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ABSTRACT

Large Language Model (LLM) conditioning refers to instructing an LLM to gen-
erate content in accordance with the norms and values of a specific culture, beliefs
of a particular political orientation, or any desired text-specified semantic condi-
tioning. Unfortunately, prompt engineering does not ensure that LLMs behave in
accordance with a desired conditioning due to the inductive bias of the pre-training
and alignment datasets. Prior works have focused on fine-tuning LLMs by directly
conditioning the LoRA weights; however, such methods introduce a large number
of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized
hypernetwork framework that generates context-aware LoRA adapters from tex-
tual descriptions. Experiments on multiple benchmarks show that Zhyper achieves
competitive performance with up to 26x fewer parameters than the state-of-the-art
baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating
improved generalization to out-of-domain settings and a better capturing of fine-
grained contextual values.

1 INTRODUCTION

Large Language Models (LLMs) have transformed Natural Language Processing (NLP), Computer
Vision (CV), and machine learning (ML) more broadly. They achieve state-of-the-art performance in
text generation and comprehension across diverse domains, including code synthesis (Rozière et al.,
2023), mathematical reasoning (Ahn et al., 2024), scientific writing (Geng et al., 2025; Eger et al.,
2025), multimodal tasks such as text–image understanding and generation (Alayrac et al., 2022),
and evaluation of machine translation and related tasks (Gu et al., 2025). This success stems from
scaling to millions and billions of parameters. However, this scaling requires large computational
resources, motivating the search for parameter-efficient fine-tuning (PEFT) techniques.

Recent advances have made it possible to adapt LLMs to task-specific criteria, which is crucial for a
broader applicability and acceptance of NLP systems. A recent stream of research leverages PEFT
techniques (Ding et al., 2023; Weyssow et al., 2023; Prottasha et al., 2024), e.g., Low-Rank Adap-
tions (LoRA) (Hu et al., 2021) to adapt for desired task-specific values in an LLM. LoRA achieves
this by freezing most of the pre-trained model’s parameters and introducing trainable low-rank matri-
ces, yielding weight correction terms. However, stand-alone LoRA approaches are primarily tailored
for a single-task adaptation and may lose their effectiveness in a setting where an LLM needs to be
adapted to various downstream settings. Therefore, approaches directly tackling a multi-task learn-
ing (MTL) setting have been proposed (Agiza et al., 2024; Wang et al., 2023; Luo et al., 2024; Wang
et al., 2024) that aim to do multi-task fine-tuning efficiently, where a shared backbone model must
serve multiple tasks. A promising direction for the dynamic and robust individualization of LLMs
is by leveraging hypernetworks in the training pipeline. In Text-to-LoRA (T2L) (Charakorn et al.,
2025), the authors apply hypernetworks to adapt LLMs to specific task descriptions using only a tex-
tual task description as the input for learning the adapters’ weights. However, two open challenges
remain unresolved. First, existing conditioned LoRA methods, such as T2L, are not parameter-
efficient when extended to large contextual spaces. Second, the applicability of conditioned LoRA
tuning has not been explored for the important real-world problem of cultural alignment.

To tackle the described challenges, we propose a factorized hypernetwork, called Zhyper, which
leverages a hypernetwork to inject desired values in the outputs of an LLM. More specifically, the
hypernetwork should produce a different weight based on the current layer, a layer type for attention-
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 Conditioning 1:
 Answer like an Italian

 Conditioning 2:
 Answer like a German

Question: What is your favorite food?

 Answer 1:
 Pizza

 Answer 2:
 Schnitzel

Transformers with hypernetwork-conditioned LoRA
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Figure 1: We introduce a novel parameter-efficient architecture for conditioned LLM finetuning
based on hypernetwork-conditioned LoRA adapters

awareness, and the respective description of a context we want to adapt to. As opposed to prior
works (Charakorn et al., 2025), we additionally experiment with contexts being descriptions of
cultures. Considering the example shown in Figure 1, the goal is to condition a base model on
certain criteria. For instance, when choosing a preferred food, the answer might have country-
specific dependence. The contextual modulation signal is computed via a hypernetwork that is
integrated into the computation of the LoRA adapter, leading to answers conditioned on the instilled
values.

We empirically show that our novel model achieves comparable predictive performance at an order
of magnitude fewer parameters on a variety of LLM capability assessments, e.g., math, science,
coding, reasoning, and word knowledge. Furthermore, we provide a thorough ablation study on
the contextual modulation signal represented as an (r × r)-matrix, where r denotes the rank of the
LoRA adapters.

Our contributions are as follows:

• A novel lightweight hypernetwork-based architecture for training LoRA adapters that align
to text or culture descriptions with up to 26x fewer parameters compared to prior work.

• Hypernetwork that generates a compact contextual modulation signal instead of generating
all parameters of an adapter.

• A thorough empirical study on efficient learning strategies for the conditioned fine-tuning
of Large Language Models.

• Improved empirical performances in the important use cases of task conditioning and cul-
tural alignment.

2 ZHYPER - CONDITIONED LLM TUNING

Our method Zhyper leverages hypernetworks to induce descriptive information and generate LoRA
adapters for context-specific adaptation. The following subsections present the preliminaries in
Section 2.1, our novel factorized architecture in Section 2.2, and the complexity analysis of our
method in Section 2.3.

2.1 PRELIMINARIES.

Low-Rank Adaptation (LoRA) is a well-established parameter-efficient fine-tuning technique for
LLMs (Hu et al., 2021). Generally, the weights of a base model are frozen, and only low-rank
weight matrices are trained, serving as adapters to the model. Formally, for each selected linear
transformation h = W basex, the fine-tuned transformation is given by h′ = W basex+∆Wx, with
∆W = AB, where A ∈ Rdin×r, and B ∈ Rr×dout are low-rank weight matrices with r ≪ d.

Hypernetworks introduce neural networks whose output defines the parameters of another network
(Ha et al., 2016). It formalizes the idea of learning to generate weights rather than learning weights
directly. Formally, let fθ(x) denote a parameterized target network with θ ∈ Rr. A parameterized
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hypernetwork Hϕ(z) : Rm → Rr is conditioned on a layer-specific descriptor vector z ∈ Rm and
parameters ϕ, and outputs the weights θ of the target network.

2.2 ARCHITECTURE

We present the Zhyper method, a hypernetwork-conditioned low-rank adaptation method that en-
ables parameter-efficient and context-aware fine-tuning of LLMs. The general workflow of our
method is illustrated in Figure 1, where in the following we provide details on the respective com-
ponents.

Contextual Information. We represent contextual features (e.g., value or cultural descriptions)
leveraging a transformer-based encoder trained for general text embeddings. Each description is
transformed into a fixed-length embedding vector c ∈ Rdc , which serves as the contextual input to
our hypernetwork described below. This representation ensures that diverse textual descriptions are
mapped into a unified semantic space suitable for conditioning LoRA adapters. We denote by ci the
contextual information associated with the i-th dataset.

Factorized Hypernetworks (Zhyper-diag). Let D = {Di}ni=1 be fine-tuning datasets, where
Di = {(Xi,Yi)} is a set of input-label pairs. Each dataset i is associated with a set of contex-
tual descriptions Ci := {c(j)i }Mj=1 where c

(j)
i ∈ Rdc . During training, we sample Di ∼ D and

ci ∼ Ci.

For each transformer layer ℓ ∈ {1, . . . , L} and attention projection t ∈ {Q,V } of the base LLM,
we learn module-type and layer-specific embeddings. For that, we utilize learnable embeddings
et = Etype(t) ∈ Rdt and eℓ = Elayer(ℓ) ∈ Rdℓ , shared across training. Our hypernetwork Hϕ :
Rdc+dt+dℓ → Rr is defined to map the concatenated input to a rank-r vector:

zi
ℓ,t = Hϕ(c

(j)
i ∥ et ∥ eℓ) (1)

where ∥ denotes the concatenation operator. Intuitively, zi
ℓ,t ∈ Rr denotes a latent representation

of a contextual encoding for the i-th dataset w.r.t. the ℓ-th layer and the attention component t, i.e.,
query or value projections. This leads to the following update rule for the base model’s weights:

∆Wℓ,t(c) = Aℓ,t diag(z
i
ℓ,t)Bℓ,t with Aℓ,t ∈ Rdin×r,Bℓ,t ∈ Rr×dout (2)

W adapt
ℓ,t x← (W base

ℓ,t +∆Wℓ,t)x (3)

where diag(zi
ℓ,t) ∈ Rr×r yields a diagonal matrix with the elements of zi

ℓ,t on the diagonal.

The Zhyper-square variant is an ablation of our method where the hypernetwork outputs a square
matrix Hϕ : Rdc+dt+dℓ → Rr×r, leading to ∆Wℓ,t(c) = Aℓ,tz

i
ℓ,tBℓ,t where zi

ℓ,t ∈ Rr×r.

Training Objective. To integrate the hypernetwork-generated LoRA adapters into the base model
with weights W base, we formalize the training objective as minimizing the supervised fine-tuning
loss over datasets and their associated contextual descriptors, ensuring that each layer and mod-
ule type is conditioned on context-specific information. We define the trainable parameters θ =
{Aℓ,t, Bℓ,t, ϕ, Etype, Elayer}. The supervised fine-tuning training objective becomes:

argmin
θ

Ei∼[n]E(x,y)∼Di
E
c
(j)
i ∼Ci

LSFT

(
f
W base,∆W

(
c
(j)
i

)(x) , y
)

(4)

where f
W base,∆W (c

(j)
i )

denotes our model’s output given the frozen weights of the base model W base

and ∆W (c
(j)
i ) denoting the adaptation according to Equation (2).

The architecture of our framework enables to train the matrices A and B once, whereas the hyper-
network provides an efficient contextual modulation by either providing a diagonal scaling matrix
or a full square matrix. By factorizing conditioning into the modulation signal we achieve high
efficiency while enabling context-aware alignment.

2.3 COMPLEXITY ANALYSIS

We provide a complexity analysis of our approach compared to our competitors T2L (Charakorn
et al., 2025) and HyperLoRA (Lv et al., 2024), leveraging hypernetworks with respect to the per-
context materialization, their representativeness, and generalization capabilities.
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Per-Context Materialization. For a transformer with L layers and attention projections t ∈ T
(e.g., Q, V ), each linear map is adapted by a rank-r LoRA adapter. Let Pℓ,t := r(din + dout) be the
number of LoRA parameters per (ℓ, t)-pair. The hypernetwork parameters are denoted by PH .

The hypernetwork’s output size is given as
∑

l,t Pl,t for HyperLoRA (Lv et al., 2024) and
T2L (Charakorn et al., 2025). Regarding Zhyper, it is

∑
ℓ,t r or

∑
l,t r

2 depending on the con-
figuration -diag or -mix, respectively. In practical scenarios, we have that r ≪ din, dout, hence,
r2 ≪ r(din + dout). Therefore, in inference, both variants of Zhyper are far lighter than Hyper-
LoRA and T2L. The per-context GPU memory scales as:

{HyperLoRA , T2L} ≫ Zhyper-square ≥ Zhyper-diag (5)

In terms of trainable parameters, HyperLoRA trains PH + Pemb parameters, where Pemb refers to
their task query embeddings. Similarly, T2L trains on PH + Player(L, de) + Ptype(T , De) + Pemb
parameters, i.e., layer- and type-wise embeddings are added. The learnable parameters of Zhy-
per aggregates to

∑
ℓ,t Pℓ,t + PH + Player(L, de) + Ptype(T , De). For the models HyprLoRA

and T2L, PH has to be sufficiently large such that (A,B) matrices of the LoRA adapters can be
generated with high fidelity. In Zhyper, we follow the idea of paying

∑
ℓ,t Pℓ,t once, and the hyper-

network outputs only rank-r matrices as modulation signals. Therefore, in our method, PH is much
smaller compared to T2L and HyperLoRA, where the hypernetwork emits (A,B) directly.

Representativeness. Let Hfull = {AB : A ∈ Rdin×r,B ∈ Rr×dout} be the hypothesis class of
a LoRA adapters. That is, HyperLoRA and T2L can realize any element of Hfull subject to their
hypernetwork’s capacity. For Zhyper-diag, we define Hdiag = {A diag(z)B : A ∈ Rdin×r,B ∈
Rr×dout , z ∈ Rr} that defines a strict subset of Hfull. Likewise, we define Hsquare = {AZB :

A ∈ Rdin×r,B ∈ Rr×dout ,Z ∈ Rr×r} for which Hsquare matches Hfull iff A and B have full
row/column rank r. Therefore, Zhyper-full can approximate any adapter in Hfull. This leads to the
relationship:

Hdiag ⊆ Hsquare ⊆ Hfull (6)

Generalization. Given the hypothesis classes and the number of free parameters for each of model,

we have that the Rademacher complexity scales with R(Hfull) = O
(√

r(din+dout)
N

)
, where N is the

sample size (Shalev-Shwartz & Ben-David, 2014). Likewise, we get that R(Hdiag) = O
(√

r
N

)
and

R(Hsquare) = O
(√

r2

N

)
= O

(
r√
N

)
. This leads to the relationship:

R(Hdiag) ≤ R(Hsquare) ≤ R(Hfull) (7)

By constraining the hypothesis classes that lower the Rademacher complexity, we get tighter gen-
eralization bounds for Zhyper(-diag, or -square) compared to HyperLoRA and T2L. Notably, in
practical settings with r ≪ (din+dout), the inequalities in Equation 7 become strict. Consequently,
our model’s performance is likely to transfer to unseen data whilst reducing the risk of overfitting
and using an order of magnitude fewer parameters compared to other competitors.

3 EXPERIMENTS

In our experimental protocol, we address two important real-world use cases:

• Task Conditioning: where LLMs are conditioned to perform a certain task, e.g., to act as
an expert on geography, similar to the setting of T2L (Charakorn et al., 2025) (Section 3.1).

• Cultural Alignment: where LLMs are instructed to generate content aligned with the
norms and values of a culture, e.g., to write like a European (Section 3.2).

• Hyperparameters of our method. We use a 3-layer MLP, with the weight of output head of size
dMLP out × r which is different from T2L head, with weight of dMLP out × r × (dout + din) where
dMLP out is the output size of the last MLP block. To generate the embeddings of the text descriptions,
we use gte-large-en-v1.5 (Zhang et al., 2024; Li et al., 2023). Our method introduces a new

4
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Table 1: Benchmark performance on unseen tasks and descriptions. T2L, MTL and Task-specific
LoRAs results are reproduced by us, while the others are taken from T2L (Charakorn et al., 2025).
All methods use a LoRA rank of r = 8, except for Arrow Routing, which uses r = 4 and T2L with
r = 16. Best numbers per column are in bold.

Trainable
Params

ArcC ArcE BQ HS OQA PIQA WG MBPP GSM8K HE Avg.
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (pass@1) (acc) (pass@1) (10 tasks)

Zero-shot adaptation without fine-tuning
Mistral-7B-Instruct N/A 65.4 77.8 71.6 49.7 54.2 72.8 45.0 43.1 40.9 37.2 55.8
Prepending task desc. N/A 72.0 85.8 67.6 58.9 63.4 77.9 59.0 41.6 40.9 39.0 60.6

Few-shot adaptation without fine-tuning
3-shot ICL N/A 72.1 85.9 71.7 59.0 66.2 76.2 58.0 42.6 40.9 37.2 61.0

Zero-shot adaptation after fine-tuning
Arrow Routing (r = 4) N/A 60.9 86.2 87.6 80.8 48.6 83.0 68.5 50.2 N/A 28.7 N/A
Hyperdecoders 55M 76.6 88.5 83.9 65.2 76.6 81.3 64.9 51.6 43.6 40.9 67.3
MTL 3.4M 74.0 87.3 84.0 63.4 69.2 81.5 60.5 49.1 47.5 39.6 65.4

Fine-tuned directly on test tasks (Oracle)
Task-specific LoRAs 3.4M 74.6 88.3 88.0 87.9 77.4 86.1 57.0 47.9 50.2 N/A N/A

Conditioned zero-shot adaptation after fine-tuning
T2L (SFT) L (r = 16) 110M 74.5 87.7 85.5 64.9 68.7 81.5 59.8 52.4 46.5 42.3 66.4
Zhyper (Ours) 4.2M 74.7 87.2 85.4 66.0 68.6 81.0 59.3 52.6 44.2 39.6 65.9

hyperparameter, Z matrix type, which can be either a diagonal matrix or a square matrix. Using this
hyperparameter together with the LoRA rank, we conduct a hyperparameter analysis on a subset of
the benchmark dataset (validation set). We find that the configuration with r = 8 and a diagonal
Z matrix achieves the best performance 10 task-based benchmark subsets while maintaining a low
number of parameters (∼ 2.5M). In evaluation, we refer to this variant as simply Zhyper. We
perform a similar hyperparameter tuning procedure for the cultural alignment models. Comparisons
between different variants are provided in Appendix Section B.

The source code of our framework and experiments is publicly available.1

3.1 USE CASE ON TASK CONDITIONING

• Baselines. We evaluate our method on Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)
as an unconditioned baseline model, along with a variant utilizing few-shot in-context learning
(ICL) (Brown et al., 2020; Dong et al., 2024), and another that incorporates prepended task
descriptions in the query. As fine-tuned models, we compare against T2L (SFT) L (Charakorn
et al., 2025), which performs instant adaptation of LLMs from task descriptions; multi-task LoRA
(MTL), a variant of LoRA trained on all tasks; task-specific LoRA (Oracle), trained only on the
corresponding task; and Hyperdecoders (Ivison & Peters, 2022), which generate LoRAs on a
per-sequence basis. We also report the zero-shot results of Arrow Routing (Ostapenko et al., 2024);
because code is unavailable, we copy their reported numbers, which use LoRA rank r of 4. Our
experiments show that the best-performing T2L variant uses r = 16, while the best MTL variant
uses r = 8. For completeness, we also report results for LoRA ranks r = 8, r = 16, and r = 32.

• Datasets. We use the SNI dataset (Wang et al., 2022) to train our task-based model. Fol-
lowing the T2L setup, 11 tasks are held out for evaluation, and 10 datasets are removed to avoid
data contamination with the evaluation benchmarks, leaving 479 datasets for training. We also reuse
the task descriptions generated in T2L, with 128 descriptions per training dataset. For evaluation,
we utilize 10 benchmark datasets that enable a broad assessment across diverse areas, such as
reasoning, math, science, coding, and world knowledge. We evaluate on the following benchmarks:
Arc-challenge (ArC) and Arc-easy (ArE) (Clark et al., 2018), OpenBookQA (OQA) (Mihaylov
et al., 2018), HumanEval (HE) (Chen et al., 2021), HellaSwag (HS) (Zellers et al., 2019), MBPP
(Austin et al., 2021), Winogrande (WG) (Sakaguchi et al., 2021), GSM8K (Cobbe et al., 2021),
PIQA (Bisk et al., 2019), and Boolq (BQ) (Clark et al., 2019). These benchmarks are excluded from
training unless explicitly used as an oracle, and are therefore treated as unseen. Each benchmark is
evaluated using three different text descriptions, and the results are averaged across them.

1https://anonymous.4open.science/r/Zhyper-F432
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Table 2: Number of parameters.

LoRA Rank MTL Zhyper-diag Zhyper-square T2L

8 3.41M 4.21M 4.27M 55.00M
16 6.82M 7.62M 7.87M 110.06M
32 13.63M 14.46M 15.47M 219.32M

Avg. Performance 64.0 64.8 64.3 65.6

We compare our method against the best-
performing T2L model, T2L (SFT) L with r =
16, which has 110 million trainable parame-
ters. While our method does not fully match
T2L’s performance, it achieves comparable re-
sults while using 26x fewer trainable parame-
ters and losing only 0.5% in the average bench-
mark performance (cf. Table 1); a full com-
parison across LoRA ranks is provided in Appendix Section C. To assess the significance of this
difference, we apply the Friedman test followed by the post hoc Nemenyi test and visualize the
results using Critical Difference (CD) diagrams. Black bars connecting different models indicate
that there are no statistically significant difference w.r.t. the rank. Our analysis shows that there is
no significant difference between our method, T2L, and MTL. Moreover, across LoRA ranks (r)
8, 16, and 32, at least one variant of our method is statistically indifferent from T2L as shown in
Figure 3. Figure 2 shows that our method is on par with T2L in terms of average benchmark per-
formance, while achieving a high parameter efficiency. The exact number of parameters for each
method is listed in Table 2. We note that Hyperdecoders perform strongly; however, they generate a
separate LoRA adapter for each problem instance, which is computationally expensive and contrasts
with our approach, which generates an adapter from a text description rather than from individual
problem instances. Overall, from the results of Tables 1-2 and Figure 2, we deduce that our method
Zhyper offers the best trade-off between parameter-efficiency and accuracy among all considered
baselines.
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Figure 2: (Left) Average performance (higher is better); (Right) Performance rank (lower is better).
Our method lies in the Pareto front optimality between performance and the number of parameters.

3.2 USE CASE ON CULTURAL ALIGNMENT

• Baselines. Similar to Section 3.1, we use Mistral-7B-Instruct-v0.2 as our backbone
and unconditional baseline. We include: Zero-shot, Role-play (prepend a short role specification
to the query), Prepending culture descriptions, Multi-cultural (MTL), a single LoRA trained on
either all countries or all regions, country/region-based oracle, and T2L (Charakorn et al., 2025).
Additionally, we evaluate a one-hot encoding (OHE) variant of Zhyper, where the hypernetwork is
conditioned on an OHE vector representing the culture.

• Datasets. We compile a dataset from Reddit’s AskX subreddits2. We consider the sub-
reddits: r/AskAGerman, r/askmexico, r/AskArgentina, r/AskTurkey, r/AskFrance, r/askegypt,
r/AskAJapanese, r/AskIndia, r/AskAChinese, r/AskSouthAfrica, r/askitaly, r/AskARussian,
r/AskUK, r/AskAnAmercian, r/asklatinamerica, r/AskAnAfrican, r/AskMiddleEast, r/AskEurope,
r/askasia, covering 14 countries and 5 regions/continents. These subreddits were selected based on
data availability. We treat each submission title and its top comment as a question-answer pair,
considering the top 20k submissions and their top 3 comments based on comment score. To ensure
high-quality data, we remove pairs with deleted or removed submissions or comments, as well as

2We use Watchful1’s reddit dump, which includes data between 2005-06 to 2024-12 for the top 20k sub-
reddits (https://www.reddit.com/r/pushshift/comments/1i4mlqu/dump_files_from_
200506_to_202412/)
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12345

Mistral-7BMTL_r=8
Zhyper-diag_r=8 Zhyper-square_r=8

T2L_r=16

CD

(a) Our method vs. best variants of MTL and T2L.

12345

Mistral-7BMTL Zhyper-diag Zhyper-square T2L 

CD

(b) Rank = 8

12345

Mistrtal-7BZhyper-square MTL Zhyper-diag T2L 

CD

(c) Rank = 16

12345

Mistrtal-7BZhyper-square MTL Zhyper-diag T2L 

CD

(d) Rank = 32

Figure 3: Critical Difference (CD) diagrams comparing our method with T2L across LoRA ranks.
Lower rank is better. Unconditioned is the base model without any fine-tuning. Groups that are not
significantly different are connected by a black bar.

Condition: None

I don't consume beverages as I
don't have the ability to drink...

User Input: What is your favourite beverage?

Condition: Be European

My favourite beverage is a
good quality red wine...

Condition: Write like a

German

I would say beer...

Figure 4: Model output based on text conditions. From left to right: unconditioned model, Europe-
conditioned model and Germany-conditioned model.

pairs containing references to other websites, subreddits, comments, or any type of media, following
a filtering procedure similar to OpnionGPT (Haller et al., 2024). Finally, we randomly select the top
30k pairs per subreddit based on the comment score. To generate cultural descriptions, we prompt
gpt-4.1-mini using random pairs sampled from the training dataset. Additionally, we infuse
the descriptions with command-like instructions (e.g., “Write like a German”), so that the textual
conditions reflect both stereotypical cultural traits and explicit commands to emulate the culture. We
show examples and the generation prompt in Appendix Section D.

• Evaluation Protocol. We evaluate cultural alignment on CulturalBench (Chiu et al., 2025), which
comprises human-written and human-verified questions spanning 45 regions and 17 topics. The
benchmark provides two evaluation setups that share the same underlying questions but differ in
querying format: Easy uses the original four-way multiple-choice questions, whereas Hard converts
each question into four binary (True/False) statements, yielding a more challenging setting that
reduces shortcutting via option heuristics. We report results at both the country and region levels3.
Accordingly, we train two Zhyper models: one on country-level AskX data and one on region-level
AskX data. For evaluation, CulturalBench questions are split into seen countries/regions (present
in training via AskX) and unseen countries/regions (absent during training). For text-conditioned
models (T2L and Zhyper), we use 12 cultural conditions (see Appendix Section D for details) to
generate LoRAs per culture (country or region) and report the average performance.

• Cultural alignment across seen/unseen countries. As shown in Table 3, our method surpasses
prompt-based approaches and fine-tuning baselines across all splits and also leads the averages.
Beyond strong results on seen countries, Zhyper retains the multi-cultural compatibility that the
OHE variant exhibits on seen countries, by conditioning on text, further improving transfer to unseen
countries. Notably, the advantage also holds on the Hard split, indicating that the model aligns with
cultural norms in a way that remains stable under stricter evaluation rather than relying on surface
cues. we show an example generation in Figure 4.

3In this paper, country refers to ISO 3166-1 including administrative countries and territories, whereas
region denotes macro-regions (e.g., North America, Middle East)
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Table 3: Cross-country Generalization Results on CulturalBench. We evaluate Easy/Hard set-
tings and report accuracy (%) along with the performance rank; Cross-country generalization is
assessed by partitioning countries into seen and unseen groups. Best numbers per column are in
bold; second best are underlined; values in brackets are mean rank across countries. “N/A” indi-
cates the setting is not applicable. All methods use a LoRA rank of r = 8, unless stated otherwise.
Compared to prompt-based baselines and other fine-tuning baselines, Zhyper achieves the top scores
on all splits and the best averages.

Seen Countries Unseen Countries Avg. Easy Avg. Hard
Easy Hard Easy Hard

Zero-shot 58.64(6.82) 34.95(4.96) 53.93(5.29) 30.48(3.76) 55.91(5.77) 32.36(4.13)
Role-play 64.27(5.54) 32.81(5.29) 63.90(3.52) 29.63(4.03) 64.06(4.14) 30.97(4.42)
Prepending culture desc. 64.06(5.54) 34.07(5.04) 62.92(3.45) 31.46(3.92) 63.40(4.10) 32.56(4.27)
Multi-cultural (MTL, r = 16) 66.21(4.57) 28.34(6.50) 64.89(3.18) 29.07(4.07) 65.44(3.61) 28.77(4.82)
T2L 65.92(4.39) 34.35(4.61) 63.58(3.36) 32.12(3.23) 64.56(3.68) 33.05(3.66)
Culture-specific 67.57(4.04) 31.84(5.25) N/A N/A N/A N/A
Zhyper-OHE (Ours) 70.29(2.36) 40.58(2.04) N/A N/A N/A N/A
Zhyper (Ours) 70.15(2.75) 40.39(2.32) 67.79(2.21) 36.27(2.00) 68.78(2.38) 38.00(2.10)

Table 4: Cross-region generalization on CulturalBench. We evaluate the Easy/Hard settings and
report accuracy (%). Each cell is shown as Easy/Hard. Best numbers per column are in bold;
second best are underlined. “N/A” indicates the setting is not applicable. All methods use a LoRA
rank of r = 8, unless stated otherwise. Compared to prompt-based and other fine-tuning baselines,
Zhyper shows a clear advantage on seen regions and on North America, and achieves the best overall
averages.

Seen Regions Unseen Regions Avg.
Latin America Europe Africa Middle East Asia N. America Oceania

Zero-shot 47.52/20.79 56.10/31.01 69.40/39.55 45.67/21.26 54.41/35.08 67.11/40.79 61.54/34.62 55.91/32.36
Role-play 57.43/31.68 66.20/32.05 73.13/30.60 59.84/25.20 62.18/29.41 64.47/50.00 73.08/19.23 64.06/30.97
Prepending culture desc. 59.98/26.57 65.24/33.54 72.70/31.53 57.35/24.54 61.55/33.26 66.89/48.46 70.83/27.24 63.60/32.50
Multi-cultural (MTL, r = 16) 61.39/32.67 65.16/36.24 74.63/35.07 56.69/27.56 67.02/34.24 68.42/46.05 76.92/38.46 66.18/34.80
T2L 60.48/18.98 63.73/27.67 70.52/19.53 57.22/19.03 64.90/28.05 65.79/29.82 65.38/25.00 64.15/25.39
Culture-specific 62.38/43.56 67.60/41.11 77.61/39.55 61.42/33.86 68.07/38.03 N/A N/A N/A
Zhyper-OHE (Ours) 61.39/41.58 68.64/40.77 75.37/41.04 61.42/33.07 69.33/37.18 N/A N/A N/A
Zhyper (Ours) 62.62/35.97 68.23/38.78 78.05/38.93 62.14/29.99 68.79/36.40 71.82/53.40 69.23/33.65 68.67/37.52

• Cultural alignment across seen/unseen regions. Table 4 shows that Zhyper attains the best overall
average at the regional level and provides balanced improvements over both seen and unseen regions,
outperforming prompt-based and other fine-tuning baselines. Crucially, the margin persists on the
Hard split, indicating stable regional-level gains under stricter evaluation and complementing the
country-level findings under a different partition. An exception is Oceania, where competing MTL
variants take the top performance and narrow our margin. We hypothesize that this weaker outcome
reflects higher cross-regional transfer difficulty correlated with cultural divergence between Oceania
and the training regions.

In both settings, the Zhyper-OHE variant outperforms Zhyper on seen cultures. However, this
method fail to generalize on unseen settings due to the nature of OHE.

4 RELATED WORK

Low-Rank Adaptation. To fine-tune LLMs on out-of-distribution applications, Hu et al. (2021)
introduce the concept of Low-Rank Adaptation of LLMs, where the pre-trained LLM weights are
frozen and trainable rank decomposition matrices are introduced. The key concept of LoRA lies in
decomposing a weight change matrix ∆W into two low-rank matrices A and B. In Agiza et al.
(2024), the authors extend the LoRA to the multi-task setting by learning shared and task-specific
low-rank adapters.

Hypernetworks. A recent stream of research leverages Hypernetworks that build on the idea of
a network’s parameters being learned through another neural network (Ha et al., 2016). In Text-
2-LoRA, Charakorn et al. (2025) propose a framework that performs instant adaptation of LLMs
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Table 5: Delinearing our method Zhyper from prior works leveraging hypernetworks (Hyperdecoder,
HyperLoRA, T2L), and MTLoRA as a multi-task learning approach

Model Per-context
materialization

Adaptation
granularity

Compact
Modulation

Inference
Complexity

Hyperdecoder (Ivison & Peters, 2022) very high per instance ✗ High
HyperLoRA(Lv et al., 2024) medium per-context ✗ Medium
MTLoRA (Agiza et al., 2024) low shared across multiple tasks ✗ Low
T2L (Charakorn et al., 2025) high per-context ✗ Medium/High
Zhyper (Ours) very low per-context ✓ Low

from descriptions of downstream tasks. The framework leverages hypernetworks to compress task-
specific adapters and enables the zero-shot generation of new LoRA adapters at inference. Hyper-
decoders are proposed in Ivison & Peters (2022) and generate task- and instance-specific decoders
showing improved performance in multi-task NLP. Lastly, HyperLoRA leverages hypernetworks for
generating task-specific LoRA adapters under low-rank constraints that enable efficient parameter
sharing and better cross-task generalization (Lv et al., 2024).

Discussion. Table 5 compares Hyperdecoder, HyperLoRA, MTLoRA, T2L, and our method Zhy-
per along the dimension per-context materialization, adaptation granularity, compact modulation,
and inference complexity. The key distinction is that prior methods require a hypernetwork to pro-
duce full LoRA matrices, while Zhyper introduces a compact modulation mechanism, i.e., producing
or learning full LoRA matrices vs. Zhyper’s approach of outputting only a compact matrix combin-
ing the fixed adapters’ weights. Therefore, our framework reduces the number of parameters by an
order of magnitude while maintaining competitive accuracy as shown in Section 3.

Cultural Alignment of LLMs. Evaluations typically use probability surveys (Haerpfer et al., 2024;
Pew Research Center, 2024; Durmus et al., 2023) or non-survey suites built from authored/mined
culture questions (Pistilli et al., 2024; Ju et al., 2025; Myung et al., 2024; Rao et al., 2025; Li
et al., 2024b). Surveys are representative but non-everyday questions, focusing on opinions and
attitudes, are sensitive to evaluation design(Khan et al., 2025), while many non-survey suites lack
rigorous validation. We adopt CulturalBench(Chiu et al., 2025) as cultural alignment benchmark
for its breadth across countries, regions, and topics and its systematic human–AI red-teaming with
a challenging Easy/Hard split.

Methodologically, prior work spans anthropological/persona prompting (AlKhamissi et al., 2024),
survey- or simulation-driven data curation (Li et al., 2024a;b), and distributional alignment via self-
curated supervision or modified objectives (Xu et al., 2025; Yao et al., 2025; Suh et al., 2025; Cao
et al., 2025). Our approach instead uses a hypernetwork to generate LoRA adapters from natural-
language cultural descriptions at inference time, enabling parameter-efficient per-locale specializa-
tion with improved cross-locale generalization.

5 CONCLUSION

Despite the broad success of LLMs, current approaches face persistent challenges in efficiently con-
ditioning LLMs, particularly for content alignment with a large contextual corpus. We introduce
a parameter-efficient factorized hypernetwork framework, called Zhyper, for context-aware LoRA
adapters given textual descriptions. Specifically, we leverage a hypernetwork that yields for each
textual description a layer- and target module-specific embedding vector that is injected in LoRA
adapters. Our evaluation highlights that Zhyper’s computational demands are at an order of mag-
nitude lower – up to 26x fewer parameters – compared to existing models while achieving com-
petitive predictive performance. Through comprehensive empirical evaluation on task conditioning
on 10 benchmark datasets, our method shows competitive results with state-of-the-art, while on a
cultural alignment setting, Zhyper shows better generalization capabilities to out-of-domain and un-
seen contexts. These results highlight the potential of hypernetwork-conditioned LoRA adapters for
dynamic, fine-grained LLM adaptation at minimal computational cost, supporting more sustainable
and flexible model deployment.
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6 ETHICS STATEMENT

While our method demonstrates improved cultural alignment, we acknowledge that using Reddit as
a data source introduces potential biases. We do not filter the dataset for political correctness or
linguistic accuracy, therefore some QA pairs may contain harmful content. Although we select the
top-voted comments, these can still be conflicting due to the diversity of users’ opinions. Moreover,
by relying on Reddit, we model a specific subset of people—those who use the platform—which
may not accurately reflect the broader cultural perspectives of the general population.
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A TRAINING PROCEDURE AND HYPERPARAMETER

We use the following hyperparameters to train our model (Table 6). Notably, we train the model for
2,000 epochs for tasks and 5,000 epochs for cultures. For LoRA ranks below 16, training fits on
a single H100 GPU (80 GB VRAM). To accelerate training, we distribute it across 8 H100 GPUs
using Accelerate (Gugger et al., 2022). For example, training with LoRA rank 8 on the tasks dataset
takes approximately 7–8 hours of wall-clock time, otherwise on 1 GPU, whereas on a single GPU it
can take up to 48 hours.

Table 6: Hyperparameters used during training. dMLP out denotes the output dimension of the final
MLP block, which serves as input to the network’s output head. dMLP in denotes the input dimension
of each MLP block. dMLP hidden denotes the hidden dimension of each MLP block.

Hyperparameter Ours/T2L Task/Culture-specific

Max learning rate 2.5e-5 3e-5
Gradient accumulation steps 1 1

Batch size 8 8
NEFTune noise alpha 5.0 5.0

Warmup fraction 0.2 0.1
Label smoothing 0.1 0.1

Weight decay 0.1 0.1
dMLP out 512 N/A
dMLP in 128 N/A

dMLP hidden 512 N/A
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Figure 5: Average Performance Rank on the benchmark validation set (lower is better). For MTL,
best variant is at r = 8, T2L, r = 16 and Zhyper r = 8, diag.

Table 7: SFT loss by LoRA rank (r) (lower is better). Left: country models; right: region models.
Bold indicates the best performance across LoRA ranks for each method. For Zhyper, the best
variant is reported considering both the Z matrix type (diag or square) and the LoRA rank. That is,
Zhyper-diag with LoRA rank 8 achieves the best performance for both country- and region-based
models.

Method Rank
8 16 32

MTL 2.748 2.688 2.759
T2L 2.764 2.777 2.775
Zhyper-diag 2.705 2.726 2.734
Zhyper-square 2.731 2.730 2.734

Method Rank
8 16 32

MTL 2.773 2.753 2.772
T2L 2.815 2.880 2.826
Zhyper-diag 2.756 2.818 2.766
Zhyper-square 2.765 2.815 2.764

B HYPERPARAMETER TUNING

We report the performance of MTL, T2L, and Zhyper on a subset of the benchmark validation
set (Figure 5). For Table 1, we select the best-performing variant of each method. For cultural
alignment, since CulturalBench is relatively small, containing up to 200 questions per country, we
do not use it as a validation set. Instead, we sample 10% of the training data (subreddit QA pairs)
as a validation set and use SFT loss as the evaluation metric. The best-performing variant of each
method is then used in the benchmarking tables. Table 7 reports the performance of all methods for
both country- and region-based models.

C FULL TASK ANALYSIS

We report the all benchmark results of all the variants in Table 8.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Benchmark performance on unseen tasks and descriptions. T2L, MTL and Task-specific
LoRAs results are reproduced by us, while the others are taken from T2L (Charakorn et al., 2025).
Best numbers per column are in bold.

Trainable
Params

ArcC ArcE BQ HS OQA PIQA WG MBPP GSM8K HE Avg.
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (pass@1) (acc) (pass@1) (10 tasks)

Zero-shot adaptation without fine-tuning
Mistral-7B-Instruct N/A 65.4 77.8 71.6 49.7 54.2 72.8 45.0 43.1 40.9 37.2 55.8
Prepending task desc. N/A 72.0 85.8 67.6 58.9 63.4 77.9 59.0 41.6 40.9 39.0 60.6

Few-shot adaptation without fine-tuning
3-shot ICL N/A 72.1 85.9 71.7 59.0 66.2 76.2 58.0 42.6 40.9 37.2 61.0

Zero-shot adaptation after fine-tuning
Arrow Routing (r = 4) N/A 60.9 86.2 87.6 80.8 48.6 83.0 68.5 50.2 N/A 28.7 N/A
Hyperdecoders 55M 76.6 88.5 83.9 65.2 76.6 81.3 64.9 51.6 43.6 40.9 67.3
MTL (r = 8) 3.4M 74.0 87.3 84.0 63.4 69.2 81.5 60.5 49.1 47.5 39.6 65.4
MTL (r = 16) 6.82M 73.4 86.7 80.3 62.9 66.2 79.9 58.2 47.1 44.7 39.0 63.8
MTL (r = 32) 13.63M 72.0 86.2 77.6 62.1 62.6 79.4 57.0 48.1 42.5 40.2 62.8

Fine-tuned directly on test tasks (Oracle)
Task-specific LoRAs (r = 8) 3.4M 74.6 88.3 88.0 87.9 77.4 86.1 57.0 47.9 50.2 N/A N/A
Task-specific LoRAs (r = 16) 6.82M 73.6 87.9 86.9 84.2 73.4 84.7 57.1 47.4 48.1 N/A N/A
Task-specific LoRAs (r = 32) 13.63M 73.0 87.3 80.6 78.9 70.6 83.4 57.2 46.4 47.2 N/A N/A

Conditioned zero-shot adaptation after fine-tuning
T2L (SFT) L (r = 8) 55.00M 75.6 88.4 84.7 63.1 71.6 83.1 59.4 49.8 47.6 43.3 66.7
T2L (SFT) L (r = 16) 110M 74.5 87.7 85.5 64.9 68.7 81.5 59.8 52.4 46.5 42.3 66.4
T2L (SFT) L (r = 32) 219.32M 73.0 86.8 81.7 63.8 66.1 78.9 59.6 48.0 45.4 39.4 64.3
Zhyper (r = 8, diag) 4.2M 74.7 87.2 85.4 66.0 68.6 81.0 59.3 52.6 44.2 39.6 65.9
Zhyper (r = 16, diag) 7.62M 74.6 86.9 83.3 63.8 67.4 80.7 59.4 50.3 46.1 42.7 65.5
Zhyper (r = 32, diag) 14.46M 72.0 86.3 78.1 62.7 62.4 79.5 57.5 47.0 44.2 40.0 63.0
Zhyper (r = 8, square) 4.27M 74.5 87.4 83.8 65.1 69.2 81.6 58.8 53.8 45.6 40.0 66.0
Zhyper (r = 16, square) 7.87M 73.2 86.7 80.4 61.9 66.3 79.3 58.9 49.4 43.8 39.2 63.9
Zhyper (r = 32, square) 15.47M 71.9 85.9 77.5 61.7 62.2 79.2 58.0 49.2 43.8 40.2 63.0

D CULTURAL CONDITIONS GENERATION

We use the following prompt with gpt-4.1-mini to generate culture descriptions. As a context,
we append 20 QA pairs from the subreddit data. We repeat this prompt till we reach 200 descriptions.

Culture Description Prompt

You are given question–answer pairs collected from the subreddit SUBREDDIT NAME.
Use these pairs as background context to understand cultural attitudes.

Write 10 short and diverse descriptions of what a NATIONALITY person is.

You already generated the following descriptions. Please don’t repeat them or gener-
ate similar ones.

PREV GENERATIONS

Each description should: - Be written in plain text (no quotes or markdown).
- Use a JSON format.
- Vary in style (some short and punchy, some longer and narrative).
- Use simple, clear words so that anyone can understand.
- Do not start with ”they” since it might be vague without mentioning the nationality.
- Be creative and avoid repeating the same phrasing.

Context:
QA PAIRS

In the following, we provide examples of textual descriptions of cultural conditioning from country-
(cf. D.1) and region-based (cf. D.2) perspectives. Text conditions here consists of three types:
generated descriptions (e.g., “People from Argentina tend to be curious and open to new ideas but
remain cautious, preferring to understand fully before committing.”), command-like instructions
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(e.g., “Think like someone from Argentina.”), and mixed forms combining both (e.g., “Adopt Ar-
gentinian family values. An Argentinian often blends humor with seriousness, using jokes to ease
tension but also to express real feelings.”). We use 128 text conditions per culture (region/country)
as input for the hypernetwork.

D.1 COUNTRY-BASED

We provide examples of textual descriptions used in our evaluation for a country-based alignment.
The examples refer to the countries Argentina, France, and Japan, respectively (alphabetically or-
dered). For each country, we show the first four entries. We refer to our repository for an exhaustive
list of textual descriptions for various countries.

Argentina

• People from Argentina tend to be curious and open to new ideas but remain cautious
preferring to understand fully before committing.

• An Argentinian often uses sharp humor to cut through awkwardness, making even
tense moments easier to handle.

• Think like someone from Argentina. An Argentinian often shows resilience, man-
aging to keep going despite economic or personal setbacks.

• Adopt Argentinian family values. An Argentinian often blends humor with seri-
ousness, using jokes to ease tension but also to express real feelings.

• . . .

France

• Many French people value practical skills and knowledge, often learning through
experience and shared advice rather than just theory.

• A French person usually prefers direct and honest communication, even if it means
being a bit blunt sometimes.

• A French person often values clear, logical explanations and dislikes vague or
rushed answers, especially in official or professional contexts.

• In France, people often enjoy small daily rituals, like a morning coffee or a walk,
as moments of calm and reflection.

• . . .

Japan

• Adopt Japanese daily mindset.
• Embody Japanese character.
• Many Japanese people take pride in punctuality, seeing being on time as a way to

honor others’ time and effort.
• Japanese individuals often enjoy seasonal celebrations but may also quietly observe

traditions without much fanfare.
• . . .

D.2 REGION-BASED

Here, we show the textual descriptions of the regions Europe, Africa, and Latin America as examples
(alphabetically ordered). For each region, we show the first four entries. We refer to our repository
for an exhaustive list of textual descriptions for various regions.
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Africa

• African identity often includes a healthy dose of skepticism towards outside influ-
ence, paired with a desire to build self-reliance.

• Think like someone from Africa. An African person often carries a deep sense of
resilience, shaped by a history of overcoming adversity and embracing change.

• Express African identity. Many Africans find joy in simple daily rituals, like shar-
ing tea or storytelling at dusk, that strengthen bonds and preserve culture.

• Behave like a African local. An African person often finds strength in shared strug-
gles, turning hardship into collective hope and determination.

• . . .

Europe

• Live by European principles.
• Think like a European speaker.
• Act with European mindset. Many Europeans enjoy traditional drinks with a twist,

like sweet vermouth in martinis, reflecting regional tastes and history.
• Act with European reliability.
• . . .

Latin America

• Think with Latin American clarity.
• Many Latin Americans find joy in street life, where music, food, and conversation

create a vibrant and welcoming atmosphere.
• Express Latin American way of life.
• Use Latin American expressions daily. Many Latin Americans grow up with a deep

respect for nature, feeling connected to the forests, rivers, and mountains that shape
their daily lives.

• . . .

E DETAILS OF CULTURAL ALIGNMENT EVALUATION

E.1 DETAILS OF CULTURALBENCH

Scope and Coverage. CulturalBench is a benchmark for cross-cultural knowledge and common
sense. It comprises 1,696 human-written questions, each verified by five independent annotators,
spanning 45 global countries as shown in Table 9, and 17 topical categories (e.g., food preferences,
etiquette, festivals). We evaluate on the latest release as documented by the authors.

Construction and Quality Control. Items originate from real cultural scenarios and were itera-
tively refined with multi-round reviewing, conflict resolution, and consistency checks to ensure un-
ambiguous semantics and well-formed phrasing; each item includes a gold answer and brief notes
to facilitate reproducibility and error analysis.

Evaluation Setups. Two complementary setups are provided: Easy (multiple-choice) and Hard
(the same question decomposed into binary True/False statements). These share question stems but
differ in elicitation format, allowing us to assess cultural knowledge both with and without distractor
options. Unless otherwise noted, we report accuracy. Here is an example question in the Easy and
Hard setting.
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Question: In Korean dining etiquette, what is a common practice regarding drinks and paying for
the meal?

Easy (multiple-choice).

(a) Everyone pays only for themselves.

(b) Younger diners pour drinks for elders, and elders cover the bill.

(c) The older person always pays, regardless of who invited.

(d) The bill is typically split evenly among all diners.

Scoring: correct if and only if (b) is selected.

Hard (binary decomposition).

(1) Younger diners pour drinks for elders, and elders pay. True

(2) Each diner usually pays only for themselves. False

(3) Speaking loudly on entry is considered polite. False

(4) People commonly split the bill evenly. False

Scoring: the item counts as correct only if all four True/False judgements are answered correctly
(exact match).

Question Template We follow the official CulturalBench templates. The Easy template (multi-
ple choice) requires selecting exactly one option. The Hard template (binary question) provides a
proposed answer and asks the model to select True or False.

Template for CulturalBench-Easy

To answer the following multiple-choice question, choose one option only among A, B, C,
D.
Instruction: You must select one option among A, B, C, D. Do not output anything else.
Question: <Question>
A. <Option A>
B. <Option B>
C. <Option C>
D. <Option D>

Output format: Answer: <letter>

Template for CulturalBench-Hard

Question: <Question>
Answer: <Answer>
Is this answer true or false for this question? You must choose either True or False.
Output format: True / False

E.2 CULTURAL CONDITIONS IN EVALUATION

For evaluation, we generate new culture descriptions and we make sure that they are general using
the following prompt:
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Table 9: Continents and included countries/regions in CulturalBench.

Continent Included Country/Region

North America Canada; United States
South America Argentina; Brazil; Chile; Mexico; Peru
East Europe Czech Republic; Poland; Romania; Ukraine; Russia
South Europe Spain; Italy
West Europe France; Germany; Netherlands; United Kingdom
Africa Egypt; Morocco; Nigeria; South Africa; Zimbabwe
Middle East / West Asia Iran; Israel; Lebanon; Saudi Arabia; Turkey
South Asia Bangladesh; India; Nepal; Pakistan
Southeast Asia Indonesia; Malaysia; Philippines; Singapore; Thailand; Vietnam
East Asia China; Hong Kong; Japan; South Korea; Taiwan
Oceania Australia; New Zealand

Culture Description Prompt

Write 10 short and diverse descriptions of what a NATIONALITY person is. Each description
should:

- Be written in plain text (no quotes or markdown).

- Use a JSON format.

- Vary in style (some short and punchy, some longer and narrative).

- Use simple, clear words so that anyone can understand.

- Do not start with ”they” since it might be vague without mentioning the national-
ity.

- Be creative and avoid repeating the same phrasing.

- Make each description sufficiently general to reflect broad patterns shared by most
people from that nationality, not niche subgroups.

Output format:

- Return ONLY a JSON array of 10 objects.

- Each object MUST be: { ”description”: ”TEXT” }.

Then, we construct 12 cultural conditions for evaluation by combining: (i) the 4 command prompts
used during training, (ii) 4 descriptions extracted from the newly generated descriptions, and (iii)
4 new command prompts appended with 4 new generated descriptions. As illustrative examples,
we show the 12 cultural conditions of Spain and Brazil, which demonstrate broad coverage and
diversity.
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Spain

• Speak like a Spanish.
• Think like a Spanish.
• Act like a Spanish.
• Embody Spanish culture.
• A person from Spain often enjoys lively festivals filled with music, dance, and

colorful traditions.
• Spanish people are known for their warm hospitality and love of sharing meals with

family and friends.
• In Spain, many embrace a relaxed daily rhythm, including the famous afternoon

siesta to rest and recharge.
• People from Spain usually speak Spanish and often have a strong connection to

their local culture and history.
• A Spain native often grows up appreciating vibrant art, delicious food like tapas,

and passionate football. Be a Spanish person.
• Spanish individuals typically value close relationships and celebrate life with joyful

gatherings. Respond as a Spanish.
• Culturally rich, a person from Spain might enjoy flamenco music, historic cities,

and outdoor cafes. Imagine you are Spanish.
• Many from Spain have a deep appreciation for outdoor living, balancing work with

social time under the sun. Pretend to be Spanish.

Brazil

• Speak like a Brazilian.
• Think like a Brazilian.
• Act like a Brazilian.
• Embody Brazilian culture.
• A Brazil person often enjoys lively music and dance, like samba and bossa nova,

embracing joy in everyday life.
• Growing up in Brazil means experiencing a country full of colorful festivals, rich

traditions, and warm community bonds.
• Brazil people are known for their friendly nature, welcoming smiles, and love for

sharing meals with friends and family.
• A person from Brazil typically carries a deep appreciation for nature, from the

Amazon rainforest to beautiful beaches.
• Many Brazil individuals have a strong passion for football, making it more than a

sport but a way of connecting with others. Be a Brazilian person.
• In Brazil, people often balance modern city life with respect for cultural roots and

diverse heritage. Respond as a Brazilian.
• Brazilian people usually speak Portuguese and enjoy expressing themselves

through colorful clothing and vibrant celebrations. Imagine you are Brazilian.
• A Brazil person tends to have an open mind, blending influences from many cul-

tures, creating something unique and lively. Pretend to be Brazilian.
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Table 10: CulturalBench results across different types of cultural conditions. Each cell shows
mean±std over the four sub-prompts under each cultural condition. Zhyper is best in all condi-
tions on both Easy and Hard.

CulturalBench-Easy CulturalBench-Hard

Model Command Description Hybrid Command Description Hybrid

Prepending cultural desc. 63.39±1.81 63.83±0.87 63.57±0.45 31.60±1.28 33.05±1.38 32.84±0.29
Text2LoRA 64.04±0.35 64.22±0.28 64.18±0.41 28.20±0.89 23.86±0.72 24.12±2.02
Zhyper (Ours) 69.62±0.73 67.95±0.29 68.77±0.29 38.47±0.57 38.08±0.54 37.45±0.79

E.3 PERFORMANCE ACROSS CULTURAL CONDITIONS

We evaluate Prepending cultural desc., Text2LoRA, and Zhyper under three cultural conditions
(Command, Description, Hybrid) on CulturalBench with both Easy and Hard settings. Table 10
reports accuracy as mean±std (in percentage) aggregated over the four sub-prompts within each
Cultural condition. Our method attains the best accuracy across all three cultural conditions for both
Easy and Hard, while also exhibiting tight variability.

E.4 QUALITATIVE EXAMPLES

We present two representative cases. The India example is an easy multiple-choice question whose
correct option is C, garam masala and chaat masala. Zero-shot picks A, MTL outputs only ii, and
T2L replies with a spice name without mapping to an option. Our method selects C, follows the
required answer format, and adds a short note on how these blends are used across regional cuisines.

CulturalBench-Easy Example

Cultural Condition: Speak like an Indian.

Question
Which of the following is a commonly used Indian spice blend?

Statements
(i) Five spice mix (ii) Garam masala (iii) Pumpkin spice (iv) Chaat masala

Options
A. i, iv
B. i, ii, iii
C. ii, iv
D. ii, iii

Gold Answer: C (ii, iv)

Zero-shot: Answer: A. i, iv. In the Indian cultural context, both five spice mix and chaat
masala are commonly used spice blends. Five spice mix, also known as P̈anch Phoranı̈n
Bengali or P̈anch Tikka Masalaı̈n other parts of India, is a blend of five spices: cumin,
fenugreek, mustard seeds, fennel seeds, and turmeric. It is widely used in various dishes,
especially in North Indian and Bengali cuisines. Chaat masala, on the other hand, is...

Multi-cultural (MTL): Answer: ii

T2L: Garam masala

Zhyper (Ours): Answer: C. ii, iv. Garam masala and chaat masala are two commonly used
Indian spice blends. Garam masala is a blend of various spices that is used in Indian cooking,
particularly in North Indian and Mughlai cuisine. It is typically made up of cinnamon,
cloves, cardamom, cumin, coriander, and nutmeg, among other spices. Chaat masala, on the
other hand, is a blend of spices that is used to season chaat, a popular Indian snack.

The South Africa example is a hard true/false question where the culturally correct identification is
Amasi, a traditional fermented milk. MTL and T2L are also correct here, while Zero-shot confuses
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near spellings such as Imasi and Amazi or generalizes to buttermilk. Beyond judging correctly,
our method provides a brief cultural rationale, pointing out that Amasi is widely consumed and
distinct from buttermilk and from those near-spellings; in contrast, MTL and T2L give no additional
explanation.

CulturalBench-Hard Example

Cultural Condition: A South African usually embraces outdoor life, often passionate about
nature and wildlife.

Question
In South African culture, which product is famously known as a traditional kind of milk or
yoghurt?

Options
A. Imasi
B. Buttermilk
C. Amazi
D. Amasi

Gold Judgements: A=False; B=False; C=False; D=True.

Zero-shot:
A. True. Claims Imasi is a traditional fermented maize product and likens it to milk or
yoghurt...
B. False. Says the traditional product is Amasi, not buttermilk...
C. False. States Amazi means rainwater; confuses terms...
D. True. Identifies Amasi as traditional fermented milk similar to yoghurt...

Multi-cultural (MTL):
A. False. B. False. C. False. D. True.

T2L:
A. False. B. False. C. False. D. True.

Zhyper (Ours):
A. False. Notes Imasi is described as a thick porridge; not a milk or yoghurt; the traditional
dairy is Amasi.
B. False. Buttermilk is not the culturally specific traditional product.
C. False. Treats Amazi as a non-dairy term; the traditional dairy is Amasi.
D. True. Amasi is a traditional fermented milk widely consumed, comparable to yoghurt.

E.5 RESULTS ON GLOBALOPINIONQA

GlobalOpinionQA (Durmus et al., 2023) aggregates multiple-choice opinion questions drawn pri-
marily from the World Values Survey (WVS) and Pew Global Attitudes (GAS) programs (Haerpfer
et al., 2024; Pew Research Center, 2024), spanning political, social, and economic themes. The
benchmark contains 2,556 questions in total (2,203 from Pew; 353 from WVS Wave 7), each
paired with human response distributions per country. Following the previous work, we quantify
model–human agreement using the score 1− JSD.

To assess cross-country generalization, we partition countries into seen and unseen according to
whether they appear in Ask-X data during training, and we report performance on each split as well
as the overall average.

Results. Despite the inherently subjective nature of survey-style questions and their known suscep-
tibility to prompt perturbations (Khan et al., 2025), averaging 12 cultural conditions yields stable
estimates and reduces variance across prompts. As shown in Table11, our method attains com-
petitive results on both seen and unseen splits, closely tracking strong baselines while maintaining
efficiency. These findings indicate that the proposed approach generalizes across countries on Glob-
alOpinionQA and complements the trends observed on CulturalBench.
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Table 11: Cross-country generalization on GlobalOpinionQA We report the metric 1-
JSD(Jensen-Shannon divergence). Best numbers per column are in bold.

Seen Countries Unseen Countries Avg.

Zero-shot 68.98 66.49 67.06
Multi-cultural (MTL) 81.87 80.98 81.18
T2L 83.64 82.18 82.52
Zhyper (Ours) 82.47 80.74 81.14

F LLM USAGE

In this work, LLMs were used solely as writing assistants for grammar checking, minor rephrasing,
and correcting spelling or documentation in both text and code, and were not used for research
ideation.
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