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ABSTRACT

Prompt-based continual learning (CL) provides a parameter-efficient approach for
adapting large language models (LLMs) across task sequences. However, most
existing methods rely on task-aware inference and maintain a growing set of task-
specific prompts, which introduces two major challenges: (1) severe performance
degradation on earlier tasks under task-agnostic inference, and (2) limited scalabil-
ity due to prompt memory accumulation as task sequences grow. In this paper, we
present GRID, a unified framework designed to address these challenges. GRID
incorporates a decoding mechanism that enhances backward transfer by leverag-
ing representative inputs, automatic task identification, and constrained decoding.
Furthermore, it employs a gradient-guided prompt selection strategy to compress
less informative prompts into a single aggregated representation, ensuring scalable
and memory-efficient continual learning. Extensive experiments on long-sequence
and negative transfer benchmarks show that GRID improves average accuracy and
backward transfer, achieves competitive forward transfer, and substantially reduces
prompt memory usage.

1 INTRODUCTION

Continual learning (CL) (Van de Ven & Tolias, 2019) enables models to learn from a sequence of
tasks without retraining from scratch. CL systems build on prior knowledge while adapting to new
tasks, which is crucial in dynamic real-world settings. Recent advancements, especially in NLP
(Wang et al., 2024; Satapara & Srijith, 2024), have focused on three paradigms: regularization-based
methods (Li & Hoiem, 2017; Kirkpatrick et al., 2017), rehearsal-based methods (Rebuffi et al., 2017;
Sun et al., 2019), and architecture-based methods (Veniat et al., 2020; Douillard et al., 2022). While
rehearsal-based methods are effective, they are impractical in privacy-sensitive scenarios. With the
increasing complexity of pretrained models (Wang et al., 2023a), full model finetuning has become
infeasible. This has led to the rise of parameter-efficient finetuning (PEFT) techniques (Ding et al.,
2023), such as prompt tuning (PT) (Lester et al., 2021), which adapts large models by training only a
small set of soft prompts, requiring less than 0.01% of the model’s parameters.

Building on this, continual prompt tuning (CPT) extends PT to the CL setting by enabling models to
learn task-specific prompts sequentially without modifying the base model (Wang et al., 2022b). Re-
cent advancements in prompt tuning-based continual learning address key challenges like catastrophic
forgetting and forward knowledge transfer. Wang et al. (2022a) introduced a dual prompt framework
with a shared and task-specific prompt, though this approach faces limitations in retaining knowledge
from past tasks. To mitigate these issues, ProgPrompt (Razdaibiedina et al., 2023) maintains a list of
prompts for each task, progressively adding new ones while retaining old ones. SHLPT (Wu et al.,
2024) extended this by proposing an attention-based similarity estimator to compose similar prompts
for initialization while contrastively regularizing against dissimilar tasks, mitigating negative transfer.

Although prompt-based CL has received significant attention, two main challenges remain:

• First, while major prompt-based CL methods such as Progressive Prompts (Razdaibiedina et al.,
2023), Q-Tuning (Guo et al., 2024), and SHLPT (Wu et al., 2024) report zero forgetting, thereby
fully preserving prior knowledge, they depend on task-aware inference, where task identities are
explicitly provided to retrieve the correct prompt for each previous task. In practice, however, task
IDs are often unavailable during inference (Wang et al., 2024; Liang & Li, 2023).
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• Second, most prompt-based CL methods struggle to scale efficiently in both time and memory as
the prompt queue expands. For example, Progressive Prompts (Razdaibiedina et al., 2023) and
SHLPT (Wu et al., 2024) assign a dedicated soft prompt to each task, leading to memory usage
that grows linearly with the number of tasks. More recent approaches attempt to mitigate this issue
by using PCA-based eviction (Guo et al., 2024) or by continually updating the same set of prompts
over time (Wang et al., 2022b). However, these solutions either incur significant computational
overhead (e.g., repeated SVD during eviction) or suffer from redundant prompt accumulation due
to the lack of effective pruning or merging mechanisms.

The above challenges motivate us to investigate an important but underexplored task-agnostic scenario:

The task identity is unknown at inference time, and the prompt pool has a fixed capacity. In this
setting, the model cannot (1) guarantee zero forgetting by relying on task-specific prompts, nor (2)
indefinitely store all prompts as the task sequence grows. Consequently, the model must perform
prediction using the entire available prompt pool, while prompt pruning or merging becomes
necessary to maintain the prediction quality as well as the bounded size of the pool.

This paper focuses on the above setting and makes the following specific contributions.

• We observe that existing prompt-based continual learning approaches often struggle in task-
agnostic scenarios. Our experiments reveal that when task identities are unavailable at inference
time, performance on earlier tasks degrades substantially after training on new ones, with models
frequently producing incorrect or ambiguous outputs. This issue is especially pronounced for
encoder–decoder architectures, which generate labels as free text: without explicit task cues,
the model may output label words from unrelated tasks encountered during pretraining or earlier
learning. We refer to this phenomenon as latent forgetting, denoting the degradation in performance
on earlier tasks under task-agnostic evaluation. Similar observations have been reported in prior
work (e.g., (Guo et al., 2024)), showing that forward transfer often persists while backward transfer
suffers severely in the task-agnostic setting.

• We introduce GRID, a unified framework that integrates constrained decoding with a principled
gradient-guided prompt selection to address the above limitations:

• A decoding mechanism that leverages representative inputs and constrained decoding, an
approach applied to control the output space of pre-trained LLMs, to ensure label consistency
and improve backward transfer (BWT) without relying on task IDs.

• A gradient-guided prompt selection strategy that dynamically evaluates prompt usefulness
and merges less informative prompts, significantly reducing memory usage while maintaining
both forward and backward transfer performance.

• We conduct extensive experiments across long-sequence and negative transfer benchmarks. GRID
improves BWT by up to 54%, reduces the number of forgotten tasks by 80%, and consistently
matches or outperforms average accuracy of the state-of-the-art prompt-based CL baselines such
as ProgPrompt and SHLPT under the task-agnostic conditions.

2 BACKGROUND AND CHALLENGES

2.1 PROBLEM SETUP

We consider a continual learning (CL) setting in which a model encounters a sequence of N tasks
T = {T1, T2, . . . , TN}, where each task Ti is associated with a labeled dataset Di = {(xj , yj)}|Di|

j=1 .
Here, xj denotes an input instance and yj ∈ Yi is the corresponding label. The model is built upon a
pretrained encoder-decoder language model f(·; θ), whose parameters θ are kept fixed throughout
learning. Rather than finetuning θ, we adapt the model to each task Ti by learning a soft prompt
pi ∈ Rl×d, where l denotes the prompt length and d the embedding dimension. After observing
tasks {T1, . . . , Tt−1}, we maintain a pool of learned prompts P = {p1, . . . ,pt−1}, which serves as
a memory of past task adaptations.

When a new task Tt arrives, we initialize a new prompt pt and train it using data from Dt, concate-
nated with the existing prompt queue P . The backbone model f(·; θ) remains frozen during training;
only the new prompt pt is updated. Let P(t) = P∪{pt} denote the prompt configuration used during
training for task Tt. The model prediction is then given by ŷ = f(x;P(t)). The training objective is
to minimize: Lt = E(x,y)∼Dt

[ℓ(f(x;P(t)), y)], where ℓ(·) is the token-level cross-entropy loss.
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2.2 TASK-AGNOSTIC INFERENCE SETTING

Building on the aforementioned motivation, this paper focuses on the following task-agnostic infer-
ence setting:

Definition 1 (Task-Agnostic Inference). The task identity is unknown at inference time. As a result,
the model cannot rely on task-specific prompt selection. Instead, it performs prediction using the
entire available prompt pool P = {p1, . . . ,pt−1}, which may optionally include an aggregated
prompt derived from previous filtering stages. The concatenated prompt sequence is prepended to the
input and passed to the model. Formally, the prediction is defined as: ŷ = f(x;P).

The task-agnostic evaluation objective becomes: LTA =
∑

Tk∈Tpast
E(x,y)∼Dk

[ℓ(f(x;P), y)] . This
formulation evaluates how well the concatenated prompt pool enables generalization to earlier tasks
without needing to retrieve or know their corresponding individual prompts. This setting appears in
two important CL scenarios: 1) Online learning, where a new task arrives and the model must evaluate
or detect alignment with previously seen tasks (Aljundi et al., 2019a). 2) Retroactive evaluation,
where a model trained on a task sequence is later evaluated on older tasks without access to their
individual prompts (Chaudhry et al., 2018; de Masson D’Autume et al., 2019).

2.3 CHALLENGES IN EXISTING PROMPT-BASED CL IN TASK-AGNOSTIC SETTING

In this section, we discuss several challenges of existing methods in the task-agnostic case.

Label Drift and Hallucination. In task-agnostic settings, encoder–decoder models such as T5
generate free-form text outputs without explicit constraints, which often leads to two types of
errors. The first is label drift, where the model produces semantically related but incorrect labels or
syntactically invalid variants. The second is hallucination, where the decoder generates unseen or
spurious labels due to the likelihood mass fragmenting over an expanding vocabulary. Qualitative
examples of these failure cases are provided in Table 1.

Table 1: Qualitative comparison under task-agnostic inference. Blue indicates label drift, where Progressive
Prompts predict syntactically incorrect labels. Red highlights hallucination, where the model generates invalid
outputs not part of the task’s label set.

Task Input Text Label ProgPrompt

BoolQ Did you ever lecture at Harvard? true true</s>

BoolQ The imperialist nation wanted to strangle
the economy of its colony. false <pad>Fal

BoolQ The neoclassical canon was rooted in
traditional European aesthetics. true <pad>Fal

MNLI Some of the buildings around the city
square . . . colonial period. entailment <pad>True

</s>

MNLI The U.S. Army acceded . . . to keep U.S.
forces in place. entailment <pad>4.0

Inconsistent Label Mappings. Prior approaches such as Progressive Prompts (Razdaibiedina et al.,
2023) and SHLPT (Wu et al., 2024) typically rely on human-specified mappings (e.g., 0 → “negative”)
to convert numeric labels into text. Since these mappings can vary across datasets, they may introduce
semantic inconsistencies that make cross-task generalization more challenging. Illustrative examples
are provided in the Appendix (Table 19), showing how such differences can affect model behavior.

Lack of Task Awareness. Current methods often overlook the underlying task structure. As a result,
even semantically related tasks (e.g., sentiment classification across different datasets) may be treated
separately, which can limit opportunities for generalization and shared label alignment. This may
lead to overlapping prompt representations and reduced transfer.

Prompt Growth. Under task-agnostic evaluation, the model makes predictions based on the entire
prompt pool. Without mechanisms for pruning or merging, the prompt memory can gradually increase
with possibly redundant prompt accumulation, which is not explicitly addressed in some existing
prompt-based CL approaches such as Progressive Prompts (Razdaibiedina et al., 2023).

3
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Figure 1: Overview of the proposed GRID framework. (S1) model receives a stream of tasks with corresponding
datasets. (S2) Representative samples are selected via clustering for each task, and task identification is performed
to ensure consistent label formats. (S3) Gradient-based prompt selection is applied: prompts from the frozen
prompt pool are ranked based on their gradient norms with respect to the current task; (S4) compressed prompt
pool is used to train soft prompts for new tasks with the base model frozen. (S5) During inference, constrained
decoding ensures predictions are aligned with the identified task semantics.

These challenges highlight the need for a more structured and scalable framework for prompt-based
continual learning under task-agnostic conditions.

3 METHOD

To address the aforementioned challenges, we propose a unified framework called GRID: Gradient-
based prompt selection with Representative sample selection, task Identification, and constrained
Decoding. GRID integrates two complementary components: 1) An input pipeline that enhances
backward retention and output consistency by selecting representative samples, performing task
identification, and applying constrained decoding; 2) A gradient-based prompt scoring mechanism
that reduces prompt pool size by identifying and merging less informative prompts while preserving
relevant task knowledge. Figure 1 for the pipeline and Appendix A for full algorithms.

3.1 INPUT CONSTRUCTION FOR STABLE DECODING

Encoder-decoder models generate output labels as textual sequences. When task identity is unavailable
at inference, unconstrained decoding can lead to label drift, producing labels from unrelated tasks or
the pretraining distribution. To mitigate this, we reformulate task-agnostic inference to operate on a
refined input space constructed using three components:

1) Representative Input Sampling. To construct a compact yet informative training subset, we
select k representative samples per class via clustering, improving upon the random sampling strategy
used in prior work (Razdaibiedina et al., 2023). The data set D = {(xj , yj)} is partitioned by label
y ∈ Y , and the sentences ej = fembed(xj) are calculated using a pre-trained embedding model
(all-MiniLM-L6-v2; (Reimers & Gurevych, 2019)). K-Means clustering is performed within
each class to ensure intra-class diversity, and the top k/C samples closest to each cluster center are
selected based on cosine similarity: sim(e, c) = e·c

∥e∥∥c∥ . This yields a balanced subset Drep that spans
the semantic space of each class.

2) Task Identification. In many datasets, task categories are not explicitly provided, and labels often
appear in non-descriptive formats (e.g., {0,1} or {choice1, choice2}) that are ambiguous without
task context. To resolve this, we implement a hierarchical task identification module that infers
the task type t∗ given a candidate label set Yi and a sample input x. The process begins with
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rule-based heuristics, which match label tokens and input structure to predefined task templates (e.g.,
“positive/negative” for sentiment analysis, or premise-hypothesis pairs with “entailment/contradiction”
for NLI). If this fails, we fallback to zero-shot task classification using a lightweight generative
language model (e.g., Phi-3.5). The model is prompted to infer the task type and remap non-
descriptive labels into meaningful textual tokens: (t∗, Ỹi) = LLM(x,Yi). This remapping enables
consistent semantic interpretation across tasks, making it possible to apply decoding constraints in
the task-agnostic setting.

3) Constrained Decoding. With remapped label set Li = {ℓ1, . . . , ℓK}, we apply constrained
decoding at inference. At each decoding step t, we restrict the softmax to only allow tokens from Li:

P̃ (yt | y<t, x) = softmax(M ⊙ zt), Mj = 1[vj ∈ Li],

where zt are the raw logits and M is a binary mask over the vocabulary V .

3.2 PROMPT POOL COMPRESSION VIA GRADIENT-GUIDED SELECTION

Prompt-based CL methods typically allocate one prompt per task, causing the prompt pool to grow
as O(N). To achieve scalable long-horizon continual learning, we propose a dynamic selection–
compression strategy based on gradient relevance. Let P = {p1, . . . ,pt−1} be the prompt pool
before task Tt. For each pj ∈ P , we compute the average gradient norm over new task data Dt:

gj =
1

|Dt|

∑
(x,y)∈Dt

∥∇pjLt(f(x;pj), y)∥2. (1)

A large gj indicates that the task substantially updates pj , suggesting distinct knowledge worth
preserving. Conversely, small gj values imply redundancy with the current task. Prompts are
partitioned using the threshold

τ = µg + ασg, (2)

where µg, σg are the mean and standard deviation of {gj}, and α is a tunable hyperparameter:

Phigh = {pj : gj > τ}, Plow = {pj : gj < τ}. (3)

Although equation 1 only measures prompt–task interaction, we observed that low-gradient prompts
are often highly redundant (average cosine similarity ≥ 0.87, Euclidean radius R < 0.45). When
similarity is high, discarding them has little effect; but when Plow is diverse, removal risks losing
transferable information. To mitigate this, we aggregate Plow into a single embedding pagg using
gradient-weighted averaging:

pagg =
∑

pj∈Plow

wjpj , wj =
gj∑

pk∈Plow
gk

. (4)

This ensures that relatively more informative low-gradient prompts contribute proportionally. The
updated pool for task Tt becomes P ′ = Phigh ∪ {pagg}.
This mechanism preserves critical knowledge while substantially reducing memory and inference
costs. Notably, experiments show minimal degradation under compression, confirming that low-
gradient prompts contribute little to future tasks.

Why reduce storage? For every new task, all existing prompts are re-evaluated: only those with high
gradient contributions are kept, while low-gradient or redundant ones are merged into a single aggre-
gated prompt. This continual compression ensures that the pool size shrinks whenever redundancy is
found. For example, after completing 15 tasks, ProgPrompt accumulates 15 prompts, whereas GRID
retains 5, reducing storage by about 66.7% (Table 6). A smaller pool also decreases the number of
prompts involved in forward/backward passes, which helps lower training time and can partly balance
the additional gradient cost.

4 EXPERIMENTS

4.1 DATASETS AND BASELINES

Datasets. Following Razdaibiedina et al. (2023), we evaluate in few-shot continual-learning “long-
sequence” settings with six 15-task sequences (order L1-L6). L1-L3 are taken from prior work,
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while L4-L6 are newly constructed to study task difficulty progressions (easy→hard, hard→easy, and
mixed). In addition, we introduce a Negative Transfer benchmark (order NT1–NT3), each containing
9 tasks with deliberately dissimilar transitions to induce transfer degradation. Detailed construction
details are provided in the appendix B.2. We use T5 and Flan-T5 models, following prior continual
learning work (Wu et al., 2024; Qin & Joty, 2021; Zhu et al., 2022; Lester et al., 2021; Wang et al.,
2023b; Liang et al., 2023), covering sizes from T5-small (60M) to T5-large (770M), and additionally
T5-3B to demonstrate scalability of our approach.

Baseline Methods for Comparison. We evaluate the proposed method against a total of 7 baseline
methods1: (1) Finetune (Wang et al., 2020), (2) Prompt Tuning (Lester et al., 2021; Qin & Joty,
2021), (3) Data Replay (de Masson D’Autume et al., 2019), (4) LFPT5 (Qin & Joty, 2021), (5)
Per-task Prompt (Lester et al., 2021; Qin & Joty, 2021), (6) ProgPrompt (Razdaibiedina et al.,
2023), and (7) SHLPT (Wu et al., 2024). We report average test accuracy, backward transfer (BWT),
and forward transfer (FWT), defined by Lopez-Paz & Ranzato (2017) with results averaged over
three runs; detailed metric definitions and additional results are provided in Appendix B.

4.2 AVERAGE ACCURACY

Table 2: Average test-set accuracy on long-sequence order
L1–L6 with T5-large. The DR column indicates whether the
method uses data replay (✓) or not (✗).

Method L1 L2 L3 L4 L5 L6 DR Avg

Finetune 8.3 8.7 7.8 7.9 8.1 8.9 ✗ 8.3
Prompt Tuning 8.8 9.5 8.1 9.3 9.4 9.4 ✗ 9.1
Data Replay 56.2 54.3 53.5 54.8 54.2 55.3 ✓ 54.7
LFPT5 70.8 69.2 69.4 68.2 69.4 68.5 ✓ 69.3
Per-task Prompt 75.0 75.6 76.2 74.8 75.9 73.6 ✗ 75.2
ProgPrompt 75.7 78.6 74.3 75.05 77.10 75.46 ✗ 76.0
SHLPT 77.4 77.9 78.8 78.4 78.2 76.2 ✗ 77.8

GRID* 79.1 80.7 81.1 79.0 79.8 75.5 ✗ 79.2

Our method excels in the long-sequence ex-
periments (L1-L3); Table 2), achieving an
average accuracy of 79.2% and surpassing
competitive baselines such as SHLPT, the
most recent state-of-the-art method. These
results validate the effectiveness of our
gradient-driven pruning approach in reduc-
ing redundancy while preserving essential
task knowledge. Detailed results across T5
and Flan-T5 variants (Table 13 in the Ap-
pendix) show consistent gains, particularly
on larger models (e.g., +3.2% for T5-large,
+5.2% for FT5-base). Under the Negative
Transfer benchmarks (Order NT1–NT3; Table 16), we also observe clear improvements (e.g., +3.8%
on FT5-base, +3.6% on FT5-large), highlighting its robustness even in low-task-similarity scenarios.

4.3 BACKWARD TRANSFER ANALYSIS

Table 3: BWT Score on T5-large across order (L1-
L6) against the stronger baselines ProgPrompt and
SHLPT.. Less negative values indicate reduced
forgetting.

Order ProgPrompt SHLPT GRID

L1 -0.7275 -0.6123 -0.3243
L2 -0.7625 -0.6870 -0.3336
L3 -0.6137 -0.5174 -0.3979
L4 -0.6257 -0.5042 -0.3912
L5 -0.6351 -0.4187 -0.2956
L6 -0.6416 -0.5840 -0.3512

Avg -0.6677 -0.5539 -0.3490

Table 3 and Table 11 (Appendix) report BWT scores
across long-sequence and model variants. GRID con-
sistently achieves substantially less negative BWT
than ProgPrompt and SHLPT, cutting forgetting by
nearly half on average. The gains hold across all
T5 and Flan-T5 model sizes, with relative improve-
ments exceeding 50%. Interestingly, while larger
models achieve higher accuracy (Table 13), they suf-
fer greater forgetting, whereas smaller models retain
prior knowledge better, likely due to less aggressive
adaptation to new tasks. To visualize BWT dynamics,
Figure 2 displays heatmaps of BWT scores for Order
L1. Compared to the progprompt (A) and SHLPT
(B), our method (C) exhibits brighter regions in the
lower triangle, indicating stronger retention of ear-
lier tasks. The difference heatmap (D,E) highlights
widespread positive gains (blue), especially for early tasks, underscoring the effectiveness of our
approach. Figure 3 shows per-task BWT differences between our method and the baseline. Positive
values indicate improved retention, while negative values signify degradation. Notably, our method
yields significant BWT improvements on challenging tasks like boolq, sst2, and dbpedia_14,
while maintaining parity or improvement on most others. Additional analysis of task order effects,

1We were unable to compare with Q-Tuning (Guo et al., 2024), since it follows a different setup and its
codebase is not publicly available for reproduction in our setting due to its company privacy restrictions.
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Figure 2: Heatmaps of backward transfer scores on previous tasks for Order L1. (A) Progressive Prompts, (B)
SHLPT, (C) GRID, and differences (D) C–A, (E) C–B.

including comparisons between Order L4, L5, and L6, is provided in Section C.1, Tables 13, 14
and 17.

4.4 FORGOTTEN TASK COUNT

Table 4: Comparison of forgotten task counts
across various task order L1-L6.

Order ProgPrompt SHLPT GRID

L1 77 64 11
L2 72 58 5
L3 80 69 18
L4 87 73 26
L5 71 58 10
L6 85 62 13

Avg 78.7 64.0 13.8

We define the Forgotten Task Count (FTC) as the number
of tasks whose accuracy falls below a threshold relative
to their standalone performance. Formally, task Ti is for-
gotten at step t if a(t)i < τ ·minj a

(0)
j , where a

(0)
i is the

accuracy of Ti when trained alone and τ ∈ (0, 1). Using
0 as a cutoff is misleading since accuracies may degrade
to small but nonzero values; our formulation instead pro-
vides a principled absolute threshold.2. GRID reduces
forgetting dramatically compared to both ProgPrompt
and SHLPT. On average, GRID forgets only 13.8 tasks,
compared to 78.7 for ProgPrompt and 64.0 for SHLPT.
These results highlight that GRID mitigates catastrophic
forgetting in long-horizon continual learning, while preserving task-relevant knowledge in a compact
form. For results across different model variants, please refer to Table 14 in the Appendix.

4.5 SCALABILITY TO LARGER MODELS
Table 5: Comparison on T5-3B model

Order Method Accuracy BWT Forgot.

L1 ProgPrompt 74.86 -0.7161 69
SHLPT 77.18 -0.5841 57
GRID 78.54 -0.4445 21

L2 ProgPrompt 75.08 -0.7207 69
SHLPT 79.29 -0.6343 51
GRID 81.94 -0.5255 17

L3 ProgPrompt 74.14 -0.5840 81
SHLPT 79.56 -0.5632 61
GRID 81.85 -0.4152 33

We have also run experiments on a larger model,
T5-3B, to validate scalability. The results (Ta-
ble 5) show that GRID maintains its advantages
at this larger scale. These findings suggest that
GRID’s core mechanisms scale effectively to
models with billions of parameters.

4.6 ABLATION STUDY

To evaluate the contribution of each component in the GRID framework, we conduct an ablation
study on task order L1, L2, and L3, measuring BWT under four variants: (0) the full G.R.I.D. model,

2In our task list, Amazon had the lowest standalone accuracy (∼0.50); setting τ = 0.4 yields an absolute
threshold of 0.20.
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(1) without gradient-based prompt selection (G), (2) without constrained decoding (D), (3) without
representative input selection (R), and (4) without all components. As shown in Table 6, the full
model yields the highest BWT for both T5-large (-0.3519) and FlanT5-large (-0.3492). Excluding
gradient-based selection has minimal effect on BWT, consistent with its role in reducing memory
rather than directly improving retention: GRID requires only 200 KB of storage versus 600 KB for
ProgPrompt, a 66.7% reduction. In contrast, removing constrained decoding causes a pronounced
BWT drop, and eliminating both components leads to the worst performance (-0.7012 for T5-large,
-0.7106 for FlanT5-large). Overall, these results underscore constrained decoding as the primary
driver of backward transfer, with gradient-based selection offering complementary scalability.

Table 6: Ablation on GRID over orders L1–L3. We report BWT (less negative is better), average across orders,
prompt memory size in KB (slots), and GPU time per run on A100 (40GB) with batch size 8.

Model Variant L1 L2 L3 Avg Memory GPU (h:m)

T5-large

(0) G.R.I.D. −0.3243 −0.3310 −0.3979 −0.3511 200 27:08

(1) w/o G −0.3254 −0.3321 −0.3895 −0.3490 600 25:35

(2) w/o G,D −0.7032 −0.7589 −0.5967 −0.6863 600 26:42

(3) w/o G,D,R −0.7155 −0.7612 −0.5993 −0.6954 600 24:58

(4) w/o all −0.7275 −0.7625 −0.6137 −0.7012 600 23:58

FT5-large

(0) G.R.I.D. −0.3115 −0.3456 −0.3705 −0.3425 200 27:10

(1) w/o G −0.3145 −0.3510 −0.3723 −0.3459 600 25:38

(2) w/o G,D −0.7321 −0.7428 −0.6056 −0.6935 600 26:37

(3) w/o G,D,R −0.7355 −0.7499 −0.6176 −0.7014 600 23:46

(4) w/o all −0.7679 −0.7444 −0.6195 −0.7106 600 23:47

Table 7: Accuracy for dif-
ferent datasets with vary-
ing sample sizes (k) high-
lights how model perfor-
mance scales with more
training samples.

Dataset k Acc.

DBPedia

20 0.5203
200 0.9674
1000 0.9880
2000 0.9892

Amazon

20 0.0000
200 0.0000
1000 0.5136
2000 0.5534

AG News
20 0.0000

200 0.8180
1000 0.8900

Runtime and Hardware. In addition to the A100 experiments in Table 6,
we evaluated GRID on H100 GPUs (80GB) with batch size 16. On H100,
long task sequences averaged ∼ 11 hours per run with peak memory usage
of ∼ 65 GB, compared to ∼ 27 hours and ∼ 21 GB on A100 (40GB,
batch size 8). These results demonstrate that GRID scales efficiently
across hardware generations.

Role of Representative Inputs. We empirically find that increasing the
number of representative samples beyond 1k per class leads to accuracy
saturation with only negligible improvements. This indicates that larger
sample sizes may not yield substantial performance gains (Table 7). By
contrast, clustering provides both data efficiency and better generalization,
highlighting the importance of representative input selection in GRID.

Impact of Prompt Selection Strategies. As shown in Table 8, our
gradient-based method consistently yields the fewest forgotten tasks
and achieves competitive or superior BWT across all settings. FIFO
occasionally matches our BWT but retains more redundant prompts,
resulting in higher forgetting. Random selection performs worst, with
unstable BWT and the largest number of forgotten tasks.

Table 8: Comparison of prompt selection strategies (Random, FIFO, Gradient-based) for T5-large and FlanT5-
large across order L1–L3. Metrics: average accuracy (Acc), BWT, and number of forgotten tasks (FT).

Model Strategy L1 L2 L3

Acc BWT FT Acc BWT FT Acc BWT FT

T5-large
Random 76.81 -0.3482 15 82.07 -0.3549 7 82.06 -0.4065 21
FIFO 76.08 -0.3389 14 57.39 -0.3780 11 81.34 -0.3962 20
Ours 79.12 -0.3243 11 80.69 -0.3336 5 81.09 -0.3979 18

FlanT5-large
Random 78.75 -0.3767 18 76.15 -0.3835 12 76.28 -0.3705 25
FIFO 76.62 -0.3481 16 77.05 -0.3981 16 76.60 -0.3633 24
Ours 79.77 -0.3115 15 78.25 -0.3656 10 76.09 -0.3544 24
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5 RELATED WORK

Continual Learning. Continual learning (CL) involves learning from a sequence of tasks without
full access to previous task data, aiming to preserve prior knowledge and enable positive transfer.
A key challenge is catastrophic forgetting (McCloskey & Cohen, 1989), where updates to model
parameters on new data erode earlier knowledge. CL strategies are categorized into three approaches:
memory-based methods store and replay past task data to mitigate forgetting (Shin et al., 2017;
Bang et al., 2021); regularization-based methods penalize deviations from important parameters to
retain knowledge without stored data (Kirkpatrick et al., 2017; Zenke et al., 2017). Du et al. (2024)
adopts a gradient-masking strategy by updating only high-activation model parameters, achieving
task-agnostic and rehearsal-free CL; and architecture-based methods expand the model by adding
new components for each task (Rusu et al., 2016; Yoon et al., 2018). These methods face scalability
issues in large pretrained models, motivating the development of parameter-efficient CL techniques
using lightweight components like prompts and adapters (Xu et al., 2023; Rücklé et al., 2021).

Continual Prompt Tuning. Prompt tuning (Lester et al., 2021; Li & Liang, 2021; Gu et al., 2021;
Wang et al., 2023b; Jia et al., 2022) adapts large language models (LLMs) by learning a small
set of continuous vectors, or soft prompts, prepended to the input tokens. Unlike full finetuning,
it updates only the prompts while freezing model parameters, achieving competitive or superior
performance with lower computational and memory cost. Continual prompt tuning (CPT) (Zhu et al.,
2022; Yin et al., 2022; Ermis et al., 2022; Wang et al., 2022a) extends this idea to the continual
learning (CL) setting, where models adapt to evolving task sequences. A substantial body of work
has focused on improving CPT’s ability to retain and transfer knowledge, using techniques such
as prompt concatenation (Razdaibiedina et al., 2023), parameter sharing (Wang et al., 2022b), and
weighted prompt summation (Jiang et al., 2023). However, existing approaches often rely on large
memory buffers to mitigate forgetting (Zhu et al., 2022; Ermis et al., 2022), impractical in privacy-
or resource-constrained scenarios. Moreover, task-specific prompts suffer from latent forgetting
under task-agnostic inference (Guo et al., 2024), while methods that expand prompt pools over tasks
(Razdaibiedina et al., 2023; Wang et al., 2022a; Smith et al., 2023) face scalability and efficiency
bottlenecks as tasks accumulate.

Gradient-Based Data and Parameter Selection. Gradient-based strategies have been extensively
studied in data selection and coreset construction (Aljundi et al., 2019b), where the goal is to identify a
representative or influential subset of training data (Borovicka et al., 2012; Rolf et al., 2021). Methods
such as Coreset Selection (Killamsetty et al., 2021; Mirzasoleiman et al., 2020; Hao et al., 2023) and
Gradient Matching (Aljundi et al., 2019b) leverage the similarity or norm of training gradients to
preserve performance while reducing dataset sizes. In the context of prompt learning, some recent
works have begun to reduce the prompt memory. For example, Q-Tuning (Guo et al., 2024) uses
a PCA-based eviction and L2P (Wang et al., 2022b) keeps updating the same set of prompts over
time. In contrast, our work draws inspiration from the coreset literature and extends it to the prompt
space by dynamically evaluating gradient norms of prompt embeddings, allowing us to merge less
informative prompts and improve scalability under long task sequences.

6 CONCLUSION

In this work, we introduce GRID, a unified framework that renders prompt-based continual learning
both scalable and resilient to forgetting. Unlike prior approaches that depend on task-aware inference
or accumulate ever-growing prompt pools, GRID tackles two key challenges: latent forgetting under
task-agnostic inference and the inefficiency of unbounded prompt memory. It integrates constrained
decoding with gradient-guided prompt selection and compression, enabling consistent label genera-
tion, compact memory usage, and enhanced knowledge retention. Our method substantially improves
backward transfer, reducing forgotten tasks by a large margin, while maintaining competitive forward
transfer.

Future work could extend GRID to also enable positive backward knowledge transfer, allowing new
tasks to refine earlier prompts and further boost their performance. Additional directions include
scaling to much longer task streams, applying the framework to other types of foundation models.
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7 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. Our supplementary code
submission contains a cleaned and anonymized implementation of GRID. The repository includes
core training and evaluation scripts, as well as representative training and test datasets for quality
checks. Detailed experimental settings and hyperparameters are provided in the main paper and
appendix.
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SUPPLEMENTARY MATERIALS

A ALGORITHMIC DETAILS

Algorithm 1 Representative Sample Selection

Require: Dataset D = {(xj , yj)}, samples per class
k, embedding model fembed, number of clusters C

Ensure: Subset Drep
1: Initialize Drep ← ∅
2: for each label y do
3: Dy ← {xj | yj = y}
4: Embed each xj : ej ← fembed(xj)
5: Run K-Means on {ej} into C clusters
6: for each cluster c do
7: Select top k/C samples by similarity to

center
8: Add to Drep
9: end for

10: if selected < k then
11: Add random samples to reach k total
12: end if
13: end for
14: Shuffle and return Drep

Algorithm 2 Prompt Selection and Aggregation

Require: Prompt pool P = {pj}, new task data Dt,
thresholds α, β

Ensure: Updated prompt pool P ′

1: for each pj ∈ P do
2: Compute gradient norm gj via Eq. 1
3: end for
4: Compute µg , σg; threshold τ via Eq. 2
5: Classify prompts into Phigh and Plow via Eq. 3
6: if Plow ̸= ∅ then
7: Compute aggregation pagg via Eq. 4
8: P ′ ← Phigh ∪ {pagg}
9: else

10: P ′ ← Phigh

11: end if
12: Append new prompt pt to P ′

13: return P ′

B FURTHER IMPLEMENTATION DETAILS

B.1 DATASETS

Table 9: Overview of the 15 datasets used in our CL experiments, including their evaluation metrics.
Datasets from CL benchmark (Zhang et al., 2015), GLUE (Wang et al., 2018), and SuperGLUE
(Wang et al., 2019) were utilized, along with the IMDB movie reviews dataset. For tasks with two
evaluation metrics, we report the average as the final performance measure.

Dataset name Category Task Domain Metric

1. Yelp CL benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL benchmark topic classification Wikipedia accuracy
4. Yahoo CL benchmark QA Yahoo Q&A accuracy
5. AG News CL benchmark topic classification news accuracy
6. MNLI GLUE NLI various accuracy
7. QQP GLUE paraphrase detection Quora accuracy & F1
8. RTE GLUE NLI news, Wikipedia accuracy
9. SST2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE NLI various accuracy
12. COPA SuperGLUE QA blogs, encyclopedia accuracy
13. BoolQ SuperGLUE boolean QA Wikipedia accuracy
14. MultiRC SuperGLUE QA various F1 & EM
15. IMDB Other sentiment analysis movie reviews accuracy

B.2 TASK SEQUENCE ORDERS

Long-Sequence CL Setting: Following the approach of (Razdaibiedina et al., 2023), we consider
a total of 15 distinct tasks. These consist of five datasets from the CL benchmark (Zhang et al., 2015):
AG News (topic classification), Amazon Reviews (sentiment analysis), Yelp Reviews (sentiment
analysis), DBpedia (Wikipedia text classification), Yahoo Answers (Q&A classification), four tasks
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Table 10: Task sequence orders used in our CL experiments. Order L1-L3 correspond to long-
sequence CL benchmarks. Order L4-L6 are our proposed custom sequences, with L4 representing an
easy-to-hard order, L5 representing a hard-to-easy order, and L6 representing a mixed order. NT1,
NT2, and NT3 represent different task evaluation orders designed to examine negative transfer across
various task sequences.

Order Task Sequence

L1 mnli→ cb→ wic→ copa→ qqp→ boolq→ rte→ imdb→ yelp→ amazon
→ sst2→ dpedia→ ag→ multirc→ yahoo

L2 multirc→ boolq→ wic→ mnli→ cb→ copa→ qqp→ rte→ imdb→ sst2
→ dpedia→ ag→ yelp→ amazon→ yahoo

L3 yelp→ amazon→ mnli→ cb→ copa→ qqp→ rte→ imdb→ sst2→ dpedia
→ ag→ yahoo→ multirc→ boolq→ wic

L4 sst2→ imdb→ yelp→ amazon→ ag→ yahoo→ dbpedia→ mnli→ rte→
cb→ qqp→ copa→ boolq→ wic→ multirc

L5 multirc→ wic→ boolq→ copa→ qqp→ cb→ rte→ mnli→ dbpedia→
yahoo→ ag→ amazon→ yelp→ imdb→ sst2

L6 sst2→ copa→ ag→ imdb→ mnli→ yahoo→ rte→ yelp→ qqp→ cb→
amazon→ dbpedia→ boolq→ wic→ multirc

NT1 multirc→ wic→ mnli→ cb→ rte→ qqp→ yahoo→ yelp→ amazon
NT2 amazon→ yelp→ yahoo→ qqp→ rte→ cb→ mnli→ wic→ multirc
NT3 yahoo→ mnli→ amazon→ cb→ yelp→ rte→ qqp→ multirc→ wic

from the GLUE benchmark (MNLI, QQP, RTE, SST2) (Wang et al., 2018), five tasks from the
SuperGLUE benchmark (WiC, CB, COPA, MultiRC, BoolQ) (Wang et al., 2019), and the IMDB
movie reviews dataset for sentiment analysis (Maas et al., 2011). We evaluate our methods across six
different task sequence orders. Three of these sequences follow standard long-sequence continual
learning orders that have been used in prior works (e.g., L1–L3) (Razdaibiedina et al., 2023; Guo
et al., 2024). We additionally propose three novel task orders: (1) Order L4: easy-to-hard, where
tasks are grouped by category and simpler tasks such as binary sentiment classification are introduced
first, followed by more complex reasoning tasks like MultiRC and COPA; (2) Order L5: hard-to-easy,
which reverses this progression; and (3) Order L6: mixed, where tasks from different categories and
difficulty levels are randomly interleaved. These variations allow us to assess how task presentation
order and semantic similarity affect forgetting, transfer, and model generalization in long-horizon
continual learning scenarios.

Negative Transfer Benchmark. To evaluate the robustness of our approach against negative transfer
(Pan, 2010), we introduce a Negative Transfer Benchmark (NT1, NT2, NT3) inspired by the SHLPT
framework (Wu et al., 2024). Specifically, we identify task pairs that exhibit negative transfer based
on the analysis provided in the SHLPT. Using these insights, we create three task sequences that are
likely to cause negative transfer, meaning earlier tasks make it harder to learn later ones. This helps
us test how well our method handles such challenges.

B.3 IMPLEMENTATION DETAILS

In our experiments, we focus on encoder-decoder transformer-based architecture, adopting both
the original T5(Raffel et al., 2020) and Flan-T5(Chung et al., 2022) as our backbone architectures.
To study the impact of model size, we perform evaluations using the small, base, large, and
3B variants. This setup allows us to assess the scalability of our method across a range of model
capacities.

B.4 EXPERIMENT DETAILS

In all our experiments with T5 and Flan-T5 backbones, we fix the prompt length to 10 tokens, train
for 10 epochs, and use 1k representative samples per class.3 This configuration is applied uniformly

3We could not experiment with 300 epochs and 20 samples per class (as in ProgPrompt (Razdaibiedina et al.,
2023)) due to resource constraints.
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Table 11: Backward Transfer (BWT) comparison between our method and ProgPrompt across multiple task
orderings (Order L1-L6) for T5 and Flan-T5 models. Less negative scores indicate reduced forgetting. Our
method consistently improves BWT across all model variants.

Model Setting Order 4 Order 5 Order 6 Order A Order B Order C Avg Imp. (%)

T5-small ProgPrompt -0.6081 -0.5414 -0.5126 -0.5243 -0.5377 -0.5006 -0.5374 54.4 ↑Ours -0.1402 -0.1894 -0.2504 -0.3141 -0.2734 -0.3006 -0.2447

FT5-small ProgPrompt -0.5711 -0.5574 -0.4916 -0.4914 -0.5075 -0.4987 -0.5196 68.4 ↑Ours -0.0518 -0.1449 -0.2106 -0.2129 -0.1517 -0.2396 -0.1686

T5-base ProgPrompt -0.6918 -0.6520 -0.5948 -0.5956 -0.6471 -0.5881 -0.6282 52.7 ↑Ours -0.3060 -0.2404 -0.3549 -0.2893 -0.3439 -0.3259 -0.3101

FT5-base ProgPrompt -0.6092 -0.7222 -0.6488 -0.6273 -0.6631 -0.6225 -0.6489 58.7 ↑Ours -0.2616 -0.3243 -0.3319 -0.3245 -0.3240 -0.2743 -0.3067

T5-large ProgPrompt -0.7275 -0.7625 -0.6137 -0.6257 -0.6351 -0.6416 -0.6677 51.7 ↑Ours -0.3243 -0.3336 -0.3979 -0.3912 -0.2956 -0.3512 -0.3490

FT5-large ProgPrompt -0.7679 -0.7444 -0.6195 -0.6616 -0.7107 -0.6631 -0.6945 50.4 ↑Ours -0.3115 -0.3656 -0.3544 -0.3514 -0.3282 -0.3540 -0.3442

across the small, base, and large variants of both model families, ensuring a fair yet efficient
comparison to prior work such as ProgPrompt (Razdaibiedina et al., 2023).

C ADDITIONAL RESULTS

C.1 ORDER AND BWT ANALYSIS

One critical observation from Table 11 and Table 14 is that Order L5 consistently outperforms Order
L4 in both BWT scores and the number of forgotten tasks. Specifically, for the same set of tasks,
Order L5 shows less negative BWT scores, indicating reduced forgetting. Additionally, the number
of forgotten tasks is lower in Order L5, further suggesting that harder tasks at the beginning of
training help the model retain earlier knowledge more effectively. This observation highlights the
benefit of starting with more difficult tasks, as it leads to better long-term retention and improved
overall performance in continual learning. One also notes that Order L6 performs better than Order
L4 but slightly less effectively than Order L5, indicating that a mixed task sequence provides a
balanced approach to task progression, offering a compromise between the benefits of easy-to-hard
and hard-to-easy learning.

Forgotten Task Count. We further analyze the number of forgotten tasks across various settings in
Table 14. Our method significantly reduces the number of forgotten tasks compared to the Progressive
Prompts baseline. For instance, in the case of T5-small, the number of forgotten tasks drops from
as high as 93 in some orders to as low as 7 under our method. Similar improvements are observed
for T5-base, where the count decreases from 90 to just 6 in the best case, and for T5-large,
where it reduces from 87 to only 5. These improvements are consistent across all task orderings,
including structured sequences such as Order L4 (easy-to-hard), Order L5 (hard-to-easy), and Order
L6 (mixed).

D LIMITATIONS AND FUTURE WORK

While GRID demonstrates strong improvements in backward transfer and scalability, it has two
primary limitations. First, our evaluation is limited to sequences of 15 tasks. To fully assess the
scalability of our method, future work should test it on significantly longer task streams. Second, the
current GRID framework, specifically the constrained decoding component is designed for encoder-
decoder architectures. Although our gradient-based prompt selection strategy is model-agnostic and
can be applied broadly, the full framework has not yet been extended to other foundational models.
Exploring how to adapt GRID’s decoding mechanism to these architectures is a promising direction
for future research.
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Table 12: Impact of prompt length on T5-large performance across Order L1-L3. We observe a trade-off: longer
prompts improve BWT (less forgetting) but increase the number of forgotten tasks and can degrade accuracy.
Optimal performance is generally observed at a moderate prompt length (e.g., 10).

Prompt Length L1 L2 L3

Acc BWT FT Acc BWT FT Acc BWT FT

5 78.23 -0.3167 10 81.73 -0.3565 5 84.98 -0.4286 15
10 79.12 -0.3243 11 80.69 -0.3336 5 81.09 -0.3979 18
20 80.58 -0.3396 12 79.37 -0.3159 5 75.55 -0.3206 24

Table 13: Average test accuracy across long-sequence task orderings (Order L1-L6) for T5 and Flan-T5 models.
Our method consistently outperforms Progressive Prompts in nearly all configurations.

Model Setting L1 L2 L3 L4 L5 L6 Avg

T5-small ProgPrompt 63.18 57.18 61.12 62.73 59.11 60.33 60.61
Ours 59.75 64.97 59.90 64.64 64.51 62.39 62.69

FT5-small ProgPrompt 60.32 59.25 59.43 59.18 59.35 59.96 59.58
Ours 58.35 57.37 64.73 61.74 58.30 57.07 59.59

T5-base ProgPrompt 71.34 67.60 69.57 69.71 72.43 69.93 70.10
Ours 72.74 71.24 72.09 67.16 75.72 65.23 70.70

FT5-base ProgPrompt 63.73 74.83 75.23 72.14 74.25 72.48 72.11
Ours 77.24 78.08 77.16 78.32 73.53 65.92 75.04

T5-large ProgPrompt 75.68 78.56 74.29 75.05 77.10 75.46 76.02
Ours 79.12 80.69 81.09 79.05 79.79 75.54 79.21

FT5-large ProgPrompt 79.81 77.51 74.30 79.13 79.09 79.56 78.23
Ours 79.77 78.25 76.09 76.91 76.94 76.74 77.45
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Figure 3: Per-task BWT comparison between our method (blue) and the baseline (red) for Order L1. Positive
bars indicate improved retention of prior tasks. Our method shows significant BWT gains on several tasks (e.g.,
copa, wic, yahoo), demonstrating its effectiveness in mitigating forgetting across diverse task types.
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Table 14: Comparison of forgotten task counts between Progressive Prompts (Baseline) and our method for
different models across various task orders (order L1–L6).

Model Setting L1 L2 L3 L4 L5 L6 Average Improvement (%)

T5-small ProgPrompt 85 85 88 90 84 93 87.5 76.8%Ours 14 7 28 36 16 21 20.3

FT5-small ProgPrompt 93 95 95 94 97 93 94.5 76.7%Ours 17 14 28 26 20 27 22.0

T5-base ProgPrompt 88 82 76 90 83 88 84.5 80.9%Ours 15 6 19 29 13 15 16.2

FT5-base ProgPrompt 94 93 93 93 93 93 93.2 83.0%Ours 10 10 15 25 14 21 15.8

T5-large ProgPrompt 77 72 80 87 71 85 78.7 82.4%Ours 11 5 18 26 10 13 13.8

FT5-large ProgPrompt 92 93 93 93 91 93 92.5 79.8%Ours 15 10 24 24 14 25 18.7

Table 15: Backward Transfer (BWT) scores on negative transfer benchmarks (NT1–NT3) comparing
our method with Progressive Prompts across T5 and Flan-T5 models. Lower-magnitude (less negative)
values indicate reduced forgetting. Our method consistently achieves better BWT, demonstrating
robustness under task dissimilarity.

Model Setting NT1 NT2 NT3 Avg

T5-small Baseline -0.5783 -0.4882 -0.5133 -0.5266
Ours -0.1957 -0.1945 -0.2043 -0.1982

FT5-small Baseline -0.4771 -0.3924 -0.4097 -0.4264
Ours -0.0807 -0.1601 -0.1171 -0.1193

T5-base Baseline -0.5707 -0.5834 -0.5890 -0.5810
Ours -0.1817 -0.2103 -0.2314 -0.2078

FT5-base Baseline -0.6719 -0.5335 -0.6116 -0.6057
Ours -0.2911 -0.2074 -0.3162 -0.2716

T5-large Baseline -0.7088 -0.6598 -0.6536 -0.6741
Ours -0.3154 -0.3658 -0.3077 -0.3296

FT5-large Baseline -0.7156 -0.6628 -0.6886 -0.6890
Ours -0.2858 -0.2888 -0.3636 -0.3127

Table 16: Average test accuracy on negative transfer task sequences (NT1–NT3) comparing our
method with Progressive Prompts. Our method consistently outperforms the baseline across all
models, demonstrating better generalization under reduced task similarity.

Model Setting NT1 NT2 NT3 Avg

T5-small Baseline 57.22 55.51 57.79 56.84
Ours 58.21 55.08 56.44 56.58

FT5-small Baseline 51.57 46.02 48.36 48.65
Ours 50.40 50.54 49.77 50.24

T5-base Baseline 61.18 65.75 66.42 64.45
Ours 63.34 63.46 63.30 63.37

FT5-base Baseline 70.81 60.83 67.25 66.30
Ours 70.76 61.54 70.05 67.45

T5-large Baseline 73.57 73.63 74.26 73.82
Ours 72.29 74.84 73.07 73.40

FT5-large Baseline 75.98 73.98 74.84 74.93
Ours 76.28 71.56 74.72 74.19
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Table 17: Forward Transfer (FWT) scores across various task orderings (Order L1-L6) for T5
and Flan-T5 models. Higher scores indicate better transfer to future tasks. Our method achieves
comparable or improved FWT in most cases, demonstrating that reducing forgetting does not come
at the cost of forward transfer.

Model Setting L1 L2 L3 L4 L5 L6 Avg

T5-small Baseline -5.07 -11.28 -1.48 -6.09 -9.58 -8.63 -7.02
Ours -5.82 -0.11 -5.55 -0.96 -1.11 -3.33 -2.81

FT5-small Baseline -3.57 -5.26 -4.98 -5.33 -4.92 -4.64 -4.78
Ours -2.53 -4.09 3.33 0.25 -3.02 -4.64 -1.78

T5-base Baseline -3.02 -7.02 -4.80 -4.55 -1.58 -4.23 -4.20
Ours -4.93 -6.68 -5.78 -11.32 -2.21 -13.28 -7.37

FT5-base Baseline -13.91 -2.08 -1.48 -4.90 -2.60 -4.53 -4.92
Ours 4.27 5.10 4.04 5.32 0.18 -7.90 1.84

T5-large Baseline -4.14 -1.19 -5.58 -2.66 -2.67 -3.81 -3.34
Ours -2.82 -1.20 -0.90 -3.11 -2.20 -6.28 -2.75

FT5-large Baseline -0.73 -3.17 -6.65 -1.43 -1.53 -0.99 -2.42
Ours 2.35 0.75 -1.48 -0.64 -0.60 -0.90 -0.09

Table 18: Comparison of FWT scores between Progressive Prompts (Baseline) and Ours across
different models. The table reports average performance on different tasks order , including Order
NT1, NT2, NT3, and the overall average (Avg).

Model Setting NT1 NT2 NT3 Avg

T5-small Baseline -5.86 -7.62 -5.62 -6.37
Ours -4.67 -7.65 -6.87 -6.40

FT5-small Baseline -3.93 -9.99 -7.88 -7.27
Ours -4.96 -4.58 -6.47 -5.34

T5-base Baseline -7.44 -1.35 -1.44 -3.41
Ours -6.52 -5.56 -6.64 -6.24

FT5-base Baseline -1.29 -12.68 -5.35 -6.44
Ours -1.43 -11.72 -2.05 -5.07

T5-large Baseline -2.55 -2.34 -1.62 -2.17
Ours -4.70 -1.85 -3.76 -3.44

FT5-large Baseline 0.09 -2.19 -0.76 -0.95
Ours 1.06 -4.39 -0.77 -1.37

Table 19: Examples highlighting inconsistent label mappings in COPA under task-agnostic inference. Prior
works like Progressive Prompts use manual conversions (e.g., 0→ “false”), often misaligning task semantics.
GRID mitigates these inconsistencies by inferring appropriate labels automatically.

Premise Choice1 Choice2 Question Label ProgPrompt GRID

The man lost the competi-
tion.

The competition was
sabotaged.

He intimidated his
competitors.

cause 0 false choice1

I regained composure
from my fit of anger.

My heart pounded. I took deep breaths. cause 1 true choice2

The cook’s eyes watered. He ran out of onions. He cut an onion. cause 1 true choice2

The tree branch landed in
the river.

The branch moved
downstream.

The river’s current
became stronger.

effect 0 false choice1

The woman retired. She received her
pension.

She paid off her
mortgage.

effect 0 false choice1
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Figure 4: Heatmaps of backward transfer scores on previous tasks for Order L2. (A) shows results
from the baseline (Progressive Prompts), (B) shows our method, and (C) presents the difference (B -
A). Brighter values indicate better retention of earlier tasks.
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Figure 5: Per-task BWT comparison between our method (blue) and the baseline (red) for Order L2.
Positive bars indicate improved retention of prior tasks.
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Figure 6: Heatmaps of backward transfer scores on previous tasks for Order L3. (A) shows results
from the baseline (Progressive Prompts), (B) shows our method, and (C) presents the difference (B -
A). Brighter values indicate better retention of earlier tasks.
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Figure 7: Per-task BWT comparison between our method (blue) and the baseline (red) for Order L3.
Positive bars indicate improved retention of prior tasks.
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Figure 8: Heatmaps of backward transfer scores on previous tasks for Order L4. (A) shows results
from the baseline (Progressive Prompts), (B) shows our method, and (C) presents the difference (B -
A). Brighter values indicate better retention of earlier tasks.
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Figure 9: Per-task BWT comparison between our method (blue) and the baseline (red) for Order L4.
Positive bars indicate improved retention of prior tasks.
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Figure 10: Heatmaps of backward transfer scores on previous tasks for Order L5. (A) shows results
from the baseline (Progressive Prompts), (B) shows our method, and (C) presents the difference (B -
A). Brighter values indicate better retention of earlier tasks.
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Figure 11: Per-task BWT comparison between our method (blue) and the baseline (red) for Order L5.
Positive bars indicate improved retention of prior tasks.
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Figure 12: Heatmaps of backward transfer scores on previous tasks for Order L5. (A) shows results
from the baseline (Progressive Prompts), (B) shows our method, and (C) presents the difference (B -
A). Brighter values indicate better retention of earlier tasks.

-0.36

0.20

-0.64

-0.29

-0.52
-0.57

-0.24

-0.36
-0.38 -0.39

-0.24

-0.91

-0.14

-0.07

0.00

-0.85

-0.02

-0.89

-0.94

-0.85

-0.69

-0.83

-0.57

-0.89 -0.89

-0.44

-0.98

-0.13

0.00 0.00

ss
t2

co
pa

ag
_n
ew
s

im
db mn

li

ya
ho
o_
an
sw
er
s_t
op
ics rte

ye
lp_
re
vie
w_
fu
ll

qq
p cb

am
az
on

db
pe
dia
_1
4

bo
olq wi

c

mu
ltir
c

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Figure 13: Per-task BWT comparison between our method (blue) and the baseline (red) for Order L6.
Positive bars indicate improved retention of prior tasks.
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