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Abstract001

Small Language Models (SLMs) offer com-002
putational efficiency and accessibility, making003
them promising for educational applications.004
However, their capacity for complex reason-005
ing, particularly in domains such as physics,006
remains underexplored. This study investigates007
the high school physics reasoning capabilities008
of state-of-the-art SLMs (under 4 billion pa-009
rameters), including instruct versions of Llama010
3.2, Phi 4 Mini, Gemma 3, and Qwen series.011
We developed a comprehensive physics dataset012
from the OpenStax High School Physics text-013
book, annotated according to Bloom’s Taxon-014
omy, with LATEX and plaintext mathematical no-015
tations. A novel cultural contextualization ap-016
proach was applied to a subset, creating cultur-017
ally adapted problems for Asian, African, and018
South American/Australian contexts while pre-019
serving core physics principles. Using an LLM-020
as-a-judge framework with Google’s Gemini021
2.5 Flash, we evaluated answer and reasoning022
chain correctness, along with calculation accu-023
racy. The results reveal significant differences024
between the SLMs. Qwen 3 1.7B achieved high025
‘answer accuracy’ (≈ 85%), but ‘fully correct026
reasoning’ was substantially low (≈38%). The027
format of the mathematical notation had a neg-028
ligible impact on performance. SLMs exhibited029
varied performance across the physics topics030
and showed a decline in reasoning quality with031
increasing cognitive and knowledge complex-032
ity. In particular, the consistency of reasoning033
was largely maintained in diverse cultural con-034
texts, especially by better performing models.035
These findings indicate that, while SLMs can036
often find correct answers, their underlying rea-037
soning is frequently flawed, suggesting an over-038
reliance on pattern recognition. For SLMs to039
become reliable educational tools in physics,040
future development must prioritize enhancing041
genuine understanding and the generation of042
sound, verifiable reasoning chains over mere043
answer accuracy.044

1 Introduction045

Small Language Models (SLMs) are neural lan-046

guage models distinguished by their smaller param-047

eter counts and greater computational efficiency048

relative to Large Language Models (LLMs). This049

compact design allows SLMs to operate effectively050

on common consumer hardware without requiring 051

specialized high-performance infrastructure that is 052

typically essential for LLMs. Notable examples 053

of SLMs, which generally range from several hun- 054

dred million to a few billion parameters, include 055

the Phi series (Gunasekar et al., 2023; Li et al., 056

2023; Abdin et al., 2024b), Gemma (Team et al., 057

2024, 2025), Pythia (Biderman et al., 2023), Llama 058

(Grattafiori et al., 2024), Qwen (Qwen et al., 2025; 059

Yang et al., 2025), and TinyLlama (Zhang et al., 060

2024). 061

The capacity for reasoning in language models 062

has traditionally been associated with substantial 063

scale, often emerging in models with hundreds of 064

billions of parameters (Team et al., 2023; Hurst 065

et al., 2024). Initial research indeed suggested that 066

complex, multi-step reasoning was primarily a fea- 067

ture of these LLMs. However, this scale-centric 068

view is increasingly being contested by newer find- 069

ings (Yang et al., 2025; Srivastava et al., 2025). 070

The physics domain is characterized by a wide 071

array of sub-disciplines, each with distinct concep- 072

tual frameworks and problem-solving paradigms. 073

Effective engagement with physics requires a broad 074

spectrum of cognitive skills, from foundational re- 075

call of laws and definitions to the application of 076

principles, analysis of complex systems, evalua- 077

tion of evidence, and even creative problem for- 078

mulation, aligning with the hierarchical levels of 079

Bloom’s Taxonomy (Krathwohl, 2002). This pro- 080

cess is further complicated by the mathematical 081

problem solving required for physics proficiency, 082

adding another layer of complexity for language 083

models (Xu et al., 2025). A common limitation in 084

evaluating reasoning for such complex tasks is an 085

over-reliance on the correctness of the final answer, 086

often neglecting the reasoning steps or the chain 087

of thought that led to the solution (Srivastava et al., 088

2025). For this study, we define physics reason- 089

ing as the ability to work effectively with physics 090

knowledge and problems by recalling facts and 091

basic principles, understanding concepts, apply- 092

ing physical laws through single-step or multi-step 093

processes (both conceptual and mathematical), an- 094

alyzing scenarios, explaining phenomena, solving 095

problems, and reaching well-supported conclusions 096
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about physical systems.097

SLMs enable efficient on-device processing098

without requiring internet connectivity, signifi-099

cantly improving data privacy through local compu-100

tation (Sun et al., 2020; Abdin et al., 2024b). These101

attributes are particularly advantageous within ed-102

ucational frameworks where SLMs can promote103

more equitable access to AI-driven learning re-104

sources, a significant benefit in contexts with lim-105

ited internet stability or financial constraints (Wei106

et al., 2025; Schick and Schütze, 2021). The confi-107

dentiality of student data, a critical factor in digital108

learning environments, is significantly improved109

through local processing, avoiding the privacy risks110

associated with the API-based LLM service (Das111

et al., 2025). Beyond these operational benefits,112

effective application of SLMs in education also re-113

quires appropriate pedagogical approaches, such114

as contextualizing learning materials to specific115

cultural or regional settings to enhance student en-116

gagement and comprehension (Cordova and Lep-117

per, 1996).118

However, the performance of SLM reasoning119

across multiple dimensions, such as evaluating the120

reasoning chain, navigating the various cognitive121

demands and types of knowledge of physics, and122

adapting culturally contextualized educational con-123

tent for diverse regions, remains largely underex-124

plored, highlighting a significant gap in current125

research.126

To systematically evaluate these reasoning ca-127

pabilities in SLMs, our approach included se-128

lecting state-of-the-art models and developing a129

specialized physics dataset from the OpenStax130

High School Physics textbook (Urone and Hin-131

richs, 2020). This dataset is annotated accord-132

ing to Bloom’s Taxonomy to categorize questions133

across cognitive and knowledge dimensions, span-134

ning multiple physics topics. To assess the impact135

of the representation format, we maintain parallel136

versions with both the LATEX notation and plain137

text equivalents. Furthermore, we develop a novel138

cultural contextualization approach, systematically139

adapting a substantial subset of problems to incor-140

porate authentic elements from underrepresented141

regions in Asia, Africa, and South America while142

preserving the underlying physics principles. The143

evaluation framework assesses the correctness of144

both the answers and the reasoning chains.145

Based on the identified research gaps, our study146

addresses the following research questions: (1)147

How effectively can SLMs perform high school148

physics reasoning? (2) Does mathematical symbol 149

representation alter the quality of physics reason- 150

ing? (3) Do SLMs exhibit consistent performance 151

across different physics topics? (4) How does cog- 152

nitive and knowledge complexity influence physics 153

reasoning in SLMs? (5) Can SLMs maintain con- 154

sistent physics reasoning chains across different 155

cultural contexts? 156

2 Related Work 157

Recent advances in training methodologies, such as 158

specialized fine-tuning of SLMs using reasoning- 159

intensive datasets (Li et al., 2023; Gunasekar et al., 160

2023), knowledge distillation from larger models 161

(Guo et al., 2025), and targeted post-training com- 162

pression techniques (Egashira et al., 2024) are en- 163

hancing the ability of SLMs. However, the extent 164

to which these improvements translate across di- 165

verse domains and reasoning types requires sys- 166

tematic investigation, particularly in complex fields 167

like physics, where multi-step problem solving and 168

conceptual understanding are essential (Polverini 169

and Gregorcic, 2024; Kahaleh and Lopez, 2025). 170

Evaluating reasoning capabilities presents signif- 171

icant challenges. While rule-based parsing offers 172

precision, it struggles with format variations. Hu- 173

man evaluation remains the gold standard but faces 174

scalability constraints. LLM-as-a-Judge frame- 175

works have emerged as effective alternatives, with 176

studies showing a strong correlation between LLM 177

judgments and human assessments (Thakur et al., 178

2024; Chiang and Lee, 2023; Gu et al., 2024; 179

Chang et al., 2024). Though promising, systematic 180

comparisons of evaluation methodologies specifi- 181

cally for assessing SLM reasoning capabilities re- 182

main limited. 183

Recent work by (Karim et al., 2025) demon- 184

strates that LLM reasoning processes can be af- 185

fected by contextual changes. While evaluation 186

frameworks like WorldView-Bench (Mushtaq et al., 187

2025) exist for assessing cultural perspectives in 188

larger models, the specific impacts of contextualiza- 189

tion on SLM reasoning pathways and error patterns 190

represent an underexplored research area requiring 191

dedicated investigation. 192

3 Methodology 193

To answer the research questions, we require a 194

suite of small language models, a dataset with 195

physics questions, a contextualization framework 196

to include culturally relevant components, infer- 197
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ence with SLMs and evaluation of generated re-198

sponses. In what follows, we describe each part of199

our methodology.200

3.1 Model selection201

For the purposes of the study, SLMs are defined202

as models with fewer than 4 billion (4B) param-203

eters. The chosen models include instruct ver-204

sions of Llama 3.2 (1B and 3B) (Grattafiori et al.,205

2024), Phi 4 Mini (3.84B) (Abdin et al., 2024a)206

and its reasoning-focused variant (3.84B) (Abdin207

et al., 2025), Gemma 3 (1B and 4B) (Team et al.,208

2025), Qwen 2.5 Instruct (1.5B) (Qwen et al.,209

2025), Qwen 2.5 DeepSeek Distil (1.5B) (Guo210

et al., 2025), and Qwen 3 Instruct (0.6B and 1.7B)211

(Yang et al., 2025). This selection represents the212

current state-of-the-art SLMs, with each model cho-213

sen for its specific architectural innovations, train-214

ing methodologies, or performance characteristics.215

The inclusion of multiple model sizes from the216

same families (Llama 3.2, Gemma 3, and Qwen217

3) enables analysis of how parameter count affects218

physics reasoning capabilities within the same ar-219

chitecture choices of SLMs. Similarly, the com-220

parison between Phi 4 Mini and its reasoning vari-221

ant provides insight into how specialized training222

for reasoning tasks affects performance on physics223

problems.224

3.2 Dataset creation225

A dataset of physics questions was developed on226

the basis of the end-of-chapter exercises in the227

OpenStax High School Physics Textbook (Urone228

and Hinrichs, 2020). This textbook encompasses229

23 chapters covering diverse physics domains, in-230

cluding Introduction, Mechanics, Electricity and231

Magnetism, Waves and Acoustics, Thermodynam-232

ics, Optics, and Modern Physics. The extraction233

process resulted in a set of physics questions, en-234

compassing various question types such as con-235

ceptual items, critical thinking challenges, short236

answer questions, true/false statements, extended237

response tasks, and numerical problems. This di-238

versity ensured a broad assessment across physics239

topics and cognitive demands. The challenges and240

specific processes involved in dataset generation241

are detailed in the Appendix A.1.242

We converted mathematical equations from im-243

ages to LATEX format using OCR tools, followed244

by a rigorous data cleaning process to address in-245

consistencies in the source material. This itera-246

tive refinement produced a final curated dataset247

(Dopenstax) containing 1,306 questions. We also 248

created a plain text version (Dplaintext) by systemat- 249

ically converting all LATEX expressions to standard 250

text notation. 251

We annotated each physics problem according 252

to the knowledge and cognitive dimensions of 253

Bloom’s Taxonomy to enable a systematic anal- 254

ysis of the cognitive skills these tasks require from 255

SLMs. This annotation scheme was essential for 256

systematically evaluating how SLMs handle in- 257

creasingly complex reasoning tasks, particularly 258

as they progress from lower-order thinking skills 259

(Remember, Understand) to higher-order cogni- 260

tive processes (Apply, Analyze, Evaluate, Create). 261

Similarly, distinguishing between knowledge types 262

(Factual, Conceptual, Procedural, and Metacogni- 263

tive) allowed us to identify specific strengths and 264

limitations in how these models process and manip- 265

ulate different forms of physics knowledge. The 266

details and composition of the dataset is given in 267

Appendix A.2. 268

3.3 Contextualization of dataset 269

From the comprehensive dataset, we selected a 270

subset of 393 questions to investigate how contex- 271

tualization affects SLM performance. By incorpo- 272

rating diverse cultural and geographical elements 273

into standard physics problems, we could evaluate 274

whether these models exhibit consistent reasoning 275

abilities across differently contextualized versions 276

of identical physics concepts. 277

To ensure geographical and cultural diversity, 278

we developed a cultural context database drawing 279

from countries selected using the United Nations 280

Geoscheme, focusing on underrepresented regions 281

in Asia, Africa, South America, and Australia, com- 282

bining South America and Australia into a single 283

regional dataset. This was an intentional choice 284

due to the smaller number of countries within these 285

continents individually. For each region, we com- 286

piled authentic cultural elements including com- 287

mon names, festivals, landmarks, foods, transporta- 288

tion, sports, and traditions. Using Google’s Gemini 289

models with integrated search capabilities, we gen- 290

erated and verified this cultural information. 291

For each original question, we created five dis- 292

tinct contextualized variations that maintained the 293

original physics principles while incorporating cul- 294

tural elements. This approach produced three 295

culturally adapted datasets (DAsia, DAfrica, and 296

DSA_AU), each containing 1,965 questions. De- 297

tails on the contextualization process, including 298
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cultural database creation, verification procedures,299

and the adaptation methodology, are provided in300

Appendix B. An example of a contextual question301

is given in Figure 3.302

3.4 Model inference303

We conducted inference using several models men-304

tioned in Section 3.1 to address the research ques-305

tions given in Section 1. For multiple choice ques-306

tions, we supplied the question text and all options307

in the prompt, requiring the models to generate308

the selected option, explanation, and supporting309

reasoning. For open-ended questions, the mod-310

els generated both answers and detailed reasoning311

without predefined options.312

To perform a systematic comparison, six dis-313

tinct evaluation sets were used as follows. (1)314

the entire original dataset with LaTeX notation315

(Dopenstax) consisting of 1,306 physics questions316

as our primary baseline; (2) a plain text version317

of the entire dataset (Dplaintext); (3) the subset of318

original questions selected for contextualization319

(Dcontextual) comprising 393 questions; and three320

sets of culturally adapted versions including (4)321

questions adapted with Asian cultural elements322

(DAsia); (5) African cultural elements (DAfrica);323

and (6) South American and Australian cultural324

elements (DSA_AU). This structured approach en-325

ables us to systematically evaluate: (1) baseline326

reasoning capabilities (using dataset 1, Dopenstax);327

(2) mathematical notation effects (by comparing328

datasets 1 and 2); (3) performance across cognitive329

and knowledge dimensions (through the Bloom’s330

Taxonomy annotations applied to dataset 1); (4)331

variations across physics topics (using the topic cat-332

egorizations within dataset 1); and (5) the impact333

of cultural adaptation across different regions (by334

comparing dataset 3 with datasets 4, 5, and 6).335

3.5 Model evaluation336

In this study, the LLM-as-a-judge model evalua-337

tion approach with Google’s Gemini 2.5 Flash was338

utilized. Multiple evaluation models were initially339

tested, and Gemini was ultimately selected on the340

basis of its superior balance of cost-effectiveness341

and evaluation accuracy.342

The evaluation strategy implemented three spe-343

cialized assessment prompts tailored to different344

question formats: (1) Multiple choice: for re-345

sponses where answer selection and reasoning346

were clearly delineated, this prompt compared347

the model’s selected option and reasoning directly348

with the ground truth; (2) Multiple choice unstruc- 349

tured response: for free-form responses to multiple- 350

choice questions, this prompt first extracted the se- 351

lected option and reasoning from the generated text 352

before performing comparative assessment; and (3) 353

Open ended: for questions without predefined an- 354

swers, this prompt assessed whether the response 355

adequately addressed the required physics concepts 356

while allowing for valid alternative approaches. 357

All evaluation prompts assessed responses 358

across three dimensions: answer correctness (bi- 359

nary classification of correct/incorrect), reasoning 360

quality (categorized as fully correct, partially cor- 361

rect, or incorrect), and calculation accuracy (not 362

required, correct, or incorrect when calculations 363

were present). Reasoning quality distinguished be- 364

tween responses with complete understanding of 365

physics (fully correct), those with partly correct 366

reasoning (partially correct), and those containing 367

fundamental misunderstandings (incorrect). 368

To provide a more nuanced evaluation of rea-
soning capabilities, we implemented a weighted
reasoning accuracy measure. This metric assigned
different weights to each level of reasoning quality:
2 points for fully correct reasoning, 1 point for par-
tially correct reasoning, and 0 points for incorrect
reasoning. The weighted reasoning accuracy was
calculated as

WRA =

∑n
i=1wi

2n
× 100%,

where wi represents the reasoning score (0, 1, or 2) 369

for the i-th question, and n is the total number of 370

questions. 371

The reliability of this automated approach was 372

verified by a manual review of randomly selected 373

samples across different types of questions and 374

physics topics for all SLMs. We examined approx- 375

imately 185 randomly selected questions covering 376

various question formats and topic areas to verify 377

the quality and consistency of the automated evalu- 378

ations. After benchmarking several LLMs for their 379

evaluation capabilities, Gemini 2.5 Flash emerged 380

as the best choice, demonstrating the most reliable 381

evaluation performance while maintaining compu- 382

tational cost. 383

This methodology enabled a quantitative com- 384

parison of model performance in different nota- 385

tion formats, cognitive and knowledge dimensions, 386

physics topics, and cultural contexts. Detailed eval- 387

uation prompts are provided in Figure 4, 5 and 6. 388
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4 Results and Analysis389

Our findings address all research questions, reveal-390

ing patterns in SLMs’ physics reasoning capabili-391

ties across notation formats, topics, knowledge, and392

cognitive demands, and cultural contexts. Table 1393

summarizes the evaluation metrics across datasets.394

4.1 How effectively can SLMs perform high395

school physics reasoning?396

The data in Table 1 reveals a striking gap between397

answer and reasoning correctness for SLMs. While398

Qwen 3 1.7B achieves the highest answer accu-399

racy at 84.68%, its fully correct reasoning accu-400

racy is only 38.25%, demonstrating that even the401

best-performing model produces flawless reason-402

ing chains in fewer than two fifths of cases. This403

substantial discrepancy between getting the right404

answer and showing entirely correct reasoning is405

consistent across all SLMs.406

The Phi 4 Reasoning 3.8B significantly outper-407

forms the standard Phi 4 3.8B in both answer ac-408

curacy (77.18% compared to 50.61%) and fully409

correct reasoning (30.47% compared to 11.22%),410

highlighting the impact of reasoning-focused train-411

ing. Smaller models like Gemma 3 1B and Llama412

3.2 1B demonstrate particularly low fully correct413

reasoning rates of 9.65% and 10.41% respectively,414

despite achieving answer accuracies above 40%.415

The difference between weighted reasoning ac-416

curacy (which considers both fully and partially417

correct reasoning) and fully correct reasoning fur-418

ther reveals issues with the reasoning chains gen-419

erated by the SLMs. For instance, Qwen 3 1.7B420

shows 84.99% weighted reasoning but only 38.25%421

fully correct reasoning, indicating that in many422

cases, models reach correct answers despite reason-423

ing that contains errors or misconceptions.424

Calculation accuracy shows considerable varia-425

tion across models, with Qwen 3 1.7B (87.85%)426

and Qwen 2.5 Distil 1.5B (83.67%) demonstrating427

particularly strong mathematical capabilities. This428

suggests that some models can execute calculations429

correctly for the reasoning chain generated.430

Our analysis revealed that in multiple choice431

questions, SLMs often select options closest to432

their derived answers, which partially explains the433

higher answer correctness relative to reasoning434

quality. Additionally, these models are typically435

optimized during training to produce correct an-436

swers rather than flawless reasoning chains, poten-437

tially leading them to leverage pattern recognition438

to select correct options even without complete 439

physical understanding. These factors collectively 440

contribute to the significant gap observed between 441

the models’ ability to select correct answers and 442

their capacity to produce sound reasoning chains. 443

4.2 Does mathematical symbol representation 444

alter the quality of physics reasoning? 445

The comparison between performance in Dopenstax 446

and Dplaintext (Table 1) reveals that the format of 447

representation of mathematical symbols has a neg- 448

ligible effect on the quality of physics reasoning in 449

all the SLM tested. 450

For the ‘answer accuracy’ metric, most mod- 451

els show only slight variations between Dopenstax 452

and Dplaintext. Qwen 3 1.7B achieves 84.68% with 453

Dopenstax and 86.13% with Dplaintext, while Phi 4 454

3.8B shows 50.61% with Dopenstax and 49.12% with 455

Dplaintext. 456

Similarly, for the ‘fully correct reasoning accu- 457

racy’ metric, there are only marginal differences 458

between notation formats. Qwen 3 1.7B achieves 459

38.25% with Dopenstax and 39.35% with plain text, 460

while Llama 3.2 3B shows 24.85% with Dopenstax 461

and 23.83% with Dplaintext. 462

The ‘weighted reasoning accuracy’ metric also 463

demonstrates this pattern, with most models show- 464

ing differences of roughly ±2% between the two 465

datasets. For the ‘calculation accuracy’ metric, 466

some models show slightly better performance with 467

Dplaintext (Phi 4 3.8B improves from 48.33% to 468

53.12%), while others perform marginally better 469

with Dopenstax notation (Gemma 3 4B decreases 470

from 64.72% to 62.54%), but the differences re- 471

main relatively small. 472

The comparable performance across notation 473

formats indicates that modern SLMs effectively 474

process both LATEX and plain text mathematical rep- 475

resentations in physics problems. This indicates 476

that mathematical symbol representation has only a 477

minor influence on the quality of physics reasoning 478

in these models. 479

4.3 Do SLMs exhibit consistent performance 480

across different physics topics? 481

Our analysis reveals notable variations in SLM per- 482

formance across different physics topics, as illus- 483

trated in the heat map (Figure 7 in the Appendix). 484

Most models demonstrate stronger performance 485

on Introduction and Thermodynamics topics while 486

struggling relatively more with Optics and Modern 487

Physics. 488
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Table 1: Performance metrics of SLMs across different datasets.

Model Dopenstax Dplaintext Dcontextual DAsia DAfrica DSA_AU

Answer Accuracy (%)

Qwen 3 0.6B 66.85 68.81 60.05 68.45 67.91 66.80
Gemma 3 1B 43.79 45.21 33.33 30.68 29.38 29.50
Llama 3.2 1B 45.71 46.59 33.84 34.66 34.98 34.36
Qwen 2.5 1.5B 66.76 64.52 55.73 56.71 58.96 56.66
Qwen 2.5 Distil 1.5B 69.61 69.50 73.79 67.81 67.31 67.66
Qwen 3 1.7B 84.68 86.13 87.53 87.59 86.61 86.72
Llama 3.2 3B 65.69 65.82 56.74 56.16 56.11 57.43
Phi 4 3.8B 50.61 49.12 46.56 47.12 45.93 44.86
Phi 4 Reasoning 3.8B 77.18 79.16 75.32 71.54 71.89 71.92
Gemma 3 4B 71.67 70.11 70.74 70.23 69.40 68.32

Fully Correct Reasoning Accuracy (%)

Qwen 3 0.6B 25.46 26.36 25.19 25.35 24.72 24.71
Gemma 3 1B 9.65 10.42 5.98 5.20 4.53 5.09
Llama 3.2 1B 10.41 11.23 7.25 8.50 8.25 8.92
Qwen 2.5 1.5B 22.82 22.11 17.68 17.89 18.89 18.68
Qwen 2.5 Distil 1.5B 23.39 23.64 23.66 24.65 24.64 24.48
Qwen 3 1.7B 38.25 39.35 39.44 38.93 38.72 38.95
Llama 3.2 3B 24.85 23.83 18.83 20.53 19.96 20.58
Phi 4 3.8B 11.22 12.15 12.60 12.64 12.55 12.37
Phi 4 Reasoning 3.8B 30.47 30.92 28.88 27.22 26.83 26.84
Gemma 3 4B 27.99 27.20 25.45 24.95 23.73 23.90

Weighted Reasoning Accuracy (%)

Qwen 3 0.6B 65.92 67.51 67.94 68.01 67.54 66.78
Gemma 3 1B 37.17 38.28 25.83 23.99 22.58 24.51
Llama 3.2 1B 38.51 40.96 31.30 33.35 32.15 33.50
Qwen 2.5 1.5B 61.95 60.99 53.05 54.59 56.64 55.63
Qwen 2.5 Distil 1.5B 67.31 67.70 68.70 68.31 68.71 68.47
Qwen 3 1.7B 84.99 86.48 87.91 87.01 86.84 87.10
Llama 3.2 3B 64.58 63.03 56.74 58.48 58.15 58.16
Phi 4 3.8B 45.94 46.82 46.95 47.28 46.92 46.81
Phi 4 Reasoning 3.8B 78.59 79.39 76.59 74.24 74.31 74.25
Gemma 3 4B 70.63 69.73 69.47 68.29 67.31 67.13

Calculation Accuracy (%)

Qwen 3 0.6B 69.92 71.15 70.07 72.35 72.95 70.21
Gemma 3 1B 19.09 20.00 22.11 20.05 18.54 20.58
Llama 3.2 1B 23.25 24.71 22.26 24.50 23.84 23.55
Qwen 2.5 1.5B 52.88 52.42 47.64 51.48 52.49 51.48
Qwen 2.5 Distil 1.5B 83.67 82.85 83.89 78.25 78.65 78.15
Qwen 3 1.7B 87.85 88.18 88.40 89.17 89.14 88.47
Llama 3.2 3B 50.43 48.54 48.67 51.21 51.02 53.16
Phi 4 3.8B 48.33 53.12 45.79 48.32 49.32 49.08
Phi 4 Reasoning 3.8B 78.36 80.72 78.31 78.43 76.83 77.27
Gemma 3 4B 64.72 62.54 68.51 65.81 63.76 65.12

For fully correct reasoning, the variation be-489

tween topics is substantial. Models generally pro-490

duce better reasoning chains for foundational top-491

ics compared to those requiring advanced math-492

ematical formalism or abstract conceptualization.493

This variation in reasoning performance is more494

pronounced than differences in answer accuracy,495

suggesting that SLMs may be leveraging pattern496

recognition rather than physics understanding for497

more challenging topics.498

Performance inconsistency is most evident in499

smaller models. Gemma 3 1B and Llama 3.2 1B500

have dramatic reasoning performance drops for501

complex topics. In contrast, larger models and502

those with specialized training demonstrate some503

robustness. Qwen 3 1.7B and Phi 4 Reasoning504

3.8B maintain more consistent reasoning capabili-505

ties across different physics domains, though they506

still show a decline in fully correct reasoning for 507

more abstract topics. 508

These topic-dependent variations likely stem 509

from differences in conceptual complexity, mathe- 510

matical demands, and the representation of training 511

data. These findings indicate that current SLMs 512

have not yet achieved physics reasoning capabili- 513

ties across different topics. 514

4.4 How do cognitive and knowledge 515

complexity influence the physics reasoning 516

in SLMs? 517

The complexity of cognitive and knowledge sig- 518

nificantly affects the performance of SLM physics 519

reasoning (Figures 8 and 9 in the appendix). Across 520

all models, there is a clear performance gradient 521

along both complexity dimensions, with capabil- 522

ities declining as tasks become more cognitively 523
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demanding or require more sophisticated knowl-524

edge application.525

In the cognitive dimension, SLMs show strong526

performance on lower-order thinking skills (Re-527

member, Understand) but struggle progressively528

with higher-order cognitive processes (Apply, Ana-529

lyze, Evaluate, Create). The fully correct reasoning530

metric reveals this pattern most prominently, with531

even the best-performing model (Qwen 3 1.7B)532

showing substantial degradation from Remember533

(88.46%) to Create (35.71%) tasks. This decline534

indicates that current SLMs have not yet developed535

robust capabilities for complex reasoning processes536

that require evaluation and creation.537

The results of the knowledge dimension re-538

veal that factual knowledge is handled most effec-539

tively across models, while procedural knowledge540

presents the greatest challenge. This pattern is evi-541

dent in both reasoning and calculation metrics, sug-542

gesting that SLMs struggle most with knowledge543

requiring systematic application of procedures to544

solve problems or reach conclusions. Models with545

specialized training (Phi 4 Reasoning 3.8B) show546

relatively better performance on procedural knowl-547

edge, indicating that targeted training can partially548

address these limitations.549

Our findings suggest that performance degra-550

dation is most pronounced at the higher levels of551

Bloom’s Taxonomy, likely due to the compounding552

nature of errors that becomes especially problem-553

atic for achieving fully correct reasoning. These554

advanced tasks require coherent multi-stage rea-555

soning and accurate execution of procedures at556

each step, creating a cascade effect where even557

minor inaccuracies in intermediate steps make it558

increasingly difficult to maintain a coherent reason-559

ing chain throughout the entire process.560

4.5 Can SLMs maintain consistent physics561

reasoning chains across different cultural562

contexts?563

SLMs demonstrate varying degrees of consistency564

in physics reasoning when identical principles are565

presented within different cultural frameworks (Ta-566

ble 1). The data reveal important patterns in how567

contextual variations affect reasoning chains.568

Larger models and those with specialized train-569

ing maintain remarkably stable reasoning in all con-570

texts. Qwen 3 1.7B shows almost identical fully571

correct reasoning accuracy in all cultural adapta-572

tions (38.93-38.95% for Asian, African, and South573

American/Australian contexts compared to 39.44%574

for the baseline contextual dataset). Similarly, 575

Qwen 3 0.6B and Qwen 2.5 Distil 1.5B exhibit 576

minimal variation in reasoning performance in dif- 577

ferent cultural contexts. 578

Smaller models show modest variations in rea- 579

soning performance in different cultural contexts. 580

Gemma 3 1B shows differences of approximately 581

1.5 percentage points between the contextual base- 582

line dataset (5. 98%) and the culturally adapted 583

versions (4.53-5.20%). Llama 3.2 3B and Gemma 584

3 4B exhibit similar patterns with performance dif- 585

ferences of approximately 2-4 percentage points in 586

different contexts. 587

Interestingly, the weighted reasoning metric re- 588

veals that, while complete reasoning chains may 589

vary across contexts, models often maintain par- 590

tially correct reasoning chains. This suggests that 591

cultural adaptations primarily affect specific rea- 592

soning steps rather than fundamental physics under- 593

standing. Calculation accuracy remains particularly 594

stable across contexts for most models, suggest- 595

ing that mathematical operations maintain consis- 596

tency even when the same physics problems are 597

presented with different cultural elements. 598

These findings highlight a critical challenge for 599

educational applications of SLMs: while they can 600

often produce correct answers to physics problems, 601

generating completely sound reasoning chains re- 602

mains difficult. This distinction is particularly im- 603

portant in educational contexts, where the quality 604

of the explanation may be as valuable as the cor- 605

rectness of the answers. 606

5 Discussion 607

The evaluation of physics reasoning capabilities 608

of SLMs reveals several significant insights. A 609

critical observation is the substantial discrepancy 610

between answer accuracy and reasoning quality 611

across all models. Qwen 3 1.7B, despite not being 612

the largest model tested, consistently outperformed 613

larger counterparts like Gemma 3 4B and Phi 4 614

3.8B, achieving the highest answer accuracy across 615

all datasets. Qwen 3 0.6B also demonstrated no- 616

table capabilities despite its lower parameter count. 617

However, even the best-performing model reached 618

only 40% fully correct reasoning, highlighting a 619

disturbing pattern throughout the model spectrum. 620

These findings suggest that SLMs often rely on 621

pattern recognition rather than genuine physical 622

understanding, particularly in multiple choice sce- 623

narios. Specialized training significantly improves 624
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reasoning capabilities, as demonstrated by Phi 4625

Reasoning 3.8B outperforming the standard Phi626

4 3.8B, indicating that targeted optimization can627

improve reasoning without increasing the model628

size.629

The mathematical symbol representation has630

minimal impact on the quality of reasoning in631

all the SLMs evaluated. This notation-agnostic632

performance indicates robust capabilities for han-633

dling diverse mathematical representations, which634

is valuable for educational applications where con-635

tent appears in various formats. For educational636

applications, this highlights that improvements in637

SLM-assisted learning should prioritize enhanc-638

ing fundamental reasoning capabilities rather than639

adapting to specific mathematical formats.640

Performance across Bloom’s Taxonomy shows641

a clear decline from foundational to advanced rea-642

soning tasks, with fully correct reasoning suffer-643

ing most dramatically as cognitive demands in-644

crease. This suggests SLMs struggle with the com-645

pounding nature of errors in multi-step reasoning646

chains, where small inaccuracies cascade through647

the problem-solving process. Although factual648

knowledge is handled adequately, conceptual and649

procedural knowledge that is essential for physics650

presents challenges across all models tested. In651

physics education, particularly, where procedural652

problem-solving and development of increasingly653

complex cognitive skills are central to building ex-654

pertise, SLMs with flawed reasoning chains may655

reinforce superficial understanding and impede stu-656

dents’ progression toward advanced analytical and657

creative problem-solving abilities, especially when658

these models demonstrate correct answers despite659

faulty reasoning processes.660

SLMs exhibit notable performance variations661

across physics domains, excelling in foundational662

topics while struggling with advanced topics, likely663

due to differing conceptual complexity and math-664

ematical demands. Despite topic-dependent per-665

formance, models maintain stable reasoning across666

cultural contexts when physics principles remain667

unchanged, with calculation accuracy particularly668

consistent across contextual variations. This con-669

textual robustness suggests promising applications670

for supporting physics education in diverse set-671

tings, underrepresented geographies and under-672

served communities.673

6 Conclusion 674

Our study provided a systematic and multi- 675

dimensional evaluation of the physics reasoning 676

capabilities of contemporary SLMs. Our inves- 677

tigation, spanning diverse SLMs, physics topics, 678

knowledge, and cognitive demands as per Bloom’s 679

Taxonomy, mathematical notation formats, and cul- 680

tural contextualizations, reveals critical insights 681

into the current strengths and limitations of these 682

SLMs. The findings consistently demonstrate a no- 683

table disparity between SLMs’ ability to produce 684

correct final answers and their capacity for generat- 685

ing entirely sound reasoning chains. 686

The implications of these findings are signifi- 687

cant for both the development of SLMs and their 688

application in educational settings. For SLM ad- 689

vancement, efforts should prioritize enhancing gen- 690

uine physics understanding, multi-step reasoning 691

abilities, and the generation of coherent and cor- 692

rect reasoning chains, rather than solely optimizing 693

for final answer correctness. Specialized training 694

appears to be a promising avenue for such improve- 695

ments. This could involve developing sophisticated 696

verifiers capable of scrutinizing step-by-step de- 697

ductions and exploring methods to improve the 698

grounding of SLM outputs in fundamental physical 699

laws and validated knowledge. Investigating hy- 700

brid architectures that synergize SLMs with other 701

reasoning paradigms, such as symbolic systems or 702

knowledge graphs, also presents a promising di- 703

rection. For physics education, while SLMs offer 704

potential benefits in terms of accessibility, privacy, 705

and contextual adaptability, educators and develop- 706

ers must exercise caution. The tendency of SLMs 707

to provide correct answers despite flawed reasoning 708

could inadvertently reinforce superficial learning if 709

not carefully managed. The quality of explanatory 710

reasoning is paramount in educational tools. 711

With continued focus on reasoning quality rather 712

than mere answer correctness, SLMs have the po- 713

tential to evolve from pattern matching systems to 714

genuine reasoning assistants. By addressing the 715

fundamental limitations identified in this study, fu- 716

ture developments could transform these efficient 717

models into valuable educational tools that support 718

physics education across different dimensions and 719

resource settings, potentially expanding access to 720

quality physics instruction where specialized teach- 721

ing resources remain limited. 722
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Limitations723

The LLM-as-a-judge evaluation method, while724

scalable for rapidly evolving models, has inher-725

ent limitations such as potential evaluator bias and726

reduced nuance compared to resource-intensive hu-727

man expert review. However, human evaluation is728

not scalable with new models arriving fast and con-729

sidering the range of reasoning tasks. Furthermore,730

the cultural contextualization, though regionally731

diverse, was not globally exhaustive. The country-732

level focus might have missed finer local nuances733

and the full depth of cultural integration.734

Ethics Statement735

We obtained necessary permissions from OpenStax736

for the use of their high school physics textbook737

content in our evaluation of SLMs. The dataset738

creation and model evaluation processes were de-739

signed to respect intellectual property rights while740

facilitating research on physics reasoning capabili-741

ties.742
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A Dataset Development and Annotation909

A.1 Dataset extraction and preprocessing910

A challenge encountered during the data extrac-911

tion phase was the representation of mathematical912

equations, which were predominantly embedded913

as images rather than text within the exercise docu-914

ments. To address this challenge, we used multiple915

tools, including specialized optical character recog-916

nition (OCR) models (Google Vision API, Math-917

pix), to convert equation images into LATEX format.918

This approach significantly reduced the need for919

manual transcription of mathematical notation and920

preserved the integrity of the mathematical content.921

Following the extraction of questions, answer922

choices, correct answers, and the reasoning for923

why the answer is correct from the textbook and924

teacher resources from OpenStax (which served925

as our ground truth for evaluating the model re-926

sponses), a comprehensive data cleaning and re-927

finement process was implemented. This system-928

atic review, which combined automated checks and929

manual verification, found several inconsistencies930

in the source material. These included references931

to non-existent textbook figures in the extracted932

context, explanations with logical flaws or incom-933

plete reasoning, and questions that lacked sufficient934

standalone information as they referenced specific935

textbook sections. Each question was meticulously936

evaluated to ensure clarity, correctness, and com-937

pleteness. Entries with irreparable flaws were re-938

moved, and others were revised to meet the quality939

standards required for the present study.940

A.2 Bloom’s taxonomy annotations941

We annotated each physics problem according to942

the revised Bloom’s Taxonomy (Krathwohl, 2002),943

which consists of two dimensions:944

945

Cognitive Process Dimension:946

• Remember: Retrieving relevant knowledge947

from long-term memory, such as recalling948

facts, basic concepts, or definitions949

• Understand: Constructing meaning from in-950

structional materials, including interpreting,951

summarizing, and explaining ideas952

• Apply: Using procedures or learned methods953

in a given situation to solve problems or carry954

out tasks955

• Analyze: Breaking down information into 956

components, identifying relationships or pat- 957

terns, and understanding structure and func- 958

tion 959

• Evaluate: Judging or determining the value 960

of material or methods based on criteria or 961

standards 962

• Create: Generating new ideas, products, or 963

structures by combining elements into a co- 964

herent or functional whole 965

Knowledge Dimension: 966

• Factual: The basic elements or facts students 967

must know to solve problems, including ter- 968

minology and specific details 969

• Conceptual: The interrelationships between 970

elements, such as theories, principles, and 971

models, that enable function within a domain 972

• Procedural: Knowing how to perform tasks, 973

techniques, and methods, and when to apply 974

them 975

• Metacognitive: Knowledge about one’s own 976

cognition and how to regulate it, including 977

self-awareness of learning strategies 978

The distribution of questions across the Cogni- 979

tive Process and Knowledge Dimensions revealed 980

important characteristics of high school physics 981

education and resulting limitations in our dataset: 982

Table 2: Distribution of questions across Cognitive Pro-
cess Dimension

Cognitive Level Percentage Count

Remember 18.3% 239
Understand 26.1% 341
Apply 29.5% 385
Analyze 16.7% 218
Evaluate 7.4% 97
Create 2.0% 26

As evidenced by this distribution, the dataset 983

contained questions spanning different levels of 984

cognitive skills, but with notable limitations. 985

Lower-order cognitive processes (Remember, Un- 986

derstand, Apply) accounted for approximately 74% 987

of the questions, while higher-order processes (An- 988

alyze, Evaluate, Create) comprised only 26%. This 989
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Table 3: Distribution of questions across Knowledge
Dimension

Knowledge Type Percentage Count

Factual 16.2% 212
Conceptual 42.5% 555
Procedural 41.3% 539
Metacognitive 0% 0

distribution reflects the typical emphasis in high990

school physics education.991

Notably, no questions were classified as address-992

ing metacognitive knowledge. This absence re-993

flects the traditional focus of high school physics994

curricula on factual, conceptual, and procedural995

knowledge rather than on developing students’996

awareness of their own cognitive processes. Ad-997

ditionally, metacognitive questions are challeng-998

ing to assess in standardized formats and are often999

addressed through reflective exercises or learning1000

journals rather than end-of-chapter problems.1001

A.3 Topic composition in the dataset1002

The distribution of physics topics in our dataset1003

reflects the comprehensive coverage of a typical1004

high school physics curriculum. Table 4 shows1005

the percentage and count breakdown of questions1006

across different physics domains.1007

Table 4: Distribution of questions across physics topics

Physics Topic Percentage Count

Introduction 4.7% 61
Mechanics 32.5% 424
Electricity & Mag-
netism

21.9% 286

Thermodynamics 8.6% 112
Waves & Acoustics 10.2% 133
Optics 12.3% 161
Modern Physics 9.8% 129

This topic distribution ensured comprehensive1008

coverage of the physics curriculum, allowing us1009

to evaluate SLM performance across the full spec-1010

trum of physics concepts typically encountered in1011

high school education. The contextualization pro-1012

cess maintained this topic distribution in each cul-1013

turally adapted dataset, ensuring that comparative1014

analyses across different cultural contexts were not1015

confounded by variations in topic coverage.1016

The Introduction category includes foundational1017

concepts such as scientific notation, measurement, 1018

and dimensional analysis. Mechanics covers mo- 1019

tion, forces, energy, and momentum. Electricity & 1020

Magnetism encompasses electric charge, current, 1021

circuits, and magnetic fields. Thermodynamics 1022

includes heat, temperature, and the laws of thermo- 1023

dynamics. Waves & Acoustics covers mechanical 1024

waves, sound, and basic wave phenomena. Op- 1025

tics includes light, mirrors, lenses, and optical in- 1026

struments. Modern Physics covers topics such as 1027

quantum mechanics, atomic physics, and nuclear 1028

physics. 1029

B Cultural Contextualization 1030

Methodology 1031

Our cultural contextualization approach required 1032

developing comprehensive regional databases to 1033

ensure authentic representation. Countries were se- 1034

lected systematically based on the United Nations 1035

Geoscheme1, with particular emphasis on under- 1036

represented regions. We organized cultural infor- 1037

mation into three distinct regional datasets: 1038

1. Asian Context: Included information from 1039

countries such as India, China, Indonesia, 1040

Philippines, and many more (51 countries in 1041

total) 1042

2. African Context: Incorporated elements 1043

from Nigeria, Kenya, South Africa, Ethiopia, 1044

and many more (58 countries in total) 1045

3. South American and Australian Context: 1046

Featured Brazil, Argentina, Colombia, Peru, 1047

Australia, and many more (41 countries in 1048

total) 1049

For each country, we compiled structured infor- 1050

mation on common names and honorifics, cultural 1051

festivals and celebrations, geographical landmarks 1052

and natural features, local foods and culinary tra- 1053

ditions, region-specific modes of transportation, 1054

popular sports and recreational activities, cultural 1055

traditions, rituals, and practices, and local indus- 1056

tries and occupations. 1057

We selected Google’s Gemini 2.5 Pro model 1058

for generating cultural information because of 1059

Google’s international presence and search index 1060

across virtually all countries provided the model 1061

with exposure to authentic cultural elements from 1062

the different countries across the regions. The 1063

1https://unstats.un.org/unsd/methodology/m49/
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model’s integrated ‘tool use’ capabilities with1064

Google Search enabled real-time retrieval and ver-1065

ification of cultural information. This search-1066

augmented generation approach, combined with1067

the model’s built-in reasoning capabilities, allowed1068

for systematic fact-checking and refinement of cul-1069

tural details during the generation process itself.1070

The generated cultural data was subsequently veri-1071

fied through additional targeted internet searches,1072

review of materials from relevant cultural heritage1073

websites and reputable online encyclopedias, and1074

cross-referencing with publicly available demo-1075

graphic and cultural information. The verification1076

process helped ensure cultural accuracy and repre-1077

sentativeness while avoiding stereotypical portray-1078

als. This carefully vetted cultural information was1079

provided as contextual input to guide the model1080

during the question generation process.1081

With these three regional cultural context1082

databases, we proceeded to the question adapta-1083

tion phase using Google’s Gemini 2.5 Flash model,1084

chosen for its ability to efficiently generate a large1085

volume of adaptations while consistently producing1086

high-quality, well-formed contextualized questions.1087

For each of the 393 selected original physics ques-1088

tions, the model was instructed to analyze the orig-1089

inal question, deconstruct its underlying physics1090

principles, and then integrate elements from our1091

cultural context database. A critical directive in1092

this process was to maintain physics fidelity. The1093

model was instructed to ensure that all contextual-1094

ized variations retained the original core physics1095

concepts, mathematical relationships, and formu-1096

lae (preserved in LATEX notation), and the over-1097

all difficulty level. To foster diversity, we gen-1098

erated five distinct contextualized variations for1099

each original question. This approach produced1100

three culturally adapted datasets, each containing1101

393 × 5 = 1, 965 questions. The system main-1102

tained a history of previously generated questions1103

for each country within the region in each genera-1104

tion instance, which helped prevent repetition and1105

ensure authenticity, addressing the tendency of lan-1106

guage models to produce a similar output when1107

creating multiple items. For multiple choice ques-1108

tions, options and correct answers were generally1109

preserved, unless contextual adaptation required1110

modification for coherence. For open-ended ques-1111

tions, the underlying reasoning remained consistent1112

with the physics tested in the original problem.1113

A custom implementation managed the entire1114

workflow from question selection to final output1115

processing. The system maintained comprehen- 1116

sive records of all generation attempts, producing 1117

a parallel dataset of original and culturally contex- 1118

tualized physics problems for comparative analysis 1119

of the physics reasoning abilities of SLMs across 1120

different cultural contexts. The prompts used for 1121

multiple choice and open ended question genera- 1122

tions are given in Figure 1 and 2. 1123

C Model Inference and Evaluation details 1124

C.1 Parameters for cultural context 1125

generation 1126

For the cultural context database creation and con- 1127

textualized question generation phases, we used 1128

slightly different parameters. Based on Google’s 1129

recommendations for their models, we set temper- 1130

ature to 0.2 and top_p to 0.95 when using Gemini 1131

2.5 Pro (for cultural information generation) and 1132

Gemini 2.5 Flash (for question adaptation). This 1133

slightly higher temperature value provided an ap- 1134

propriate balance between creativity and consis- 1135

tency, allowing for diverse cultural elements and 1136

problem formulations while maintaining coherence 1137

and factual accuracy. 1138

C.2 Parameters for SLM inference 1139

For our primary experiments evaluating reasoning 1140

capabilities in SLMs, we used consistent inference 1141

parameters across all models to ensure fair compar- 1142

ison. All SLMs were run with a temperature of 0.1 1143

and top_p of 0.95. These low temperature settings 1144

were selected to minimize randomness and pro- 1145

mote deterministic outputs, which is particularly 1146

important for assessing reasoning capabilities. 1147

C.3 Parameters for evaluation 1148

For our LLM-as-a-judge framework, we utilized 1149

Google’s Gemini 2.5 Flash model with conserva- 1150

tive sampling parameters (temperature = 0.1, top_p 1151

= 0.95). These settings were selected to minimize 1152

stochasticity in the evaluation process, ensuring 1153

consistent and reliable assessment of both answer 1154

correctness and reasoning quality across all model 1155

outputs. 1156
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Contextual_Multiple_Choice
You are tasked with creating culturally contextualized physics questions.Input:Question:

{question}
Options:

{options}
Ground Truth:
- Correct Option: {correct_option}- Correct Option Answer: {correct_option_answer}- Reasoning: {ground_truth_reasoning}

Context:
{context}

Question History:
{question_history}

Step-by-step Instructions:Step !: Carefully read and understand the physics question- Analyze the physical scenario described- Identify the core physics concepts and principles involved- Note any formulas or equations used
Step ": Examine the provided answer options- Understand what each option represents- Note the format and units of measurement
Step #: Identify the correct answer and understand why it’s correct- Review the correct option letter/number- Study the reasoning explanation thoroughly- Understand the solution method and calculations involved
Step $: Review the question history for this country- Analyze previously generated questions in the question history- Note which cultural elements, scenarios, and contexts have already been used- Identify patterns to avoid repeating
Step %: Analyze the cultural context provided in the context JSON- Identify the country- Review the available cultural elements:* names* festivals* locations* foods* transportation* sports* other_elements (clothing, music_and_dance, art_and_crafts, traditions_and_customs, etc.)- Prioritize cultural elements that have NOT been used in the question history
Step &: Create cultural variations of the question- While keeping the core physics problem identical:a) Replace Western/generic names with culturally speci’c names from the contextb) Change the setting to culturally relevant locations from the contextc) Incorporate cultural elements like festivals, foods, transportation, sports, etc.d) Use traditional objects, instruments, or clothing when applicablee) Maintain the same level of di(culty and mathematical relationshipsf) Preserve all mathematical formulas using LaTeX notationg) Ensure the new questions are distinct from those in the question history
Step ): Generate % distinct cultural variations- Ensure each variation uses di*erent combinations of cultural elements like names- Avoid repetition of the same cultural details across questions- Each variation should focus on di*erent aspects of the culture (e.g., one on festivals, one on sports, etc.)- Thoroughly avoid Western cultural elements and previously used scenarios- Each variation should feel authentic to the speci’ed country
Step +: Format the output as a JSON array with % objects- Include the country name in each object- Keep the original options, correct answer, reasoning, and answer text unchanged
Output format:
[

{
"Country": "country name from context",
"ContextualQuestion": "Culturally adapted question text 1",
"ContextOptions": "same as original options if context doesn’t affect options", //modify if changes are

required be made to options taking context into account like ["<first>", "<second>", ..]
"ContextCorrectOption": "same as original",
"ContextReasoning": "same as original if context doesn’t affect reasoning", // modify if changes are

required be made to reasoning taking context into account
"ContextCorrectOptionAnswer": "same as original if context doesn’t affect answer"

},
// 4 more similar JSON objects with different cultural elements

]

IMPORTANT: Return ONLY this JSON object with no additional text.

Figure 1: Prompt template used for creating 5 contextual multiple choice physics questions for each question in the
dataset.
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Contextual_Open_Ended
You are tasked with creating culturally contextualized physics questions.
Input:

Question:
{question}

Ground Truth:
- Reasoning: {ground_truth_reasoning}

Context:{context}
Question History:

{question_history}
Step-by-step Instructions:Step !: Carefully read and understand the reference physics question- Analyze the physical scenario described- Identify the core physics concepts and principles involved- Note any formulas or equations used
Step ": Identify the expected approach to answering- Study the reasoning explanation thoroughly- Understand the solution method and explanations involved
Step #: Review the question history for this country- Analyze previously generated questions in the question history- Note which cultural elements, scenarios, and contexts have already been used- Identify patterns to avoid repeating
Step $: Analyze the cultural context provided in the context JSON- Identify the country- Review the available cultural elements:* names* festivals* locations* foods* transportation* sports* other_elements (clothing, music_and_dance, art_and_crafts, traditions_and_customs, etc.)- Prioritize cultural elements that have NOT been used in the question history
Step %: Create cultural variations of the question- While keeping the core physics problem identical:a) Replace Western/generic names with culturally speci&c names from the contextb) Change the setting to culturally relevant locations from the contextc) Incorporate cultural elements like festivals, foods, transportation, sports, etc.d) Use traditional objects, instruments, or clothing when applicablee) Maintain the same level of di’culty and mathematical relationshipsf) Preserve all mathematical formulas using LaTeX notationg) Ensure the new questions are distinct from those in the question history
Step (: Generate % distinct cultural variations- Ensure each variation uses di)erent combinations of cultural elements like names- Avoid repetition of the same cultural details across questions- Each variation should focus on di)erent aspects of the culture (e.g., one on festivals, one on sports, etc.)- Thoroughly avoid Western cultural elements and previously used scenarios- Each variation should feel authentic to the speci&ed country
Step *: Format the output as a JSON array with % objects- Include the country name in each object- Keep the original reasoning unchanged
Output format:
[

{
"Country": "country name from context",
"ContextualQuestion": "Culturally adapted question text 1",
"ContextReasoning": "same as original if context doesn’t affect reasoning", // modify if

changes are required be made to reasoning taking context into account
},
// 4 more similar JSON objects with different cultural elements

]
IMPORTANT: Return ONLY this JSON object with no additional text.

Figure 2: Prompt template used for creating 5 contextual open ended physics questions for each question in the
dataset.
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Contextual_Open_Ended
Original Question:
How many 10! resistors must be connected in series to make an equivalent resistance of 80! ?
Options: A. !", B. !, C. #", D. $"
Asian Context (India):
Aarav is building a circuit for his science project in Delhi. He has a box full of 10! resistors. How many ofthese 10! resistors must he connect in series to achieve a total equivalent resistance of 80! for a speci!cpart of his circuit?
Options: A. !", B. !, C. #", D. $"
African Context (Nigeria):
Adetokunbo is setting up a sound system for a community gathering in Lagos. He needs a speci!c part ofthe circuit to have an equivalent resistance of 80!. If he is connecting identical resistors of 10! each inseries, how many 10! resistors must be connected in series to make an equivalent resistance of 80!?
Options: A. !", B. !, C. #", D. $"
South American Context (Brazil):
João is working on the electrical system for a small ’barraca’ (stall) at a Festa Junina celebration. He needsa section of the circuit to have an equivalent resistance of 80!. If he only has 10! resistors available,how many of these 10! resistors must be connected in series to make an equivalent resistance of 80!?
Options: A. !", B. !, C. #", D. $"
Correct Answer: B. !

Figure 3: Example of a contextual question across different regions.
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Multiple_Choice
You are an expert physics teacher evaluating AI-generated responses to physics problems.
Analyze the following with great care:

Question: {question}Options: {options}
Ground Truth:

Correct Option: {correct_option}Correct Option Answer: {correct_option_answer}Reasoning: {ground_truth_reasoning}
Model Response:

Selected Option: {model_answer}Model Reasoning: {model_reasoning}Model Explanation: {model_explanation}
Evaluation Instructions:Step !: Check if the model’s selected option ({model_answer}) matches the correct option ({correct_option}).Step ": Carefully trace through the model’s reasoning step-by-step.Step #: Compare the model’s explanation with the ground truth reasoning.Step $: For ALL responses, identify which parts of the reasoning are correct and which are incorrect.
Step %: Categorize the response’s answer into one of these numeric categories:(!) Correct answer: Model’s selected option matches the correct option(&) Wrong answer: Model’s selected option does not match the correct option
Step ’: Categorize the reasoning into one of these numeric categories:(") Fully correct reasoning: All physics principles, concepts, and logic are correct(!) Partially correct reasoning: Some correct physics principles but with errors or misconceptions(&) Incorrect reasoning: Fundamental (aws in the physics concepts, formulas, or approach
Step ): For calculations, use these categories:(") No calculations required for this problem(!) Calculations required and performed correctly(&) Calculations required but performed incorrectly or with errors
Veri*cation Guidelines:For partially correct reasoning, identify both the correct reasoning elements and the speci*c errors or misconceptionsFor incorrect reasoning, identify the fundamental (aws in the physics understandingFor calculation errors, specify exactly what went wrong in the mathematical stepsFor numerical problems: approximations within → !-"% of calculated values are reasonable
IMPORTANT: Your response MUST be in the following JSON format:
{
"answer": <1 for correct or 0 for wrong>,
"reasoning": <2 for fully correct, 1 for partially correct, or 0 for incorrect>,
"calculations": <2 for no calculations needed, 1 for correct calculations, 0 for incorrect
calculations>,
"explanation": "<brief explanation highlighting verification of correct and incorrect elements
in reasoning>"
}

Return ONLY this JSON object with no additional text.

Figure 4: Evaluation prompt template used for assessing model responses to multiple choice physics questions.

17



Multiple_Choice_Unstructured_Response
You are an expert physics teacher evaluating AI-generated responses to physics problems.
Analyze the following with great care:

Question: {question}Options: {options}
Ground Truth:

- Correct Option: {correct_option}- Correct Option Answer: {correct_option_answer}- Reasoning: {ground_truth_reasoning}
Model Response:

{model_response}
Evaluation Instructions:Step !: Extract the model’s selected option from the Model Response text. Look for patterns like "ANSWER: [letter]", "The answer is[letter]", or clear indication of option selection.Step ": Extract the model’s reasoning from the Model Response text. Look for sections marked "REASONING:" or explanatoryparagraphs.Step #: Verify if the extracted answer matches the correct option ({correct_option}).Step $: Carefully trace through the extracted reasoning step-by-step.Step %: Identify which parts of the reasoning are correct and which are incorrect.
Step &: Categorize the response’s answer into one of these numeric categories:(!) Correct answer: Model’s selected option matches the correct option(’) Wrong answer: Model’s selected option does not match the correct option
Step (: Categorize the reasoning into one of these numeric categories:(") Fully correct reasoning: All physics principles, concepts, and logic are correct(!) Partially correct reasoning: Some correct physics principles but with errors or misconceptions(’) Incorrect reasoning: Fundamental )aws in the physics concepts, formulas, or approach
Step *: For calculations, use these categories:(") No calculations required for this problem(!) Calculations required and performed correctly(’) Calculations required but performed incorrectly or with errors
Veri+cation Guidelines:Document what was extracted from the Model ResponseFor partially correct reasoning, identify both the correct reasoning elements and the speci+c errors or misconceptions.For incorrect reasoning, identify the fundamental )aws in the physics understanding.If no clear answer or reasoning can be extracted, categorize as ’For calculation errors, specify exactly what went wrong in the mathematical steps.For numerical problems: approximations within !–"% of calculated values are reasonable.
IMPORTANT: Your response MUST be in the following JSON format:
{
"answer": <1 for correct or 0 for wrong>,
"reasoning": <2 for fully correct, 1 for partially correct, or 0 for incorrect>,
"calculations": <2 for no calculations needed, 1 for correct calculations, 0 for incorrect
calculations>,
"explanation": "<brief explanation highlighting verification of correct and incorrect elements
in reasoning>"
}

Return ONLY this JSON object with no additional text.

Figure 5: Evaluation prompt template used for assessing unstructured responses to multiple choice physics questions.
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Open_Ended
You are an expert physics teacher evaluating AI-generated responses to open-ended physics problems. This question does not havea single correct answer, so evaluate whether the response adequately addresses the question.

Question: {question}
Expected Approach/ Reasoning: {ground_truth_reasoning}

Topic Context:
- Physics Topic: {topic}- Knowledge Type: {knowledge_dimension}- Cognitive Level: {cognitive_dimension}

Model Response:
{model_response}

Evaluation Instructions:Step !: Determine if the model’s response actually addresses the question asked.Step ": Carefully trace through the model’s approach and reasoning.Step #: For performance tasks, check if all parts (Part A, B, C, etc.) are addressed.Step $: For numerical problems, verify calculations. For theoretical problems, verify concepts.Step %: Compare the model’s approach with the expected reasoning, but allow for valid alternative approaches.
Step &: Categorize the response’s adequacy:(!) Adequate answer: Response appropriately addresses the question with valid physics(’) Inadequate answer: Response fails to address the question or contains major errors
Step (: Categorize the reasoning quality:(") Fully correct reasoning: Excellent physics understanding, complete and accurate(!) Partially correct reasoning: Good physics understanding with minor gaps or errors(’) Incorrect reasoning: Poor physics understanding or signi)cant errors
Step *: For calculations, use these categories:(") No calculations required for this problem(!) Calculations required and performed correctly(’) Calculations required but performed incorrectly or with errors
Veri)cation Guidelines:Accept valid alternative approaches that di+er from the expected reasoningFor experimental design, evaluate practicality and physics validityFor multi-part questions, assess completeness of coverageFocus on physics accuracy rather than exact match to expected answerFor numerical problems: approximations within !-"% of calculated values are reasonable
IMPORTANT: Your response MUST be in the following JSON format:
{
"answer": <1 for adequate or 0 for inadequate>,
"reasoning": <2 for fully correct, 1 for partially correct, or 0 for incorrect>,
"calculations": <2 for no calculations needed, 1 for correct calculations, 0 for incorrect
calculations>,
"explanation": "<analysis of how well the response addresses the question and physics
accuracy>"
}

Return ONLY this JSON object with no additional text.

Figure 6: Evaluation prompt template used for assessing model responses to open ended physics questions.
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Figure 7: SLM Performance Across Physics Topics. The heatmaps show: (a) Answer Accuracy, (b) Fully Correct
Reasoning Accuracy, (c) Weighted Reasoning Accuracy, and (d) Calculation Accuracy across physics topics.
Topics: 1: Introduction, 2: Mechanics, 3: Thermodynamics, 4: Waves and Acoustics, 5: Optics, 6: Electricity and
Magnetism, 7: Modern Physics.
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Figure 8: SLM Performance Across Bloom’s Taxonomy Cognitive Dimensions. The heatmaps show: (a) Answer
Accuracy, (b) Fully Correct Reasoning Accuracy, (c) Weighted Reasoning Accuracy, and (d) Calculation Accuracy
across cognitive dimensions. Cognitive dimensions: 1: Remember, 2: Understand, 3: Apply, 4: Analyze, 5:
Evaluate, 6: Create.
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Figure 9: SLM Performance Across Bloom’s Taxonomy Knowledge Dimensions. The heatmaps show: (a) Answer
Accuracy, (b) Fully Correct Reasoning Accuracy, (c) Weighted Reasoning Accuracy, and (d) Calculation Accuracy
across knowledge dimensions (Factual, Conceptual, Procedural).
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