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ABSTRACT

Modern IR systems are increasingly tasked with answering complex, multi-faceted
queries that require deep reasoning rather than simple keyword or semantic match-
ing. While LLM based IR has shown great promise, the current retrieve-then-rerank
paradigm inherits the limits of embedding-based retrieval, parametric generative ap-
proaches are difficult to adapt to new information, and long-in-context approaches
that put the entire corpus in context are computationally infeasible for large docu-
ment corpora due to the quadratic attention complexity. To this end, we introduce
a hierarchical retrieval framework LATTICE that enables an LLM to reason and
navigate a large corpus with logarithmic search complexity in the number of docu-
ments, achieved by imposing a semantic tree structure on the corpus. Our approach
comprises two stages: (1) an offline process where we organize the document col-
lection into a semantic hierarchy – we explore two LLM-driven strategies for this:
a bottom-up agglomerative approach and a top-down divisive approach using multi-
level summaries; (2) an online traversal stage where a "search LLM" navigates this
tree. A central challenge in using LLMs for search is that the LLM’s relevance
judgments are noisy, context-dependent, and unaware of the underlying hierarchy,
making it difficult to compare nodes across different branches and levels of the tree.
To solve this, our traversal algorithm estimates calibrated latent relevance scores
from the LLM’s local outputs, which are combined into a path relevance metric
to guide the search globally across the tree. Our training-free framework achieves
state-of-the-art zero-shot performance on the reasoning-intensive BRIGHT (Su
et al., 2024) benchmark (with up to 420K corpus size), demonstrating improve-
ments of up to 9% in Recall@100 and 5% in nDCG@10. Moreover, compared
to the highly specialized and fine-tuned SOTA method DIVER-v2 (Long et al.,
2025), it achieves comparable results on BRIGHT subsets that use a static corpus
for evaluation.

1 INTRODUCTION

The proliferation of Large Language Models (LLMs) has catalyzed a paradigm shift in Information
Retrieval (IR), moving beyond simple fact-finding towards complex problem-solving that demands
nuanced understanding and reasoning. Modern user queries often require not just keyword or semantic
matching, but a deeper level of inference, categorized as reasoning-based retrieval (Su et al., 2024).
For instance, a user might seek a solution to a coding bug by describing its behavior, or ask for the
unit digit of a complex mathematical expression that requires applying a specific theorem. Answering
such queries effectively means retrieving documents that help reason through the problem, a task for
which traditional IR systems are poorly equipped.

Current LLM-based IR systems primarily fall into two paradigms, each with inherent drawbacks.
The first, Retrieve-then-Rerank, employs a computationally cheap retriever (e.g., BM25 or dense
retrieval) to fetch a broad set of candidate documents, which are then re-ordered by a more powerful
but expensive LLM. Although scalable, this approach is constrained with the limits of the initial
retrieval stage (Weller et al., 2025); if a crucial document is not captured in the initial candidate set,
even a perfect reranker cannot recover it. Furthermore, the initial retrieval often relies on shallow
semantic similarity, failing to perform the multi-step reasoning needed to identify relevant documents
for complex queries.

The second paradigm, Generative Retrieval (GenIR), uses the LLM itself to synthesize an answer.
This can be parametric, where the corpus is stored implicitly in the model weights, making the
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Figure 1: A high-level overview of our proposed framework, LATTICE. The process consists of two
stages. (Left) In the offline stage, we organize an unstructured document corpus into a semantic tree.
(Right) In the online stage, a search LLM performs a greedy, best-first traversal of this tree to find
documents relevant to a user query. To guide the search, the algorithm computes a path relevance
score at each step and uses a score calibration mechanism that compares nodes against high-relevance
candidates from sibling branches and previously seen leaves, ensuring a globally coherent search.
The search process is visualized for a real query in Figure 5.

system prone to hallucinations and difficult to update with new information. Alternatively, long-
context GenIR places the entire corpus (or a large subset) explicitly into the LLM’s context. While
this allows the LLM to reason over the full text, it is computationally infeasible for a typical retrieval
corpora, as the self-attention mechanism’s quadratic/super-linear complexity leads to prohibitive
costs and latency.

To overcome these limitations, we propose LATTICE (LArge language model guided Tree Traversal
with Iterative Calibrated-score Estimation), a framework that combines the logarithmic search
efficiency of hierarchical structures with the sophisticated reasoning capabilities of modern LLMs.
Our method first organizes a document corpus into a semantic tree offline, with internal nodes
represented by rich, LLM-generated textual summaries. Then, at query time, a search LLM navigates
this semantic hierarchy using a greedy, best-first traversal, processing a beam of top candidates at
each step. To ensure the search remains globally coherent, the traversal algorithm computes a path
relevance score for each node by aggregating calibrated local scores from the LLM along the path
from the root, allowing our method to robustly compare nodes across different branches and levels
and efficiently reach the most relevant documents. Our main contributions are:

• We introduce a novel retrieval framework where an LLM directly performs the traversal of a
semantic hierarchy, using its reasoning capabilities to guide the search path at each step, achieving
state-of-the-art zero-shot results on the reasoning-intensive BRIGHT benchmark with improve-
ments of up to 9% in Recall@100 and 5% in nDCG@10.

• We propose a robust traversal algorithm, that performs greedy search on a semantic tree using
noisy LLM judgments.

• We design and compare two distinct, LLM-driven strategies for corpus organization: a bottom-up
agglomerative clustering method and a top-down divisive summarization approach.

As LLMs become a fundamental unit of computation, the main goal of this paper is to demonstrate
an LLM-native retrieval system that moves beyond the traditional application of LLMs in IR.

2 RELATED WORKS

2.1 LLMS FOR INFORMATION RETRIEVAL

Retrieve-then-Rerank Paradigm. The dominant paradigm in modern IR is a two-stage retrieve-
then-rerank pipeline (Zhu et al., 2023). LLMs have excelled as powerful rerankers in this framework,
applied in either pointwise (score each document independently) or listwise fashion (rank a list of
documents) (Reddy et al., 2024; Sun et al., 2024). However, the overall performance is irreversibly
bottlenecked by the quality of the initial retrieval stage (Rathee et al., 2025). In the retrieval stage,
LLMs are increasingly used as backbones for dense embedding models (Luo et al., 2024; Lee et al.,
2025), though this often involves adapting their autoregressive architecture for representation learning
which is not directly aligned with their pre-training task.
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Generative Paradigms. To overcome the limitations of the cascading pipeline, alternative
paradigms have emerged. Generative Retrieval, such as the Differentiable Search Index (DSI) (Tay
et al., 2022; Li et al., 2024), reframes IR as a sequence-to-sequence task, mapping a query directly
to a document identifier. While conceptually elegant, these methods face challenges in scaling and
updating the index (Pradeep et al., 2023). Long-Context Retrieval proposes placing the entire corpus
into the LLM’s context window (Lee et al., 2024a), but this remains computationally infeasible for
even moderate-scale applications. Our work offers a middle ground, using a semantic hierarchy to
structure the corpus, enabling an LLM to navigate it efficiently without the scalability / updatability
issues of generative retrieval or the computational cost of long-context models.

2.2 HIERARCHICAL RETRIEVAL

Vector Hierarchies. Hierarchical structures have been long used to improve computationally effi-
ciency in tasks with large output spaces, such as in hierarchical softmax for language modeling (Morin
& Bengio, 2005) and in tree-based methods for extreme multi-label classification (Prabhu & Varma,
2014; Chang et al., 2020; Gupta et al., 2022). In vector search, algorithms like Hierarchical Navigable
Small World (HNSW) (Malkov & Yashunin, 2018) use a multi-layered graph for efficient approximate
nearest neighbor search, though this hierarchy is geometric rather than semantic.

Textual Hierarchies. More recently, models like RAPTOR (Sarthi et al., 2024) construct a semantic
hierarchy by recursively clustering and summarizing text chunks from the bottom up. This creates a
tree with nodes representing different levels of abstraction. However, RAPTOR relies on conventional
embedding-based similarity search to traverse this tree. Our work differs fundamentally by employing
an LLM as an active traversal agent during the online retrieval phase. Instead of a static vector
comparison, our model uses in-context reasoning at each node to decide the optimal path, transforming
retrieval into an intelligent navigation process.

2.3 AGENTIC AND REASONING-BASED IR

Reasoning as a Pre-processing Step. A common approach to incorporate reasoning in IR is
through query expansion (QE) (Wang et al., 2023; Gao et al., 2023). In this setup, an LLM enriches
the query with generated text or a chain-of-thought analysis before it is passed to a standard retrieval
system. While effective, this treats reasoning as a discrete, pre-retrieval step, leaving the core search
mechanism unchanged and often resulting in complex, multi-component pipelines (Long et al., 2025;
Shao et al., 2025).

Agentic Frameworks. The emerging field of Agentic IR (Jin et al., 2025; Zhang et al., 2024)
conceptualizes retrieval as a multi-step, goal-oriented process. However, current implementations
typically involve an LLM agent calling an external, black-box search tool, making its success
contingent on the tool’s effectiveness. Similarly, Graph-RAG (Edge et al., 2024; Zhang et al., 2025)
leverages LLMs to reason over pre-structured knowledge graphs, but the role of LLMs to retrieve
information from these graphs are limited. Our work integrates the reasoning agent more deeply into
the retrieval process itself. The LLM is not just a pre-processor or a tool-caller but the core search
mechanism, more specifically, it is an agent whose environment is the corpus’s semantic tree. The
tree provides essential scaffolding, constraining the agent’s action space to make the search tractable,
while the agent’s reasoning enables intelligent traversal decisions, offering a more fundamental fusion
of reasoning and retrieval.

3 METHODOLOGY

We begin by formalizing the task setup and notations in Section 3.1, followed by a detailed description
of the search procedure in Section 3.2, and ending with the tree construction procedures in Section 3.3.

3.1 SETUP

The fundamental task is retrieval: given a large corpus of |D| documents, D = {d1, d2, . . . , d|D|},
and a complex natural language query q, the objective is to retrieve a ranked list of documents
Drel ⊆ D. We define the core components and notations of our framework as follows:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Semantic Tree: The corpus is organized into a tree T = (V,E), with a single root node, vroot.

• Nodes (v ∈ V ): The set of nodes V is partitioned into leaf nodes VL (corresponding to documents)
and internal nodes VI (representing conceptual groupings).

• Edges (E): The set of directed edges E ⊂ V × V consists of ordered pairs (u, v), where
u = parent(v). The set of immediate children of a node u is denoted as C(u).

• Node Representation (ϕ(v)): Every node v ∈ V has a textual representation ϕ(v). For vl ∈ VL,
ϕ(vl) is its document’s content. For vi ∈ VI , ϕ(vi) is an LLM-generated summary of its children.

• Search LLM (L): For the purpose of this paper we assume that the search LLM can be abstracted
out as a listwise scoring function. Given a query q and a list of k candidate nodes [v1, . . . , vk], it
returns a list of real-valued scores (along with a reasoning trace):

L(q, [ϕ(v1), . . . , ϕ(vk)]) = [s1, . . . , sk]

where si ∈ [0, 100], i = 1, . . . , k, we further normalize si such that it ∈ [0, 1]. A higher score
implies higher preference. The prompt structure is detailed in Figure 7.

3.2 TREE TRAVERSAL

The core challenge in using an LLM for hierarchical search is that its relevance judgments are
inherently noisy, context-dependent and unaware of the underlying hierarchy. The score assigned to a
node depends on the query as well as on the other nodes present in the list of options provided to
the LLM. On top of this, these scores are inherently noisy due to un-deterministic reasoning chain /
inference of LLMs. This makes it difficult to compare the promise of a node in one branch against a
node in a completely different branch or at a different level of the tree. Given a search query, the goal
of our traversal algorithm is to prioritize the exploration of relevant nodes in the tree by predicting
a path relevance score, p̂rel(v), which converts these noisy, local signals into a globally coherent
signal. The algorithm, depicted in Figure 1 and formalized in Algorithm 1, proceeds in following
steps.

1. Initialization. The search begins with a max-priority queue, the frontier (F ), which is initialized
with the root node vroot. Its score is set to p̂rel(vroot)← 1.0. We also initialize an empty prediction
set (Pred) to store candidate leaf nodes and a history of all observed scores, ScoreHistory← ∅.

2. Beam Expansion. In each of the N iterations, we expand a beam of the top B most promising
nodes from the frontier F . These nodes are selected based on their current path relevance scores p̂rel.

3. Slate Construction with Calibration. For each node v in the beam, we construct a slate for the
search LLM to evaluate. This slate consists of the children of the current node, C(v), and augment it
with a set Aug(v). The composition of Aug(v) depends on the type of nodes being evaluated:

• If C(v) are internal nodes, Aug(v) consists of the top-scoring sibling of v to provide a
cross-reference across different branches.

• If C(v) are leaf nodes, Aug(v) consists of ℓ (a hyperparameter) leaf nodes sampled from
Pred according to a probability distribution proportional to ep̂rel(u), anchoring the evaluation
against the best candidates found so far and giving a chance for best scoring candidates to
be evaluated again in a different context. We show in Figure 2 this is essential for the final
ranking.

4. Latent Score Estimation and Path Relevance Update. After the search LLM L evaluates the
slate and produces local scores, we perform a global calibration step before updating path relevance.
We model the observed score siv for a node v in a given slate i as a linear transformation of an
underlying, slate-independent latent relevance score ŝv:

siv ≈ a · ŝv + bi

where a is a single global scale parameter and bi is a per-slate bias parameter. After each new slate is
evaluated, we update our estimates for all latent scores {ŝv}, a, and biases {bi} by treating this as a

4
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Algorithm 1 LLM-guided Hierarchical Tree Traversal

1: Parameters: q, T,L, B,N,K, α
2: Initialize:
3: Frontier F ← new MaxPriorityQueue(), Pred← ∅
4: ScoreHistory← ∅, LatentScores← ∅
5: p̂rel(vroot)← 1.0, F.push(vroot, p̂rel(vroot))
6: for i = 1 to N do
7: Beam← Extract top B nodes from F
8: for all v in Beam do
9: Slate← C(v) +Aug(v)

10: LocalScores [sv′ ]v′∈Slate ← L(q, [ϕ(v′)]v′∈Slate)
11: Add {(slate_idi, v′, sv′) | v′ ∈ Slate} to ScoreHistory
12: end for
13: LatentScores← SolveMLE(ScoreHistory) {Minimize MSE to find all ŝv}
14: for all v in Beam that were just expanded do
15: for all v′ in Slate do
16: ŝv′ ← LatentScores[v′]
17: p̂rel(v

′)← α · p̂rel(parent(v′)) + (1− α) · ŝv′

18: end for
19: for all v′ in C(v) do
20: if v′ is a leaf node then
21: Add v′ to Pred
22: else
23: F.push(v′, p̂rel(v′))
24: end if
25: end for
26: end for
27: end for
28: return Top-K nodes from Pred sorted by p̂rel

Maximum Likelihood Estimation (MLE) problem. We find the parameters that minimize the Mean
Squared Error (MSE) across all scores observed thus far:

min
a,{ŝv},{bi}

∑
i

∑
v∈slatei

(siv − (a · ŝv + bi))2.

Note that without a, bi parameters ŝv reduces to the mean of all the scores seen so far, we notice
improved performance with this formulation as it can account for noise in scoring. Other objectives
like margin-based losses or probabilistic models like Plackett-Luce could be applied, we found simple
modified MSE optimization to be most consistent. The resulting latent score ŝv is used to define the
path relevance:

p̂rel(v) = α · p̂rel(parent(v)) + (1− α) · ŝv
Here α is a hyperparameter in [0, 1]. After scoring, newly evaluated internal nodes are added to the
frontier F , and leaf nodes are added to the prediction set Pred.

5. Termination. The algorithm terminates after N iterations. The final output is the set of top-K
documents from Pred, ranked by their final path relevance scores.

3.3 OFFLINE SEMANTIC TREE CONSTRUCTION

The objective is to create a hierarchical structure T = (V,E) where every leaf node v ∈ VL is
connected to the root node vroot via a single path and each node v ∈ V is annotated with a textual
ϕ(v). The maximum branching factor of any node is constrained by a hyperparameter, M i.e.
|C(v)| ≤ M ∀ v ∈ V . While our traversal algorithm can be adapted for more general Directed
Acyclic Graph (DAG) structures, we focus on a strict tree for simplicity in this work. We now
describe our bottom-up construction approach, which is conceptually similar to recursive clustering
and summarization methods like RAPTOR (Sarthi et al., 2024).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3.1 APPROACH 1: BOTTOM-UP CLUSTERING AND SUMMARIZATION

This approach constructs the tree layer by layer, starting from the leaf nodes and iteratively clustering
and summarizing them until a single root node is formed. To do this, we require two main components:

• An embedding function, E : text → Rd, which maps a textual representation ϕ(v) to a
d-dimensional vector. We use Gecko embeddings (Lee et al., 2024b) in our experiments.

• A clustering function, C. Given a set of n vectors X = {x1, . . . ,xn}, the function
produces a partition {K1, . . . ,Km} of X , such that for all j ∈ {1, . . . ,m}, |Kj | ≤M and
Ki ∩ Kj = ∅ for i ̸= j. This can be implemented via iterative application of standard
clustering algorithms like spectral clustering.

The construction process, formalized in Algorithm 2, proceeds as follows:

1. Initial Layer Formation. The process begins with the set of leaf nodes, VL. We form an initial
set of parent nodes, Vcurrent, one level above the leaves. This can be done in two ways:

• From Scratch: Apply the embedding and clustering functions to all documents to form the
initial parent nodes.

• Using Metadata: For datasets where documents are passages from a smaller set of source
articles (stackexchange sub-datasets in BRIGHT), we leverage this inherent structure. We
form initial clusters by grouping all passages belonging to the same source document. If
any of the resulting cluster contains more than M passages, we further group nodes in the
cluster based on location proximity in the source document until all sub-clusters satisfy the
branching factor constraint. This metadata-driven approach often yields more semantically
coherent initial groupings. Further implementation details are provided in Appendix B.3.

2. Iterative Clustering and Summarization. Starting with the initial set of parent nodes, Vcurrent,
we iteratively repeat a summarize-embed-cluster cycle. In each iteration, we first generate a textual
summary ϕ(v) for each node in Vcurrent, embed these new summaries, and cluster them to form the
next, higher level of the tree.

3. Termination. We repeat this process until the number of nodes at the current level is less than or
equal to M . These final nodes are assigned as the children of the root node, vroot, completing the
tree.

3.3.2 APPROACH 2: TOP-DOWN DIVISIVE CLUSTERING

As an alternative to the agglomerative bottom-up method, we also explore a top-down divisive
approach. Conceptually, this method is similar to hierarchical k-means, where we begin with a
single cluster containing the entire document corpus and recursively partition it. The standard
implementation would use an embedding and clustering function at each step. However, we observed
that this can produce noisy, suboptimal clusters at the higher levels of the tree where partitions should
be based on broad conceptual similarities rather than keyword overlap.

To address this, we employ an LLM as a more powerful clustering function. Since providing the entire
corpus to an LLM is infeasible due to context limits, we introduce a prerequisite step: hierarchical
summarization. For each leaf node vl, we prompt an LLM to generate five summaries in increasing
order of complexity (we quantify the complexity of a summary by its length, for e.g. first level of
summary is 1-2 word, next is 3-4 words, and so on, more details in Section B.3.2), yielding a set of
multi-level representations {ϕ(vl)i}5i=1.

The top-down construction, detailed in Algorithm 4, proceeds as a recursive partitioning process:

1. Initialization. The process begins with a work queue containing the root node vroot, whose
children are initially all leaf nodes VL.

2. Recursive Partitioning. We iteratively process nodes from the queue. For each node v to be
partitioned, we first select an appropriate summary level i for its leaf descendants (details in the

6
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Section B.3.2). We then provide the set of unique summaries at that level to an LLM, prompting it to
group them into M conceptual topics.

3. Node Creation and Re-assignment. The LLM returns a description for each of the M topics
and a mapping from the unique input summaries to these topics. We create M new internal nodes,
assign them the topic descriptions, and partition the leaf descendants of v among these new nodes
according to the LLM’s mapping. These M new nodes become the children of v. Any new node that
still contains more than M leaves is added to the queue for further partitioning.

4. Termination. The process terminates when the queue is empty, meaning all internal nodes in the
tree satisfy the maximum branching factor constraint.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmark. All experiments are conducted on the BRIGHT benchmark (Su et al., 2024), a
collection of 12 reasoning-intensive retrieval tasks. The benchmark is specifically designed to evaluate
deep reasoning and is composed of complex questions from diverse sources, including StackExchange,
Leetcode, and TheoremQA, spanning topics from biology and economics to programming and
mathematics.

Evaluation Metrics. We use two standard IR metrics to measure performance: nDCG@10 (Nor-
malized Discounted Cumulative Gain at 10) to evaluate the ranking quality of the top 10 results, and
Recall@100 to measure the comprehensiveness of the retrieval within the top 100 results.

Baselines. We compare LATTICE against several strong baselines.

• SOTA Systems: We compare against state-of-the-art systems like DIVER-v1/v2 (Long et al.,
2025), RaDeR (Das et al., 2025), ReasonRank (Liu et al., 2025) and ReasonIR (Shao et al., 2025),
which are trained and highly specialized for the BRIGHT benchmark.

• Controlled Reranking Baseline: To ensure a fair, apples-to-apples comparison, we include
a strong retrieve-then-rerank baseline XRR21(BM25 + Rerank) that uses the same base LLM
(Gemini-2.5-flash) as our method. XRR2 first retrieves 100 candidates using BM25 with a GPT-4
expanded query and then reranks them using Gemini-2.5-flash model for total 5 iterations. This
allows us to isolate the performance gains attributable to directly using an LLM to search the space
versus just reranking a small retrieved corpus.

Implementation Details. For all LLM-driven components of our method (tree construction, sum-
marization, and online search), we use Gemini-2.5-flash (Comanici et al., 2025). For the online
traversal, we set the path relevance momentum to α = 0.5, the number of iterations to N = 20,
ℓ = 10 and the beam size to B = 2. This configuration results in approximately 250 documents
being evaluated by the LLM per query. For tree construction, the maximum branching factor was set
to M ∼ 10− 20. For datasets derived from StackExchange, we employed the bottom-up clustering
method; for all others, we used the top-down divisive approach. Our method, LATTICE, is evaluated
in a strictly zero-shot setting, without any fine-tuning or ensembling with any other method for the
BRIGHT benchmark tasks. Further details are provided in Appendix B.

4.2 PERFORMANCE ON THE BRIGHT BENCHMARK

Ranking Performance (nDCG@10) We present main ranking results on the BRIGHT bench-
mark in Table 1. On the seven StackExchange datasets, which use a standard static corpus, LAT-
TICE achieves an average nDCG@10 of 51.6, significantly outperforming the controlled reranking
baseline’s score of 47.4. Furthermore, our zero-shot performance is highly competitive with the
fine-tuned SOTA, Diver-v2 (52.2), and even achieves the best results in several sub-domains like Eco-
nomics and Robotics. On the 3/5 Coding and Theorem-based tasks (LeetCode, AoPS & TheoremQ),

1https://github.com/jataware/XRR2/tree/main
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Method Fine- StackExchange Coding Theorem-based Avg.
tuned Avg. Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg. Leet.∗ Pony Avg. AoPS∗ ThQ.∗ ThT.

Retriever with GPT-4 REASON-query

BM25 ✗ 34.8 53.6 54.1 24.3 38.7 18.9 27.7 26.3 18.4 19.3 17.6 14.6 3.9 19.2 20.8 27.0
SBERT ✗ 18.2 18.5 26.3 17.5 27.2 8.8 11.8 17.5 17.3 24.3 10.3 16.9 5.0 22.3 23.5 17.7
gte-Qwen1.5-7B ✗ 28.4 35.5 43.1 24.3 34.3 15.4 22.9 23.9 15.3 25.4 5.2 22.6 4.6 28.7 34.6 24.8
OpenAI ✗ 27.7 35.2 40.1 25.1 38.0 13.6 18.2 24.2 15.5 24.5 6.5 18.1 7.7 22.9 23.8 23.3
Google ✗ 30.2 36.4 45.6 25.6 38.2 18.7 29.5 17.9 17.4 31.1 3.7 22.7 10.0 27.8 30.4 26.2
ReasonIR-8B ✓ 33.1 43.6 42.9 32.7 38.8 20.9 25.8 27.5 25.5 31.5 19.6 25.4 7.4 33.1 35.7 29.9
RaDeR-7B ✓ 30.1 36.1 42.9 25.2 37.9 16.6 27.4 25.0 23.3 34.8 11.9 31.0 12.0 37.7 43.4 29.2
DIVER ✓ 35.8 51.9 53.5 29.5 41.2 21.4 27.5 26.1 22.6 33.5 11.7 29.5 9.5 39.3 39.7 32.0

Retrieve-then-rerank

ReasonIR ✓ 41.7 59.8 53.2 32.0 43.6 28.8 38.7 36.0 34.0 33.2 34.8 29.4 7.9 32.6 47.7 37.3
DIVER v1 ✓ 46.1 62.2 58.7 34.4 52.9 35.6 36.5 42.9 32.1 38.9 25.4 37.1 18.3 40.0 53.1 41.5
ReasonRank ✓ 46.8 62.7 55.5 36.7 54.6 35.7 38.0 44.8 27.5 29.5 25.6 35.5 14.4 42.0 50.1 40.8
XRR2 ✗ 47.4 63.1 58.2 38.5 52.9 37.1 37.6 44.6 28.4 21.9 35.0 31.8 15.7 34.4 45.5 40.3
DIVER v2 ✓ 52.2 68.0 62.5 42.0 58.2 41.5 44.3 49.2 33.8 34.8 32.9 38.6 19.1 44.3 52.6 45.7

LLM-guided Hierarchical Retrieval

LATTICE ✗ 51.6 64.4 62.4 45.4 57.4 47.6 37.6 46.4 26.9 19.9 34.0 30.0 12.0 30.1 47.8 42.1

Table 1: nDCG@10 performance of various retrievers and rankers on the BRIGHT benchmark. Bold
represents overall best numbers, underline represents best numbers among zero-shot methods, ∗

denotes subsets with dynamic corpus.

our method’s performance is noticably lower than the baselines. This is attributable to a specific
benchmark artifact: the use of a query-dependent dynamic corpus, where a unique large list (can
be > 10K) of documents (which are potential positives) is excluded from the search space. While
we prune the excluded leaf nodes at query time, the pre-computed summaries (ϕ(v)) of their parent
nodes do not update dynamically. Consequently, these summaries often misguide the traversal (please
see Figure 6, Section C.2). In contrast, retrieve-then-rerank pipelines can simply filter excluded
documents from their candidate list post-retrieval without penalty. We would like to note that most
real-world IR systems operate on a query-independent corpus.

Retrieval Comprehensiveness (Recall@100) As illustrated in Figure 3, our method demonstrates
superior overall retrieval comprehensiveness. On average, LATTICE achieves a Recall@100 of 74.8,
outperforming both the BM25 baseline (65.3) and the specialized ReasonIR-8B model (70.8). This
strong performance is consistent across the majority of subsets, with our method achieving the highest
recall in four of the seven domains, including Economics and Psychology.

Cost-Performance Analysis. To analyze the computational cost of our method, we compare the
trade-off between performance (nDCG@10) and cost (measure in number of tokens processed by the
LLM) against two retreive-then-rerank baselines using the gemini-2.5-flash as the ranking LLM and
varying top-k predictions from the retriever. Figure 3 plots this relationship for the Robotics subset.
While the reranking baselines exhibit diminishing returns, LATTICE’s performance scales far more
effectively on this subset. The performance initially remains flat as the model needs to take atleast
tree height number of slate comparisons to reach a leaf node. This shows promise that our guided
hierarchical search can be more efficient use of the LLM’s computational budget than reranking a
long, flat list of documents, where many of the tokens are spent on irrelevant candidates.

5 ANALYSIS
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Figure 2: nDCG@10 vs. ℓ.

Effect of # Cross-Branch Calibration (ℓ). Figure 2 shows
the impact of including ℓ top-scoring nodes from sibling
branches in the leaf slates on bio subset. The results demon-
strate that this calibration is critical for effective search. The
baseline with no calibration (ℓ = 0) performs significantly
worse and fails to improve with more search iterations. Per-
formance consistently increases with ℓ, with substantial gains
from ℓ = 1 to ℓ = 5. The gains diminish after ℓ = 5.

Impact of Method Components To quantify the contribution of each component of LATTICE,
we conduct a detailed ablation study with results presented in Table 2. We compare our full method
against several variants: a version without score calibration (using raw LLM scores), one without
path relevance (disabling path smoothing with α = 0), one with zero reasoning budget to the LLM,
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Figure 3: Results on retrieval (Recall@100) comprehensiveness (left) and nDCG@10 vs. token usage
on Robotics dataset (right).

Configuration Avg. Bio. Earth. Econ. Psy. Rob. Stack. Sus.
LATTICE (Full Method) 51.57 64.38 62.36 45.37 57.35 47.57 37.58 46.35

− No Score Calibration (ŝv = last siv) 49.36 64.45 58.98 44.27 54.41 46.70 32.93 43.80
− No Path Relevance (α = 0) 48.62 63.62 55.89 41.90 52.99 42.14 40.68 43.09
− No Reasoning (thinking_budget= 0) 49.33 63.69 57.32 43.77 57.33 45.73 33.16 43.95

+ Rerank Top-100 predictions 48.54 62.42 59.10 42.05 54.33 45.26 34.33 42.29

Table 2: Ablation study on the core components of our traversal algorithm, evaluated across all
StackExchange subsets of the BRIGHT benchmark. All values are nDCG@10.

and a final version where we add a reranking stage to our top 100 output. Interestingly, adding a
final reranking step is detrimental, we hypothesize that our method’s approach of decomposing a
single complex ranking task into a sequence of smaller, high-fidelity local decisions produces a more
accurate global ranking than a single, high-complexity reranking step over a large candidate list.
Disabling path relevance smoothing causes the next largest degradation, followed by removing either
the LLM’s reasoning or score calibration mechanism also reduces the average score by over 2.2
nDCG points.

101
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Budget-matched B (beam-size) ablation
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B = 4, N = 10
B = 8, N = 5

Figure 4: nDCG@10 vs. beam-size.

Beam Size vs. Search Iterations. Figure 4 presents a budget-
matched analysis of beam size (B) versus search iterations (N ),
where the total number of node expansions (B × N ) is kept
roughly constant. The results clearly indicate that for a fixed
computational budget, prioritizing search depth (more itera-
tions) over breadth (a larger beam) is the superior strategy. The
configurations with smaller beams, B = 1 and B = 2, achieve
the highest final nDCG@10 scores but are more sequential.
This validates our choice of using a small beam size (B = 2)
with a moderate number of iterations.

Biology TheoT.
nDCG@10 R@100 nDCG@10 R@100

Bottom-Up Tree

64.38 87.53 35.89 61.82

Top-Down Tree

55.22 67.31 47.85 73.91

Table 3: Tree construction comparison.

Impact of Tree Construction Strategy We investigate
the impact of the tree construction strategy on two rep-
resentative datasets in Table 3. The results show that
aligning the tree construction method with the corpus’s
underlying structure is critical for zero-shot performance.
For the Biology dataset, which is composed of passages
from larger source documents, the bottom-up approach
is superior, improving nDCG@10 by over 9 points. We
hypothesize that this is because it leverages the inherent
part-whole relationships in the data. Conversely, for the TheoT. dataset, which is a collection of
distinct documents under a high-level topic, the top-down approach excels, improving nDCG@10 by
nearly 12 points. We hypothesize that this method is better suited to discovering the latent conceptual
clusters among independent documents.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. The core algorithms for our traversal
and tree construction methods are formally described in Section 3, with detailed pseudocode pro-
vided in Algorithms 1, 2, and 4. All hyperparameters, benchmark details, evaluation metrics, and
baselines are specified in our experimental setup (Section 3.1, B). We have included comprehensive
implementation details and ablation studies in Section 4 and the Appendix to allow our results to
be fully reproduced. Upon acceptance of this paper, we will publicly release our source code, the
constructed semantic trees used in our experiments, and our evaluation logs.
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1
Relevance

Prediction Tree for Query: Simple takeoff then do yaw rotation    Arming and takeoff work fine but i don't know how to do yaw rotation:    class controller:      def __init__(self):
rospy.Subscriber('mavros/state', State, self.state_cb)                    self.state = State()          def state_cb(self, msg):          self.state = msg            def move(self,x,y,z):
pub_posisi = rospy.Publisher("/mavros/setpoin...

Path: (6, 2, 1)
Path Relevance: 0.891
Calibrated Relevance: 0.794
Local Relevance: 0.950
Child Relevance: 0: 0.95; 1: 0.5

Description:
Provides comprehensive guides and API reference documentation for the `tf.transformations` Python library, which
facilitates 3D spatial transformations using `Numpy`. This cluster covers the creation, manipulation, and decomposition
of 4x4 homogeneous transformation matrices for operations like rotation, translation, and scaling. It details functions
for converting between rotation representations such as matrices, quaternions, and Euler angles, and includes reference
for key functions like `quaternion_from_matrix`, `scale_matrix`, `superimposition_matrix`, and `compose_matrix`.
Children nodes: 0, 16

Reasoning:
The user is attempting to perform yaw rotation using `quaternion_from_euler` from the `tf.transformations` library in a
drone control script and is seeking guidance on how to do so correctly. The essential problem is understanding how to
correctly apply yaw rotation through Euler to quaternion conversion.

- **Candidate 0**: This document is highly relevant because it directly describes the `tf.transformations` library's
"robust support for converting between different 3D rotation representations, including matrices, quaternions, and Euler
angles, with functions like `euler_from_matrix`, `quaternion_from_matrix`, and `quaternion_matrix`." The user's code
explicitly uses `quaternion_from_euler`, which is precisely a function for converting Euler angles to quaternions for
rotation. This document provides critical concepts and theories on the exact mechanism the user is struggling with.

- **Candidate 1**: This document is less relevant. While it pertains to the `tf.transformations` library, its
description focuses on general 3D geometric transformations and vector math, mentioning functions like `scale_matrix`
and `translation_matrix`. It does not specifically highlight the conversion between Euler angles and quaternions for
rotation, which is the core of the user's query.

- **Candidate 2**: This document is also highly relevant. It serves as a comprehensive guide and API reference for the
`tf.transformations` library and explicitly states that it "details functions for converting between rotation
representations such as matrices, quaternions, and Euler angles, and includes reference for key functions like
`quaternion_from_matrix`." This directly addresses the user's use of `quaternion_from_euler` for yaw rotation. As a
parent node that encompasses the content of node 0, it offers a broader context and foundational understanding.

Search LLM
User Query

Figure 5: An illustration of the search process of LATTICE for a real query from the BRIGHT
benchmark. The color of each node corresponds to its computed path relevance, highlighted yellow
path shows the path to ground-truth documents. The search LLM makes a step-by-step decision at
each internal node to determine which branch to explore next. The expanded callout provides a "glass
box" view into one such decision, detailing the LLM’s explicit reasoning process as it scores the
children nodes.

A LIMITATIONS AND FUTURE WORK

Our work introduces a novel framework for hierarchical retrieval, but it also presents several avenues
for future research. One of the limitation of our current approach is the use of a static semantic tree.
As demonstrated in our experiments on dynamic corpora, the pre-computed summaries of internal
nodes do not update when leaf nodes are filtered, which can occasionally misguide the search. Future
work could explore methods for efficient, localized updates to the tree’s summaries, allowing the
hierarchy to adapt to a changing corpus without the need for a full reconstruction.

Second, the offline tree construction process, while a one-time cost, can be computationally intensive
for extremely large corpora due to the repeated use of LLMs for clustering and summarization.
Research into more efficient construction methods, perhaps by combining traditional clustering for
the lower levels with LLM-based summarization for only the top, most abstract layers, could further
improve scalability.

Finally, our traversal algorithm opens up new research directions. The score calibration method,
while effective, uses a simple linear model. More sophisticated probabilistic models, could be
explored for even more robust latent score estimation. Furthermore, while our greedy, best-first
traversal is effective in a zero-shot setting, the entire process could be framed as a reinforcement
learning problem, where the search LLM is an agent trained to optimize a policy for navigating the
tree to maximize retrieval rewards. We believe that exploring these directions will further establish
hierarchical, LLM-driven navigation as a powerful new paradigm in information retrieval.

B IMPLEMENTATION DETAILS

B.1 HYPERPARAMETERS

This section provides a detailed list of all hyperparameters and implementation choices used in our
experiments to ensure full reproducibility.

B.1.1 OFFLINE TREE CONSTRUCTION

• Maximum Branching Factor (M ): We set the maximum number of children for any node
to M = 10− 20.
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• Embedding Model (E): We use gecko (Lee et al., 2024b) embeddings to generate vector
representations for the clustering steps.

• Clustering Algorithm (C): Our implementation uses an iterative spectral clustering (Ng
et al., 2001) algorithm to partition nodes into at most M clusters at each level of the
hierarchy.

• Summarization LLM: We use Gemini-2.5-flash for all summarization tasks (both
for internal nodes in the bottom-up method and for the multi-level document summaries in
the top-down method). The exact prompt template used is detailed in Appendix D.

• Top-Down Summary Levels: For the top-down method, we generate 5 levels of hierarchical
summaries for each document.

B.1.2 ONLINE TRAVERSAL

• Search LLM (L): We use Gemini-2.5-flash as the search agent that performs the
listwise scoring. The prompt structure is provided in Appendix D.

• Number of Iterations (N ): We run the search for N = 20 iterations for all main experi-
ments.

• Beam Size (B): We use a beam size of B = 2 for parallel node expansion in each iteration.

• Path Relevance Momentum (α): The smoothing factor for the path relevance score is set
to α = 0.5.

• Calibration Nodes (l): We augment each leaf slate with ℓ = 10 cross-branch leaf nodes for
calibration, based on our ablation study.

• Reasoning Budget: The default “thinking budget” for the LLM’s reasoning step is set to
-1, meaning the model gets to decide how long it wants to thin.

• MLE Solver: The latent scores are updated after each batch of slate evaluations. The MSE
loss is minimized using the Adam optimizer with a learning rate of 10−2 for 100 steps.

Usage of LLMs During the preparation of this manuscript, LLM were used as a collaborative
writing assistant to aid with drafting, refining prose for clarity and conciseness, and structuring
arguments; all core ideas, experiments, and analyses were conducted by the authors.

B.2 DATASET DETAILS

All experiments are conducted on the BRIGHT benchmark (Su et al., 2024), a comprehensive
collection of 12 datasets designed to evaluate reasoning-intensive retrieval. A summary of the
statistics for each subset is provided in Table 4.

The datasets exhibit two key characteristics relevant to our work. First, the StackExchange subsets
are composed of passages derived from longer source documents. We leverage this structure for our
metadata-based initial clustering in the bottom-up tree construction method. Second, the Coding and
Theorem-based datasets (excluding Pony and TheoremQA Theorems) utilize a query-dependent
corpus, where a unique list of documents (often >10k) must be excluded from the search space for
each query. This feature, discussed in our main results analysis, poses a unique challenge for static
index structures like our semantic tree.

B.3 TREE CONSTRUCTION

B.3.1 BOTTOM-UP

The Bottom-up tree constructions algorithms are defined in Alogirthm 2, 3.

B.3.2 TOP-DOWN

The Top-down tree constructions algorithm is defined in Algorithm 4, the two subroutines used are
described below.
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Dataset Subset # Queries Corpus Size (D) Avg. Doc Length
StackExchange

Biology 103 57,359 83.6
Earth Science 116 121,249 132.6
Economics 103 50,220 120.2
Psychology 101 52,835 118.2
Robotics 101 61,961 121.0
Stack Overflow 117 107,081 704.7
Sustainable Living 108 60,792 107.9

Coding

LeetCode 142 413,932 482.6
Pony 112 7,894 98.3

Math

AoPS 111 188,002 250.5
TheoremQA-Q 194 188,002 250.5
TheoremQA-T 76 23,839 354.8

Table 4: Statistics for the 12 subsets of the BRIGHT benchmark used in our experiments.

Algorithm 2 Bottom-Up Tree Construction

1: Parameters: Corpus D, E , C, Summarize LLM, M , Optional InitialClusters
2: Initialize: VL ← {Node(d) | d ∈ D}, V ← VL, E ← ∅
3: if InitialClusters is provided then
4: Vcurrent ← CreateNodesFromClusters(VL, InitialClusters, V, E)
5: else
6: Embeddings← {E(ϕ(v)) : v ∈ VL}
7: Clusters← C(Embeddings)
8: Vcurrent ← CreateNodesFromClusters(VL,Clusters, V, E)
9: end if

10: while |Vcurrent| > M do
11: {Summarize the current layer before clustering}
12: for all v in Vcurrent do
13: ϕ(v)← Summarize({ϕ(c) | c ∈ C(v)})
14: end for
15: Vnext_layer ← ∅
16: Embeddings← {E(ϕ(v)) : v ∈ Vcurrent}
17: Clusters← C(Embeddings)
18: Vnext_layer ← CreateNodesFromClusters(Vcurrent,Clusters, V, E)
19: Vcurrent ← Vnext_layer
20: end while
21: vroot ← NewInternalNode(), ϕ(vroot)← ””
22: C(vroot)← Vcurrent
23: V ← V ∪ {vroot}, E ← E ∪ {(vroot, c) | c ∈ C(vroot)}
24: return Tree T = (V,E)

The SelectSummaryLevel function implements a heuristic to find the optimal summary granularity
for a given set of leaf nodes. It begins with the most abstract summary level (i = 1) and iteratively
checks the number of unique summaries, selecting the first level i where the count of unique
summaries is sufficient for meaningful clustering (e.g., greater than M ) while remaining under a
maximum token limit for the LLM context.

The ClusterLLM function is realized via a structured prompt (see 9. The LLM is provided with the
list of unique summaries and tasked with grouping them into M coherent conceptual clusters. The
prompt instructs the model to first generate a short, descriptive title for each of the M clusters, and
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Algorithm 3 CreateNodesFromClusters Subroutine

1: function CreateNodesFromClusters(Vsource, Clusters, V , E)
2: Input:
3: Vsource: The set of nodes in the layer to be clustered.
4: Clusters: The partition of Vsource’s embeddings from C.
5: V,E: The global node and edge sets for the tree (passed by reference).
6: Initialize: Vnew_layer ← ∅
7: for all cluster K in Clusters do
8: vnew ← NewInternalNode()
9: C(vnew)← {v ∈ Vsource | v ∈ K}

10: V ← V ∪ {vnew}
11: E ← E ∪ {(vnew, c) | c ∈ C(vnew)}
12: Vnew_layer ← Vnew_layer ∪ {vnew}
13: end for
14: return Vnew_layer

Algorithm 4 Top-Down Divisive Tree Construction

1: Parameters: Corpus D, Summarize LLM, Cluster LLM, Max branching factor M
2: Initialize:
3: For each document dl ∈ D, generate multi-level summaries {ϕ(vl)i}5i=1.
4: VL ← {Node(d) | d ∈ D}, V ← VL

5: vroot ← NewInternalNode(), C(vroot)← VL

6: V ← V ∪ {vroot}, E ← {(vroot, c) | c ∈ VL}
7: PartitionQueue← new Queue()
8: if |VL| > M then
9: PartitionQueue.enqueue(vroot)

10: end if
11: while PartitionQueue is not empty do
12: v ← PartitionQueue.dequeue()
13: LeafDescendants← GetLeafDescendants(v, T )
14: i← SelectSummaryLevel(LeafDescendants)
15: UniqueSummaries← unique({ϕ(c)i | c ∈ LeafDescendants})
16: TopicDescs, Mapping← ClusterLLM(UniqueSummaries,M)
17: NewChildren← ∅
18: for j = 1 to M do
19: v′j ← NewInternalNode(), ϕ(v′j)← TopicDescs[j]
20: V ← V ∪ {v′j}, NewChildren← NewChildren ∪{v′j}
21: end for
22: ReassignChildren(LeafDescendants, Mapping, NewChildren, T)
23: E ← E \ {(v, c) | c ∈ C(v)} {Disconnect old children}
24: C(v)← NewChildren
25: E ← E ∪ {(v, c) | c ∈ NewChildren} {Connect new children}
26: for all v′j in NewChildren do
27: if |C(v′j)| > M then
28: PartitionQueue.enqueue(v′j)
29: end if
30: end for
31: end while
32: return Tree T = (V,E)

then to output a mapping from each input summary to one of these cluster titles. The final output is a
structured object containing the M topic descriptions (which become the ϕ(v) for the new nodes)
and the mapping.
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C SUBJECTIVE ANALYSIS

C.1 SAMPLE SCORING RESPONSE FROM LLM

To provide a more intuitive understanding of our method, Figure 5 presents a qualitative case study
of the search process for a real query from the BRIGHT benchmark. The user query is a code snippet
asking about “yaw rotation,” a complex 3D graphics problem. The figure visualizes the semantic tree
and the traversal path taken by LATTICE (highlighted in yellow) to successfully locate a relevant
document deep within the hierarchy.

The expanded callout provides a "glass box" view into the search LLM’s reasoning at a critical
decision point. The LLM’s generated Reasoning explicitly connects the user’s query to the node’s
topic, noting that the user is “attempting to perform yaw rotation using quaternion_from_euler.”
It then performs a detailed, comparative evaluation of the children nodes. It correctly identifies
Candidate 1 as highly relevant because it discusses “support for converting between different 3D
rotation representations, including matrices, quaternions, and Euler angles,” which directly addresses
the user’s problem. This example demonstrates that our method does not rely on shallow semantic
similarity; instead, the search is an active process guided by the LLM’s deep, step-by-step reasoning
about the query in the context of the corpus hierarchy.

C.2 SEARCH FAILURE ON DYNAMIC CORPUS

Figure 6 provides a qualitative case study of a search failure, visually demonstrating the primary
challenge our method faces on datasets with a dynamic corpus. The figure shows the search tree for a
random query from the AoPS dataset. Red edges indicate leaf nodes that were dynamically excluded
for this specific query, while the yellow path highlights the ideal traversal route to the ground-truth
document.

As the figure shows, the search agent correctly follows the ground-truth path for the first two levels.
However, it then reaches an internal node whose pre-computed summary is now misleading; the
summary was generated based on all of its children, including the large number that have since been
pruned from the search space (the red nodes). This inaccurate, stale summary causes the search LLM
to make an incorrect judgment, deviating from the correct path and ultimately failing to retrieve the
relevant document. This example visually confirms the specific failure mode of a static hierarchical
index when faced with a dynamic corpus, reinforcing the quantitative analysis in our main results
section.

D PROMPTS
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Interactive Prediction Tree for Query: Let $s_k$ denote the sum of the $\textit{k}$th powers of the roots of the polynomial $x^3-5x^2+8x-13$. In particular, $s_0=3$, $s_1=5$, and
$s_2=9$. Let $a$, $b$, and $c$ be real numbers such that $s_{k+1} = a \, s_k + b \, s_{k-1} + c \, s_{k-2}$ for $k = 2$, $3$, $....$ What is $a+b+c$?
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Figure 6: Search failing due to dynamically excluded search corpus, red edges denote excluded leaf
nodes, gold edges denote ground-truth path
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You are an intelligent search agent navigating a hierarchical semantic tree of topics. Your mission is to
predict the most promising candidates to find the answer to the user’s query using the relevance definition
below.

**Relevance Definition:** {relevance_defintion}

---

## USER QUERY

{query}

---

## CANDIDATES

Here are the candidates, each is identified by a unique ‘node_id‘ provided at the very start in [] (e.g.,
[0]).

{child_node_options}

---

## YOUR EVALUATION TASK
1. First, identify the essential problem in the query.
2. Think step by step to reason about why each candidate is relevant or irrelevant (based on the relevance
definition). Provide this analysis in the ‘reasoning‘ field.
3. Rank these passages based on their relevance to the query. Provide your ranking in the ‘ranking‘ field.
4. Assign a relevance score from 0 to 100 (based on the relevance definition and the ranking). Provide
relevances in the ‘relevance_scores‘ field.

---

## OUTPUT FORMAT
You must provide your response as a single, clean JSON object. The JSON should have three keys: ‘reasoning
‘, ‘ranking‘, and ‘relevance_scores‘.

* ‘reasoning‘: This must be a **string**.

* ‘ranking‘: This must be an **array of integers** representing the order of the candidates.

* ‘relevance_scores‘: This must be an **array of arrays** where each inner array contains [node_id,
relevance_score]. For example: [[0, 85], [1, 92], [2, 73]].

---

## YOUR RESPONSE

Figure 7: Prompt template used in our experiments for scoring a list of nodes for L.
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You are an expert in information retrieval and keyword generation. Your task is to analyze a provided list
of informational passages and generate a hierarchically sorted list of search keywords for each passage,
strictly adhering to the 5-level rubric below.

## Keyword Generation Rules (5 Levels):

Level 1: 1-2 Word, Core Subject / Domain (Broadest)
Meaning: The absolute fundamental, overarching subject area or discipline.
Characteristics: Only 1 to 2 word, very high-level (e.g., "Technology", "Science", "History")

Level 2: 3-4 Word, General Topic / Sub-domain
Meaning: Narrows Level 1; the specific major topic or branch within the broader field.
Characteristics: Only 3 to 4 words, still general but more focused

Level 3: 4-6 Word, Key Concepts / Main Themes
Meaning: The central ideas, significant concepts, or primary themes directly discussed.
Characteristics: Only 4 to 6 words, core messages, primary subjects, often main sections

Level 4: 7-10 Word, Very Concise Passage Summary
Meaning: A very short, concise summary of what the entire passage is about. This should encapsulate the
essential idea or purpose of the passage.
Characteristics: Only 7 to 10 words

Level 5: 11-20 Word, Concise Passage Summary (Most Specific)
Meaning: A concise summary but more descriptive than level 4 of what the entire passage is about. This
should encapsulate the main idea or purpose of the passage.
Characteristics: A single sentence, 11 to 20 words.

### General Keyword Requirements:

- All keywords must be actionable terms or phrases a user would realistically search.
- Ensure comprehensive coverage of the passage’s content across all 5 levels.

## Output Format

Your output must be a single JSON object. This object will contain a top-level key: "passages_keywords".
The value associated with this key must be a JSON array. Each element in this array will be an object with
two keys:
"passage_id": An integer that exactly matches the "id" from the corresponding input passage.
"hierarchical_keywords": A JSON array of strings of length 5. Each string represents a hierarchical level (
Level 1 at index 0, Level 2 at index 1, and so on).

## List of Input Passages:

{desc_list}

Figure 8: Prompt template used in our experiments for generating multi-level keywords to be used in
top-down tree construction.
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You are an expert data analyst and taxonomist. Your task is to analyze a list of keywords and their
associated counts which indicate how many that keyword appears in the corpus.

## Goal
- Group the following keywords into **k** semantically coherent and **well-balanced** (i.e. each cluster
should aim to contain similar weighted count) clusters, where k is between [{min_k}, {max_k}]. The primary
basis for grouping must be the **topic and meaning** of the keywords.
- Use the provided count as a measure of each keyword’s **importance or popularity**. This weight should
help you decide which topics are most significant.
- Try to always maximize the number of clusters but **without** sacrificing the quality of the clustering,

**quality of clustering is paramount**.

For every cluster, generate:

* A descriptive ‘cluster_name‘.

* An information-dense ‘cluster_description‘ summarizing the core themes.

* A list of all input ‘keywords‘ that constitute this cluster or apply to this cluster.

## Input Data
Here is the list of keywords and their importance counts:

{keywords_list_with_count}

## Desired Output Format
Your final output must be a single JSON object, with no other text or explanation. The JSON object must
have key: "clusters".

{{
"clusters": [
{{"name": "Name of Cluster 1", "description": "A very information dense description of the cluster", "
keywords": ["keyword 1", "keyword 2", ...] }},
{{"name": "Name of Cluster 2", "description": "A very information dense description of the cluster", "
keywords": ["keyword 3", "keyword 4", ...] }},
...

],
}}

---

## Your Response

Figure 9: Prompt template used for ClusterLLM to be used in top-down tree construction i.e.
clustering a given set of keywords into [Mmin,Mmax] clusters.
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You are an expert AI analyst and summarizer. Your mission is to create a highly informative and "
discriminative signpost" for a navigating search agent. This signpost (a summary) must guide the agent to
the correct cluster of nodes to answer a user’s query.

You will follow a strict, step-by-step cognitive process. You must analyze the children nodes in a target
parent node (the "Positive Set").

Prompt ID: {prompt_id} (ignore, this is just for watermarking purposes).

## INPUTS

### POSITIVE SET: Information about the target parent node to be summarized

{positive_set_descriptions}
---

## YOUR TASK & OUTPUT FORMAT

Your entire output must be a single, valid JSON object. Inside this JSON, you will follow the 3-step
thinking process outlined below, populating each field as instructed.

### JSON Structure and Instructions:

{{
"detailed_fingerprints": [
// For EACH children node in the POSITIVE SET (target parent node), extract a structured object of its
key, queryable facts.
{{

"one_line_summary": "...", // write a very information dense and very concise one-line summary for
the information contained in this node
"key_entities": ["..."], // List a very few key entities which is central to this node
"genre_or_category": ["..."], // List a few key genre / categories this node can be classified into
"name": "...", // Name the node

}}
],
"common_theme": "...", // Reason deeply what are the common themes between the nodes in the POSITIVE SET
"summary": "...", // Based on step 1 and step 2, write a very information dense description of the target
node, **make sure to include all key entities**.

}}

---

## Your Response

Figure 10: Prompt template for generating bottom-up summaries of a group of nodes.
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