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Abstract

Recent works have suggested that In-Context
Learning (ICL) operates in dual modes, i.e.
task retrieval (remember learned patterns from
pre-training) and task learning (inference-time
“learning" from demonstrations). However, dis-
entangling these the two modes remains a chal-
lenging goal.

We introduce ICL CIPHERS, a class of task
reformulations based on substitution ciphers
borrowed from classic cryptography !. In this
approach, a subset of tokens in the in-context
inputs are substituted with other (irrelevant)
tokens, rendering English sentences less com-
prehensible to human eye. However, by design,
there is a latent, fixed pattern to this substitu-
tion, making it reversible. This bijective (re-
versible) cipher ensures that the task remains
a well-defined task in some abstract sense, de-
spite the transformations. It is a curious ques-
tion if LLMs are capable of solving ICL CI-
PHERS with a BUECTIVE mapping, which re-
quires deciphering the latent cipher.

We show that LLMs are better at solving ICL
CIPHERS with BIUECTIVE mappings than the
NON-BIJECTIVE (irreversible) baseline, pro-
viding a novel approach to quantify “learning”
in ICL. While this gap is small, it is consis-
tent across the board on four datasets and four
models families. Finally, we examine LLMs’
internal representations and identify evidence
in their ability to decode the ciphered inputs.

1 Introduction

In-Context Learning (ICL) is an emergent behav-
ior in Large Language Models (LLMs) that al-
lows them to identify patterns in demonstrations
given as prompts and apply these patterns to sim-
ilar tasks (Brown et al., 2020). This intriguing
inference-time learning ability has spurred numer-
ous studies to better understand its dynamics. De-
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Figure 1: An example of ICL CIPHERS, a cryptographic
task reformulations framework where a subset of tokens
are ciphered (replaced with other tokens in the lexi-
con) via a BIIECTIVE mapping (e.g., each instance of
“school” is replaced with “apple”.) Since this cipher is
a bijection, one can recover the original format of the
ICL instance, ensuring the well-defined task upon the
transformations.

spite recent efforts (Xie et al., 2021; Min et al.,
2022; Srivastava et al., 2023; Shin et al., 2022;
Razeghi et al., 2022; Shen et al., 2024), the liter-
ature’s understanding of the functional aspects of
ICL remains elusive and contentious.

Most pertinent to our study, Pan et al. (2023);
Lin and Lee (2024); Wang et al. (2024) propose
ICL’s dual behavior: task retrieval (TR), which
involves recalling a previously encountered task
from pre-training data through its demonstrations,
and task learning (TL), which refers to the ability
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to grasp new input-label mappings that were not
seen during pre-training. Although these two mech-
anisms are not necessarily separate in practice, ex-
amining them independently may help researchers
better understand their strengths and limitations.
Pan et al. (2023) measure TL by assessing task
performance when labels are substituted with ab-
stract symbols (such as numbers or letters) that
have never co-occurred with the inputs during pre-
training. However, TR may partially influence this
strategy. LLMs could still use the intact human-
readable inputs and prompt structure to deduce
the task, thereby performing implicit task retrieval.
This consideration motivates the exploration of al-
ternative approaches for quantifying task learning.

In this study, we introduce ICL CIPHERS, a
class of prompt reformulations based on substitu-
tion ciphers borrowed from cryptography, applied
to task inputs. For example, in a sentiment clas-
sification task, we apply BIJECTIVE shuffling to
part of the LLM’s original vocabulary, ensuring a
one-to-one correspondence between tokens in the
shuffled and original vocabularies. We then replace
tokens in the input text with their corresponding
tokens based on this mapping (e.g., every instance
of “love” is replaced with “today”; see Figure 1).

The outcome of substitution ciphers is generally
not easily interpretable by humans (see Figure 1
for examples), resembling a random shuffling of
words. However, since ICL ciphers are reversible,
the original tasks can be reconstructed from the en-
coded version, ensuring that the task, still remains
learnable. This lack of interpretability is a design
feature (rather than a flaw) here as it greatly re-
duces the likelihood that our prompts have been
encountered in the pre-training data. As a result,
our working hypothesis is that any gains above the
NON-BIJECTIVE shuffles should be indicative of
TL (as opposed to TR) within ICL. Unlike previ-
ous works (Pan et al., 2023; Wang et al., 2024) that
intervene in task outputs through label shuffling,
our approach modifies task inputs. This creates
instances less likely to have been encountered in
pre-training data.

In summary, we evaluate ICL. CIPHERSusing
multiple pre-trained models of different sizes
across four well-known benchmarks and different
few-shot numbers. Our empirical results demon-
strate that ICL achieves better-than-random perfor-
mance on ciphered tasks (§4). For example, on the
BUECTIVE ciphered Amazon dataset, Llama3.1
(8B) averages 7.1% higher accuracy than NON-

BIJECTIVE ciphers, across various demonstration
counts (Table 2). This suggests that LLMs can
learn and decode these random bijections, enabling
them to solve ICL Ciphers. Furthermore, we pro-
vide additional results with the shuffling rate and
model scale. Finally, we perform an interpretabil-
ity analysis (§5.4) which reveals promising, albeit
weak, trends in their ability to decode the ciphered
inputs.

2 Defining ICL CIPHERS

2.1 Preliminaries: In-Context Learning

Let fy denote a pre-trained language model pa-
rameterized by 6. This model performs ICL by
conditioning on an ordered set of n-many input-
output pairs Dgemo = (T1,Y1, T2, Y2, - -+ s Tny Yn)-
To measure this model’s competence, we evalu-
ate it on a collection of input-output pairs Diegy =
{(zi,v:)}. Specifically, for instance (ZTrest, Ytest) ~
Diest, from an LM conditioned on the demon-
strations with an appropriate encoding: Ypreq ~
Jo(Ddemo, Ttest) We extract a predicted label ypreq
which is then compared against the gold label yest.

2.2 ICL CIPHERS

A simple substitution cipher is a technique for en-
coding messages. Specifically, each letter in the
plain text is substituted with a different letter from
the alphabet, usually according to a predetermined
mapping or key. ICL CIPHERS are token-level sub-
stitution ciphers that are applied to demonstration
inputs in ICL. Formally, we define a ICL cipher
c : 'V — V that maps each token in the lexicon
V={t }'}Ql to another token. Note that a token is
allowed to be mapped to itself. If all the tokens are
mapped to themselves (i.e., ¢(t;) = t; for all j),
then the ICL cipher is equal to a identity function,
and substitution with this mapping would lead to
no changes in the text. We define the tokens that
are mapped to different tokens as ciphered tokens
S = {tj|t; € V,c(t;) # t;}. The proportion of
shuffled tokens in the lexicon is called shuffle rate
r € [0,1]. The mapping of ciphered tokens de-
pends on the specific type of ICL CIPHERS, which
we discuss next.

2.3 BIJECTIVE ciphers

We create a BIUECTIVE mapping between two
permuted orders of S. For example, say the to-
ken “school” is mapped to “apple”, as illustrated
in Figure 1. Let the input x; be constituted of



K; tokens, i.e., z; is the ordered sequence of to-
kens (t1,...,tx;). For all t; = school € x; or
Ziest, ¢(t;) = apple. This results in corresponding
ciphered inputs z; or z{.. Moreover, as c is a bi-
jection, 3¢~ such that for all t; = apple € z/ or
Tiests ¢ () = school. Note that “apple” doesn’t
have to be mapped back to “school”.

Decipherability of BIJECTIVE cipher: Since
we ensure the mapping is BIUECTIVE (reversible),
theoretically the models are able to learn the map-
ping through enough demonstrations. Let the ac-
tual function between all (x;,y;) pairs be h, i.e.
h(zi) = yi,¥(xi,yi) € Ddemo U Drest- Using ICL,
the model fy employs both TR and TL to approx-
imate h’ ~ h such that i/ (x;) & y;. This original
function & can not be expected to work on ciphered
(or shuffled) inputs ;. However, there is a corre-
sponding function g = h(c(x})) that is equiva-
lent to A(x;). This shows that A is still recoverable
from the ciphered inputs. In natural language, re-
placing a word with another fixed but randomly
decided word can completely change the meaning
of its context. Any TR capabilities are expected to
be severely hurt with ciphered inputs. To perform
well on Dy, the model has to rely heavily on TL
to learn and perform this composite function.

2.4 NON-BIJECTIVE Ciphers

For comparison with BIJECTIVE ciphers (§2.3),
we also create a NON-BIJECTIVE cipher. In this
cipher, whenever a token t; € .S appears in the
demonstration inputs, it will be replaced by a
uniformly randomly picked token t' € S, i.e.,
c(tj) ~ uniform(S). For example, if the token
“school” appears twice in the demonstration inputs,
then they will likely be replaced by two different
tokens. In contrast, in BIJECTIVE cipher (§2.3) we
ensure multiple occurences of a token are conis-
tently replaced by the same token.

Indecipherability of NON-BIJECTIVE cipher:
In a NON-BIJECTIVE cipher, the mapping is no
longer reversible, which means it’s impossible for
models to learn the mapping nor recover the origi-
nal inputs. This is because c is not surjective any-
more, and hence ¢! does not exist. This implies
that a composite function through which h can be
recovered also does not exist.

2.5 Measuring “Learning” via ICL CIPHERS

Bijective ciphers offer a novel and challenging yet
solvable task encoding, making it unlikely to be

seen from pretraining. However, the performance
of LLMs on this cipher might be influenced by
unciphered tokens (t € V' \ ), which may invoke
task retrieval capability of LLMs.

In contrast, we use the gaps between BIJECTIVE
(§2.2) and NON-BIJECTIVE (§2.4) ciphers to quan-
tify the “learning” in ICL. The comparison between
these two ciphers is meaningful because the ciphers
always share the same ciphered tokens for con-
sistency. The only difference between the two is
their token mapping functions: BIJECTIVE cipher
mapping allows a reversible mapping of ciphered
tokens. In contrast, NON-BIJECTIVE cipher re-
moves the learnable patterns. Therefore, the gap
between the performance on BIJECTIVE and NON-
BUJECTIVE ciphered text can be a practical measure
of TL.

3 Experimental Setup

We evaluate ICL CIPHERS on a range of LLMs
and datasets. We then use the difference between
the two types of ciphers to quantify a proxy for TL
capabilities of these LLMs on various tasks (§2.5).

3.1 Design Choices for ICL CIPHERS

Zipfian shuffling: Literature has shown a strong
correlation between token frequency in the pre-
training corpus and model performance (Razeghi
et al., 2022; Mallen et al., 2023)—LLMs tend to
perform better on frequent tokens. To diminish
the confounding influence of token frequency, we
constrain the shuffling between tokens of similar
frequency. Inspired by Zipfian shuffling (Pianta-
dosi, 2014), we divide all the tokens into k& (k = 10
in our experiments) groups of similar frequency
and shuffle the tokens within each chunk. Since the
pre-training corpora are usually not accessible for
LLMs, we use a representative external corpus to
approximate the real token frequency. Specifically,
we use the Wikipedia (Foundation) to calculate to-
ken frequency instead, which is an approximation
to the actual token frequency.

Priority sampling of ICL demos: To create an
ICL demo set, one way to do it is randomly sam-
ple the required number of examples (say n) from
the pool of demos. We call this non-priority (ran-
dom) sampling. However, in practice we always
perform priority sampling (unless otherwise spec-
ified) where we prioritize examples that contain the
substituted tokens of the test case input. This is
done to expose LLMs to the relevant substitutions



from which they can learn to decipher. Suppose
the number of tokens to be shuffled in the test input
is m (which depends on the shuffle rate ). The
goal is to select n demonstrations from the pool of
demos, such that each of them contain at least one
of the m uniquely ciphered (substituted) tokens.

This is trivial if m = n (i.e., n demos cover the

whole set of m substitutions). Otherwise:

e If m < n (i.e., the number of substitutions are
less than the required number of ICL demos to be
sampled from the pool), we choose m examples
according to priority sampling and the rest of
n — m examples are randomly picked from the
demo pool.

e If m > n, we select a random subset of the
ciphered tokens of size n. For each of these
cases, we randomly sample a demonstration.

We always use priority sampling (unless otherwise

specified). However, in §D we compare priority

sampling with non-priority (random) sampling.

Shuffle Rate: The shuffle rate r determines the
proportion of tokens that are replaced. When r is
close to 0, the cipher’s effect is minimal, as few or
no tokens are substituted, making it uninteresting.
Conversely, when r approaches 1, nearly all tokens
are shuffled and solving the task is almost impossi-
ble (under both BIJECTIVE and NON-BIJECTIVE
ciphers). Thus, our focus lies on a moderate shuffle
rate between 0 and 1, striking a balance between
these extremes. We analyze this in §5.1.

Special tokens and filters: LLMs usually have
a list of special tokens that help the model un-
derstand the prompt and task (e.g. next token
prediction). For example, Llama3.1 models use
<|begin_of_text|>and <|end_of_text|>tode-
note the start of input and end of generation. We
preserve special and punctuation tokens from get-
ting ciphered to avoid hurting models’ basic func-
tionality. (Full list of preserved tokens are in Ap-
pendix A.1). Similarly, we avoid disturbing spaces
in the original text (details in Appendix A.2).

3.2 Models

We mainly focus on pretrained LLMs in our ex-
periments, including Llama 3.1 (Dubey et al.,
2024, Llama-3.1-8B), QWen 2.5 (Team, 2024b,
Qwen2.5-7B), OLMo (Groeneveld et al., 2024,
OLMo-7B-0724-hf) and Gemma 2 (Team, 2024a,
Gemma-2-9b). In §E, we also show experiments
on Llama-3.1-8B-Instruct for completeness, which
shows a similar trend.

3.3 Datasets

We conduct experiments on four datasets. SST-2
(Socher et al., 2013) and Amazon (Hou et al., 2024,
Amazon Reviews 2023) are for binary sentiment
classification task. HellaSwag (Zellers et al., 2019)
is for sentence completion task, formatted as four-
choices QAs. WinoGrande (Sakaguchi et al., 2020)
is for pronoun resolution task, formatted as binary-
choice QA. For each dataset, we curate a demo pool
for sampling ICL demos and a test set contain to-
be-tested cases. We use accuracy as the metric for
all our experiments if not specified. We averaged
the metrics across three runs of experiments for a
more reliable evaluation. Further details on datasets
(prompts and examples) are in A and B.

4 Evidence of Task-Learning in ICL

Table 1 shows the performance of fours LLMs on
four datasets ciphered using ICL CIPHERS, the
significance results of which are in Table 5.

LLMs can decipher BIJECTIVE Ciphers: We
see a consistent improvement in the performance
of LLMs on BIJECTIVE ciphered inputs over NON-
BIJECTIVE ciphered inputs (except for Olmo on
WinoGrande and Gemma 2 on Hellaswag). With
fixed shuffle rate and number of demonstrations,
any influence of task retrieval on the model perfor-
mance remains the same for both ciphered inputs.
Therefore, the consistent gap clearly demonstrates
that the model understands decipherable BIJEC-
TIVE maps better than the undecipherable NON-
BIJECTIVE maps. This provides evidence for task
learning capabilities of LLMs to certain degree.

5 Further Empirical Analysis

5.1 Effect of Shuffle Rates

Figure 2 illustrates the performance of Llama 3.1
on Amazon dataset with priority sampling, the sig-
nificance results of which are in Table 6. We can
observe a consistent and clear gap between BIJEC-
TIVE and NON-BIJECTIVE ciphers across a range
of shuffle rates, indicating the model’s ability to
decipher bijections.

5.2 Effect of Number of Demonstrations

In Table 2, we present the gaps in performance
between BITECTIVE and NON-BIJECTIVE ciphers
under the effect of number of ICL demos. Over-
all, the BIJECTIVE cipher consistently outperforms
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Figure 2: Llama 3.1 8B performance on Amazon dataset, which shows similar trends with Figure 5. Left: Under
the BIJECTIVE cipher, accuracy decreases smoothly as the shuffle rate increases, highlighting the difficulty in
interpreting the ciphered text. Accuracy also increases with more demonstrations, suggesting the model’s ability to
solve BIJECTIVE cipher. Right: y-axis shows the accuracy gap between BIJECTIVE and NON-BIJECTIVE ciphers.
For very high shuffle rates (e.g, > 0.7), the task become very hard to understand and solve (for the model and even
humans) as it becomes ill-defined.

Model — Cipher 20-shot
Dataset (shuffle rate) | Llama3.1 Qwen2.5 Olmo Gemma?2

SST-2 (r = 0.5) NON-BIJECTIVE 58.3 69.0 67.7 70.5
r=u BIJECTIVE 63.1 (+4.81)  73.5(+451) 727 (+5.0))  742(+3.77)

Amazon (r = 0.6) NON-BIJECTIVE 64.7 72.6 77.2 80.8
r=u BIJECTIVE 723 (+7.61)  T77.9(+531)  802(+3.01)  85.0(+4.2 1)

HellaSwag (r = 0.3) NON-BIJECTIVE 29.7 52.8 25.9 37.1
er=>a BIJECTIVE 31.9(+221) 623(+9.51) 261 (+021)  36.6(-0.5])

. . NON-BUJECTIVE 53.7 61.3 53.4 63.5
WinoGrande (r = 0.1) BUECTIVE 55.5(+1.81) 62.5(+121) 53.1(-031)  635(+0.01)

Table 1: LLM accuracies (reported in %) with 20-shot demonstrations, under BUECTIVE and NON-BIJECTIVE
ciphers. For each dataset, we fix the shuffle rate to a reasonable value here to demonstrate the gap. We provide
an analysis on the effect of shuffle rate later (§5.1). The numbers inside the parenthesis shows the change from
NON-BIJECTIVE to BUECTIVE ciphering (gains in greent and losses in red). In majority of cases, we observe
consistent performance gains under BIJECTIVE cipher.

the NON-BIJECTIVE cipher across different num-
bers of demonstrations. Increasing the number of
demonstrations generally results in a larger gap
between BIJECTIVE and NON-BIJECTIVE ciphers.
However, beyond a certain threshold, this effect
plateaus, and additional demonstrations have a di-
minishing impact, especially for Hellaswag and
WinoGrande. Figure 2 (on the right) also shows
this visually for Amazon dataset.

5.3 Effect of Models Size

Figure 3 shows the effect of model size on the gaps
between BUECTIVE and NON-BIJECTIVE ciphers.
As the model size increases, performance for both
BUECTIVE and NON-BUJECTIVE ciphers improve,
but the gap between them remains existent. This

indicates that decipherability of BIJECTIVE ciphers
exists across models of different sizes.

5.4 Probing Representations

To understand the LLMs’ internal processing of
ciphered inputs, we use Logit Lens (nostalgebraist,
2020) to probe LLMs’s intermediate layer repre-
sentations. Logit Lens uses embeddings of a token
from intermediate layers and uses the final LM
head to decode it as the next token. The probing
task here is focused on Amazon sentiment dataset
and uses Llama 3.1 8B.

Selecting tokens for probing: We first pick 600
most frequent tokens in the demo set after filtering
out tokens other than verbs, nouns and adjectives,



Shots —

Model: Llama 3.1 8B

Cipher
Dataset (shuffle rate)] 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot
SST2 (r = 0.5) NON-BIECTIVE 56.9 59.5 58.6 58.3 62.6 58.4
- BIJECTIVE 59.5(+2.61) 61.0(+1.51) 60.8(+2.271) 63.1 (+4.81) 654 (+2.87) 64.9 (+6.51)
Amazon (r = 0.6) NON-BIECTIVE  63.1 61.8 68.1 64.7 64.8 72.5
=>4 BUJECTIVE 67.8(+4.71) 67.6(+5.81) 745(+6.471) 723 (+7.61) 72.6(+7.87) 82.6 (+10.17)
HellaSwag (r = 0.3) NON-BIJECTIVE 31.7 29.7 30.7 29.7 30.9 33.1
g(r=>0 BUJECTIVE 342 (+2.51) 31.7(+2.071) 34.1(+3471) 319221 31.6(+0.77) 339 (+0.81)
NON-BUECTIVE 54.9 53.2 53.7 53.7 53.3 54.3

WinoGrande (r = 0.1) BUECTIVE

56.3 (+1.41) 53.8(+0.61) 542 (+0.51) 55.5(+1.81)

54.6 (+1.31) 555(+1.29)

Table 2: Llama3.1 8B accuracies (reported in %) on different datasets with varying numbers of ICL examples
under BIJECTIVE vs. NON-BIJECTIVE ciphers. The numbers inside the parenthesis shows the change from
NON-BIJECTIVE to BUECTIVE cipher. For SST-2 and Amazon, as the number of demonstrations grows, both the
accuracy under BIJECTIVE cipher and the gap comparing to NON-BIJECTIVE cipher have a trend to increase.
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Figure 3: Accuracy comparison of Llama-3.1-8B and Llama-3.1-70B models on SST-2 (left) and Amazon (right)
datasets under BUECTIVE and NON-BUECTIVE ciphers with 20-shot. The shuffle rate for SST-2 and Amazon is 0.5
and 0.6 respectively. Larger models outperform smaller ones under both ciphers and BIJECTIVE cipher consistently

yields higher accuracy.

using NLTK (Bird et al., 2009). We randomly sam-
ple 30 tokens from them as the “original tokens”.
We then randomly sample another 30 tokens from
the remaining 570 tokens as the “substituted to-
kens”, each of which has a one-to-one correspon-
dence with the original tokens.

Token substitution: For BIJECTIVE cipher, we
create a bijection between the 30 original tokens
and the selected 30 substitution tokens, creating a
correspondence for the original tokens to be sub-
stituted. For NON-BIJECTIVE cipher, we substi-
tute each occurrence of each original token, by a
randomly sampled token from the remaining 570
tokens.

Building ciphered inputs: For each original to-
ken t' (the token to be ciphered), we sample 15
examples from the demo pool that contain ¢/, and
apply our two substitution ciphers to build the
ciphered prompt. Given the positions of orig-

inal tokens P = (p1,p2,...,Pn), We apply the
Logit Lens and observe embeddings at positions
P' = (p1—1,p2—1,...,p, — 1) (i.e., one position
prior) to find the ranks of original tokens and “sub-
stituted tokens”. This gives us an understanding
of how the model changes its preference between
original and substituted tokens. We quantify this
notion as the rank difference (original token rank -
substitution token rank):

rank-diff = rank(t;) — rank(c(¢;)), (1)
where rank denotes the position of a given token in
the model’s softmax score over the vocabulary set.

LLM representations favor substituted tokens
in BIJECTIVE cipher: For BIJECTIVE cipher
(Figure 4; left) as the model observes more sub-
stitutions, the rank difference changes from nega-
tive to positive (in deeper layers, where the model
interpreting with LogitLens is more meaningful).
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Consistently, the model gives a higher rank to the
substituted tokens than the original tokens, suggest-
ing that the model starts to understand the cipher.
In contrast, there is no trend for NON-BIJECTIVE
cipher (Figure 4; right) as there is nothing to deci-
pher.

6 Discussion and Conclusion

Can your results be due to data contamination?
Our work is motivated by the same issue. Data
contamination makes it difficult to attribute the suc-
cess of ICL to “retrieval” (from pre-training) vs
“learning” (from in-context demonstrations, with-
out seeing them a priori). A reasonable approach
to measure the latter (and mitigate the former) is
through randomized tasks. The point of our study
is to substitute the given tasks with randomly gen-
erated bijection tokens which makes it impossible
for any model to have memorized them. We re-
port the difference in performance with bijection vs
random shuffling and de-emphasize any absolute
performance numbers which could have resulted
from memorization of the original task.

Does BIJECTIVE cipher guarantee measuring
only “learning”? Achieving a perfect distinc-
tion between “learning” and “retrieval” may be
unattainable, as any learning inherently involves
non-zero level of retrieval (e.g., language under-
standing). Our framework provides a method to
quantify learning, by analyzing the difference be-
tween how LLMs process a random but learnable
bijection, vs non-bijective noise. Though under-
standing the complementarity of these approaches

and success at quantifying pure learning remains
to be further understood in future work.

Do the modest gains of BIJECTIVE cipher in-
dicate that the weakness of “learning” in ICL?
Not necessarily. The proposed re-encoding of ICL
transforms tasks into more complex problems that
are inherently more challenging to solve. This is
a feature, not a bug, as it allows us to argue that
such esoteric encoding tasks reduce the potential
confounding effect of retrieval. However, the side
effect is that this increased difficulty in task re-
encoding results in smaller gains. The key point
is that there are consistent positive gains between
the BIUECTIVE and NON-BIJECTIVE settings. The
magnitude of this gap is a secondary considera-
tion and is likely to change with future innovative
methods for re-encoding tasks.

Conclusion: We introduced ICL CIPHERS, a
class of cryptography text transformations designed
to evaluate novel task learning capabilities of
LLMs. We show that LLMs exhibit the capacity to
decipher these novel tasks during inference. This
evidence indicates LLMs’ ability to learn novel
tasks outside of their pre-training corpus. The ex-
act mechanism of this “learning” remains an active
area of study. Understanding this mechanism holds
the potential to unleash novel problem solving ca-
pabilities of LLMs.

7 Related Work

Dual operating modes of ICL: Min et al. (2022)
showed the disconnect between “learning” and the
content of in-context demonstrations (lack of task



“learning”). This motivated following works to
identify two primary modes of operation for In-
Context Learning (ICL): task retrieval (TR), which
involves recalling patterns previously encountered
in pre-training data, and task learning (TL), which
involves learning new patterns on-the-fly that were
not seen during pre-training. Some studies em-
phasize TR by exploring the factual recall capa-
bilities of ICL (Sun et al., 2023; Golchin et al.,
2024; Han et al., 2023; Zhao, 2023; Reddy, 2023;
Dankers and Titov, 2024), providing insights into
how LLMs memorize pre-training data, thus fa-
cilitating TR. Other studies (Lin and Lee, 2024;
Song et al., 2024; Nafar et al., 2024; Anand et al.,
2024) focus on simplified datasets (e.g., linear re-
gression) or architectures (e.g., shallow transform-
ers), which differ from our focus. Other studies
focus on the TL capabilities of the model, but use
simplified datasets (e.g., linear regression) or archi-
tectures (e.g., shallow transformers) (Lin and Lee,
2024; Song et al., 2024; Nafar et al., 2024; Anand
et al., 2024). In contrast, our method is aimed at
real datasets and real LLMs. Additionally, Pan
et al. (2023); Wang et al. (2024) have attempted
to separate TR and TL through output interven-
tion by replacing labels with abstract symbols like
numbers or letters. However, it remains uncertain
whether using abstract labels effectively eliminates
the influence of TR in ICL. Many human-readable
tasks may have inherent priors embedded in the
pre-training datasets, suggesting that LLMs might
still use inputs and prompt structures to infer the
task, thereby engaging in implicit task retrieval.
Our approach proposes an alternative method for
quantifying TL by intervening in the input space.

Ciphers and their use in AI: The problem of de-
ciphering substitution ciphers is studied in NLP
as it may provide automatic ways to decipher
lost languages without any parallel corpus (Knight
et al., 2006; Ravi and Knight, 2008, 2011; Dou and
Knight, 2012; Berg-Kirkpatrick et al., 2013; Pour-
damghani and Knight, 2017; Nuhn et al., 2013;
Berg-Kirkpatrick and Klein, 2011; Corlett and
Penn, 2010; Aldarrab and May, 2020, inter alia).
For instance, Ravi and Knight (2011) introduces
a Bayesian approach for deciphering substitution
ciphers, combining information from letter n-gram
language models and word dictionaries to perform
efficient sampling-based inference for decipher-
ment results. We also note various optimization-
based and heuristic-based computational frame-

works that are deterministic in nature for deci-
phering substitution ciphers (Peleg and Rosenfeld,
1979; Ganesan and Sherman, 1993; Olson, 2007).
We also note the work of Yuan et al. (2023) which
is the only work (that we know of) applying ciphers
on LLMs (GPT-4) in a different context of safety
problems.

Alternative explanations of ICL: Since the dis-
covery of ICL (Brown et al., 2020), numerous stud-
ies have explored it across various contexts (Zhao
et al., 2021; Min et al., 2022; Mishra et al., 2022;
Han et al., 2023; Wang et al., 2023; Sia et al., 2024;
Vacareanu et al., 2024; Mueller et al., 2024). For ex-
ample, Perez et al. (2021); Lu et al. (2022); Mishra
et al. (2022) demonstrated ICL’s sensitivity to the
selection and sequence of demonstrations, while
Shin et al. (2022); Razeghi et al. (2022) highlighted
its sensitivity to the frequency and size of the rel-
evant pre-training corpus. Another research di-
rection seeks to elucidate the mechanisms behind
ICL. Xie et al. (2021) described ICL as implicit
Bayesian inference, where ICL demonstrations are
mapped to a latent concept (task) learned during
pre-training. Other works have attempted to ex-
plain ICL as a form of implicit optimization (gra-
dient descent and its variants) (Garg et al., 2022;
Zhang et al., 2023; Dai et al., 2023; Von Oswald
etal., 2023; Li et al., 2023), though the applicability
of these formalisms to real LLMs is debated (Shen
et al., 2024). A few studies aim to understand how
ICL emerges in LLMs. Hahn and Goyal (2023)
suggested that the compositional structure of natu-
ral language leads to emergent in-context learning,
while other works (Chan et al., 2022) propose that
certain distributional properties in the pre-training
data may give rise to ICL. Although these stud-
ies offer varying perspectives into the origin and
functioning nature of ICL, we propose to disentan-
gle TL and TR components of ICL by observing
LLMs’ behavior on randomly generated bijections
Vs non-bijection noise.



Limitations
We discuss the potential limitations of our work:

Deviation from natural language: Ciphered
text generated using ICL CIPHERS diverges from
natural language. While this is useful to assess
LLMs’ TL capabilities, it may also make the task
excessively challenging for them. It is possible
there might be alternative ways to measure learn-
ing in a way that maintains the naturalness of the
tasks.

More models and datasets: Although we eval-
uated 20 settings (five models x four datasets),
expanding our study to include more and larger
models would strengthen our findings. The largest
model we tested was Llama 3.1 70B, due to lack of
more compute resources. Additionally, we did not
evaluate large aligned models such as GPT-4-01, or
Gemini. Anecdotal evidence suggests that aligned
models may lose their ability to follow in-context
demonstrations (Fu et al., 2022), a crucial aspect of
our task definition. However, we acknowledge that
our task could potentially be adapted into a task de-
scription or instruction format suitable for aligned
models, which deviates from our current setting
and could be explored in future work. It would also
be interesting to evaluate ICL CIPHERS on various
pre-training checkpoints to better understand how
ICL “learning” emerges through pre-training.

More interpretability analysis: In terms of in-
terpretability analysis, we experimented with sev-
eral approaches (e.g., PatchScope (Ghandeharioun
et al., 2024)) but found success only with the sim-
plest method, the Logit Lens. More advanced inter-
pretability analyses could provide deeper insights
into the underlying mechanisms, offering a clearer
understanding of the processes involved.

We recognize these as areas for further explo-
ration and encourage future research to address
these limitations.
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Supplemental Material

A Additional Experimental Details

A.1 Preserved Tokens

For Llama 3.1, we preserve the tokens whose ids range from 0 to 255, 128000 to 128256. For Qwen 2.5,
we preserve the tokens whose ids range from 0 to 255, 151643 to 151664. For OLMo, we preserve the
tokens whose ids range from 0 to 244, 50254 to 50279. For Gemma 2, we preserve the tokens whose ids
range from O to 472, 255968 to 255999. For all the models, we preserve the spaces and underlines to
ensure the framework of each task. For example, in the WinoGrande dataset, LLMs are asked to predict
the pronouns in a sentence, where the original pronouns are replaced by a underline.

A.2 Handling of White Space

LLMs encode the spaces between words differently depending on their tokenization. Gemma 2 uses a
special underline to represent a space, while Llama 3.1 , QWen 2.5 and OLMo uses *G’. There are usually
two versions of the same word — with or without a space before it, which corresponds to two different
tokens. Take Llama 3.1 for example, the encoded id of “is” is 285 while that of “Gis” is 374. We name
tokens containing a space at the beginning as “space tokens” and the others as ‘“non-space tokens”. To
avoid disturbing spaces in the original text, which may confuse the model, we constrain the shuffling to be
within their space/non-space sets.

A.3 Design choices for ICL CIPHERS

In Tab.3, we explain our design strategies for choosing priority sampling (in selecting demonstrations
from the demo pool) and zipfian shuffling (in choosing the mapping c).

Strategies for ... Variant 1 Variant 2

selecting (sampling)  Priority: select demonstrations that contain the Non-priority: select demonstrations randomly X
demonstrations target substitution in the test example v/

choosing the token Zipfian: ¢ maps tokens of similar frequency Non-Zipfian: ¢ maps tokens irrespective of their
mapping ¢ (popularity) among each other v/ frequency (popularity) X

Table 3: Design choices for experiments in ICL CIPHERS discussed in §3.1.

A.4 Datasets

For SST-2, HellaSwag and WinoGrande no label provided for the test set. Therefore, we use their
validation set instead.

SST-2: We use its validation set as our test set, which has size of 872. Its training set, which contains
67.3k examples, is used as the demo pool.

Amazon: To fit the Amazon dataset into binary sentiment classification framework, we filter ratings
4-5 as positive and 1-2 as negative (discard rating 3). We focus on reviews under the the “All_Beauty”
category in our experiments. We sample 144k positive and negative samples to build the demo pool; and
500 other positive and negative examples as the test set.

HellaSwag: We use its validation set as our test set, which contains 444 positive examples and 428
negative examples (872 examples in total). Its training set, which contains 38K positive examples and 30k
negative examples, is used as the demo pool.

We randomly sample 1k examples from the validation set as our test set. We use its training set as the
demo pool, which contains 40k examples.

WinoGrande: We use its develop set as the test set, which contains 1267 examples. Its x1 training set is
used as demo pool, which has 40k examples.
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A.5 Prompt Template

We don’t include any instructions in our prompt. For SST-2 and Amazon, we use the following prompt
template:

Input: {input_demo}

Output: {label_demo}

Input: {input_test}

where {input_demo} and {label_demo} are the input text and sentiment labels of demonstrations, and
{input_test} is the input text of test case.

For HellaSwag and WinoGrande, we use the following prompt template:
Question: {question_demo}
Options: {options_demo}

Answer: {answer_demo}

Question: {question_test}
Options: {options_test}

where question_demo}, options_demo} and {answer_demo} are the questions, options and correct answers
of demos, and question_test} and options_test} are the question and option of the test case.

B Example Inputs/Outputs

Here we display the example inputs/outputs on all the four datasets. Note that in our experiments the
original inputs are not included in the prompts.

Dataset: SST-2; Model: QWen 2.5 ; Cipher: BIJECTIVE; Shuffle Rate: 0.6

Ciphered Input: been sc Mil Swift the Inch for pen Venezuela Moody
Original Input: been sent back to the tailor for some major alterations
Output: negative

Ciphered Input: is born Slovenia of an Platform San sitcom involved also Sr implementedecture
embarrassed Swift Malay you reach for the tissues Confederate

Original Input: is born out of an engaging storyline , which also is n’t embarrassed to make
you reach for the tissues .

Output: positive

Ciphered Test Input: allows us Swift hope Esc implementedolan Sr poised Swift cheating a
Venezuela career Mr a assembled Kann steak filmmaker Confederate

Original Test Input: allows us to hope that nolan is poised to embark a major career as a
commercial yet inventive filmmaker .
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Dataset: Amazon ; Model: Gemma 2 ; Cipher: BIJECTIVE; Shuffle Rate: 0.6

Ciphered Input: didnSUwell really notice anything mob. I sink it householder substance Woodward
Bean Simple Woodward Senior Caldwell Snowyyn Ato was instance.

Original Input: didn’t really notice anything special. I bought it because of the reviews and
the price but honestly, I was disappointed.

Output:negative

Ciphered Input:Item arrived regions principle unrest neighbours’]Imodern /><modern urchatosyn
Woodward item was calcium steamer principle Counter cap rendering Woodward cover ent since it
periodsSUwell Fam Arch anymore Simple iconicBer bottom Simple consequently’]Imodern /><modern
urchofficial was wrapped dentist regions principle padded envelope.

Original Input:Item arrived in a quick manner.<br /><br />However, the item was received with a
damaged cap rendering the cover useless since it won’t snap on anymore and dented bottom and
top.<br /><br />It was wrapped tightly in a padded envelope.

Output:negative

Ciphered Test Input: tried it for cosmetic qualifications perimeter a day spa@@f2 didnPervers
Tehran workil
Original Test Input: tried it for cosmetic procedures in a day spa; didn’t really work.

Dataset: Hellaswag; Model: OLMo ; Cipher: BIJECTIVE; Shuffle Rate: 0.3

Ciphered Question: Ter Back sits million titled with his Board effective on the keys. the Back
Original Question: A man sits a piano with his hands placed on the keys. the man

Ciphered Options: (1) begins playing the titled.\n(2) Carlos the keys with million malorn.\n(3)
beats the titled in million benefitedmic thought.\n(4) increases the play for playing.\n
Original Options: (1) begins playing the piano.\n(2) hits the keys with a mallet.\n(3) beats
the piano in a rhythmic beat.\n(4) increases the volume for playing.\n

Answer: (1)

Ciphered Question: People are noted on the street. million Back

Original Question: People are running on the street. a man

Ciphered Options: (1) is wearing poetilts.\n(2) limited million drink out Wars million After
presidents.\n(3) negotiating into million encourages Wars fire.\n(4) limited million high jump
in million Chris competition.\n

Original Options: (1) is wearing stilts.\n(2) takes a drink out of a water bottle.\n(3) jumps
into a pile of fire.\n(4) takes a high jump in a bar competition.\n

Dataset: WinoGrande ; Model: Llama 3.1 ; Cipher: BIJECTIVE; Shuffle Rate: 0.3

Ciphered Question: Estonia ferry that my parents story tied I permanent in Johnston permanent
Stadium partners bla than my house now because the _ permanent anchored.

Original Question: The home that my parents had when I was in school was a lot nicer than my
house now because the _ was sophisticated.

Ciphered Options: (1) ferry, (2) house

Original Options: (1) home, (2) house

Answer: (1)

Ciphered Question: Sarah permanent Stadium much better Chart than Maria so
easier cases.

Original Question: Sarah was a much better surgeon than Maria so
Ciphered Options: (1) Sarah, (2) Maria

Original Options: (1) Sarah, (2) Maria

always got the

_ always got the easier cases.

C Additional Related Work

Empirical understanding of ICL: Ever since In-Context Learning was discovered (Brown et al., 2020),
multiple works have studied it under diverse settings (Zhao et al., 2021; Min et al., 2022; Mishra et al.,
2022; Han et al., 2023; Wang et al., 2023; Sia et al., 2024; Vacareanu et al., 2024; Mueller et al., 2024).
For instance, Srivastava et al. (2023) benchmarked ICL under multiple tasks and models; Perez et al.
(2021); Lu et al. (2022) showed the sensitivity of ICL to the choice of demonstrations and their orderings;
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Figure 5: Llama 3.1 8B performance on SST-2 dataset. Left: Under the BUECTIVE cipher, accuracy decreases
smoothly as the shuffle rate increases, highlighting the difficulty in interpreting the ciphered text. Accuracy also
increases with more demonstrations, suggesting the model’s ability to solve BIJECTIVE cipher. Right: y-axis shows
the accuracy gap between BIJECTIVE and NON-BIJECTIVE ciphers. For very high shuffle rates (e.g, > 0.7), the
task become very hard to understand and solve (for the model and even humans) as it becomes ill-defined.

Shin et al. (2022); Razeghi et al. (2022) showed the sensitivity of ICL performance to the frequency and
size of the relevant pre-training corpus. These works have made useful observations that allow us to better
use this elusive quality of LLMs.

Functional nature of ICL: A more recent line of study aims to understand how ICL actually works in
LLMs. Multiple works have compared ICL with implicit optimization (specifically gradient descent) (Garg
et al., 2022; Zhang et al., 2023; Dai et al., 2023; Akyiirek et al., 2022; Von Oswald et al., 2023; Li et al.,
2023; Kim and Suzuki, 2024). This line of work claims that Transformers can meta-learn to perform
optimization of internal models given a set of demonstrations. However, their study setup with toy
transformers does not align with how LLLMs are trained as shown by Shen et al. (2024). Moreover, this
line of study does not explain the TR capabilities of LLM:s.

Forces that lead to ICL: Few works try to understand how ICL emerges in LLMs. Xie et al. (2021)
explained ICL as implicit Bayesian inference, which maps a ICL demonstrations to a latent concept (task)
learned via pre-training. Hahn and Goyal (2023) posited that compositional structure in natural language
gives rise to emergent in-context learning. Other works (Chan et al., 2022) theorize more distributional
properties in the pre-training data, that may give rise to ICL. Many of these works explain some properties
of ICL, but fail at others. The exact origin of ICL in LLMs still remains an active area of study.

D Priority vs. Non-Priority Sampling

Figure 2 shows peformance of LLLaMa 3.1 8B on Amazon dataset with priority sampling. Figure 6 and
Figure 7 shows peformance of LLaMa 3.1 8B on SST-2 and Amazon datasets with non-priority sampling.
Comparing with Figure 5 and Figure 2, they demonstrate similar trends but the performances are more
unstable due to the randomness of non-priority sampling. Therefore, we use priority sampling throughout
our experiments for more steady results.

E Pretrained-only vs. Aligned Models

Table 4 shows the performances of Llama3.1-8B-Instruct on different datasets. Comparing with its
pretrained-only version (Table 2), it demonstrates better performances. However, their gaps between
BUECTIVE and NON-BIJECTIVE ciphers are on-par.

F Significance of Results

To determine if the gaps between BIJECTIVE and NON-BIJECTIVE ciphers are significant, we conduct
McNemar’s test (McNemar, 1947). Table 5, Table 6 and Table 7 show the computed p-values for Table 1,
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Figure 6: Peformance of Llama 3.1 8B on SST-2 dataset with non-priority sampling, comparing with Figure 5. Left:
The accuracies under BUECTIVE cipher. Right: The y-axis displays the accuracy gap between BIJECTIVE and
NON-BUECTIVE ciphers.
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Figure 7: Peformance of Llama 3.1 8B on Amazon dataset with non-priority sampling, comparing with Figure 2.
Left: The accuracies under BIUECTIVE cipher. Right: The y-axis displays the accuracy gap between BIJECTIVE
and NON-BIJECTIVE ciphers.

Table 2 and Table 4 respectively. The gap is regard as significant if its corresponding p-value is no larger
than 0.05.

G Restricting the Space of Cipher

We notice that the gaps on HellaSwag and WinoGrande are smaller than those in SST-2 and Amazon. The
reason behind it could be the complexity of these two datasets, which could impact the model’s ability to
solve the ciphers. To verify this, we constrain the vocabulary shuffling to only nouns on these two datasets.
Table 8 shows that the changes of gaps between BUECTIVE and NON-BIJECTIVE ciphers are mixed.

H Further Results on Probing Analysis

To get a clearer vision, we extract the rank difference from the last layer on SST-2, dividing them equally
into 5 chunks, as shown in Figure 9. For random substitution, there is not much change for rank difference.
For BIJECTIVE substitution, rank difference increase as the chunk number gets bigger. This suggests that
as LLM sees more occurence of the substitution token, it learns to use substitution token as the original
token, namely solving ICL. CIPHERS.
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Shots — Model: Llama 3.1 8B Instruct

Cipher
Dataset (shuffle rate)] 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST2 (r = 0.5) NON-BIJECTIVE  65.5 66.5 68.9 68.1 67.5 65.5
- BIECTIVE 69.8 (+4.371) 708 (+43 1) 724 (+3.51) 70.8(+2.71) 70.0(+2.571) 71.8(+6.3 1)

Amazon (r = 0.6) NON-BIJECTIVE  70.5 80.0 71.3 79.3 80.6 80.5
- BIECTIVE 758 (+5.371) 827 (+2.71) 824 (+5.11) 824 (+3.117) 84.6(+4.071) 86.1 (+5.61)

HellaSwag (r = 0.3) NON-BIJECTIVE 43.2 43.2 423 41.6 41.4 41.0
elr=>u BIJECTIVE 448 (+1.6 1) 475(H431) 444 (+2.171) 448 (+3.21) 451 (+3.71) 424 (+141

NON-BIJECTIVE 57.4 58.1 55.7 57.3 56.4 57.1

WinoGrande (r = 0.1) "y nimive 500 (+1.61) 587 (+0.64) 574 (+1.71) 593 (+2.01) 582 (+1.81) 574 (+0.3 1)

Table 4: Llama3.1 8B Instruct accuracies (reported in %) on different datasets with varying numbers of ICL examples
under BIUECTIVE vs. NON-BIJECTIVE ciphers, as comparing to Table 2. The numbers inside the parenthesis shows
the change from NON-BIJECTIVE to BIUECTIVE cipher. For SST-2 and Amazon, as the number of demonstrations
grows, both the accuracy under BUECTIVE cipher and the gap comparing to NON-BIJECTIVE cipher have a trend to
increase.

Model — 20-shot
Dataset (shuffle rate) | Llama3.1 Qwen2.5 Olmo Gemma2
SST-2 (r = 0.5) 0.000 0.000 0.000 0.001
Amazon (r = 0.6) 0.000 0.000 0.000 0.000
HellaSwag (r = 0.3) 0.000 0.000 0.000 0.663
WinoGrande (r = 0.1) 0.000 0.084 0.786 0.943

Table 5: Significance results (p-values) of McNemar’s test for Table 1. The gap between BUECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.

Shots — Model: Llama 3.1 8B
Dataset (shuffle rate)| 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot
SST-2 (r = 0.5) 0.018 0.205 0.084 0.000 0.020 0.000
Amazon (r = 0.6) 0.000 0.000 0.000 0.000 0.000 0.000
HellaSwag (r = 0.3) 0.015 0.627 0.000 0.000 0.278 0.357
WinoGrande (r = 0.1) 0.110 0.000 0.000 0.000 0.000 0.000

Table 6: Significance results (p-values) of McNemar’s test for Table 2. The gap between BUECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.

Shots — Model: Llama 3.1 8B Instruct
Dataset (shuffle rate)| 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot
SST-2 (r = 0.5) 0.000 0.000 0.001 0.016 0.025 0.000
Amazon (r = 0.6) 0.003 0.002 0.000 0.000 0.000 0.000
HellaSwag (r = 0.3) 0.000 0.000 0.031 0.081 0.000 0.023
WinoGrande (r = 0.1) 0.067 0.000 0.000 0.013 0.015 0.000

Table 7: Significance results (p-values) of McNemar’s test for Table 4. The gap between BUECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.
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Llama3.1 8B 20-shot

Cipher
Dataset (shuffle rate) All Noun
NON-BIJECTIVE 29.7 32.1
HellaSwag (r=0.3) BUECTIVE  31.9(+2.21) 33.6(+1.51)
NON-BUECTIVE 53.7 543

WinoGrande (r=0.1) ""gyipeqive 5.5 (+1.89) 56.7 (+2.49)

Table 8: Llama3.1 8B accuracies (reported in %) with 20-shot demonstrations, under BIJECTIVE and NON-
BUJECTIVE ciphers. “All” operates shuffling on all the tokens while “Noun” constrains shuffling to only nouns.
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Figure 8: Complete heatmap of original token rank minus substitution token rank on Amazon for Figure 4. Left:
BIJECTIVE cipher Right: NON-BIJECTIVE cipher
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Figure 9: Average rank differences (original token rank - substitution token rank) in SST-2 (left) and Amazon (right)
datasets for BUECTIVE (blue) and NON-BIJECTIVE (red) cipher over 15 occurrences, divided into 5 chunks of
size 3. Rank difference serves as a proxy for the model’s deciphering ability. Under BIJECTIVE cipher, this ability
improves with more exposure to substituted tokens, while NON-BIJECTIVE cipher shows no clear pattern.
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