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Abstract

Graphical User Interface (GUI) Agents, powered
by multimodal large language models (MLLMs),
have shown great potential for task automation
on computing devices such as computers and mo-
bile phones. However, existing agents face chal-
lenges in multi-step reasoning and reliance on tex-
tual annotations, limiting their effectiveness. We
introduce InfiGUIAgent, an MLLM-based GUI
Agent trained with a two-stage supervised fine-
tuning pipeline. Stage 1 enhances fundamental
skills such as GUI understanding and ground-
ing, while Stage 2 integrates hierarchical reason-
ing and expectation-reflection reasoning skills us-
ing synthesized data to enable native reasoning
abilities of the agents. InfiGUIAgent achieves
competitive performance on several GUI bench-
marks, highlighting the impact of native reasoning
skills in enhancing GUI interaction for automa-
tion tasks.

1. Introduction

Graphical User Interface (GUI) Agents have emerged as
powerful tools for automating tasks on computing devices,
including mobile phones and computers. These agents can
understand and interact with GUIs to execute complex op-
erations, significantly enhancing user productivity and ex-
panding the scope of automated task completion (Hu et al.,
2024b; Hong et al., 2024; Zhang & Zhang, 2023; Qi et al.,
2024; Xie et al., 2024; Vu et al., 2024; Yu et al., 2024; Wen
et al., 2023). Recent developments in multimodal large
language models (MLLMs) (Bai et al., 2023b; Li et al.,
2024c; Team et al., 2024; Dai et al., 2022) have significantly
advanced the potential of GUI Agents. MLLMs possess
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Figure 1. InfiGUIAgent, trained via a two-stage SFT pipeline, ad-
dresses key GUI agent challenges. (a) Baseline grounding is often
unreliable, with auxiliary text offering partial gains at the cost
of overhead, while pure vision struggles. (b) Stage 1 enhances
fundamental GUI understanding and grounding, but agents remain
prone to repetitive errors in multi-step trajectory tasks. (c) Stage 2
integrates native hierarchical and expectation-reflection reasoning,
empowering InfiGUIAgent for successful complex task automa-
tion.

powerful visual understanding capabilities and can reason
based on visual information, making them a promising foun-
dation for building sophisticated GUI Agents. These models
can interpret complex interface elements and adapt to a wide
range of tasks, leading to more efficient and robust automa-
tion (Hong et al., 2024; Jiang et al., 2023; You et al., 2025;
Nong et al., 2024; Vu et al., 2024).

Despite their promise, MLLM-based GUI Agents encounter
hurdles in achieving robust, autonomous task completion.
A primary challenge lies in their interaction with the vi-
sual interface. Many agents struggle to connect natural
language instructions to the correct GUI elements (such as
icons or buttons) within complex layouts. Determining the
precise location for an interaction, like a tap, also remains
unreliable. This often compels a reliance on additional in-
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formation, such as accessibility trees or Set-of-Marks (Yang
et al., 2023b), to interpret the GUL. However, GUIs are
inherently visual; textual augmentation can lead to informa-
tion loss, increased computational overhead, and platform
inconsistencies, hindering practical deployment.

Beyond these interaction challenges, agents face limitations
in their reasoning and planning capabilities (Zhang & Zhang,
2023; Qi et al., 2024; Yu et al., 2024). Many do not effec-
tively leverage insights from previous steps or reflect on
past actions, frequently leading to repetitive errors. Sepa-
rately, agents often make decisions that yield low long-term
value or are incorrect, indicating difficulties in decomposing
high-level goals into effective sub-steps. These issues, par-
ticularly acute in MLLMs with fewer parameters, can cause
agents to become trapped in unproductive behavioral loops.

Such behaviors suggest underlying weaknesses: a deficit
in robust visual-semantic grounding and spatial awareness
at the perceptual level, and at the cognitive level, a lack of
intrinsic mechanisms for proactive historical analysis (hin-
dering self-correction) and strategic, multi-scale planning.

Overcoming these limitations requires more than applying
existing MLLMs or relying on elaborate prompting. We
introduce InfiGUIAgent, an MLLM-based GUI Agent de-
veloped through a two-stage supervised fine-tuning (SFT)
pipeline (Figure 1). This pipeline is architected to: first,
instill foundational GUI understanding and grounding
capabilities (Stage 1) by utilizing diverse datasets cover-
ing layout comprehension, grounding tasks, and GUI QA,
thereby directly improving the agent’s ability to interpret
and interact with visual interfaces. Second, cultivate ad-
vanced reasoning skills (Stage 2)—hierarchical reasoning
and expectation-reflection reasoning—using carefully syn-
thesized data from trajectories, enabling these to be per-
formed ’natively’ by the agent. This overall approach aims
to equip the agent with internalized mechanisms for plan-
ning and adaptive learning from its operational history. Infi-
GUIAgent achieves competitive performance on several GUI
benchmarks, highlighting the impact of this integrated ap-
proach. Our main contributions are threefold:

* We propose a two-stage supervised fine-tuning pipeline to
comprehensively improve both the fundamental abilities
and advanced reasoning abilities of GUI Agents.

* We synthesize SFT data with two advanced reasoning
skills: hierarchical reasoning and expectation-reflection
reasoning, enabling the agents to natively perform com-
plex reasoning. This data will be open-sourced to promote
community development.

* We build InfiGUIAgent by supervised fine-tuning a model
using our SFT data and conduct experiments on several
GUI benchmarks, demonstrating that our model achieves
competitive performance.

2. Related Works
2.1. Multimodal LLMs

Large Language Models (LLMs) (Floridi & Chiriatti, 2020;
Touvron et al., 2023; Bai et al., 2023a; Xiao et al., 2021)
have significantly enhanced the capabilities of Al systems
in tackling a wide range of tasks (Hu et al., 2024c; Li et al.,
2024d), thanks to their exceptional ability to process com-
plex semantic and contextual information. The remark-
able power of LLMs has also inspired exploration into their
potential for processing multimodal data, such as images.
Typically, the architecture of Multimodal Large Language
Models (MLLMs) consists of three main components: a
pre-trained large language model, a trained modality en-
coder, and a modality interface that connects the LLM with
the encoded modality features. Various vision encoders,
such as ViT (Dosovitskiy et al., 2021), CLIP (Radford et al.,
2021), and ConvNeXt (Liu et al., 2022), extract visual fea-
tures, which are integrated using techniques like adapter
networks (Liu et al., 2023), cross-attention layers (Alayrac
et al., 2022), and visual expert modules (Wang et al., 2023).
These methods have facilitated the development of high-
performing MLLMs, such as Qwen-VL (Bai et al., 2023b),
GPT-4 Vision (OpenAl, 2023), BLIP-2 (Li et al., 2023) and
InfiMM (Liu et al., 2024), thus opening new avenues for
LLMs in processing GUI tasks.

2.2. MLLM-based GUI Agents

Agents are Al systems that perceive their environments,
make decisions, and take actions to complete specific tasks.
LLMs reaching human-level intelligence have greatly en-
hanced the ability to build agents. For GUI tasks, LLMs that
read HTML code to perceive GUIs are developed (Wen et al.,
2023). However, various works have shown that learning to
interact with the visual form of the GUIs can show superior
performance (Hu et al., 2024b). Therefore, MLLM-based
GUI Agents are developed. ILuvUI (Jiang et al., 2023)
fine-tuned LLaVA to enhance general GUI understanding,
while AppAgent (Zhang et al., 2023) explored app usage
through autonomous interactions. CogAgent (Hong et al.,
2024) integrated high-resolution vision encoders, and Ferret-
Ul-anyres (You et al., 2025) employed an any-resolution
approach. Building upon these works, our study focuses
on developing a more lightweight agent with a simplified
architecture for GUI tasks, aiming to improve ease of de-
ployment.

3. Method

In this section, we introduce our two-stage supervised fine-
tuning strategy for building InfiGUIAgent, as shown in Fig-
ure 2. In stage 1, we focus on improving fundamental
abilities such as understanding and grounding, particularly
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Figure 2. InfiGUIAgent is trained in two stages. Stage 1 cultivates fundamental abilities using diverse datasets covering GUI understanding
(element recognition and layout comprehension), question answering, instruction grounding, general knowledge, and tool usage. Stage 2
introduces native advanced reasoning, employed during both training and inference. This stage follows a cyclical process at each step,
consisting of Reflection, Hierarchical Reasoning (strategic and tactical layers), Action, and Expectation. Each step
receives the overall task, the history of previous screenshots and reasoning, and the current environment as input. Reflection assesses
the previous action’s outcome against its expectation, while Expectation predicts the outcome of the current action for subsequent

reflection.

considering the complexity of GUIs. In stage 2, we move
on to improve the native reasoning abilities of agents for
handling complicated GUI tasks.

3.1. Stage 1: Training for Fundamental Abilities

Considering the complexity of GUIs, which involve diverse
data formats such as HTML code, high-resolution inter-
faces cluttered with small icons and text, general MLLMs
lack fundamental abilities in both understanding GUI and
grounding the actions. To address this, we first collected
a range of existing visual-language and GUI datasets for
supervised fine-tuning in stage 1. We gathered data cov-
ering several GUI tasks from multiple sources to ensure a
comprehensive capabilities improvement (see Table 1). The
datasets can be categorized into five parts:

* GUI Understanding. Datasets focusing on GUI element
recognition, layout comprehension, and semantic interpre-
tation, including Screen2Words (Wang et al., 2021) and
Screen Annotation (Baechler et al., 2024).

* Grounding. Datasets capture various user interaction se-
quences and operation patterns, including GUIEnv (Chen
et al., 2024), RICO Semantic Annotation (Sunkara et al.,
2022), SeeClick-Web (Cheng et al., 2024), RICO SCA (Li
et al., 2020a), Widget Caption (Li et al., 2020b), UIBert
Reference Expression (Bai et al., 2021) and OmniAct-
Single Click (Kapoor et al., 2024).

* Question Answering. Datasets contain GUI-specific QA

tasks, including GUIChat (Chen et al., 2024), ScreenQA
(Hsiao et al., 2022) and Complex QA (Yin et al., 2023).
* General Knowledge. Multimodal datasets maintain
model’s general capabilities, including LLaVA-OneVision
(Li et al., 2024b) and PixMo (MDeitke et al., 2024).
* Tool Usage. Datasets cover general tool using, including
Glaive-function-calling (Glaive Al, 2024).

Due to the diversity of our data sources, we implemented
comprehensive format standardization across all datasets.
Additionally, we adopted the Reference-Augmented Anno-
tation format (see Section 3.1.2) to enhance the model’s
ability to ground visual elements with textual descriptions,
enabling precise spatial referencing while maintaining natu-
ral language flow.

3.1.1. DATA PREPROCESSING AND STANDARDIZATION

Given the diversity of our data sources, we implemented
comprehensive preprocessing steps to standardize the data
format across all datasets. We normalized the coordinate
system by following (Wang et al., 2024), mapping all
spatial coordinates to a relative scale of [0, 1000]. This
standardization facilitates consistent representation of both
point and box annotations in JSON format, with points
expressed as {"x” : z,”y” : y} and bounding boxes as
{"x17 0 21,7y 17 s y1,”Xx27 29, 7y2” ¢ ya }. In this coordi-
nate system, the origin {’x” : 0,”y” : 0} is located at the
screen’s top-left corner, with the x-axis extending rightward
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Table 1. Training datasets used in stage 1 of supervised fine-tuning.

Dataset Platform Category # of Samples
GUI-related Datasets

GUIEnv (Chen et al., 2024) Webpage Grounding 150,000
RICO Semantic Annotation (Sunkara et al., 2022)  Mobile Grounding 150,000
SeeClick-Web (Cheng et al., 2024) Webpage Grounding 100,000
RICO SCA (Li et al., 2020a) Mobile Grounding 100,000
Widget Caption (Li et al., 2020b) Mobile Grounding 70,000
GUIChat (Chen et al., 2024) Webpage QA 40,000
ScreenQA (Hsiao et al., 2022) Mobile QA 17,000
UlBert Reference Expression (Bai et al., 2021) Mobile & Mobile Grounding 16,000
Screen2Words (Wang et al., 2021) Mobile Understanding 12,000
Complex QA (Yin et al., 2023) Mobile QA 11,000
Screen Annotation (Baechler et al., 2024) Mobile Understanding 5,400
OmniAct-Single Click (Kapoor et al., 2024) Webpage & Desktop  Grounding 4,800
Non-GUI Datasets

LLaVA-OneVision (Li et al., 2024b) General 250,000
PixMo (MDeitke et al., 2024) General 68,800
Glaive-function-calling (Glaive Al, 2024) Tool Usage 5,000

and the y-axis downward. The bottom-right corner corre-
sponds to coordinates {”x” : 1000, ”y” : 1000}. To enhance
data quality, we implemented two additional preprocessing
steps:

Instruction Enhancement. For datasets with ambiguous
instructions (e.g., those varying in phrasing or lacking ex-
plicit intent across different data sources), we developed
standardized instruction templates to establish clear corre-
spondence between commands and their expected outcomes.

Response Refinement. For entries with complex or in-
consistent response formats, we utilized Qwen2-VL-72B
(Bai et al., 2023b) to reformulate responses while preserv-
ing their semantic content. Each reformulation underwent
validation to ensure accuracy and consistency.

3.1.2. REFERENCE-AUGMENTED ANNOTATION

To better leverage the spatial information available in our
collected datasets and enhance the model’s visual-language
understanding of GUIs, we implemented a reference-
augmented annotation format. This format enables bidi-
rectional referencing between GUI elements and textual
responses. Specifically, we adopted the following structured
notation:

<ref type="box"
coords={"x1": x1, "y1": y1,
"x2": x2, "y2": y2}
note="GUI annotation">
corresponding text
</ref>

The format consists of several key components: the refer-

1)

ence type (either ”box” for rectangular regions or “point
for specific locations), coordinate specifications (x1, y1, x2,
y2 for boxes or X, y for points), optional annotative notes,
and the corresponding textual content. To generate training
data in this format, we prompted Qwen2-VL-72B (Bai et al.,
2023b) to seamlessly integrate GUI spatial information with
original responses, maintaining natural language flow while
preserving precise spatial references.

3.2. Stage 2: Training for Native Reasoning

Building upon the foundational capabilities such as under-
standing and grounding, GUI Agents must also master ad-
vanced reasoning skills to effectively handle complex tasks.
We identify two crucial reasoning skills : (1) Hierarchical
reasoning, which enables planning and task decomposition,
helping agents structure complex tasks into manageable
subtasks and execute them efficiently (Huang & Chang,
2023; Zhang et al., 2024b; Huang et al., 2024), and (2)
Expectation-reflection reasoning, which fosters adaptive
self-correction and reflection (Shinn et al., 2023; Yao et al.,
2023; Hu et al., 2024a), enabling agents to learn from past
actions and improve decision-making consistency. These
reasoning skills are integrated into the training datasets of
agents, so that they can reason with these skills natively
without any extra prompting. To achieve this, we generate
SFT data incorporating these reasoning skills based on ex-
isting trajectory data (see Table 2) and continue fine-tuning
the model from stage 1.

3.2.1. HIERARCHICAL REASONING

Effective execution of GUI tasks demands both overarching
strategic planning and meticulous tactical execution. To
achieve this, we synthesize trajectory data with a hierarchi-
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Table 2. Ul action reasoning datasets used in the training process

Dataset Platform # of Samples
GUIAct (Chen et al., 2024) Webpage & Mobile 10,000
AMEX (Chai et al., 2024) Mobile 3,000
Android in the Zoo (Zhang et al., 2024a) Mobile 2,000
Composition: Stage 1-aligned - 30,000

Category Operations

Single-point operations
Two-point operations
Directional operations

tap, click, hover, select
swipe, select_text
scroll

Text input input, point_input
Parameterless operations remember, enter, home, back
State settings set_task_status

Table 3. Categorization of actions in the action space.

cal reasoning with two distinct layers:

» Strategic Layer. Strategic layer is responsible for high-
level task decomposition and sub-goal planning. This
layer analyzes the overall task objective and determines
the sequence of subtasks needed for completion.

* Tactical Layer. Tactical layer handles the selection and
grounding of concrete actions. Based on the strategic
layer’s planning, agent select appropriate GUI operations
and adjusts their parameters to match the target.

3.2.2. EXPECTATION-REFLECTION REASONING

To enhance action consistency and foster autonomous self-
correction, we incorporate Expectation-reflection reasoning
into the training datasets. This iterative process enhances
the agent’s ability to adapt and learn from its actions through
a structured reflection cycle:

* Reasoning. After reflection (except the first step), the
agents conduct hierarchical reasoning.

* Action. After the reasoning, the agent takes the action.

» Expectation. Following each action, the agent generates
expected outcomes which are used to be verified at the
next step.

* Reflection. The agent evaluates whether its actions
achieved the expected results and generating a textual
summary of the reflection.

3.2.3. AGENT-ENVIRONMENT INTERFACE

We formulate the GUI interaction as a process where an
agent interacts with a mobile environment. Let s; € S
denote the environment state at step ¢, where S represents
the state space. The agent can observe the state through

a screenshot observation o; and performs actions a; € A,
where A is the action space. The environment transitions
from s; to s;41 following s;y1 ~ P(:|s¢,a;), where P
represents the transition probability function.

The agent receives a task goal g and maintains access to a
history window of size n. At each step ¢, the agent’s input
consists of:

* Goal g
e Current observation oy
* Historical context Hy = {(o;, 7, a;) ﬁ;tlfn, where r;

represents the reasoning process

Based on these inputs, the agent generates a reasoning pro-
cess r; and predicts an action a;. The interaction follows a
standard protocol using function calls and responses:

Assistant Message:
<tool_call>
{
"name": "action_name",
"arguments": {"action_parameters"}
I
</tool_call>

Tool Message:
<tool_response>

{
"name": "gui_operation",
"content": {
"status": "success | failure",
"current_ui": <image>,
"current_task": <task_description>
}
}

</tool_response>

3.2.4. MODULAR ACTION SPACE

Given the diverse action spaces across collected datasets,
we categorized and standardized the actions by unifying
their names and parameters, merging similar operations
where appropriate. The resulting action space A consists
of independent, composable operations that can be flexibly
combined based on task requirements, as shown in Table 3.
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This modular design allows for dynamic action space con-
figuration while maintaining a consistent interface across
different platforms and scenarios. The modularity of the ac-
tion space is implemented by modifying the system prompt.
The system prompt we use is shown in Appendix B.2.

3.2.5. REASONING PROCESS CONSTRUCTION

To construct high-quality reasoning data to stimulate the
model’s native reasoning capabilities, we leverage more
capable MLLMs (e.g. Qwen2-VL-72B) to generate struc-
tured reasoning processes based on existing interaction tra-
jectories. The construction process involves several key
components:

* Screenshot Description. For each observation o; in the
trajectory, we generate a detailed description d;. This
step addresses the limitation that some MLLM models
do not support interleaved image-text input formats well.
To establish clear correspondence between observations
(screenshots) and steps, we generate detailed descriptions
to replace the screenshots, which helps facilitate the sub-
sequent reasoning process construction.

* Reflection. Given the previous expectation e;_; and cur-
rent observation o,, we generate a reflection f; that evalu-
ates the outcome of the previous action.

* Strategic Layer. The strategic reasoning consists of two
parts: First, a summary is generated based on the n-step
history H; = {(0;,7;,a;) ﬁ;}_n and current observation

o0;. Then, the planning component is generated with ac-

cess to the actual action a; to ensure alignment with the

trajectory.

* Tactical Layer. This layer’s reasoning is constructed
using the generated reflection f; and strategic layer output.
The actual action a; from the trajectory is incorporated to
ensure the tactical reasoning leads to appropriate action
selection.

 Expectation. For each state-action pair (s, a;), we gener-
ate an expectation e; based on current observation o, rea-
soning process 7, and action a;. Notably, we deliberately
avoid using the next state sy in this generation process.
Although using s, could improve the agent’s accuracy
in modeling state transitions, while using s;4; could lead
to perfect expectations, such an approach might impair the
agent’s ability to handle expectation mismatches during
deployment.

While we avoid using s;4; in expectation generation to
maintain robustness, we also explore the possibility of im-
proving state transition modeling through a parallel next-
state prediction task. Using the trajectory data, we construct
additional training examples where the agent learns to pre-
dict the next state description d;; given the current obser-
vation o, and action a,. This auxiliary task helps the agent

learn state transition dynamics, while keeping the expecta-
tion generation process independent of future states.

4. Experiments
4.1. Experimental Setting
4.1.1. IMPLEMENTATION DETAILS

In stage 1, we sample 1M samples in total as illustrated in
Table 1. In stage 2, we synthesized 45K samples based on
trajectories from datasets shown in Table 2. We employ a
full fine-tuning approach to continually supervised fine-tune
Qwen2-VL-2B (Bai et al., 2023c). The hyperparameters
used for training were a learning rate of 5 x 1075, a batch
size of 256, and a maximum sequence length of 32k to ac-
commodate long trajectories. The training was conducted
for 1 epoch with a warmup ratio of 0.05. To optimize the
learning process across the two stages, the vision module
was unfrozen during the first stage to facilitate the learning
of fundamental UI knowledge, and subsequently frozen dur-
ing the second stage to allow the model to focus more on
reasoning capabilities. We leverage ZeRO (stage 0) (Rajb-
handari et al., 2020) technology and FlashAttention-2 (Dao,
2023) to accelerate training and reduce memory consump-
tion, enabling full parameter fine-tuning of the model across
8 A800 80GB GPUs.

4.1.2. EVALUATION BENCHMARKS

ScreenSpot. ScreenSpot (Cheng et al., 2024) is an eval-
uation benchmark for GUI grounding, consisting of over
1,200 instructions from iOS, Android, macOS, Windows,
and Web environments, with annotated element types.

AndroidWorld. AndroidWorld (Rawles et al., 2024) is a
fully functional Android environment that provides reward
signals for 116 programmatic tasks across 20 real-world An-
droid apps. We find that Android World uses Set-of-Marks
(SoM) (Yang et al., 2023a) to enhance the agent’s grounding
ability. However, when humans operate smartphones, their
brains do not label elements on the screen. Over-reliance on
SoM can lead to insufficient focus on pixel-level grounding
ability. Therefore, in our experiments, agents respond to the
raw image rather than the annotated image.

4.2. Main Results

ScreenSpot. Table 4 provides the results of different mod-
els across three platforms (Mobile, Desktop and Web) and
two element types (Text and Icon) on ScreenSpot (Cheng
et al., 2024). InfiGUIAgent-2B achieves highest accuracy of
76.3%, surpassing several strong baselines such as ShowUI
(Lin et al., 2024) (75.1%) and UGround-7B (Gou et al.,
2024) (73.3%), which is even with larger parameters size.
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Accuracy (%)

Model Avg.
Mobile Desktop Web
Text Icon Text Icon Text Icon

Proprietary Models

GPT-40' (OpenAl, 2024) 305 232 206 194 11.1 7.8 188
Gemini-1.5-pro* (Team et al., 2024) 762 54.1 655 39.3 522 320 532
Open-source Models

Qwen2-VL-2B (Wang et al., 2024) 242 10.0 1.4 9.3 8.7 2.4 9.3

330 218 429

Qwen2-VL-7B (Wang et al., 2024) 613 393 52.0 450

Qwen2-VL-72B (Wang et al., 2024) 73.6 655 54.1 57.1 53.0 442 579
CogAgent (Hong et al., 2024) 67.0 240 742 200 704 28.6 474
SeeClick (Cheng et al., 2024) 78.0 520 722 30.0 557 325 534
UGround-7B (Gou et al., 2024) 82.8 603 825 63.6 804 704 733
ShowUI-2B (Lin et al., 2024) 923 755 763 o61.1 81.7 63.6 751
Ours

InfiGUIAgent-2B 923 703 856 657 83.0 63.6 768

Table 4. Performances on various platforms (Mobile, Desktop, Web) on Screenshot. All experiments were conducted using raw screenshot
information. Results marked in bold represent the best performance, and those underlined indicate the second-best performance.

Success Rate

Model

Easy Middle Hard Overall
Open-source Models
Qwen2-VL-2B (Wang et al., 2024)  0.00  0.00 0.00 0.00
Qwen2-VL-7B (Wang et al., 2024) 0.00 0.00 0.00 0.00
Qwen2-VL-72B (Wang et al., 2024)  0.08 0.00 0.00 0.04
LLaVa-OV-7B (Li et al., 2024a) 0.00  0.00 0.00 0.00
ShowUI-2B (Lin et al., 2024) 0.18 0.00 0.00 0.09
Ours
InfiGUIAgent-2B 0.25 0.00 0.00 0.13

Table 5. Performances on AndroidWorld. Results marked in bold
represent the best performance

AndroidWorld. Table 5 compares the success rates of
InfiGUIAgent with open-source models on AndroidWorld
(Rawles et al., 2024). InfiGUIAgent-2B achieves an overall
success rate of 0.09, outperforming open-source models of
similar size, such as ShowUI-2B (Lin et al., 2024) (0.07),
and model with much more parameters such as LLaVa-OV-
7B (Li et al., 2024a) (0.00) and Qwen2-VL-72B (Bai et al.,
2023b) (0.05).

4.3. Ablation Studies

We performed ablation studies (Table 6) to assess the
contributions of InfiGUIAgent’s main components. The
full InfiGUIAgent-2B model achieves 76.8% accuracy on
ScreenSpot and 0.13 SR on AndroidWorld.

Removing Stage 2 training (w/o Stage 2”°) causes the An-
droidWorld SR to drop to 0.00, highlighting that the ad-
vanced reasoning skills from this stage are crucial for com-
plex, multi-step tasks. Conversely, omitting the dedicated
Stage 1 training ("w/o Stage 1) degrades ScreenSpot ac-

Configuration ScreenSpot AndroidWorld
(% Accuracy) (Success Rate)

InfiGUIAgent-2B 76.8 0.13

Ablations

w/o Stage 2 76.0 0.00

w/o Stage 1 74.3 0.09

w/o Reasoning 76.6 0.09

Table 6. Ablation study of InfiGUIAgent components. Scores
for the full pipeline are taken from the main paper results for
InfiGUIAgent-2B.

curacy to 74.3%. While this underscores the importance
of Stage 1 for foundational GUI understanding and ground-
ing, the model’s residual performance on ScreenSpot in this
“w/o Stage 17 setting is likely supported by the Stage 2 train-
ing data, which includes a ”Stage 1-aligned” component
composed of data thematically similar to that used in Stage
1. The ”w/o Stage 1” configuration still achieves 0.09 SR on
AndroidWorld, suggesting that advanced reasoning can of-
fer some utility even with a less robust dedicated perceptual
foundation, but is outperformed by the full model.

The ”w/o Reasoning” variant, representing a simplified
Stage 2 without the specific hierarchical and expectation-
reflection structures, yields 76.6% on ScreenSpot and 0.09
SR on AndroidWorld. This indicates that while any learn-
ing in Stage 2 is beneficial for complex tasks compared to
removing Stage 2 entirely, the structured reasoning patterns
contribute to the full model’s superior performance. These
results affirm the distinct and vital roles of both Stage 1 and
Stage 2.
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4.4. Qualitative Analysis

A qualitative analysis of the models’ performance on the
stopwatch operation task reveals significant disparities in
their capabilities. The baseline model (Qwen2-VL-2B) ex-
hibits behavior consistent with random exploration, demon-
strating a fundamental lack of understanding regarding the
screen state or the overarching task goal. As detailed in
Table 7, its sequence of three taps appears arbitrary, failing
to engage with crucial Ul elements such as the “Stopwatch”
tab or the “Start” button. This deficiency in identifying and
interacting with relevant components results in an inability
to progress, leaving the task uncompleted, and suggests an
absence of visual grounding and goal-oriented reasoning.

In stark contrast, InfiGUIAgent demonstrates a structured
and effective multi-step approach, visually and descriptively
detailed in Table 7. For instance, in its initial step, the agent
correctly identifies the need to navigate to the Stopwatch
tab and executes the tap, expecting the Ul to transition. Sub-
sequent steps involve confirming the UI state, identifying
the next sub-goal, locating the relevant Ul element for that
sub-goal, and performing the action with a clear expecta-
tion. Each step showcases its ability to process the visual
information from the screen (represented by the included
images for each step) and make an informed decision.

This side-by-side qualitative assessment underscores In-
fiGUIAgent’s markedly superior capabilities in robust visual
grounding, effective hierarchical task decomposition, and
strong goal-oriented reasoning. The agent’s explicit articula-
tion of its internal reasoning, planned actions, and expected
outcomes at each juncture, supported by the visual context
of each step, highlights a sophisticated and transparent un-
derstanding of the GUI interaction process, ultimately lead-
ing to successful task execution where the baseline model
fails. See Table 7 in Appendix for more details.

5. Conclusion

In this work, we propose InfiGUIAgent, a novel MLLM-
based GUI Agents. By constructing comprehensive train-
ing datasets with two-stage supervised fine-tuning, we en-
hance the model’s ability to understand, reason, and interact
with GUIs. Our evaluation, conducted using raw screen-
shots without relying on additional GUI metadata, demon-
strates the model’s applicability to real-world scenarios.
Experimental results show that our model performs well
on GUI tasks and surpass several open-source baselines.
We markedly enhance the model’s core abilities in visual
GUI understanding, multi-step task reasoning, and precise
interactive control.

Impact Statement

This paper presents work whose goal is to advance the field
of GUI Agents. There are many potential societal conse-
quences of our work, none which we feel must be specifi-
cally highlighted here.
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A. Limitations

While our work demonstrates promising advancements in GUI task automation through the proposed two-stage training
framework, several limitations remain. First, due to our focus on enabling efficient deployment on edge devices, we primarily
explored small-scale models (e.g., Qwen2-VL-2B). While this approach ensures practicality, larger models may offer further
performance improvements, particularly in handling more complex tasks. Second, although hierarchical reasoning and
expectation-reflection reasoning enhance the agent’s ability to decompose tasks and adapt dynamically, real-world GUI
interactions often involve unforeseen complexities, such as error recovery, cross-application coordination, or dynamically
changing interfaces. Enhancing the agent’s robustness to such challenges remains an open research direction.

B. Prompt Templates

This section details the various prompt templates employed for trajectory and grounding tasks within our study. These
prompts are designed to guide the Al agent in understanding its role, the environment, and the specific requirements of each
task.

B.1. Prompt Templates for Grounding Tasks

For grounding tasks, which require the agent to identify specific elements or locations on the UI, we use tailored prompt
templates. The choice of template depends on whether the output is a single point or a bounding box.

B.1.1. POINT OUTPUT

When the grounding task requires the output of specific coordinates (a point) related to a given instruction, the following
prompt template is used:

Prompt Template for Grounding (Point)

Output the relative coordinates of the icon, widget, or text most closely related to “instruction” in this screenshot, in the format of
7{”x: X, ’y”: y}”, where x and y are in the positive directions of horizontal left and vertical down respectively, with the origin at the
top left corner, and the range is 0-1000.

Here, {instruction} is a placeholder for the natural language instruction describing the target element (e.g., ”the *Login’
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button”, the user’s profile picture”).

B.1.2. BOUNDING BOX OUTPUT

When the grounding task requires identifying a bounding box for an element related to a given instruction, the following
prompt template is employed:

Prompt Template for Grounding (Bounding Box)

Output the relative coordinates of the icon, widget, or text most closely related to “instruction” in this screenshot, in the format of
{7x17: x1, Cy17: yl, x27: x2, *y2”: y2}7, where x1, y1, x2 and y2 are in the positive directions of horizontal left and vertical down
respectively, with the origin at the top left corner, and the range is 0-1000.

Similarly, {instruction} serves as a placeholder for the user’s instruction. The coordinates x 1, y1 represent the top-left
corner of the bounding box, and x2, y2 represent the bottom-right corner.

B.2. System Prompt for Trajectory Tasks

For trajectory-based tasks, which involve the agent performing a sequence of actions to achieve a goal on a user interface,
we utilize the following comprehensive system prompt:

12
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System Prompt for Trajectory Tasks

You are an Al agent capable of interacting with a user interface through function calling. Your task is to assist users in completing
Ul-related tasks or answering related questions.

The current Ul type is: {ui_type}

When referring to positions on the Ul:
- Use integer relative coordinates ranging from 0 to 1000.
- The origin (0, 0) is at the top-left corner of the screen. The x-axis increases to the right, and the y-axis increases downward.

You are provided with function signatures within jtools; j/tools; XML tags. You may call one or more functions to assist
with the Ul-related tasks. Don’t make assumptions about what values to plug into functions.

jtoolsy,

{action_space}

j/tools,

For each function call return a json object with function name and arguments within jtool_call;, j/tool_call; tags with the following
schema:

jtool_call;,

”name”: jfunction-name;, "arguments”: jargs-dicty,

j/tool_call;,

In this prompt, {ui_type} is a placeholder that is replaced with the actual type of the user interface being interacted
with. The available actions and their function signatures are provided to the agent within the tools and /tools tags at
runtime.

C. Cases

C.1. Stage 1: Fundamental Abilities

We demonstrate the fundamental abilities trained in Stage 1 through three cases: GUI Understanding (Figure 3), Grounding
(Figure 4), and Question Answering (Figure 5).

C.2. Stage 2: Native Reasoning

We provide two representative cases to demonstrate the reasoning and interaction process of InfiGUIAgent.

Reply to a Message Figure 6 illustrates a step where the agent needs to reply to a specific message in a messaging
application. The reasoning process involves identifying the ”Start chat” button and grounding the action to initiate the reply
process.

Creating a New Contact Figure 7 and Figure 8 demonstrate sequential steps for creating a new contact. In the first step
(Step K), the agent navigates to the "Contacts” section by reasoning and grounding the action to the corresponding tab. In
the following step (Step K+1), the agent initiates the contact creation process by identifying and tapping the ’Create new
contact” button. These sequential steps highlight the agent’s hierarchical reasoning and grounding abilities.
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Table 7. Qualitative Comparison for Task: ClockStopWatchRunning (Illustrating a 4-step InfiGUIAgent process with screen states)

Baseline Output (Qwen2-VL-2B, temp=1.0) InfiGUIAgent Output (Stage 1 + 2, temp=1.0)
Actions: Step 1: Navigate to Stopwatch Tab

tap (x=710, y=55) Lt

tap (x=500, y=880) 0009

tap (x=240, y=240)

Provided Observation:

Issues taps without clear reasoning. Fails to locate Stopwatch

tab or start button; never reaches running state. No goal condi-

tioning or hierarchical planning evident. —

Agent Reasoning (Key Points): Clock app open, tabs visible.
Goal: Run stopwatch. Need to:

 Tap Stopwatch tab.

* Wait for UI transition.

Stopwatch tab is rightmost on top bar.

Action: tap (x=800, y=120)

Expected Outcome: Stopwatch screen loads with a start button.

Step 2: Start the Stopwatch

(]

Agent Reasoning (Key Points): Now on Stopwatch screen.
Timer and Start button visible. Goal: Start stopwatch. Need to
tap Start button. Start button is large, circular, centered below
timer.

Action: tap (x=500, y=850)

Expected Outcome: Timer starts counting, stopwatch running.

Step 3: Stop the Stopwatch

Agent Reasoning (Key Points): Stopwatch is running. Next
goal is to stop it. “Stop” button is now visible (often replaces
“Start”).

Action: tap (x=500, y=850) Expected Outcome: Timer
stops counting. “Reset” and “Lap” buttons might appear.

Step 4: Reset the Stopwatch

Agent Reasoning (Key Points): Stopwatch is stopped. Final
goal is to reset. “Reset” button should be visible.

Action: tap (x=250, y=850) Expected Outcome: Timer
resets to 00:00.00. “Start” button reappears.
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Instruction: Describe the Ul in detail. You should
reference components and locations in the UL

< 29 7]
. Answer: This screenshot shows the settings menu of an
e Android device, displaying various .con.ﬁguratlon. options.
Fi, mobile, data usage, and hotspot The top of the screen features a navigation bar with a back
_ arrow, indicating the ability to return to the previous screen.
@ onnected devices K X X K
o android Auto The main content area lists several settings categories,
W each with a brief description and icon for easy
@ 1t apps, default apps identification.

Key UI components and elements present on the screen
include:

- A <ref type="box" coords={"x1": 0, "y1": 31, "x2": 131,
"y2": 110} note="return to the previous screen">back

iot Disturb arrow</ref> at the top left corner, allowing the user to
navigate back to the previous screen.

- The <ref type="box" coords={"x1": 175, "y1": 54, "x2":
404, "y2": 98} note="title of the current
screen">Settings</ref> title at the top center, indicating the

current page. /

Figure 3. Case of GUI Understanding.

/ a— N

Instruction: Where can I send a message to someone? You
should reference components and locations in the UL

Answer: To send a message, you need to access the
messaging app. The key components on the home screen
are the app icons. Specifically, you should look for the <ref
type="box" coords={"x1": 262, "y1": 766, "x2": 360, "y2":
814} note="message app icon">message app icon</ref>
located at the bottom left of the screen. This icon is
typically used to open the messaging app. Once you tap on
this icon, you will be taken to the messaging app where
you can send a message.

/

Figure 4. Case of Grounding.
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.unOO\~ w40 \

Instruction: What day is it tomorrow? You should
reference components and locations in the UL

Answer: To determine the day of the week, we need to
look at the date displayed at the top of the screen. The date
is shown as <ref type="box" coords={"x1": 248, "y1": 94,
"x2": 422, "y2": 119} note="day of the
week">Sunday</ref>. This indicates that today is Sunday.
Therefore, tomorrow will be Monday.

Figure 5. Case of Question Answering.
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1544 B @ LTE4 N

Q_ Searchimages & videos

o
(2

o

o

0283775093 10 min
Don't cry over spilled milk.

(323) 146-6913 10 min

Lunch meeting with Sarah at 1 PM Cafe
Lamour.

(942) 012-8998 10 min
Beauty is in the eye of the beholder.

1089888875 10 min
When in Rome, do as the Romans do.

(840) 787-4306 10 min

Book club meets next Tuesday to discuss
'1984',

0787430639 10 min

It's a bird, it's a plane.

Goal: Reply to +18407874306 with message: Yoga class every Tuesday and

Thursday at 6 PM. in Simple SMS Messenger.

Reflection: The expectation from the previous step was to open the Simple
SMS Messenger app by tapping on its icon. The current screen content
shows the Simple SMS Messenger app's ...

( Summary: The overall task objective is to send the message "Yoga class
every Tuesday and Thursday at 6 PM" to +18407874306 ...

Planning: To achieve the final goal, the plan is to: first, initiate a new chat;
second, enter the recipient's phone number (+18407874306); third,
\_compose the message ...

J

1 9133)e0)S

JoAe

ﬁeasoning: The core component on the current screen is the "Start chat"
button. The key point of the task objective in the current step is to initiate a
new chat. Therefore, I need to tap on the "Start chat" button.

Grounding: Based on the reasoning, the current action should be to tap on
the "Start chat" button. The button is located at the bottom right of the
screen, a prominent blue circle with a white chat bubble icon. Therefore, I

Qhould tap on the "Start chat" button.

2N

J9AeT [edande],

\_

Action:
<tool call>

"name": "tap", "arguments": {"point": {"x": 824, "y": 886} }}
</tool_call>

Expectation: The purpose of this action is to open the new chat interface.
This action will likely result in a new screen appearing ...

Figure 6. Case of Native Advanced Reasoning. The agent’s goal is to reply to a message
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[ s m o S Goal: Create a new contact for Hugo Pereira. Their number is
+13920741751.

Q_ Search contacts & places 9

Reflection: The expectation from the previous step was to open the
Contacts app by tapping on its icon. However, the current screen content
shows the Phone app with the "Recents" tab selected ...

‘. Summary: The overall task objective is to create a new contact for Hugo
Pereira. In the previous step, I attempted to open the Contacts app ...

Planning: To achieve the final goal of creating a new contact for Hugo
Pereira, I first need to access the Contacts section within the Phone app.
\_Then I'need to ...

/

denS

=3
O

n{easoning: The core components on the current screen are the three tabs at
the bottom: "Favorites", "Recents", and "Contacts". The key point of the
Calls youmake will showltip task objective in the current step is to navigate to the Contacts section.

here Therefore, I need to tap on the "Contacts' tab.

Step K

Make a call
Grounding: Based on the reasoning, the current action should be to tap on

the "Contacts" tab. The "Contacts" tab is located at the bottom right of
Qhe screen. Therefore, I should tap on the "Contacts" tab.

K J9AeT [eande], j J9Ae o1

Action:
a <tool_call>
{"name": "tap", "arguments": {"point": {"x": 853, "y": 924}}}
</tool_call>
w () 2
Favorites Recents Contacts Expectation: The purpose of this action is to navigate to the Contacts
< — section of the Phone app ...

Figure 7. Case of Native Advanced Reasoning. The agent’s goal is to create a new contact.
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[ o m ) T Goal: Create a new contact for Hugo Pereira. Their number is
+13920741751.

©

Q_ Search contacts & places
Reflection: The expectation from the previous step was to navigate to the

Contacts section by tapping the "Contacts" tab. The current screen content
shows ... indicating that the previous action was successful.

/

‘. Summary: The overall task objective is to create a new contact for Hugo
Pereira. In the previous steps, I opened the Phone app and ...

Planning: To achieve the final goal of creating a new contact for Hugo
Pereira, I need to first initiate the new contact creation process. Then, I
\_need to enter Hugo's details ...

J19AeT J139)ens

o

n{easoning: The core component on the current screen is the "Create new

contact" button. The key point of the task objective in the current step is to

our Contacts are Ust 2 tap, initiate the new contact creation process. Therefore, I need to tap on the
away here "Create new contact" button.

Create new contact

StepK + 1

Grounding: Based on the reasoning, the current action should be to tap on
the "Create new contact" button. The button is located in the center of the

cheen .

J34e] [eandR],
\_ J

Action:
e <tool call>
{"name": "tap", "arguments": {"point": {"x": 492, "y": 575}}}
</tool_call>
¥ C] S
Favorites Recents Contacts Expectation: The purpose of this action is to initiate the process of creating

a new contact ...

Figure 8. Case of Native Advanced Reasoning. The agent’s goal is to create a new contact.
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