining and fine-tuning

the human classifier online. The code is also available on GitHub
3
.

To detect the clusters, the ground plane needs to first be removed.

In [46], all points below a certain z-value are removed. This works

well for flat ground planes and a predictable starting height, such

as in [46]. However, the origin of the HoloLens’ coordinate system

is its location at the start of the application. This means that the

distance to the floor varies with user height and pose. We initalize

the floor height at 0.0 and search for the largest plane roughly

perpendicular to the z-axis using RANSAC.

Clusters are extracted using euclidean clustering with an adap-

tive cluster distance threshold 𝑑∗ calculated by Eq. 1 as points

observed further from the sensor have a lower point density than

points measured in close proximity to the sensor.

𝑑∗ = 2 · 𝑟 · 𝑡𝑎𝑛\
2

(1)

where \ is the angular resolution of the sensor and 𝑟 the distance

to the sensor.

Since having an adaptive distance for each point would be com-

putationally intensive, Yan et al. [46] proposed to divide the point

cloud into concentric cylindrical slices around the sensor. The num-

ber of slices and a fixed Δ𝑑 are selected. The𝑑∗ of each slice, starting

3
https://github.com/yzrobot/online_learning

https://github.com/yzrobot/online_learning
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from the one nearest to the sensor is then incremented by Δ𝑑 . To
calculate the radius of each slice, the floor of the inverse of Eq. 1 in

regards to 𝑟 is calculated. Each slice is then clustered by the same

adaptive threshold.

As a last step, clusters that are smaller or larger than a prede-

termined bounding box are removed from the detected clusters 𝐶 𝑗 ,

keeping only clusters that may realistically contain a human. More

precisely, the retained clusters are all defined by 𝐶 = {𝐶 𝑗 | 0.2 ≤
𝑤 𝑗 ≤ 1, 0.2 ≤ 𝑑 𝑗 ≤ 1, 0.2 ≤ ℎ 𝑗 ≤ 2} where𝑤 𝑗 is the width, 𝑑 𝑗 the

depth and ℎ 𝑗 the height of the bounding box of cluster 𝐶 𝑗 .

Similar to the voxel based approach, the centroids of the detected

clusters are then tracked using an UKF with a GNN data association

scheme. The tracking is done in 2D, as it is assumed that the objects

move parallel to the ground plane. The prediction model assumes

constant object velocity between two frames.

Parallel to the tracking, a SVM classifies each cluster as either a

human or a non-human object. The SVM can initially be trained

with a small set of manually annotated samples. Using the tracking

data from the cluster tracker and previous classification results

from the SVM, misclassifications made by the SVM can be used

to automatically generate more training samples. These additional

training samples can then be used to retrain the SVM online.

In order to determine whether a cluster corresponds to a human,

7 different features with a total feature vector of 71 dimensions are

extracted from each cluster. The list of features and their description

can be found Table 1 in [46].

A binary SVM with a Gaussian Radial Basis Function kernel uses

these features to calculate the probability of features corresponding

to a human inside the cluster. We added a second SVM using the

same features to track moving robot arms for human-robot collabo-

ration. The last 25 classes assigned to the object are stored and the

assigned class is the most often detected one.

Due to the tracking algorithm of [4] being almost identical to

the tracking algorithm of [46], it was chosen to reuse the cluster

tracker from this approach also for the voxel grid based approach,

as it is more applicable to our use case.

To summarise, we implemented the method presented in [46].

We added a RANSAC-based estimation of the ground plane. We

also added and trained a second SVM to track moving robot arms.

We also modified the previous voxel based approach to include the

tracking and classification pipeline proposed in [46].

7 EXPERIMENTAL EVALUATION
Two datasets were taken. The first dataset consists of a sequence of

depth images with the corresponding self-localization information

of the HoloLens 2 in which the HoloLens 2 was first moved around

an indoor area for about one minute and 20 seconds. During this

initial "mapping" part of the sequence, no moving object was visible

to the HoloLens 2. After that, the HoloLens 2 was placed down on

a table, and a human walked around the area for about one minute

and 15 seconds, entering and leaving the depth sensor’s field of

view six times in total. The goal of this first dataset is to test the

detection, classification and tracking of the humans.

In the second dataset an industrial robot arm was moving in

cluttered spaces instead of a human.

7.1 Experiment 1: Qualitative evaluation of the
voxel grid based approach

In the first dataset, some objects were falsely detected as being mov-

ing objects during the mapping step, mostly those with reflective

surfaces. During the classification step, all of these false detections

were correctly classified as background objects, thus not being

tracked by the object tracker. The human was correctly detected

and classified in most frames, with few frames where they were

misclassified as background object. In one particular case, one leg

was partially occluded behind the other, resulting in two clusters

(Fig. fig. 3). Both clusters were classified as human which in turn

led to a tracking error.

Figure 3: Human Tracking errors of the voxel based approach
- Top: Human is clustered into two clusters; Bottom: The
resulting tracking error.

Results were similar to the first dataset. There were some frames

in which one monitor and part of a table were falsely classified

as being a human, as can be seen by the green bounding box in

fig. 4 (top). The misclasification was short enough that the object

tracker did not track them. The robot was initially stationary, but

as it moved around its work space, more and more parts of it were

detected as being a moving object. Similar to the case in the first

dataset, obstruction resulted in the robot being segmented into two

clusters, one of which was incorrectly classified as being a human,

as can be seen in fig. 4 (bottom). However, the clustering error did

not result in a tracking error.

7.2 Experiment 2: Qualitative evaluation of the
clustering based approach

Similar to the first approach, the human was detected correctly

in most frames, with some misclassification as background object.
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Figure 4: Robot Tracking errors of the voxel based approach
- Top: part of monitor and table misclassified as human; Bot-
tom: robot arm clustered into two clusters with one cluster
being misclassified.

The clustering algorithm also sometimes segmented the human

subject into two clusters, as can be seen in fig. 5 (top), but none of

these clustering errors lead to tracking errors. There were some

false detections however, e.g. a pillar supporting the ceiling was

sometimes falsely classified as human when it was only partially

visible (fig. 5 bottom).The misclassification lasted only a few frames,

thus the object tracker did not start tracking them.

For the second dataset mixed results were observed. The robot

arm was located in a cluttered space, therefore the clustering al-

gorithm was not always able to correctly segment the point cloud

into separate clusters. This resulted in the robot being sometimes

segmented into multiple clusters, as can be seen in fig. 6 (top), or

added to the same cluster as the surrounding objects, resulting in

the robot not being detected. Due to the robot being detected so

sporadically, the object tracking algorithm could not track it. The

robot arm itself was also sometimes falsely classified as being a

human, as can be seen in fig. 6 (bottom).

7.3 Experiment 3: Quantitative evaluation of
the object tracking accuracy

To get a quantitative evaluation, an ARTrack2 IR tracking system

was used to provide ground truth. The dataset captured for this ex-

periment consists of the raw depth sensor data and the correspond-

ing self-localization information, both obtained by the HoloLens 2,

and the position of the tracking marker obtained by the ART track-

ing system. A person carrying an IR marker walked inside the

tracking area for 97 seconds. To register the tracking data between

Figure 5: Human Tracking errors of the cluster based ap-
proach - Top: pillar misclassified as human. Bottom: human
clustered into two clusters.

the ART tracker and the HoloLens 2, we used the first four points

in which the person was detected as stationary (without significant

movement of the marker). The person was tracked in 2D, meaning

the height was disregarded.

The centroid of each MOTH detection was compared to the

position of the tracking system’smarker at the same time. This gives

an estimate of the tracking error including all the communication

and computing delays. Secondly, each trajectory obtained byMOTH

was compared to the trajectory obtained by the tracking system

using the CloudCompare software, which gives an estimate of the

tracking error excluding delays. The results are given in Table 1.

Table 1: Tracking results of the two MOT approaches.

Voxel Grid

Clustering

map updates no map updates

Total error

avg (m)

max (m)

n detections

0.155

0.578

455

0.112

0.331

472

0.257

0.773

177

Registration error

avg(m)

max(m)

n detections

0.008

0.014

4

0.008

0.014

4

0.008

0.015

4

Stationary error

avg(m)

max(m)

n detections

0.021

0.055

100

0.020

0.062

103

0.023

0.060

33

Moving error

avg(m)

max(m)

n detections

0.195

0.578

351

0.140

0.331

365

0.320

0.773

140

Cloud to cloud distance

(via CloudCompare)

mean(m)

std. dev.(m)

n detections

n ref. points

0.013

0.011

455

1104)

0.013

0.011

472

1104

0.016

0.017

177

1104
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Figure 6: Robot Tracking errors of the cluster based approach
- Top: Robot arm clustered into two clusters; Bottom: robot
arm misclassified as human

The voxel grid based approach[4] was able to process more

frames (455 and 472 frames in total with and without updates of the

spatial map respectively) than the clustering based approach[45, 46]

(177 frames in total). The clustering based approach had a total er-

ror of about 26 centimeters on average while the voxel grid based

approach had an average total error of about 16 centimeters and 11

centimeters for the configuration with and without map updates

respectively. When looking only at the object detections obtained

while the external tracking system’s marker was determined to be

moving, this difference in tracking errors becomes even larger with

the clustering based approach showing an average error of about

32 centimeters and the voxel grid based approach having average

errors of about 19 and 14 centimeters for its two configurations re-

spectively. While the person was stationary, the tracking error was

2 centimeters for all approaches. Similar results could be seen for the

cloud to cloud distance calculated by CloudCompare, where both

configurations of the voxel grid based approach achieved a mean

distance of 1.3 centimeters, whereas the clustering based approach

achieved an insignificantly worse mean distance of 1.6 centimeters.

Both approaches have a similar tracking accuracy when ignoring

processing delays, while the voxel grid based approach yields more

accurate results otherwise.

8 DISCUSSION
The voxel grid based approach proved faster and slightly more

precise, as well as working better in cluttered scenes. The clustering

based approach is able to detect movable objects of interest even if

these objects did not move at all, which has some use cases[13, 42].

Another point to discuss is the approaches’ ability to create an

additional map of the static environment. The voxel grid based

approach has the benefit that it also creates a spatial map of the

static environment. Depending on the application, this map may be

useful for additional tasks such as robot cell setup and trajectory

planning[36] or for background subtraction techniques. While the

creation of such a map may be beneficial in some cases, it can also

be a drawback in other cases. The clustering based approach can

detect objects of interest with just a single frame given, whereas

the voxel grid based approach first needs classify the voxels into a

static map or as belonging to moving objects. If a moving object

appears in a previously unmapped area, the voxel based approach

will require several frames to detect the dynamic object, whereas

the cluster based approach will require only one. In a static mapped

environment there is no difference.

Our code is available for implementation and testing: The modi-

fied cloud annotation tool from [46] can be found athttps://github.

com/FabianB98/cloud_annotation_tool, the HoloLens 2 code at

https://github.com/FabianB98/HoloLens2-ResearchMode-Unity and

the ROS code at https://github.com/FabianB98/RosHololens2CatkinWs.

9 CONCLUSION AND FUTUREWORK
We implemented and tested two different approaches to MOTH

- moving object tracking with HMDs. They were selected after

a thorough review of MOT approaches, mostly in the fields of

autonomous vehicles and mobile robots. The selected approaches

met the criteria of being fast, computationally light and precise.

These approaches were adapted from their original use cases to be

efficiently used with HMDs. Tests have proven that both the voxel

and clustering based approaches were feasible for tracking both

humans and robots using an HMD in an indoor environment
4
.

In regards to future work, we mentioned that the same ap-

proaches may be used in a variety of applications. As proof of

concept, we already tested detection and tracking of a basketball

5
. Though the object classifier failed to identify the moving object

as a basketball due to the lack of training data, the ball is clearly

visible as a collection of dynamic voxels.

In the future we will further optimize the approaches and run it

entirely on the HoloLens 2. Likewise, we would like to have more

object categories, which can be tracked together or separately.
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