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ABSTRACT

In this paper, we show that interventionally robust optimization problems in causal
models are continuous under the G-causal Wasserstein distance, but may be dis-
continuous under the standard Wasserstein distance. This highlights the impor-
tance of using generative models that respect the causal structure when augment-
ing data for such tasks. To this end, we propose a new normalizing flow archi-
tecture that satisfies a universal approximation property for causal structural mod-
els and can be efficiently trained to minimize the G-causal Wasserstein distance.
Empirically, we demonstrate that our model outperforms standard (non-causal)
generative models in data augmentation for causal regression and mean-variance
portfolio optimization in causal factor models.

1 INTRODUCTION

Solving optimization problems often requires generative data augmentation (Chen et al., 2024;
Zheng et al., 2023), particularly when out-of-sample distributional shifts are expected to be fre-
quent and severe, as in the case of financial applications. In such cases, only the most recent data
points are representative enough to be used in solving downstream tasks (such as hedging, regression
or portfolio selection), resulting in small datasets that require generative data augmentation to avoid
overfitting (Bailey et al., 2017). However, when using generative models for data augmentation, it
is essential to choose their training loss in a way that is compatible with the downstream tasks, so as
to guarantee good and stable performance.

It is well-known, for instance, that multi-stage stochastic optimization problems are continuous un-
der the adapted Wasserstein distance, while they may be discontinuous under the standard Wasser-
stein distance (Pflug & Pichler, 2012; 2014; Backhoff-Veraguas et al., 2020). This insight prompted
several authors to propose new time-series generative models that attempt to minimize the adapted
Wasserstein distance, either partially (Xu et al., 2020) or its one-sided1 version (Acciaio et al., 2024).

In this paper we prove a generalization of this result for causal models. Specifically, we show that
causal optimization problems (i.e. problems in which the control variables can depend only on the
parents of the state variables in the underlying causal DAG G) are continuous with respect to the
G-causal Wasserstein distance (Cheridito & Eckstein, 2025).

Furthermore, we prove that solutions to G-causal optimization problems are always interventionally
robust. This means that causal optimization can be understood as a way of performing Distribution-
ally Robust Optimization (DRO) (Chen et al., 2020; Kuhn et al., 2025) by taking into account the
problem’s causal structure.

Next, we address the challenge of designing a generative model capable of good approximations un-
der the G-causal Wasserstein distance. We radically depart from existing approaches for the adapted
Wasserstein distance and propose a novel G-causal normalizing flow model based on invertible neu-
ral couplings that respect the causal structure of the data. We prove a universal approximation prop-
erty for this model class and that maximum likelihood training indeed leads to distributions that are

1Also known in the literature as the causal Wasserstein distance, because it respects the temporal flow
of information in the causal direction (from past to present). This terminology conflicts with the way the
term “causal” is used in causal modelling. To avoid misunderstandings we talk of the “G-causal” Wasserstein
distance and refer to the causal Wasserstein distance as the “one-sided” adapted Wasserstein distance.
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close to the target distribution in the G-causal Wasserstein distance. Since the standard, adapted and
CO-OT Wasserstein distances are all special cases of the G-causal Wasserstein distance, this model
family provides optimal generative augmentation models for a vast class of empirical applications.

Contributions. Our main contributions are the following:

• We prove that causal optimization problems (i.e. problems in which optimizers must be
functions of the state variables’ parents in the causal DAG G) are continuous under the
G-causal Wasserstein distance, but may be discontinuous under the standard Wasserstein
distance.

• We prove that solutions to G-causal optimization problems are always interventionally ro-
bust.

• We introduce G-causal normalizing flows and we prove that they satisfy a universal ap-
proximation property for causal structural models under very mild conditions.

• We prove that G-causal normalizing flows minimize the G-causal Wasserstein distance
between data and model distribution by simple likelihood maximization.

• We show empirically that G-causal normalizing flows outperform non-causal genera-
tive models (such as variational auto-encoders, standard normalizing flows, and nearest-
neighbor KDE) when used to perform generative data augmentation in two empirical se-
tups: causal regression and mean-variance portfolio optimization in causal factor models.

2 BACKGROUND

Notation. We denote by ∥ · ∥ the Euclidean norm on Rd and by Lp(µ) the space Lp(Rd,B(Rd), µ)

equipped with the norm ∥f∥Lp(µ) :=
(∫

Rd ∥f(z)∥pµ(dz)
)1/p

. P(Rd) denotes the space of all
Borel probability measures on Rd. N (µ,Σ) is the multivariate Gaussian distribution with mean µ
and covariance matrix Σ, U([0, 1]d) is the uniform distribution on the d-dimensional hypercube, Id
denotes the d× d identity matrix.

We use set-indices to slice vectors, i.e. if x = (x1, . . . , xd) ∈ Rd and A ⊆ {1, . . . , d}, then
xA := (xi, i ∈ A) ∈ R|A|. If µ ∈ P(Rd) and X = (X1, . . . , Xd) ∼ µ, then the regular conditional
distribution of XA given XB is denoted by µ(dxA|xB), for all A,B ⊆ {1, . . . , d} with A∩B = ∅.

2.1 STRUCTURAL CAUSAL MODELS

We assume throughout that G = (V,E) is a given directed acyclic graph (DAG) with a finite index
set V = {1, . . . , d}, which we assume, without loss of generality, to be sorted (i.e. (i, j) ∈ E, then
i < j). If A ⊆ V , we denote by PA(A) := {i ∈ V \ A | ∃j ∈ A | (i, j) ∈ E} the set of parents of
the vertices in A (notice that PA(A) ⊆ V \A by definition).

In this paper, we work with structural causal models, as presented in Peters et al. (2017).
Definition 2.1 (Structural Causal Model (SCM)). Given a DAG G = (V,E), a Structural Causal
Model (SCM) is a collection of assignments

Xi := fi(XPA(i), Ui), for all i = 1, . . . , d,

where the noise variables (Ui, i = 1, . . . , d) are mutually independent.

2.2 G-CAUSAL WASSERSTEIN DISTANCE

Definition 2.2 (G-compatible distribution). A distribution µ ∈ P(Rd) is said to be G-compatible,
and we denote it by µ ∈ PG(Rd), if any of the following equivalent conditions holds:

1. there exist a random vector X = (X1, . . . , Xd) ∼ µ together with measurable functions
fi : R|PA(i)|×R → R, (i = 1, . . . , n), and mutually independent random variables (Ui, i =
1, . . . , d) such that

Xi = fi(XPA(i), Ui), for all i = 1, . . . , d.
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2. For every X ∼ µ, one has

Xi ⊥⊥ X1:i−1 |XPA(i), for all i = 2, . . . , d.

3. The distribution µ admits the following disintegration:

µ(dx1, . . . , dxd) =

d∏
i=1

µ(dxi | xPA(i)).

For a proof of the equivalence of these three conditions, see Cheridito & Eckstein (2025, Remark
3.2).

Definition 2.3 (G-bicausal couplings). A coupling π ∈ Π(µ, ν) between two distributions µ, ν ∈
PG(Rd) is G-causal if there exist (X,X ′) ∼ π such that

X ′
i = gi(Xi, XPA(i), X

′
PA(i), Ui)

for some measurable mappings (gi)di=1 and mutually independent random variables (Ui)
d
i=1. If also

the distribution of (X ′, X) is G-causal, then we say that π is G-bicausal. We denote by Πbc
G(µ, ν)

the set of all G-bicausal couplings between µ and ν.

Definition 2.4 (G-causal Wasserstein distance). Denote by PG,1(Rd) the space of all G-compatible
distributions with finite first moments. Then the G-causal Wasserstein distance between µ, ν ∈
PG,1(Rd) is defined as:

WG(µ, ν) := inf
π∈Πbc

G(µ,ν)

∫
Rd×Rd

∥x− x′∥π(dx, dx′).

Furthermore, WG defines a semi-metric on the space PG,1(Rd) (Cheridito & Eckstein, 2025, Propo-
sition 4.3).

3 ROBUST OPTIMIZATION IN STRUCTURAL CAUSAL MODELS

Suppose we are given an SCM X ∼ µ ∈ PG(Rd) on a DAG G = (V,E) and we want to solve
a stochastic optimization problem in which the state variables XT are specified by a vertex subset
T ⊆ V (called the target set) and the control variables can potentially be all remaining vertices in
the graph, i.e. XV \T . To avoid feedback loops between state and control variables, we will need the
following technical assumption.

Assumption 3.1. The DAG G = (V,E) and the target set T ⊆ V are such that G quotiened by the
partition {T} ∪ {{i}, i ∈ V \ T} is a DAG.

Remark 3.2. Assumption 3.1 is quite mild and is equivalent to asking that if i, j ∈ T , then Xi cannot
be the parent of a parent of Xj . This guarantees that PA(T ) ∩ CH(T ) = ∅, which is nothing but
asking that XT be part of a valid SCM as a random vector, see Fig. 1 and 2.

Definition 3.3 (G-causal function). Given a target set T ⊆ V , we say that a function h : R|V \T | →
R|T | is G-causal (with respect to T ) if h depends only on the parents of XT , i.e. h(x) = h(xPA(T )),
for all x ∈ R|V \T |.

Definition 3.4 (G-causal optimization problem). Let G = (V,E) be a sorted DAG, X ∼ µ ∈
PG(Rd) and let T ⊆ V be a target set. If Q : R|T |×R|V \T | → R is a function to be optimized, then
a G-causal optimization problem (with respect to T ) is an optimization problem of the following
form:

min
h:R|V \T |→R|T |

h is G-causal

Eµ
[
Q(XT , h(XV \T ))

]
. (1)

Any minimizer of (1) is called a G-causal optimizer.

The following result shows that G-causal optimizers are always interventionally robust. This un-
derscores the desirability of G-causal optimizers when we expect the data distribution to undergo
distributional shifts due to interventions between training and testing time.

3
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X1 X7
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Figure 1: DAG G before quotienting (target
set T highlighted).

XT

X2

X1 X7

X6

PA(T )

Figure 2: DAG G after quotienting (vertex
set PA(T ) highlighted).

Theorem 3.5 (Robustness of G-causal optimizers). Let h∗ be a solution of the problem in Eq. (1).
Then:

h∗ ∈ argmin
h:R|V \T |→R|T |

sup
ν∈I(µ)

Eν
[
Q(XT , h(XV \T ))

]
,

where

I(µ) := {ν ∈ P(Rd) | ν(dxT |xPA(T )) = µ(dxT |xPA(T )) and supp(ν(dxPA(T ))) ⊆ supp(µ(dxPA(T )))}

is the set of all interventional distributions that leave the causal mechanism of XT unchanged.

Proof. It’s enough to show that for any h : R|V \T | → R|T | and any ν ∈ I(µ), there exists a
ν′ ∈ I(µ) such that Eν′ [

Q(XT , h(XV \T ))
]
≥ Eν

[
Q(XT , h

∗(XPA(T )))
]
.

Given ν ∈ I(µ), define ν′(dx) := ν(dxV \(T∪PA(T )))ν(dxPA(T ), dxT ). Then:

Eν′ [
Q(XT , h(XV \T ))

]
=

∫
ν(dxV \(T∪PA(T )))

∫
ν(dxPA(T ), dxT )Q(xT , h(xV \T ))

=

∫
ν(dxV \(T∪PA(T )))

∫
ν(xPA(T ))

∫
µ(dxT | xPA(T ))Q(xT , h(xV \T ))

≥
∫

ν(dxV \(T∪PA(T )))

∫
ν(xPA(T ))

∫
µ(dxT | xPA(T ))Q(xT , h

∗(xPA(T )))

= Eν
[
Q(XT , h

∗(XPA(T )))
]

where the second equality follows from ν ∈ I(µ) and the inequality follows from Eq. (1),
Lemma A.1, and supp(ν(dxPA(Y ))) ⊆ supp(µ(dxPA(Y ))).

Remark 3.6. The theorem above is a generalization of (Rojas-Carulla et al., 2018, Theorem 4),
which covered the mean squared loss only. We explicitly added the assumption supp(ν(dxPA(Y ))) ⊆
supp(µ(dxPA(Y ))), for all ν ∈ I(µ), which is needed also for their theorem to hold.

The next theorem shows that the value functionals of G-causal optimization problems are continuous
with respect to the G-causal Wasserstein distance, while they may fail to be continuous with respect
to the standard Wasserstein distance (as we show in Example 3.8 below). This proves that the G-
causal Wasserstein distance is the right distance to control errors in causal optimization problems
and, in particular, interventionally robust optimization problems.
Theorem 3.7 (Continuity of G-causal optimization problems). Let G = (V,E) be a sorted DAG,
X ∼ µ ∈ PG(Rd) and let T ⊆ V be a target set, such that Assumption 3.1 holds. If Q : R|T | ×

4
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R|V \T | → R is such that x 7→ Q(x, h) is locally L-Lipschitz (uniformly in h) and h 7→ Q(x, h) is
convex, then the value functional

µ 7→ V(µ) := min
h:R|V \T |→R|T |

h is G-causal

Eµ
[
Q(XT , h(XV \T ))

]
is continuous with respect to the G-causal Wasserstein distance.

Proof. See proof in Appendix B.1.

Example 3.8. Define µε ∈ PG(R2) as the following SCM:{
Y := sgn(X),

X := ε · U, where U ∼ Ra(1/2),

where Ra(p) denoted the Rademacher distribution pδ1 + (1 − p)δ−1, and consider the following
G-causal regression problem:

V(µ) = inf
h:R→R

h G-causal

Eµ
[
(Y − h(X))2

]
.

Then as ε → 0 we have that µε = 1
2δ(ε,1) +

1
2δ(−ε,−1) converges to µ := 1

2δ(0,1) +
1
2δ(0,−1) =

δ0 ⊗ Ra(1/2) under the standard Wasserstein distance, but limε→0 V(µε) = 0 ̸= 1 = V(µ).

4 PROPOSED METHOD: G-CAUSAL NORMALIZING FLOWS

Theorem 3.7 and Example 3.8 imply that generative augmentation models that are not trained under
the G-causal Wasserstein distance may lead to optimizers that severely underperform on G-causal
downstream tasks. To solve this issue, we propose a novel normalizing flow architecture capable of
minimizing the G-causal Wasserstein distance from any data distribution µ ∈ PG(Rd). Since the
standard, adapted and CO-OT Wasserstein distances are all special cases of the G-causal Wasserstein
distance, this model family provides optimal generative augmentation models for a vast class of
empirical applications.

A G-causal normalizing flow T̂ = T̂ (d) ◦ · · · ◦ T̂ (1) is a composition of d neural coupling flows
T̂ (k) : Rd → Rd of the following form:

T̂
(k)
i (x) =

{
g(xi; θ(xPA(i))) if i = k

id if i ̸= k
(2)

where g : R×Θ(n) → R is a shallow MLP of the form:

g(x, θ) =

n∑
i=1

w
(2)
i ρ(w

(1)
i x+ b

(1)
i ) + b(2) (3)

with parameters θ := (w(1), b(1), w(2), b(2)) ∈ Θ(n) := Rn
>0×Rn×Rn

>0×R and custom activation
function2:

ρ(x) =
1

2
LeakyReLUα−1(1 + x)− 1

2
LeakyReLUα−1(1− x), α ∈ (0, 1). (4)

We denote by IncrMLP(n) the class of all MLPs with n hidden neurons and parameter space Θ(n).
It is easy to see that IncrMLP(n) contains only continuous, piecewise linear, strictly increasing (and,
therefore, invertible) functions, thanks to the choice of activation function3 and parameter space. The
inverse of g and its derivative can be computed efficiently, which allows the coupling flow in Eq. (2)
to be easily implemented in a normalizing flow model (see code in the supplementary material).

2Recall that the LeakyReLU activation function is defined as LeakyReLUα(x) := x1{x≥0} + αx1{x<0}.
3One cannot just take ρ(x) = ReLU(x), because g could fail to be strictly increasing, nor ρ(x) =

LeakyReLUα(x), because then g would be constrained to be convex, which harms model capacity.

5
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In Eq. (2) we specify the parameters of g in terms of a function θ(xPA(i)), which we take to be an
MLP4. The particular choice of MLP class does not matter, as long as the assumptions of (Leshno
et al., 1993, Theorem 1) are satisfied5 and we denote by MLP any such class. Since the outputs of
θ(·) ∈ MLP are used as parameters for another MLP, g(·), it is common to say that θ(·) is a hypernet-
work (Chauhan et al., 2024). Therefore we say that the coupling flow in Eq. (2) is a hypercoupling
flow and we denote by HyperCpl(n, θ(·)) the class of hypercoupling flows with g(·) ∈ IncrMLP(n)
and parameter hypernetwork θ(·) ∈ MLP.

Since each hypercoupling flow in a G-causal normalizing flow acts only on a subset of the input
coordinates it effectively functions as a scale in a multi-scale architecture, thus reducing the compu-
tational burden by exploiting our a priori knowledge of the causal DAG G.
Remark 4.1. We emphasize that the DAG G is an input of our model, not an output. We assume,
therefore, that the modeler has estimated the causal skeleton G, using any of the available methods
for causal discovery Nogueira et al. (2022); Zanga et al. (2022). On the other hand, we do not require
any knowledge of the functional form of the causal mechanisms, which our model will learn directly
from data.

Next, we turn to the task of proving that G-causal normalizing flows are universal approximators for
structural causal models.

Definition 4.2 (G-compatible transformation.). Let G be a sorted DAG. A map T : Rd → Rd is a G-
compatible transformation if each coordinate Ti(x) is a function of (xi, xPA(i)), for all i = 1, . . . , d.
Furthermore, a G-compatible transformation T is called (strictly) increasing if each coordinate Ti is
(strictly) increasing in xi.

Theorem 4.3. Let µ ∈ PG(Rd) be an absolutely continuous distribution. Then there exists a G-
compatible, strictly increasing transformation T : Rd → Rd, such that T#U([0, 1]d) = µ.

Furthermore, T is of the form T := T (d) ◦ · · · ◦ T (1), where each T (k) : Rd → Rd is defined as:

T
(k)
i (x) =

{
F−1
i (xi | xPA(i)) i = k,

id i ̸= k.
(k = 1, . . . , d) (5)

where F−1
i is the (conditional) quantile function of the random variable Xi ∼ µ(dxi) given its

parents XPA(i) ∼ µ(dxPA(i)).

Proof. It is easy to check that T , as defined, is indeed a G-compatible, increasing transformation.
The absolute continuity of µ implies that all conditional distributions admit a density (Jacod &
Protter, 2004, Theorem 12.2), therefore a continuous cdf and a strictly monotone quantile function
(McNeil et al., 2015, Proposition A.3 (ii)).

Next, we show that T#U([0, 1]d) = µ. By Definition 2.2 we know that there exists X ∼ µ and
measurable functions fi such that Xi = fi(XPA(i), Ui) where U = (U1, . . . , Ud) is a random vector
of mutually independent random variables. Without loss of generality, we can take U ∼ U([0, 1]d)
and set Xi = F−1

i (Ui|XPA(i)) (McNeil et al., 2015, Proposition A.6)).

Theorem 4.4 (Universal Approximation Property (UAP) for G-causal normalizing flows). Let
µ ∈ PG,1(Rd) be an absolutely continuous distribution with compact support and assume that the
conditional cdfs (xk, xPA(k)) 7→ Fk(xk | xPA(k)) belong to C1(R× R|PA(k)|), for all k = 1, . . . , d.

Then G-causal normalizing flows with base distribution U([0, 1]d) are dense in the semi-metric
space (PG,1(Rd),WG), i.e. for every ε > 0, there exists a G-causal normalizing flow T̂ such that

WG(µ, T̂#U([0, 1]d) ≤ ε.

Proof. See proof in Appendix B.2.
4In practice, we enforce θ(xPA(i)) ∈ Θ(n) by constraining its outputs corresponding to the weights w(1)

and w(2) to be strictly positive, either by using a ReLU activation function or by taking their absolute value.
5The activation function must be non-polynomial and locally essentially bounded on R. All commonly used

activation functions (including ReLU) satisfy this.
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Remark 4.5. The theorem holds for base distributions other than U([0, 1]d). In fact any absolutely
continuous distribution on Rd with mutually independent coordinates (such as the standard multi-
variate Gaussian N (0, Id)) would work, provided we add a non-trainable layer between the base
distribution and the first flow that maps Rd into the base distribution’s quantiles (for N (0, Id), such
a map is just Φ⊗d, where Φ is the standard Gaussian cdf).

In practice G-causal normalizing flows are trained using likelihood maximization (or, equivalently,
KL minimization), so it is important to make sure that minimizing this loss guarantees that the G-
causal Wasserstein distance between data and model distribution is also minimized. The following
result proves exactly this and is a generalization of Acciaio et al. (2024, Lemma 2.3) and Eckstein
& Pammer (2024, Lemma 3.5), which established an analogous claim for the adapted Wasserstein
distance.
Theorem 4.6 (WG training via KL minimization). Let µ, ν ∈ PG(K) for some compact K ⊆ Rd.
Then:

WG(µ, ν) ≤ C

√
1

2
DKL(µ | ν),

for a constant C > 0.

Proof. See proof in Appendix B.3.

5 NUMERICAL EXPERIMENTS

5.1 CAUSAL REGRESSION

We study a multivariate causal regression problem of the form:

min
h:R|V \T |→R|T |

h is G-causal

Eµ
[
(XT − h(XV \T ))

2
]
, (6)

where µ ∈ PG(Rd) is a randomly generated linear Gaussian SCM (Peters et al., 2017, Section
7.1.3) with coefficients uniformly sampled in (−1, 1) and homoscedastic noise with unit variance.
The sorted DAG G is obtained by randomly sampling an Erdos-Renyi graph on d vertices with edge
probability p and eliminating all edges (i, j) with i > j.

According to Theorem 3.5, any solution to problem (6) is interventionally robust. In order to show-
case this robustness property of the G-causal regressor, we compare its performance with that of a
standard (i.e. non-causal) regressor when tested out-of-sample on a large number of random soft6
interventions. Each intervention is obtained by randomly sampling a node i ∈ V \ T and substitut-
ing its causal mechanism, f(XPA(i), Ui), with a new one, f̃(X|PA(i), Ui). We consider only linear
interventions and quantify their interventional strength by computing the following L1-norm:∫ ∫

|f(xPA(i), u)− f̃(xPA(i), u)|µ(dxPA(i))λ(du),

where µ is the original distribution (before intervention) and λ is the noise distribution. Interven-
tional strength, therefore, quantifies the out-of-sample variation of the regressor’s inputs under the
intervention.

We implement a multivariate regression with d = 10, p = 0.5 and T = {5, 6}. We report in Fig. 7
and Fig. 8 the worst-case performance of a G-causal regressor and of a non-causal regressor (in
terms of MSE and R2, respectively) as a function of the interventional strength. At small inter-
ventional strengths the non-causal regressor benefits from the information contained in non-parent
nodes (which are not available as inputs to the G-causal optimizer). These non-parent nodes may
belong to the Markov blanket of the target nodes in G and therefore be statistically informative, but
their usefulness crucially depends on the stability of their causal mechanisms. As the interventional
strength is increased the worst-case performance of the non-causal regressor rapidly deteriorates,
while that of the G-causal regressor remains stable, as shown in the figures.

6A soft intervention at a node i ∈ V leaves its parents and noise distribution unaltered, but changes the
functional form of its causal mechanism.

7
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Figure 3: Worst-case MSE vs interventional
strength.
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Figure 4: Worst-case R2 vs interventional
strength.

In Fig. 5 and Fig. 6 we deepen the comparison by plotting the distribution of the performance
metrics (MSE and R2, respectively) for both estimators. Notice how interventions deteriorate the
performance of the non-causal regressor starting from the least favorable quantiles, while the entire
distribution of the performance metrics of the G-causal remains stable. These figures also show
that the median performance of the causal regressor is, after all, not strongly affected by the linear
random interventions we consider. In this sense, non-causal optimizers can still be approximately
optimal in applications where distributional shifts are expected to be mild.
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Figure 5: Median and (75%-95%) CI of MSE
vs interventional strength.
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Figure 6: Median and (75%-95%) CI of R2 vs
interventional strength.

Finally, we investigate the performance of our G-causal normalizing flow model when used for
generative data augmentation. We therefore train several augmentation models (both non-causal and
G-causal) on a training set of n = 10000 samples from µ. We then use them to generate of synthetic
training set of n = 10000 samples and we train a causal optimizer on it.

As shown in Fig. 7 and Fig. 8, causal optimizers trained using non-causal augmentation models (e.g.
RealNVP and VAE) are indeed robust under interventions, but their worst-case metrics are signifi-
cantly worse than when causal augmentation is used. This is an empirical validation of the fact that
the loss used for training the augmentation model plays a crucial role in downstream performance.

5.2 CONDITIONAL MEAN-VARIANCE PORTFOLIO OPTIMIZATION

We look at the following conditional mean-variance portfolio optimization problem:

V(µ) = inf
h:R|V \T |→R|T |

h is G-causal

{
−Eµ

[
⟨XT , h(XV \T )⟩

]
+

γ

2
Varµ

(
⟨XT , h(XV \T )⟩

)}
,
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Figure 7: Worst-case MSE after generative
data augmentation vs interventional strength.
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Figure 8: Worst-case R2 after generative data
augmentation vs interventional strength.

where X ∼ µ ∈ PG(Rd) is a linear Gaussian SCM, with bipartite DAG G with partition {T, V \T}
and random uniform coefficients in (−1, 1), and γ is a given risk aversion parameter. The target
variables XT represent stock returns, while XV \T are market factors or trading signals. We present
the results for a high-dimensional example with |T | = 100 stocks and |V \ T | = 20 factors.

We sample random linear interventions exactly as done in the case of causal regression and study
empirically the robustness of the G-causal portfolio in terms of its Sharpe ratio as the interventional
strength increases.

Fig. 9 and Fig. 10 show that the Sharpe ratio of the G-causal portfolio is indeed robust to a wide
range of interventions, while the performance of non-causal portfolios deteriorates rapidly, starting
from the least favorable quantiles.
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Figure 9: Worst-case Sharpe ratio vs interven-
tional strength
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Figure 10: Median and (75%-95%) CI of
Sharpe ratio vs interventional strength

Reproducibility statement. All results can be reproduced using the source code provided in the
Supplimentary Materials. Demo notebooks of the numerical experiments will be made available in
a paper-related GitHub repository upon publication.
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A AUXILIARY RESULTS

Lemma A.1 (Interchangeability principle). Let (Ω,F ,P) be a probability space and let f : Ω ×
Rd → R be an F-measurable normal integrand. Then:∫

min
x∈Rd

f(ω, x)P(dω) = min
X∈mF

∫
f(ω,X(ω))P(dω),

provided that the right-hand side is not ∞.

Furthermore, if both sides are not −∞, then:

X∗ ∈ argmin
X∈mF

∫
f(ω,X(ω))P(dω) ⇐⇒ X∗(ω) ∈ argmin

x∈Rd

f(ω, x), (µ-almost surely)

Proof. See Rockafellar & Wets (1998, Theorem 14.60).

Lemma A.2 (Composition lemma). Let (X , ∥·∥) be a Banach space with its Borel σ-algebra and let
µ(0), . . . , µ(d) be measures defined on it. Given measurable maps T̂ (k) : X → X and T (k) : X → X
such that T (k)

#µ
(k−1) = µ(k) (for k = 1, . . . , d), if the following two conditions hold:

i) T̂ (k) is Lk-Lipschitz,

ii) ∥T (k) − T̂ (k)∥Lp(µ(k−1)) ≤ εk,

then:

∥T (d) ◦ · · · ◦ T (1) − T̂ (d) ◦ · · · ◦ T̂ (1)∥Lp(λ) ≤
d∑

k=1

εk

d∏
j=k+1

Lj ,

with the convention that
∏

j∈∅ Lj := 1.

Proof. The claim follows by induction. It is obviously true for d = 1. Assume that it holds for d−1,
then for d:

∥T (d) ◦ · · · ◦ T (1) − T̂ (d) ◦ · · · ◦ T̂ (1)∥Lp(µ(0))

≤∥T (d) ◦ T (d−1) ◦ · · · ◦ T (1) − T̂ (d) ◦ T (d−1) ◦ · · · ◦ T (1)∥Lp(µ(0))+

∥T̂ (d) ◦ T (d−1) ◦ · · · ◦ T (1) − T̂ (d) ◦ T̂ (d−1) ◦ · · · ◦ T̂ (1)∥Lp(µ(0))

≤∥T (d) − T̂ (d)∥Lp(µ(d−1)) + Ld∥T (d−1) ◦ · · · ◦ T (1) − T̂ (d−1) ◦ · · · ◦ T̂ (1)∥Lp(µ(0))

(Change of variable + Lipschitz)

≤εd + Ld ·
d−1∑
k=1

εk

d−1∏
j=k+1

Lj (claim holds of d− 1)

=

d∑
k=1

εk

d∏
j=k+1

Lj

Lemma A.3. Let g ∈ IncrMLP(n) with parameter space Θ(n). Then the map θ 7→ g(·; θ) from
Θ(n) to L1([0, 1]) is continuous.
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Proof. It is a direct application of Lebesgue’s dominated convergence theorem (Bogachev, 2007,
Theorem 2.8.1), so we just verify that the assumptions of the theorem hold. Let θk → θ ∈ Θ be
any convergent sequence. Since θ 7→ g(u; θ) is continuous, we have that g(u; θk) → g(u; θ) for all
u ∈ [0, 1]. Furthermore, the functions g(·; θk) are uniformly bounded:

sup
k∈N

|g(u; θk)| ≤ sup
k∈N

sup
u∈[0,1]

|g(u; θk)|

≤ sup
k∈N

max{|g(0; θk)|, |g(1; θk)|} (u 7→ g(u; θ) is increasing)

≤ sup
θ∈K

max{|g(0; θ)|, |g(1; θ)|}

< +∞

where K ⊆ Θ is any compact containing the sequence {θk, k ∈ N} (which exists because the se-
quence is convergent) and the last inequality follows from the fact that θ 7→ max{|g(0; θ)|, |g(1; θ)|}
is continuous (it’s the minimum of two continuous functions) and therefore bounded on K.

Lemma A.4. Let R ⊆ Rk be a compact set and let the functions f(·, x) : [a, b] → R be continuous,
linear splines on a common grid a = u1 < . . . < un+1 = b, for every x ∈ R. Then there exists a
subset Θ ⊆ Θ(n) (which depends only on the grid) such that the set-valued function θ̃ : R ⇒ Θ,
defined by

θ̃(xPA(k)) := argmin
θ′∈Θ

∥f̂(·, xPA(k))− g(·, θ′))∥L1([0,1]), ∀xPA(k) ∈ R

admits a continuous selection θ : R → Θ, such that g(u, θ(x)) = f̂(u, x) for all u ∈ [0, 1].

Proof. The existence of a continuous selection follows from Michael’s theorem (Aubin &
Frankowska, 2009, Theorem 9.1.2), provided we can show that θ̃ is lower semi-continuous with
closed and convex values.

Lower-semicontinuity actually holds regardless of the choice of the set Θ, so we prove it first. It
follows from the fact that that (xPA(k), θ) 7→ ∥f̂(u, xPA(k)) − g(u; θ′))∥L1([0,1]) is a Carathéodory
function (for a definition, see Rockafellar & Wets (1998, Example 14.29)) and therefore a normal
integrand (Rockafellar & Wets, 1998, Definition 14.27, Proposition 14.28). Indeed:

• Since (u, xPA(k)) 7→ |f̂(u, xPA(k)) − g(u; θ))| is measurable (even continuous) for all
θ ∈ Θ, Tonelli’s theorem (Folland, 1999, Theorem 2.37) implies that x 7→ ∥f̂(·, x) −
g(·; θ))∥L1([0,1]) is measurable.

• The map θ 7→ h(xPA(k), θ) is continuous for all xPA(k) ∈ R|PA(k)| because it’s the composi-
tion of two continuous maps: θ 7→ g(·; θ) ∈ L1([0, 1]), which is continuous by Lemma A.3,
and g(·; θ) 7→ ∥f̂(·, x)− g(·; θ))∥L1([0,1]), which is continuous because the norm is a con-
tinuous function.

We will now show that θ̃ is actually singleton valued (which, of course, implies that it is closed and
convex valued), by constructing a suitable set Θ ⊆ Θ(n). The main strategy is to realize that the
weights and biases of the first layer (w(1) and b(1)) can be used to fully specify the segments on
which the function u 7→ g(u, θ) is piecewise linear and that, once this choice is made, the weights
and the bias of the second layer (w(2) and b(2)) determine uniquely the slope and intercepts on each
segment.

More specifically, given the grid a = u1 < u2 < . . . < un+1 = b, denote by

∆ui := ui+1 − ui and mi :=
1

2
(ui+1 + ui), (i = 1, . . . , n)

the width and the midpoint of each grid segment, respectively. If we set

w̄
(1)
i = 2/∆ui, b̄

(1)
i = −mi∆ui, (i = 1, . . . , n)
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and define Θ := {w̄(1)}×{b̄(1)}×Rn
>0 ×R ⊆ Θ(n), then g(·, θ) is piecewise linear exactly on the

grid {ui}n+1
i=1 , for any θ ∈ Θ. Additionally on each segment [ui, ui+1], the function g(·, θ) has slope

w
(2)
i

w̄
(1)
i +

α

2

∑
j ̸=i

w̄
(1)
j


and bias

w
(2)
i b̄

(1)
i + nb(2) + (n− 1)

α

2
w

(2)
j b̄

(1)
j +

(α
2
− 1

)∑
j<i

w
(2)
j −

∑
j>i

w
(2)
j

 .

We can therefore exactly match any continuous, strictly increasing, piecewise linear function on the
grid {ui}n+1

i=1 by matching the slope and intercept on [u1, u2], together with the slopes on each of
the remaining segments (the intercepts will be automatically matched by continuity). This is a linear
system of n+1 equations in n+1 unknowns and it always admits a unique solution (as can be readily
checked), which implies that for every x ∈ R we can find a θ ∈ Θ such that g(u, θ) = f̂(u, x) for
all u ∈ [a, b].

Lemma A.5. Let g ∈ IncrMLP(n). Then θ 7→ g(u, θ) is locally Lipschitz uniformly in u ∈ [0, 1],
i.e. for every compact K ⊆ Θ(n) there exists an L > 0 such that:

|g(u, θ)− g(u, θ′)| ≤ L∥θ − θ̂∥, ∀θ, θ̂ ∈ K, ∀u ∈ [0, 1].

Proof. The proof follows by direct computation. We use repeatedly the Cauchy-Schwartz inequality,
the fact that the activation ρ is 1-Lipschitz and that ∥u∥ ≤ 1:

|g(u, θ)− g(u, θ̂)| ≤|⟨w(2), ρ⊗n(uw(1) + b(1))⟩+ b(2) − ⟨ŵ(2), ρ⊗n(uŵ(1) + b̂(1))⟩ − b̂(2)|
≤|⟨w(2), ρ⊗n(uw(1) + b(1))⟩ − ⟨ŵ(2), ρ⊗n(uw(1) + b(1))⟩|

+ |⟨ŵ(2), ρ⊗n(uw(1) + b(1))⟩ − ⟨ŵ(2), ρ⊗n(uŵ(1) + b̂(1))⟩|+ |b(2) − b̂(2)|
=|⟨w(2) − ŵ(2), ρ⊗n(uw(1) + b(1))⟩|

+ |⟨ŵ(2), ρ⊗n(uw(1) + b(1))− ρ⊗n(uŵ(1) + b̂(1))⟩|+ |b(2) − b̂(2)|
≤∥w(2) − ŵ(2)∥∥ρ⊗n(uw(1) + b(1))∥

+ ∥ŵ(2)∥∥ρ⊗n(uw(1) + b(1))− ρ⊗n(uŵ(1) + b̂(1))∥+ |b(2) − b̂(2)|
≤∥w(2) − ŵ(2)∥(∥w(1)∥+ ∥b(1))∥) + ∥ŵ(2)∥(∥w(1) − ŵ(1)∥+ ∥b(1) − b̂(1)∥+ |b(2) − b̂(2)|)

Since the parameters are contained in a compact K, their norms are bounded by a constant, say
M > 0, so that:

|g(u, θ)− g(u, θ̂)| ≤ 2M(∥w(2) − ŵ(2)∥+ ∥w(1) − ŵ(1)∥+ ∥b(1) − b̂(1)∥+ |b(2) − b̂(2)|)
≤ 2M

√
4∥θ − θ̂∥

where the last inequality is due to Cauchy-Schwartz (this time applied to the (four-dimensional)
vector of parameters’ norms and the four-dimensional unit vector).

Lemma A.6. Let (u, xPA(k)) 7→ F−1
k (u | xPA(k)) be as in Theorem 4.4. Then:

i) F−1
k (u | xPA(k)) ∈ L1(du⊗ µ(dxPA(k))),

ii) ∂uF
−1
k (u | xPA(k)) ∈ L1(du⊗ µ(dxPA(k))),

iii) ∂xjF
−1
k (u | xPA(k)) ∈ L1(du⊗ µ(dxPA(k))), for all j ∈ PA(k).
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Proof. i) By direct integration:∫
R|PA(k)|

µ(dxPA(k))

∫
[0,1]

du|F−1
k (u | xPA(k))|

=

∫
R|PA(k)|

µ(dxPA(k))

∫
R
µ(dxk | xPA(k))|xk|

=

∫
R
µ(dxk)|xk| ≤ +∞

where we have first used the change-of-variable formula (Bogachev, 2007, Theorem 3.6.1) with
F−1
k (· | xPA(k))#U [0, 1] = µ(dxk |xPA(k)) (McNeil et al., 2015, Proposition A.6) and then used

the fact that µ has finite first moments.

ii) u 7→ F−1(u |x) is increasing on the closed interval [0, 1], therefore by Bogachev (2007, Corol-
lary 5.2.7) it is almost everywhere differentiable and:∫

[0,1]

|∂uF−1
k (u | xPA(k))|du ≤ F−1

k (1 | xPA(k))− F−1
k (0 | xPA(k)).

The right-hand side is just diam(supp(µ(dxk | xPA(k)))), which is finite, since µ is compactly
supported.

iii) Continuity of u 7→ Fk(u | xPA(k)) implies that Fk(F
−1
k (u | xPA(k))) = u (McNeil et al., 2015,

Proposition A.3 (viii)). Differentiating this expression on both sides and using the chain rule
yields: ∫

[0,1]

∣∣∂xj
F−1
k (u | xPA(k))

∣∣ du =

∫
[0,1]

du

∣∣∣∣∣−∂xj
Fk(F

−1
k (u | xPA(k)) | xPA(k))

∂uFk(F
−1
k (u | xPA(k)) | xPA(k))

∣∣∣∣∣
=

∫
R
dx′ ∣∣−∂xj

Fk(x
′ | xPA(k))

∣∣ ,
where the second equality follows from the same change-of-variable as in part (i) and by sim-
plifying the conditional density. The claim now follows by integrating over RPA(k) with respect
to µ(dxPA(k)) and using the assumption that (xk, xPA(k)) 7→ Fk(xk | xPA(k)) is a C1 map and
therefore admits bounded partial derivatives on compacts.

B PROOFS

B.1 PROOF OF THEOREM 3.7

Proof. We generalize the proof by Acciaio et al. (2024) to our G-causal setting. Given µ, ν ∈
PG(Rd), let g be a G-causal function and let π be the optimal G-bicausal coupling between µ and
ν. Then:

−Eν
[
Q(XT , g(XV \T ))

]
= −

∫
Q(x′

T , g(x
′
V \T ))ν(dx

′)

= −
∫

Q(x′
T , g(x

′
V \T ))π(dx, dx

′)

=

∫ (
Q(xT , g(x

′
V \T ))−Q(x′

T , g(x
′
V \T ))

)
π(dx, dx′)−

∫
Q(xT , g(x

′
V \T ))π(dx, dx

′)

Since x 7→ Q(x, g) is uniformly locally L-Lipschitz, the first integral satisfies:
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∫ (
Q(xT , g(x

′
V \T ))−Q(x′

T , g(x
′
V \T ))

)
π(dx, dx′) ≤ L

∫
∥xT − x′

T ∥π(dx, dx′)

≤ L

∫
∥x− x′∥π(dx, dx′)

= L ·WG(µ, ν)

For the second integral, we notice that:

−
∫

Q(xT , g(x
′
V \T ))π(dx, dx

′) ≤ −
∫

Q

(
xT ,

∫
g(x′

V \T )π(dx
′ | x)

)
µ(dx)

= −
∫

Q

(
xT ,

∫
g(x′

PA(T ))π(dx
′ | x)︸ ︷︷ ︸

h(x)

)
µ(dx)

where we first applied Jensen’s inequality and then the fact that g is G-causal. Furthermore, since π
is G-causal, the function h(x) :=

∫
g(x′

V \T )π(dx
′ | x) actually depends only on xPA(T )∪PA(PA(T )).

To ease the notation, denote A := PA(T ) ∪ PA(PA(T )). Then:

−
∫

Q (xT , h(xA))µ(dx) = −
∫

µ(dxA)

∫
µ(dxT | xA)Q(xT , h(xA))

= −
∫

µ(dxA)

∫
µ(dxT | xPA(T ))Q(xT , h(xA))

≤ −
∫

µ(dxA)

∫
µ(dxT | xPA(T ))Q(xT , h

∗(xPA(T )))

= −V(µ)

where in the second equality we have used the fact that XT ⊥⊥ XA | XPA(T ) (see condition (ii) in
Definition 2.2 or simply notice that XPA(T ) d-separates XT and XPA(PA(T ))), while the inequality is
due to Eq. (1).

Putting everything together:

−Eν [Q(Y, g(X))] ≤ L ·WG(µ, ν)− V(µ)
and, since g is arbitrary, we obtain:

V(µ)− V(ν) ≤ L ·WG(µ, ν).

By symmetry, exchanging µ and ν yields the same inequality for the term V(ν)− V(µ), therefore

|V(µ)− V(ν)| ≤ L ·WG(µ, ν).

B.2 PROOF OF THEOREM 4.4

Proof. We know that µ = T#N (0, Id), where T = T (d) ◦ · · · ◦T (1) is the G-compatible, increasing
transformation in the statement of Theorem 4.3. Now, let T̂ = T̂ (d) ◦ · · · ◦ T̂ (1) ∈ G-NF(d) be a
G-NFwith flows as in Eq. (2) and define the G-bicausal coupling π := (T, T̂ )#N (0, 1), then we
have that:

WG(µ, T̂#λ) ≤
∫
Rd×Rd

∥x− x′∥π(dx, dx′) =

∫
[0,1]d

∥T (u)− T̂ (u)∥du.

We can make the right-hand side smaller than any ε > 0 by using Lemma A.2 (with X := [0, 1]d,
µ(0) := U([0, 1]d) and µ(k) := µ1:k ⊗ U([0, 1]d−k), for k = 1, . . . , d), provided that we can show
that conditions (i) and (ii) therein hold.
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Condition (i). Each hypercoupling flow T̂ (k) differs from the identity only at its k-th coordinate,
which is the output of a shallow MLP (see Eq. (2)) . But shallow MLPs are Lipschitz functions of
their input, therefore each T̂ (k) is a Lipschitz function.

Condition (ii). We need to show that for every ε > 0, there exists an n ∈ N, a θ̂(·) ∈ MLP and a
g(·, θ̂(xPA(k))) ∈ IncrMLP(n) such that∫

[0,1]

du

∫
R|PA(k)|

µ(dxPA(k))|F−1
k (u | xPA(k))− g(u; θ̂(xPA(k)))| ≤ ε. (7)

We will prove this bound by splitting the error into three terms and bounding each one separately.

Term 1. First we approximate (u, xPA(k)) 7→ F−1
k (u | xPA(k)) with a continuous tensor-product

linear spline, f̂(u, xPA(k)), on the rectangle [0, 1] × R, where R =
∏|PA(k)|

j=1 [aj , bj ] is a rectangle
large enough to contain the compact support of µ(dxPA(k)). We choose the approximation grid fine
enough to satisfy:∫

[0,1]

du

∫
R|PA(k)|

µ(dxPA(k))|F−1
k (u | xPA(k))− f̂(u, xPA(k))| ≤ ε/2,

and let n + 1 be the number of gridpoints in the u-axis (i.e. the grid on [0, 1] has gridpoints 0 =
u1 < . . . < un+1 = 1).

The validity of this approximation follows from (Schumaker, 2007, Theorem 12.7) and requires that
(u, x) 7→ F−1(u|x) belong to a suitable tensor Sobolev space (Schumaker, 2007, Example 13.5), as
we verify in Lemma A.6.

Term 2. Next, we approximate the univariate functions u 7→ f̂(u, xPA(k)), for each xPA(k) ∈ R, with
neural networks g(·; θ(xPA(k))) ∈ IncrMLP(n), by judiciously choosing the function θ : R → Θ(n).

Since all the functions f̂(·, xPA(k)) share the same grid on [0, 1], by Lemma A.4 there exists a param-
eter subset Θ ⊆ Θ(n) (which depends only on this grid) such that the set-valued map θ̃ : R ⇒ Θ,
defined as

θ̃(xPA(k)) := argmin
θ′∈Θ

∥f̂(·, xPA(k))− g(·, θ′))∥L1([0,1]),

admits a continuous selection θ : R → Θ. We then use this function θ to parametrize the neural
networks g(·, θ(xPA(k))) and, as implied by Lemma A.4, this parametrization is optimal, in the sense
that g(u, θ(xPA(k))) = f̂(u, xPA(k)) for all u ∈ [0, 1], thus achieving zero approximation zero, i.e.∫

[0,1]

du

∫
R|PA(k)|

µ(dxPA(k))|f̂(u, xPA(k))− g(u, θ(xPA(k)))| = 0.

Term 3. Finally, we approximate g(u; θ(xPA(k))) with g(u; θ̂(xPA(k))), where θ̂(·) is a suitable MLP.

Since θ : R → Θ is a continuous function on a compact, we have that θ ∈ L1(µ), therefore for
every ε′ > 0 there is an MLP7 θ̂ such that ∥θ − θ̂∥L1(µ) ≤ ε′ (Leshno et al., 1993, Proposition 1).

Therefore: ∫
[0,1]

du

∫
R|PA(k)|

µ(dxPA(k))|g(u; θ(xPA(k)))− g(u; θ̂(xPA(k)))|

≤
∫
[0,1]

du

∫
R|PA(k)|

µ(dxPA(k))L ||θ(xPA(k))− θ̂(xPA(k))∥

≤ Lε′ ≤ ε/2 (choose ε′ = ε/2L)

where the first inequality follows from the uniform local Lipschitz property on the compact
θ(supp(µ)) ∪ θ̂(supp(µ)) proved in Lemma A.5.

Summing all three approximation errors together, we obtain the bound in Eq. (7).
7For the theorem to hold we only need the activation function to be non-polynomial and locally essentially

bounded (such as ReLU).
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B.3 PROOF OF THEOREM 4.6

Proof. First we notice that

WG(µ, ν) = min
π∈Πbc

G(µ,ν)

∫
Rd×Rd

∥x− x′∥π(dx, dx′)

≤ min
π∈Πbc

G(µ,ν)

∫
Rd×Rd

diam(K) · 1{x ̸=x′}, π(dx, dx
′)

=: diam(K) · dG-TV (µ, ν)

where in the last equality we have introduced the G-causal total variation distance, dG-TV (·, ·), as a
suitable generalization of the total variation distance for G-bicausal couplings.

The claim then follows by showing that dG-TV (µ, ν) ≤ (2d−1)dTV (µ, ν) for all sorted DAGs G by
induction on the number of vertices, which is a straightfoward but tedious generalization of Eckstein
& Pammer (2024, Lemma 3.5) to our G-causal setting.

The claim holds trivially if G has only one vertex (all couplings are G-bicausal). Suppose now the
claim is true for all sorted DAGs on n vertices. Then for a sorted DAG G on n+ 1 vertices, denote
by Gn its subgraph on vertices {1, . . . , n}. We start with some definitions. Define:

η(dxn+1|xPA(n+1)) := µ(dxn+1|xPA(n+1)) ∧ ν(dxn+1|xPA(n+1)),

π ∈ Πbc
G(µ, ν) as π := πn ⊗ π(dxn+1, dx

′
n+1 | xPA(n+1), x

′
PA(n+1)),

where πn ∈ Πbc
Gn

(µ(dx1:n), ν(dx
′
1:n)), and:

π(dxn+1, dx
′
n+1|xPA(n+1), x

′
PA(n+1)) :=

{
σ(dxn+1, dx

′
n+1|xPA(n+1), x

′
PA(n+1)) if xPA(n+1) = x′

PA(n+1)

µ(dxn+1 | xPA(n+1))⊗ ν(d′xn+1 | x′
PA(n+1)) otherwise

where σ is the optimal coupling for the (conditional) total variation distance, i.e.:
σ(dxn+1, dx

′
n+1|xPA(n+1), x

′
PA(n+1)) :=(id, id)#η(dxn+1|xPA(n+1)) + (µ(dxn+1|xPA(n+1))

− η(dxn+1|xPA(n+1)))⊗ (ν(dxn+1 | xPA(n+1))− η(dxn+1|xPA(n+1)))

Then the following bounds can be established (see Eckstein & Pammer (2024, Lemma 3.5) for
step-by-step details):

dG-TV (µ, ν) ≤
∫

1{x ̸=x′}π(dx, dx
′)

=

∫
1{x1:n ̸=x′

1:n}πn(dx1:n, dx
′
1:n)

+

∫
dTV (µ(dxn+1|xPA(n+1)), ν(dxn+1|xPA(n+1)))1{x1:n=x′

1:n}πn(dx1:n, dx
′
1:n)

=

∫
1{x1:n ̸=x′

1:n}πn(dx1:n, dx
′
1:n) + ∥η ⊗ (µ(dxn+1|xPA(n+1))− ν(dxn+1|xPA(n+1)))∥TV

For all A ∈ Rn+1, one has:
η ⊗ (µ(dxn+1|xPA(n+1))− ν(dxn+1|xPA(n+1)))(A) ≤∥µ(dxn+1|xPA(n+1))− ν(dxn+1|xPA(n+1))∥TV

+

∫
1{x1:n ̸=x′

1:n}πn(dx1:n, dx
′
1:n)

Putting the two bounds together and minimizing over all Gn-bicausal couplings πn:
dG-TV (µ, ν) ≤2dGn-TV(µ1:n, ν1:n) + dTV (µ, ν)

≤(2n+1 − 2 + 1)dTV (µ, ν)

=(2n+1 − 1)dTV (µ, ν)

where we have used:
dGn-TV(µ1:n, ν1:n) ≤ (2n − 1)dTV (µ1:n, ν1:n) ≤ (2n − 1)dTV (µ, ν),

which follows from the induction hypothesis and the data pre-processing inequality for the total
variation distance (Eckstein & Nutz, 2022, Lemma 4.1).
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