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ABSTRACT

Proteomics data is essential to pathogenic understanding of a disease phenotype.
In cancer, analysis of molecular signatures enables precision medicine through the
identification of biological processes that drive individualized tumor progression,
therapeutic resistance, and clinical heterogeneity. Recent advances in multimodal
large language models (LLMs) have shown remarkable capacity to integrate and
reason across heterogeneous data modalities. However, performing multi-modal
language modeling for molecular understanding of patient-specific proteomics re-
mains a significant challenge due to two barriers: (1) the lack of instruction-tuning
datasets that enable clinical interpretation from proteomics data, and (2) the ab-
sence of language modeling architectures designed to capture the rich heterogene-
ity of molecular data. In this work, we introduce CPTAC-PROTSTRUCT, the first
instruction tuning dataset for proteomic understanding of oncology, comprising
over 370k open-ended examples derived from more than 1000 patients curated
from the largest United States proteomics cancer study (CPTAC). Additionally,
we propose KRONOS (Knowledge Representation of patient Omics Networks in
Oncology via Structured tuning), a novel graph-LLM framework that leverages
molecular interaction topology with proteomics to learn patient-specific graph
representations for enhanced clinical reasoning. We show that KRONOS achieves
consistent improvements across benchmark clinical tasks, with AUC performance
of up to 0.857±0.025 in prognostic tasks such as mortality prediction, cancer type
OS prediction, and tumor stage classification from proteomics data. Ultimately,
this approach empowers LLMs to understand patient-level pathogenesis, advanc-
ing precision medicine through more accurate diagnosis, prognosis, and treatment
stratification.

1 INTRODUCTION

Cancer represents one of the most complex and heterogeneous diseases known to biomedicine,
where genomic mutations alone fail to explain the complex phenotypic diversity, treatment patterns,
and clinically observed patient outcomes (Gerlinger & Swanton, 2013). However, the exponen-
tial growth of high-throughput proteomics data has enabled opportunities to capture the molecular
landscape driving cancer pathogenesis, enabling scientists to understand sophisticated disease mech-
anisms and therapeutic targets (Li et al., 2024b; Savage et al., 2024; Chen et al., 2023). Unlike the
static nature of molecular genomics (aside from additional mutations), proteomics is an immedi-
ate manifestation of a patient’s disease pathogenesis by reflecting individual, real-time cellular re-
sponses to pathological processes, environmental stimuli, and therapeutic interventions (Al-Amrani
et al., 2021; Guo et al., 2023). Despite being rich in biological information, proteomics is highly
variable, and understanding how these molecular signals contribute to a patient outcome requires ad-
vanced approaches that can identify hidden patterns within complex molecular datasets and enable
personalized treatment strategies.

Traditional proteomics analysis have largely focused on individual protein abundance changes, of-
ten overlooking the interactive interplay between molecules, and the implications of these interac-
tions (Krogan et al., 2011). However, recent advances in graph representation learning and iden-
tification of validated protein interactions in biological literature have allowed scientists to ground
deep learning with biological context, through structure-aware graph neural networks that integrate
protein-protein interactions with patient-specific proteomics signatures (Heim et al., 2022; Yuan
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Figure 1: Model architecture of KRONOS.

et al., 2022; Li et al., 2022a). Additionally, the rise of LLMs in the clinical domain and instruc-
tion tuning (Liu et al., 2023) paradigms have allowed multi-modal reasoning grounded in free text,
enabling integration and biomedical reasoning of diverse data types including radiology and pathol-
ogy images (Kather et al., 2024; Sun et al., 2024), patient EHR data (Wang et al., 2025), clinical
knowledge (Singhal et al., 2023), and therapeutics (Huang et al., 2024). However, there still remains
a significant challenge in establishing a multi-modal large language model to reason on individual-
ized proteomics data to interpret intricate biological interactions and associated clinical outcomes.

More specifically, there are critical limitations in current literature that prevent individualized se-
mantic molecular reasoning: (1) existing patient-level instruction-tuning datasets focus on general
clinical tasks and lack the molecular specificity needed for proteomics interpretation, creating a
training data gap between protein-level measurements and prognostic reasoning, and (2) while large
language models excel at reasoning over textual data, they lack native capabilities to process and
interpret the complex biomolecular interactions inherent to proteomics data. These limitations un-
derscore the need for a unified architecture that can seamlessly accomodate graph-structured protein
interaction data with patient-specific molecular signatures, while enabling natural language reason-
ing about complex biological relationships and clinical outcomes.

To address these limitations, we introduce CPTAC-PROTSTRUCT (Section 3), the first patient-level
instruction tuning dataset for molecular oncology understanding, comprising over 380,000 examples
that bridge individualized proteomic profiles with clinical reasoning tasks from CPTAC (National
Cancer Institute, 2023). Furthermore, we propose KRONOS (Knowledge Representation of patient
Omics Networks in Oncology via Structured LLM tuning), a unified graph-LLM framework that
integrates molecular interaction topology with patient-specific proteomics data for prognostic asses-
ment through graph representation learning within the language modeling architecture. Through our
experiments, KRONOS (Section 4) achieves competitive performance across several prognostic use-
cases, advancing precision medicine through more accurate patient stratification from individualized
proteomics signatures.

2 RELATED WORK

2.1 MOLECULAR INTERACTION AWARE GRAPH DEEP LEARNING IN OMICS

Graph-based approaches have emerged as powerful tools for modeling complex biological rela-
tionships in omics data, with protein-protein interaction (PPI) networks serving as fundamental
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Schema Alignment Questions

Find the proteins whose measurements exceed two standard deviations from the mean value.

How does the amount of RPL35 compare to {protein} in terms of relative abundance?

Could you tell me the concentration of {protein} in this patient?

Report the expression level of {protein}.

Which proteins belong to the uppermost 90% when ranked by their abundance?

Clinical Reasoning Questions

What does the molecular network predict for treatment response?

Based on the protein expression network, predict the tumor code.

Predict overall survival days based on the molecular profile.

Determine histologic grade and pathological stage from the molecular network.

Analyze recurrence risk using the patient’s molecular signature data.

Table 1: Examples of schema alignment and clinical reasoning questions.

structural scaffolds for understanding molecular mechanisms. The STRING database has provided
experimentally-validated protein-protein interaction networks across thousands of organisms (Szk-
larczyk et al., 2019). Building on such resources, several methods have demonstrated the effective-
ness of integrating molecular data with graph neural networks on PPI networks. EMOGI pioneered
explainable graph convolutional networks for cancer gene prediction by combining pan-cancer mul-
tiomics data with PPI networks (Schulte-Sasse et al., 2021), while spectral-based convolutional ap-
proaches have successfully integrated proteomics and transcriptomics data for complex disease clas-
sification (Zhuang et al., 2023). GNN-SubNet advanced explainable disease subnetwork detection
using PPI topology with multi-omics node features (Pfeifer et al., 2022), and MTGCL introduced
multi-task graph contrastive learning to address supervised signal sparsity in cancer driver gene iden-
tification (Zhou et al., 2025; Li et al., 2022b). More recently, CGMega developed explainable graph
attention frameworks for cancer gene module dissection (Li et al., 2024a), while TREE extended this
paradigm using transformer-based models across multiple biological interaction networks (Su et al.,
2025). These methods collectively demonstrate that leveraging explicit structural relationships in
PPI networks provides biologically meaningful priors that significantly enhance both performance
and interpretability compared to traditional approaches. Building upon this foundation, our work ex-
tends to the proteomics domain by developing the first individualized PPI-graph LLM that combines
patient-specific protein expression and string PPI network topology to enable semantic alignment of
prognostic outcomes.

2.2 CLINICAL MULTI-MODAL INSTRUCTION TUNING

Instruction tuning has emerged as a powerful approach for developing specialized AI assistants
capable of processing complex biological and clinical data. MIMIC-Instr pioneered large-scale
instruction tuning for electronic health records with over 400K instruction-following examples, en-
abling LLMs to process complex EHR structures (Wang et al., 2024). In protein analysis, structure-
enhanced protein instruction tuning has demonstrated the potential for general-purpose protein un-
derstanding by combining sequence and structural information in LLM training (Wu et al., 2025).
Multimodal approaches include LLaVA-Med, which achieved efficient biomedical vision-language
instruction tuning using PubMed figure-caption pairs and GPT-4 generated instruction data (Li et al.,
2023), and MEIT, which introduced ECG instruction tuning frameworks aligning cardiac signals
with clinical reports (Liu et al., 2024). Recent advances include Me-LLaMA, combining contin-
ual pretraining with instruction tuning using 129 billion biomedical tokens (Chen et al., 2025),
Dr-LLaVA incorporating symbolic clinical grounding for diagnostic conversations (Goldgof et al.,
2024), and BioMistral-NLU demonstrating improved generalizability across medical natural lan-
guage understanding tasks (Yang et al., 2024). These methods collectively establish instruction tun-
ing as an effective technique for adapting foundation models to specialized biological applications
(Butte et al., 2024).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: CPTAC-PROTSTRUCT instruction generation pipeline.

3 PROTEOMICS INSTRUCTION TUNING

Advanced technologies have been developed to learn optimal representations of individual molecu-
lar data. However, semantic reasoning on individualized proteomics data has still been a challenging
task, primarily due to the biological expertise needed to curate instruction datasets that bridge the
gap between complex proteomic profiles and clinically meaningful outcomes. Thus, the develop-
ment of specialized instruction-tuning datasets that enable language models to perform sophisticated
molecular reasoning and generate accurate diagnostic insights from patient-specific proteomics data
is imperative for LLM understanding of complex biological systems.

To enable a general-purpose LLM to comprehend molecular insights, we first train it to navigate the
proteomics modality space through specialized schema alignment. Following this initial adaptation,
structured fine-tuning is required to leverage this new modality for generating clinical reasoning and
inferring patient outcomes. Drawing from the demonstrated efficacy of utilizing large-scale LLMs
to generate instruction-following data (Liu et al., 2023), we created CPTAC-PROTSTRUCT, the
first proteomics instruction-following dataset derived from individual protemics profiles for clinical
outcomes. CPTAC-PROTSTRUCT includes 2 subsets: a schema alignment instruction dataset and
prognostic reasoning instruction dataset, which are used in different training stages. An overview of
the creation of both subsets of instruction pairs can be found in Figure 2.

3.1 CPTAC PROTEOMICS DATABASE PREPARATION

We construct our cohort from the dataset from the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) study (National Cancer Institute, 2023), utilizing the extraction pipeline outlined in (Payne
et al., 2021). Each patient was represented by at least one sample in the dataset, with at most
of one tumor sample and one normal sample per patient. To maintain data quality, we applied
patient-level filtering by removing subjects with more than 35% missing protein data, resulting in
a 5% dropout rate. We then identified a core set of proteins by selecting those present in more
than 70% of both tumor and normal samples, reducing the feature space from 16,869 to 5,078
proteins. Missing values in the core protein set were imputed using Multiple Imputation by Chained
Equations (MICE) (Van Buuren & Groothuis-Oudshoorn, 2011) within each cancer type to preserve
tissue-specific patterns. Finally, we performed variance-based feature selection by removing the
bottom 5% lowest variance proteins per dataset to eliminate uninformative features, yielding our
final preprocessed dataset of 1,658 samples (1,086 tumor, 572 normal samples) across 4,824 proteins
spanning 10 cancer types.

3.2 PROTEIN CURATION FOR INSTRUCTION DATA

Due to the sheer volume of proteins in the processed CPTAC dataset, we recognize that creating an
instruction tuning dataset that queries every single protein would be computationally prohibitive and
dilute learning with low-impact features. Thus, we limited our dataset generation to only query high-
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Schema Alignment

User Indicate the relative abundance of SMARCA5.
Gold The abundance level of SMARCA5 in this patient is 0.101.
Vicuna I’m sorry, but I don’t have information on the relative abundance of SMARCA5. Can you

provide more context or clarify your question?
KRONOS SMARCA5 has an abundance of 0.101.

Clinical Reasoning

User Based on the identified molecular profile, will there be an increased likelihood of cancer recur-
rence in this patient?

Gold The patient is predicted to experience recurrence.
Vicuna As an AI language model, I cannot provide a diagnosis or prognosis for a specific patient, as I

do not have access to their medical history or current health status.
KRONOS The patient is at predicted risk for recurrence.

User Based on the protein abundance profile, which histologic subtype is indicated by this molecular
signature?

Gold Based on the molecular signature, the histologic type is Glioblastoma.
Vicuna The protein abundance profile in the breast cancer cohort included 23 proteins, including HER2,

ERBB2, and PR. The most abundant protein in the tumor samples was HER2, which was sig-
nificantly more abundant in TNBCs compared to LCIS and HOC cases. The other 22 proteins
were relatively equally abundant across the three subtypes.

KRONOS The patient has glioblastoma.

Table 2: Model generation comparison of schema alignment and clinical reasoning.

impact proteins that are most clinically relevant and biologically informative for cancer diagnosis
and prognosis.

We employed a multi-faceted approach to identify these critical proteins through three complemen-
tary categories: high-impact proteins, high variance proteins, and cancer associated proteins. We
considered high-impact proteins to be markers that are functionally critical across many biological
processes. These were identified through PPI network centrality analysis using degree centrality
with a top 10% rank threshold to capture proteins that significantly influence biological interaction
topology. We further incorporated pathway analysis using Reactome (Jassal et al., 2020) to prioritize
proteins involved in fundamental processes, including core cell cycle regulation, DNA damage re-
sponse, metabolism, and established drug targets. Furthermore, we identified high variance proteins
by selecting proteins with high variability across all samples using a 10% threshold. Finally, we
extracted cancer-associated proteins which are specifically implicated in oncogenesis, tumor pro-
gression, or therapeutic response, from two authoritative databases: OncoKB (Chakravarty et al.,
2017), which provides annotations of oncogenes, and COSMIC (Tate et al., 2019), a catalog of
cancer somatic mutations.

This curated list of proteins represents clinically actionable and biologically informative features
while maintaining computational tractability for comprehensive instruction dataset generation.

3.3 CPTAC-PROTSTRUCT: SCHEMA ALIGNMENT GENERATION

To generate optimal instruction-following questions to navigate the proteomics modality space, we
generated a schema alignment subset designed to enable associations between patient-specific pro-
tein abundance values with their corresponding semantic representations. We developed five ques-
tion types to comprehensively cover proteomics data interpretation: (1) direct protein abundance
queries to request specific abundance values, (2) abundance threshold queries that ask about pro-
teins within a certain threshold, (3) ranking and ordering queries that sort proteins by abundance
levels, (4) comparative abundance queries that compare expression between multiple proteins, and
(5) interaction network-based abundance queries that explore protein relationships within interaction
networks. To ensure linguistic diversity and preserve natural language patterns, all questions were
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paraphrased using DeepSeek-R1-Distill-Qwen-32B (DeepSeek Team, 2024), resulting in 354,812
final schema alignment questions with varied linguistic expressions while maintaining semantic con-
sistency. Examples of schema alignment questions are provided in Table 1.

3.4 CPTAC-PROTSTRUCT: CLINICAL REASONING GENERATION

Expectations for molecular oncology AI often go beyond protein abundance queries to performing
diagnostic and prognostic reasoning with proteomics data. To align model training with this goal,
we created diverse instruction-following data focused on patient-centric clinical reasoning using
DeepSeek-R1-Distill-Qwen-32B. Specifically, we prompted it to generate QA pairs that resemble
those oncologists might ask when interpreting patient proteomic profiles in clinical settings. We
manually created few-shot examples in the prompt to demonstrate how to generate high-quality QA
pairs, and leveraged associated clinical metadata as contextual input. Compared to raw protein ex-
pression values alone, this clinical metadata provides essential prognostic context that makes the
generated questions more suitable for clinical reasoning. In this way, we generated approximately
26,157 clinical reasoning QA pairs to equip the model with the ability to make meaningful interpre-
tations of proteomic data. Note that while clinical metadata enhances instruction-tuning quality, our
foundation model inputs consist primarily of the proteomic abundance profiles themselves, ensur-
ing the model learns to extract clinical insights directly from molecular data. Examples of clinical
reasoning questions are provided in Table 1

4 KRONOS: KNOWLEDGE REPRESENTATION OF PATIENT OMICS
NETWORKS IN ONCOLOGY VIA STRUCTURED TUNING

With the finalized instruction tuning pairs and their corresponding patient-specific molecular signa-
tures, we introduce KRONOS (Knowledge Representation of patient Omics Networks in Oncology
via Structured tuning ), a novel graph-LLM architecture depicted in Figure 1 that processes individu-
alized proteomic profiles and generates biologically contextualized representations through integra-
tion with protein-protein interaction networks. First, patient-specific proteomics data is embedded as
node features within the corresponding protein nodes of the STRING PPI network Szklarczyk et al.
(2019), resulting in a molecular network for every patient. These proteomics-informed molecular
graphs are subsequently processed through a graph neural network, with the corresponding graph
representation integrated as a specialized token into a generalized LLM for downstream instruction
tuning. This pipeline enables LLM reasoning over structured biological interactions, allowing the
model to leverage both molecular-level mechanistic insights and patient-specific expression patterns
for clinical predictions.

4.1 PROBLEM SETUP

Let D = (Pi, qi, ai)N be our instruction tuning dataset, where Pi ∈ RM×d, and N denotes
the number of triplets where each patient’s protein expression data is paired with instruction-
answer pairs. Each patient i is associated with a personalized protein–protein interaction network
Gi = (Vi, Ei, Xi), where Xi ∈ R|Vi|×d represents proteomics-informed node features. These per-
sonalized molecular graphs integrate STRING-derived interaction topology with proteomics data,
enabling patient-specific modeling of molecular mechanisms.

To create a representation for the entire molecular interaction graph, we apply a graph neural network
(GNN) encoder ϕPPI to each patient-specific PPI graph Gi = (Vi, Ei, Xi), where Vi and Ei denote the
set of protein nodes and interactions, respectively, and Xi contains omics-informed node features.
The GNN encoder computes hidden node representations through L layers of message passing,
starting from initial node features h(0)

v = xv , where xv is the omics feature vector for protein node
v. At each layer ℓ = 1, . . . , L, the hidden representation of node v ∈ Vi is updated as:

h(ℓ)
v = σ

(
W(ℓ) · AGGREGATE(ℓ)

({
h(ℓ−1)
u : u ∈ N (v) ∪ {v}

}))
, (1)

where N (v) denotes the set of neighbors of v, W(ℓ) is a trainable weight matrix, σ is a non-linear
activation function (e.g., ReLU), and AGGREGATE(ℓ) is a permutation-invariant function such as
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mean, sum, or attention. After the final layer, we obtain the set of node representations {h(L)
v }v∈Vi

,
which are aggregated using a READOUT function (e.g., max pooling) to produce a graph-level
embedding

zi = ϕPPI(Gi) = READOUT
({

h(L)
v : v ∈ Vi

})
. (2)

To align the molecular graph representation with the LLM’s embedding space, we employ a dense
connector network

ei = ϕconnector(zi) (3)
where Wdense ∈ Rdllm×dgraph and b ∈ Rdllm . The output ei matches the LLM token embedding
dimension. The processed molecular embedding ei is integrated into the instruction as a special
token. Let Ttext = [t1, . . . , tn] be token embeddings of qi. The multi-modal input is

Tmulti = [ei, t1, . . . , tn], (4)

which is processed by the LLM as
H = LLM(Tmulti). (5)

4.2 TRAINING WITH CURRICULUM LEARNING

Inspired by LLaVA (Liu et al., 2023), we use a two-stage training approach, first bridging the gap be-
tween general text and proteomics data, then developing molecular reasoning capabilities for prog-
nostic interpretation.

4.2.1 STAGE 1: TRAINING FOR SCHEMA ALIGNMENT

We employ the paraphrased 354,812 template-generated QA pairs for stage 1 training. For each
patient, given the PPI graph and proteomics instruction, we train the model to generate appropriate
responses. We freeze only the LLM backbone, updating both the connector network and the graph
encoder. This allows training of a representation space that directly aligns with the sematic space of
the LLM, and enables the LLM to interpret molecular graph representations to bridge the modality
gap between general text and proteomics data. Hyperparameter search spaces are stated in the
Appendix.

4.2.2 STAGE 2: TRAINING FOR CLINICAL REASONING

In this stage, we fine-tune the model for complex instruction following and molecular reasoning.
We utilize the remaining 26,157 QA pairs for proteomics reasoning tasks, updating both the LLM,
connector, and the GNN encoder. This enables the model to perform advanced molecular reasoning
beyond simple information extraction. Hyperparameter search spaces are stated in the Appendix.

5 EXPERIMENTS

5.1 PERFORMANCE ON STANDARD CLINICAL PREDICTIVE BENCHMARKS

To evaluate KRONOS on the CPTAC/TCGA dataset, we identify 4 critical outcomes for patient
prognosis: mortality prediction (patient survival status), cancer type classification, overall survival
estimation, and disease stage prediction. We compare KRONOS against four baseline categories:
linear modeling approaches (Lasso, ElasticNet, SVC), classical deep learning methods (3-layer and
5-layer MLPs), patient similarity network node classification approaches (Tate et al., 2019; Shreykar
et al., 2018), and biomolecular graph classification approaches (Zitnik et al., 2018; Jha et al., 2023).

For similarity network node classification and PPI-graph classification models, training paradigms
and network creation are set identical to recent literature (Wang et al., 2021; Schulte-Sasse et al.,
2021; Zhuang et al., 2023; Pfeifer et al., 2022; Li et al., 2024a), and trained with various graph
neural networks, GAT (Veličković et al., 2018), GraphSage Hamilton et al. (2017), and GINConv
Xu et al. (2019), for optimal performance. All models were evaluated using a 5-fold nested cross
validation identical grid search parameters. All hyperparameters are explained in the supplementary
table 1. The LLM used for all experiments is Vicuna7bv1.5 Chiang et al. (2023), as recent works
in instruction-tuning literature all adopt this model, for fair comparison and an established baseline
performance in biomedical domain adaptation tasks.
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Mortality Pred. Cancer Type OS Prediction Stage Class.

Model AUC F1 AUC Macro-F1 C-Index t-AUC 1-yr AUC Macro-F1

Linear Modeling Approaches
Lasso 0.743 ±0.021 0.525 ±0.041 0.612 ±0.021 0.587 ±0.013 0.576 ±0.051 0.503 ±0.071 0.759 ±0.025 0.508 ±0.048

Elastic Net 0.724 ±0.015 0.495 ±0.036 0.661 ±0.009 0.548 ±0.025 0.634 ±0.049 0.520 ±0.083 0.768 ±0.022 0.517 ±0.034

SVC 0.766 ±0.030 0.537 ±0.038 0.712 ±0.010 0.551 ±0.011 0.650 ±0.043 0.513 ±0.069 0.787 ±0.010 0.530 ±0.032

Deep Learning Approaches
MLP (3-layer) 0.755 ±0.031 0.531 ±0.046 0.795 ±0.004 0.667 ±0.021 0.474 ±0.034 0.540 ±0.060 0.763 ±0.030 0.537 ±0.041

MLP (5 layer) 0.757 ±0.025 0.558 ±0.051 0.796 ±0.004 0.656 ±0.017 0.470 ±0.059 0.514 ±0.081 0.749 ±0.021 0.490 ±0.037

Node Classification Variants - Patient Similarity Network (Wang et al., 2021)
MOGONET+Sage 0.764 ±0.023 0.575 ±0.035 0.811 ±0.023 0.711 ±0.022 0.601 ±0.084 0.502 ±0.095 0.745 ±0.020 0.505 ±0.050

MOGONET+GAT 0.807 ±0.037 0.606 ±0.053 0.832 ±0.009 0.713 ±0.025 0.549 ±0.113 0.543 ±0.126 0.801 ±0.007 0.560 ±0.030

MOGONET+GIN 0.720 ±0.031 0.505 ±0.065 0.818 ±0.015 0.709 ±0.012 0.574 ±0.062 0.571 ±0.053 0.759 ±0.024 0.523 ±0.060

Graph Classification Variants - PPI Context Injection (Schulte-Sasse et al., 2021)
EMOGI+Sage 0.821 ±0.031 0.618 ±0.041 0.763 ±0.015 0.642 ±0.028 0.628 ±0.071 0.582 ±0.098 0.698 ±0.026 0.532 ±0.055

EMOGI+GAT 0.834 ±0.029 0.629 ±0.048 0.781 ±0.012 0.665 ±0.031 0.591 ±0.096 0.598 ±0.108 0.743 ±0.018 0.565 ±0.042

EMOGI+GIN 0.757 ±0.034 0.531 ±0.059 0.792 ±0.018 0.681 ±0.019 0.612 ±0.055 0.614 ±0.061 0.712 ±0.031 0.544 ±0.067

Biomolecule Instruction Tuning
vicuna7bv1.5+MLP 0.781 ±0.028 0.542 ±0.047 0.798 ±0.012 0.671 ±0.024 0.598 ±0.065 0.559 ±0.074 0.774 ±0.021 0.548 ±0.043

vicuna7bv1.5+NODE 0.815 ±0.032 0.601 ±0.039 0.827 ±0.015 0.718 ±0.021 0.612 ±0.078 0.575 ±0.089 0.798 ±0.018 0.571 ±0.038

KRONOS 0.857 ±0.025 0.673 ±0.031 0.849 ±0.011 0.742 ±0.018 0.664 ±0.058 0.628 ±0.067 0.823 ±0.014 0.618 ±0.029

Table 3: Performance comparison across different modeling approaches on CPTAC/TCGA out-
comes. Best values per block are bolded, second best are underlined.

Additionally, we evaluate the optimal representation to be integrated into multi-modal LLM using
three proteomics representation encoders: an MLP encoder processing raw features, a node encoder
for patient similarity networks, and our proposed graph encoder (KRONOS) for PPI networks.

It is important to note that these predictive tasks are different from the instruction-following tasks.
Thus, we perform an additional supervised fine-tuning step for KRONOS. A linear probe is added
on top of KRONOS and trained for each prognostic predictive task.

The results on the prognostic benchmarks are found in Table 3, highlighting that KRONOS consis-
tently surpasses all baseline models across the four predictive tasks. In summary, KRONOS exceeds
baseline approaches, obtaining the highest performance in mortality prediction (AUC: 0.857, F1:
0.673), cancer type classification (AUC: 0.849, Macro-F1: 0.742), overall survival estimation (C-
Index: 0.664, 1-yr t-AUC: 0.628), and disease stage prediction (AUC: 0.823, Macro-F1: 0.618).

The superior performance of graph-based approaches over linear methods highlights a fundamental
limitation in proteomics analysis: proteomics signals that contribute to patient outcomes emerges
from complex molecular interactions rather than individual protein abundance. Linear models like
Lasso and ElasticNet assume protein features are independent of each other, failing to capture the in-
tricate protein-protein dependencies that drives disease mechanisms. In contrast, KRONOS grounds
representation learning in biological graphs to model these critical interactions, enabling the discov-
ery of protein complexes that linear approaches cannot detect. This interaction-oriented modeling is
crucial in cancer biology, where oncogenic processes often involve coordinated disruption of multi-
ple interconnected proteins rather than isolated biomarkers.

Surprisingly, we found that MLPs without pre-aligned graph structure also performed competitively,
suggesting that instruction-tuned language models can learn implicit signals from raw data. How-
ever, the explicit incorporation of PPI network structure in KRONOS still provides substantial im-
provements, validating that structured biological knowledge enhances clinical prediction capabili-
ties.

5.2 ABLATION STUDIES

The ablation study in Table 4 compares optimal proteomics representations for semantic alignment
into the LLM latent space through multiple graph and node encoders. The biomolecular instruc-
tion tuning framework reveals that graph encoders consistently outperform node encoders across
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all tasks and GNN architectures. Among graph encoders, GAT achieves the best performance with
mortality prediction (AUC: 0.857, F1: 0.673), cancer type classification (AUC: 0.849, Macro-F1:
0.742), overall survival (C-Index: 0.664, 1-yr t-AUC: 0.628), and stage classification (AUC: 0.823,
Macro-F1: 0.618), followed by GIN and then GraphSAGE. The performance gap between graph
and node encoders is substantial, with GAT-based graph encoders showing improvements of 4.2%
AUC in mortality prediction, 2.2% AUC in cancer type classification, and 5.2% C-Index in sur-
vival prediction compared to their node encoder counterparts. This demonstrates that personalized
PPI graph representations capture richer molecular interaction patterns than patient similarity net-
works when aligning representations to the semantic latent space, validating the core hypothesis
that protein-protein interaction topology provides superior contextualization for proteomics data in
precision medicine applications.

Mortality Pred. Cancer Type OS Prediction Stage Class.

Model AUC F1 AUC Macro-F1 C-Index t-AUC 1-yr AUC Macro-F1

Biomolecular Instruction Tuning: Patient-specific PPI Graph Encoder

Vicuna7bv1.5+Sage 0.832 ±0.029 0.641 ±0.038 0.823 ±0.016 0.715 ±0.025 0.638 ±0.062 0.601 ±0.071 0.798 ±0.019 0.592 ±0.034

Vicuna7bv1.5+GAT 0.857 ±0.025 0.673 ±0.031 0.849 ±0.011 0.742 ±0.018 0.664 ±0.058 0.628 ±0.067 0.823 ±0.014 0.618 ±0.029

Vicuna7bv1.5+GIN 0.821 ±0.033 0.625 ±0.042 0.835 ±0.014 0.728 ±0.022 0.645 ±0.056 0.615 ±0.064 0.807 ±0.021 0.601 ±0.037

Biomolecular Instruction Tuning: Patient Similarity Node Encoder

Vicuna7bv1.5+Sage 0.798 ±0.035 0.578 ±0.043 0.815 ±0.017 0.706 ±0.023 0.601 ±0.072 0.562 ±0.081 0.785 ±0.020 0.559 ±0.041

Vicuna7bv1.5+GAT 0.815 ±0.032 0.601 ±0.039 0.827 ±0.015 0.718 ±0.021 0.612 ±0.078 0.575 ±0.089 0.798 ±0.018 0.571 ±0.038

Vicuna7bv1.5+GIN 0.787 ±0.038 0.565 ±0.045 0.821 ±0.018 0.712 ±0.025 0.595 ±0.069 0.558 ±0.077 0.779 ±0.022 0.553 ±0.043

Table 4: Performance comparison of Vicuna7bv1.5-based models on CPTAC/TCGA dataset. Best
values per block are bolded, second best are underlined.

6 CONCLUSION

We present KRONOS, a novel graph-LLM architecture that grounds patient-specific proteomics in
molecular interaction networks for clinical reasoning. Standard proteomics approaches lack seman-
tic reasoning capabilities for complex clinical inference, while multi-modal LLMs cannot leverage
protein-protein interaction network topology. KRONOS addresses these limitations by preserving
molecular signature representation through interaction networks while enabling contextual prognos-
tic reasoning via patient-centric instruction tuning.

While our proposed method demonstrates significant improvements in prognostic prediction of
molecular signatures across the CPTAC cohort, several limitations warrant consideration for future
development and clinical translation:

1. During inference and deployment, graph learning architectures are highly sensitive to dis-
tribution shifts. Further work needs to be done regarding the generalizeability of this archi-
tecture to other institutional datasets.

2. Graph construction requires substantial resources, and training both the LLM and encoder
with our instruction tuning paradigm demands significant computational resources. This
may restrict deployment in clinical environments, where resources may be limited. Further
investigation must be done for translation into real-time diagnostic applications.

In summary, the superior performance of the graph representations for LLM integration compared
to standard deep learning approaches for semantic alignment underscores the fundamental idea that
rich modality representations yield improved prognostic reasoning and contextual understanding of
patient-specific molecular signatures.

ACKNOWLEDGEMENTS

We acknowledge the use of AI tools for assistance with manuscript writing, editing, and formatting.
All scientific content, methodology, and results are original work by the authors.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY

To ensure reproducibility, we provide comprehensive implementation details and resources. Com-
plete source code for KRONOS, including model architecture, training procedures, and evaluation
scripts, is available at https://anonymous.4open.science/r/src_biomolecular_
instruction_tuning-1E0E/README.md.All hyperparameters, training configurations, and
experimental settings are specified in Appendix. The CPTAC-PROTSTRUCT instruction tuning
dataset will be made publicly available upon publication. We used standard computational environ-
ments (Python 3.8, PyTorch 1.12) with specific package versions listed in the provided respository.
Detailed preprocessing steps for CPTAC proteomics data, curated queryable proteins, and STRING
PPI network construction are documented in the main text, along with inclusion in the repository. All
experimental results can be reproduced using the provided code and data with the specified random
seeds.

ETHICS

This study utilizes publicly available proteomics data from the Cancer Proteomics Tumor Analysis
Consortium (CPTAC), which is accessible through the National Cancer Institute’s Cancer Research
Data Commons. All CPTAC data was collected under appropriate institutional review board (IRB)
approval and patient consent for the original studies. Patient data has been de-identified in accor-
dance with HIPAA guidelines. Our use of this publicly available dataset for computational analysis
does not require additional IRB approval, as we do not have access to personally identifiable infor-
mation and are conducting secondary analysis of previously collected, consented data. All analysis
adheres to the data use agreements and access policies established by the National Cancer Institute.
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A APPENDIX

Model Type Parameter Search Space

SVC

C [1e-4, 10]

Gamma {’scale’, ’auto’}

Kernel {’linear’, ’rbf’, ’poly’, ’sigmoid’}

Degree {2, 3, 4}

Probability {True, False}

Linear Models

C (Elastic-net, Lasso) [1e-4, 10]

L1-ratio (Elastic-net) [0, 1.0]

Max Iterations {1000, 2000, 5000}

Tolerance [1e-5, 1e-4]

Deep Learning

Learning Rate {1e-4, 1e-3, 1e-2}

Dropout {0.2, 0.3, 0.4, 0.6}

Batch Size {16, 32, 64, 128}

Weight Decay [1e-6, 1e-3]

Epochs {50, 100, 150, 200}

Graph Neural Networks

GNN Type {’gin’, ’gat’, ’sage’}

Hidden Dimensions {64, 128, 256, 512}

Number of Layers {2, 3, 4}

Learning Rate {1e-4, 5e-4, 1e-3, 5e-3, 1e-2}

Dropout {0.3, 0.4, 0.5, 0.6}

Weight Decay [1e-5, 1e-2]

Epochs {100, 150, 200, 300}

Batch Size (Graph Classification) {8, 16, 32}

Patient Similarity GNN K Neighbors {5, 10, 15, 20}

PPI Network GNN Pooling Strategy {’mean’, ’max’}

Table 5: Hyperparameters and search space for baseline models.

Parameter Category MLP LLM Node LLM Graph LLM

Vision Tower Type mlp node encoder graph tower

Architecture Type mlp 3, mlp 5 gcn, gat, sage, gin gcn, gat, sage, gin

Hidden Size 256, 512 512, 768, 1024 512, 768, 1024

Dropout Rate 0.1, 0.3, 0.5 0.1, 0.3, 0.5 0.1, 0.3, 0.5

Table 6: Model architecture search space for multi-modal LLM models.

Parameter MLP LLM Node LLM Graph LLM

Batch Size 80, 100, 160 100, 120, 140 100, 120, 140

Learning Rate 2e-3, 3e-4, 1e-4 2e-3, 3e-4, 1e-4 2e-3, 3e-4, 1e-4

Weight Decay 0.01, 0.001 0.01, 0.001 0.01, 0.001

Warmup Ratio 0.03, 0.1 0.03, 0.1 0.03, 0.1

Training Recipe common, qlora int8 common, qlora int8 common, qlora int8

Table 7: Training configuration search space for multi-modal LLM models.
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Parameter MLP LLM Node LLM Graph LLM

Number of Proteins 4792 (fixed) 4792 (fixed) Variable (graph-dependent)

MLP Layers 3, 5 N/A N/A

K-Neighbors N/A 5, 7, 10, 15 N/A

GNN Layers N/A 2, 3, 4 2, 3, 4

Attention Heads (GAT) N/A 1, 4, 8 1, 4, 8

Graph Construction Direct features Cosine similarity k-NN Pre-built PPI graphs

Pooling Strategy Single token Node embedding Global mean pooling

Table 8: Model-specific parameters and configurations.
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