
MEMORYLLM: Towards Self-Updatable Large Language Models

Yu Wang* 1 Yifan Gao 2 Xiusi Chen 3 Haoming Jiang 2 Shiyang Li 2 Jingfeng Yang 2 Qingyu Yin 2 Zheng Li 2

Xian Li 2 Bing Yin 2 Jingbo Shang 1 Julian McAuley 1

Abstract
Existing Large Language Models (LLMs) usually
remain static after deployment, which might make
it hard to inject new knowledge into the model.
We aim to build models containing a considerable
portion of self-updatable parameters, enabling the
model to integrate new knowledge effectively and
efficiently. To this end, we introduce MEMO-
RYLLM, a model that comprises a transformer
and a fixed-size memory pool within the latent
space of the transformer. MEMORYLLM can
self-update with text knowledge and memorize
the knowledge injected earlier. Our evaluations
demonstrate the ability of MEMORYLLM to effec-
tively incorporate new knowledge, as evidenced
by its performance on model editing benchmarks.
Meanwhile, the model exhibits long-term informa-
tion retention capacity, which is validated through
our custom-designed evaluations and long-context
benchmarks. MEMORYLLM also shows opera-
tional integrity without any sign of performance
degradation even after nearly a million memory
updates. Our code and model are open-sourced
at https://github.com/wangyu-ustc/
MemoryLLM.

1. Introduction
Despite the impressive performance LLMs demonstrate, a
pivotal issue persists: How should we update the model with
the latest knowledge? Previous solutions can be broadly cat-
egorized into three classes: (1) Retrieval-Based Methods:
These methods rely on information retrieval in a knowledge
base (Khandelwal et al., 2019; Zhong et al., 2023). They can
yield strong results, but face challenges when redundancy in
the knowledge base presents and suffer the logistical issue
of managing an ever-expanding repository of knowledge.

∗Work done during the internship at Amazon. 1UC, San Diego
2Amazon 3UC, Los Angeles. Correspondence to: Yu Wang
<yuw164@ucsd.edu>, Yifan Gao <yifangao@amazon.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

In multi-modality scenarios, retrieval-based methods might
require enormous storage space to store all image data (24
images per second for humans) for retrieval purposes. (2)
Model Editing: This class of methods involves making
targeted edits to the model to adapt to new facts while pre-
serving other desired capabilities (Yao et al., 2023). Existing
methods primarily focus on fact-based editing, which is typ-
ically limited to single sentences. This limitation becomes
more severe when one attempts to inject new knowledge
in the form of longer and more complicated contexts. (3)
Long Context Methods: Another alternative solution is
to incorporate all the knowledge into the model’s context,
which essentially makes the context into a knowledge base.
This differs from retrieval-based methods in that the context
directly informs the inference of the model. Methods in
this category involve reducing the complexity of attention
operations (Child et al., 2019; Beltagy et al., 2020; Wang
et al., 2020), and modifying positional embeddings (Press
et al., 2021; Sun et al., 2023) to handle longer contexts.
However, as complex reasoning tasks are thirsty for massive
up-to-date knowledge, the inevitable context overload with
long context methods becomes infeasible, as long as the
context length is finite.

In response to the challenges identified above, we intro-
duce MEMORYLLM, a model that embeds a substantial,
fixed-size memory pool within its latent space, which serves
as the self-updatable parameters. Specifically, we build
the memory pool as hidden vectors within each layer of
the transformer. At each layer, the memory pool contains
memory tokens representing compressed knowledge. This
design results in a memory pool that is less redundant than
traditional knowledge bases in retrieval-based methods or
contexts in long-context methods. To update the memory
pool, we devise a self-update mechanism to propagate the
new knowledge to every layer of the memory. During self-
update, MEMORYLLM only updates a proportion of mem-
ory in each layer to absorb the incoming knowledge. This
allows previously stored knowledge to slowly phase out.
These designs ensure MEMORYLLM remains up-to-date
while the old knowledge is slowly forgotten. After curated
training, we update MEMORYLLM nearly a million times
without observing any performance deterioration.

The evaluation of MEMORYLLM focuses on several key

1

https://github.com/wangyu-ustc/MemoryLLM
https://github.com/wangyu-ustc/MemoryLLM


MEMORYLLM: Towards Self-Updatable Large Language Models

aspects: (1) Integration of New Knowledge: The model’s
performance is assessed with model editing benchmarks
and QA tasks (long context QA benchmarks), where MEM-
ORYLLM demonstrates substantial improvements over ex-
isting methods. (2) Knowledge Retention Ability: MEMO-
RYLLM is evaluated on long context benchmarks and our
knowledge retention experiments, showcasing its ability to
recall knowledge. (3) Robustness: To test the integrity of
the model, we subject MEMORYLLM to almost a million
update steps. The results show that our model is functioning
properly even after extreme updates.

In summary, our contributions are as follows:

• We introduce MEMORYLLM, which features an inte-
grated memory pool within the latent space of an LLM.
This memory pool is designed to manage new knowledge
integration and encourage minimal information forget-
ting while being fixed-sized to circumvent the issue of
uncontrolled growth.

• We augment a 7B parameter model with an extensive
memory pool comprising 1B parameters.

• MemoryLLM demonstrates strong performance across
various benchmarks, including model editing, long-
context evaluation, and our knowledge retention exper-
iments, showcasing its versatility and effectiveness in
diverse applications.

2. Preliminaries
2.1. Problem Statement

The primary challenge addressed in this paper is: How
should we design a large language model that is capable
of efficiently integrating new knowledge while minimizing
the degradation of previously learned knowledge? To make
the challenge more specific, we outline several essential
properties that we hope to integrate into the new model: (1)
Effiency: The process of knowledge injection into the model
should be streamlined, potentially eliminating the need for
back-propagation for efficiency. (2) Efficacy: It is crucial
to ensure that the knowledge is effectively injected into the
model, guaranteeing its impact on the model’s performance.
(3) Knowledge Retention: Our model has a fixed-sized
memory pool, implying a constant memorization capacity.
This necessitates a mechanism for gradually phasing out
older knowledge. (4) Integrity: The model must maintain
full functionality regardless of the number of updates made
to the memory pool. (5) Non-redundancy: We aim for
more compact storage of knowledge, reducing redundancy,
and optimizing memory usage.

2.2. Sketch of MEMORYLLM

To address the above challenges, our rough idea is to de-
sign a model denoted as Mθ,ϕ consisting of two sets of

parameters: ϕ and θ. Once we obtain the model, the ϕ pa-
rameters should be static, while θ dynamically evolves when
encountering new knowledge. This aligns with the intuition
that some knowledge within an LLM should never change
(persistent truths, encoded by ϕ) and some knowledge is
being updated continuously (fresh information, modeled by
θ). Specifically, we use an existing large language model
(Llama2) to model ϕ, while θ is modeled by the memory
pool with the detailed structure in Section 3.1.1. Here we
need to design the self-updating mechanism of θ that is piv-
otal to this process. Denoting the new knowledge as x, a
text paragraph, the self-updating process refers to updating
θ in a way that does not compromise the general capabilities
of the model while injecting the latest knowledge x into the
memory pool θ to obtain a new memory pool θ′:

θ′ = U(θ, x) (1)

Here U is the update function which takes the memory pool
θ and the new knowledge x as input and outputs the new
memory pool θ′. Extending this process to multistep updat-
ing, consider a scenario with a never-ending context or a
series of conversation histories, represented as (x1, · · · , xn),
where xi, i ∈ {1, · · · , n} is a text paragraph. The model
requires the integration of all these contexts, which can be
accomplished using the update function I defined in Eq.(1):

θn = U(· · · (U(θ, x1), xn). (2)

We define the process self-updating as modifying the param-
eters θ with newly encountered knowledge x, essentially
enabling the model to read and assimilate knowledge. This
design presents two primary challenges: (1) Parameter and
Interaction Design: We need to determine the structure for
θ and how it should interact with ϕ, The goal is to allow the
LLM to effectively use the knowledge from the θ in the gen-
eration process. (2) Update function design: It is crucial
to design the update function U such that θ can be updated
without disturbing the old knowledge and undermining the
overall capabilities of the model.

3. MEMORYLLM
3.1. Structure Design

3.1.1. MEMORY POOL

We choose to instantiate ϕ with an off-the-shelf LLM, specif-
ically Llama2 (Touvron et al., 2023). ϕ consists of multiple
transformer layers, denoted as ϕ = {ϕl}Ll=1, where L repre-
sents the total number of layers. To facilitate the transformer
ϕ to understand the memory pool θ, we conceptualize θ as
hidden vectors within each transformer layer, symbolized as
θ = {θl}Ll=1. Each θl is of dimension N × d, correspond-
ing to N hidden states and the word embedding dimension
d in ϕ. We term θl memory tokens. The memory tokens

2



MEMORYLLM: Towards Self-Updatable Large Language Models

(a) Generation

(b) Self-Update

Figure 1. The framework of MEMORYLLM. (a) During gener-
ation, all memory tokens in the l-th layer of memory pool θl are
attended by the hidden states hl. (b) During self-update, The last
k memory tokens from θl are taken to be concatenated with the
hidden states hl as the input to ϕl. The output hl+1 goes to the
next layer. The last K tokens of hl+1 serve as the new memory
tokens elθ

′
. We randomly drop K tokens in θl and concatenate the

left θl (denoted as θl(d)) with elθ
′

to obtain new memory θ′l.

serve as the representation of previous knowledge that the
model has seen in a more compressed manner. We intend
to maximize the memory size, so we assign the memory
pool to every layer to significantly enlarge the memory pool.
During the generation phase, all memory tokens are used,
as illustrated in Figure 1(a). The attention map is designed
to enable every token in x to attend to all memory tokens. If
x comprises nx tokens, the attention map assumes a shape
of nx × (nx + N), yielding a linear complexity w.r.t. the
size of the memory pool.

3.1.2. SELF-UPDATE PROCESS

Figure 1(b) illustrates the self-update process. The goal
of self-update is to ensure that MEMORYLLM can always
digest the latest knowledge and memorize the previously
learned knowledge at its best. We discuss the self-update
process in this subsection and prove in section 3.1.3 that
MEMORYLLM only forgets stale knowledge at an exponen-
tial decay rate with a theoretical guarantee. When introduc-
ing new knowledge xc (in the following, we denote the new
knowledge as context xc to distinguish it from x in the last
section), the model must integrate xc into θ as per Eq.(1). To
avoid additional modules and complexities, we use the trans-
former ϕ for the update. Ideally, the input to ϕl should be
the memory pool θl and the hidden states hl (where h1 are

the word embeddings of tokenized xc). We find it essential
to maintain the gradient flow from both the self-update and
the generation to achieve better performance (see Section
3.2.1). However, it is much more costly to feed the entire
pool θl to ϕl during self-update. To solve this problem, we
extract the last K tokens of θl where K << N and denote
these extracted tokens as elθ. elθ is then concatenated with hl

to form the input of ϕl, where hl can attend to the preceding
context elθ. The attention also employs an attention map
of dimension max(nxc

,K)× (nxc
+K), where nxc

is the
number of tokens in xc (Note that in Figure 1(b) we show
the case when nxc

> K. The case when k > nxc
is shown

in Figure 8 in Appendix). The last K hidden states of the
output hl+1 are designated as elθ

′. Then we drop K memory
tokens from the current memory pool θl and squeeze θl to
the left side of the newly formed memory pool θl′ where
the new memory tokens elθ

′ fill the right side. In this way,
elθ

′ is still of dimension d, with the new knowledge injected
into the last K dimensions.

3.1.3. ANALYSIS OF FORGETTING

The design of the self-update process draws inspiration from
the concept of exponential forgetting in human cognition,
as described by the Ebbinghaus Forgetting Curve, and anal-
ogous to the intuition in MemoryBank (Zhong et al., 2023).
Through this structure, we aim to simulate exponential for-
getting. In each update we drop K tokens from the memory
pool; statistically, we drop K/N of the knowledge from the
existing memory pool, which means that knowledge within
the memory pool would be exponentially forgotten at a rate
of K/N . Here, N denotes the total memory size, while K
denotes the number of tokens that are used to incorporate
knowledge in xc. Thus, N denotes the total capacity of the
memory while K represents the compression ratio. The
smaller K, the more compressed the knowledge.

After self-update, the latest knowledge is preserved entirely
without any random dropping. After N/K update steps, the
retention ratio for knowledge injected N/K steps earlier
can be calculated as:

(1− K

N
)N/K . (3)

In Eq. 3, with the memory pool θl getting larger (N becomes
greater) and the knowledge in xc getting more compressed
(K becomes smaller), we can approach the following limit:

lim
N
K →∞

(1− K

N
)N/K = 1/e, (4)

where e is the natural constant, therefore, to achieve minimal
forgetting, the strategy involves reducing the compression
ratio (by minimizing K, as we essentially compress knowl-
edge from hl into el

′

θ ) and increasing the memory size (by
maximizing N ).

3



MEMORYLLM: Towards Self-Updatable Large Language Models

Figure 2. Training Process for new knowledge incorporation.
During training, we randomly choose one of two shown processes
to proceed with 50% probability each. The description pertains
to the first layer, and the subsequent layers share an analogous
procedure. After sampling (x1, x2) from the dataset, we first
perform self-update with x1 as depicted in the left side of both
processes. Subsequently, the modified memory e1θ

′ is employed to
predict x2. Of the two processes, the upper one maintains gradient
flow throughout the entire process, optimizing the knowledge
compression from x1 to elθ

′
(l ∈ {1, · · · , L}). In contrast, the

lower process executes the self-update without gradient. Both
processes are designed to encourage the use of the knowledge in
the memory pool for the prediction.

3.2. Training Strategy

We adopt the next word prediction task to pretrain our model.
Our training methodology for MEMORYLLM is strategi-
cally designed to optimize towards three core objectives
discussed as follows:

3.2.1. NEW KNOWLEDGE INCORPORATION

The training process begins by selecting a document d
from the dataset, which is then divided into two segments
(x1, x2). Then we update the memory pool θ with x1, fol-
lowed by using the updated memory pool to predict x2. The
whole process is described in Figure 2. Ideally, we would
design the whole process shown in the lower part of the
figure with gradient enabled (see figure 9). However, this
approach incurs prohibitive memory demands, especially
when the memory pool is large. To mitigate this issue, in
l-th layer, we propose to only use elθ

′ for the prediction of
x2 rather than the whole updated memory θ′l when keeping
the gradient flow, and use θ′l when the self-update process
with x1 is performed without gradient. In each iteration,
the two aforementioned processes are randomly selected, to
ensure that our model can absorb the knowledge in x1 into
θ and use the memory pool θ during the generation.

Figure 3. Training process for continuous contexts understand-
ing. We only draw two self-update steps here with x1, x2 though
there should be n − 1 self-updates in this training iteration. We
show the procedure of l-th layer here. At the bottom of the figure,
hn
1 refers to the word embeddings of xn, and hn

L is used for loss
value calculation. Essentially we are compressing the knowledge
from x1, · · · , xn−1 into θl

n−1

to predict xn.

3.2.2. ENHANCING CONTINUOUS CONTEXTS
UNDERSTANDING

In Section 3.2.1, We encourage the model to understand
the latest knowledge injected, where the model can make
predictions based on the new memory pool θ′. However, the
model only needs the last K tokens of each layer θ′l since
only elθ

′ (the last K tokens of θ′l) contains the knowledge
of the last injected context. Thus our model may suffer
from predicting the next token based on multiple injected
contexts, which is essentially the long context problem. We
propose a training routine illustrated in Figure 3 to address
this problem. In Figure 3, a long document is sampled and
segmented into n parts (x1, · · · , xn), with each segment
being shorter than a predefined maximum length. The first
n− 1 segments are then sequentially injected into the mem-
ory pool θ using Eq.(2), resulting in θn−1. Note that this
whole injection process of (x1, · · · , xn−1) is executed with
gradient disabled. Upon obtaining θn−1, we calculate the
cross-entropy loss on segment xn. With this training proce-
dure, we wish to enhance the model’s ability to understand
and process continuous contexts.

3.2.3. MITIGATING FORGETTING PROBLEMS

To address the forgetting issue, we design a task that in-
volves contexts across multiple documents. Specifically, we
sample one main document d and multiple side documents

4



MEMORYLLM: Towards Self-Updatable Large Language Models

d′ (we take one side document as an example) and split
them into segments (x1, · · · , xn) and (x′

1, · · · , x′
n). The

first n− 1 segments of the main document (x1, · · · , xn−1)
and the side document (x′

1, · · · , x′
n) are then injected into

the model sequentially. To force the model to recall the
related context injected a long time ago, we make the model
predict the last segment of the main document xn. Simi-
larly, the gradient is disabled during all the injections. We
encourage the model to use the knowledge from long ago
to make the prediction, thereby mitigating the forgetting
problem effectively. The implementation details of this part
are described in Appendix B.1.

To maintain the integrity of our model, i.e., to avoid the
issue that the model may start malfunctioning after updating
θ too many times, we update θ with the context after back-
propagation. Specifically, we update θ with x1 in Section
3.2.1 and with {x1, · · · , xn−1} in Section 3.2.2 at the end
of each training iteration. Intuitively, we are regularizing the
distribution of elθ

′ to be the same as that of θl to maintain
integrity after arbitrarily many updates.

3.3. Model Instantiation

We use Llama2-7b as ϕ, consisting of 32 layers, with a
hidden dimension of 4, 096. The model we propose has
7, 680 memory tokens in every layer, meaning that θ ∈
R32×7680×4096, comprising 1.066B parameters.

3.4. Discussions

Extension to Other Architectures: Our experimental
framework involves the use of Llama2-7b as the instan-
tiation for the function ϕ. This selection was driven by the
popularity and performance of Llama2-7b as a large lan-
guage model during the development phase of our project.
It is important to note, however, that the framework of our
model is broadly applicable across various large language
models (LLMs) that have transformer architectures with full
attention mechanisms.

Scalability of the Memory Size: In our main experiments,
we expand the memory size to approximately 1 billion pa-
rameters. We wish to emphasize that the efficiency of the
self-update process (discussed in Section 3.1.2) remains
unaffected by increases in the memory pool size. This effi-
ciency is due to the model’s design, which only adopts the
most recent K tokens from the memory pool as the input
during self-updates. Consequently, the primary scalability
constraint arises from the attention mechanism between the
memory tokens and the input tokens during generation (as
depicted in Figure 1(a)). As the memory pool enlarges, the
computational complexity of these attention mechanisms
increases linearly with respect to the number of tokens N
in the memory pool, which is because the complexity of the
attention is N × K. With distributed training, our frame-

work has the potential to be scaled to significantly larger
memory sizes.

The design of Random Dropping: Random dropping is
a fairly straightforward way to keep the size of the mem-
ory pool fixed while maintaining an exponential forgetting
mechanism. Other possible strategies include applying an
exponential decay factor to the memory pool from the pre-
vious step and aggregating the decayed memory pool with
the new memory. We have experimented with aggregating
existing memory and new memory instead of using random
dropping. However, we found that maintaining the integrity
of hidden states for tokens seems to be beneficial. Aggregat-
ing hidden states often disrupts both the original and new
knowledge, resulting in situations where even the knowl-
edge injected into the memory during the last self-update
process cannot be fully extracted. In contrast, while random
dropping carries the risk of forgetting previous information,
it allows for the full recovery of information from the con-
text injected during the last self-update step, as there is no
random dropping applied to the new memory tokens at the
last update. Therefore, we choose random dropping as we
believe it provides a more natural way to integrate existing
hidden states with new hidden states.

4. Experiments
4.1. Evaluation Protocols
As illustrated in Section 1, we need to evaluate MEMO-
RYLLM in the following three aspects: (1) Integration
of New Knowledge: this evaluation is conducted with the
model editing tasks (Section 4.3) and QA tasks (long con-
text QA benchmarks, Section 4.4); (2) Knowledge Reten-
tion Ability: the model is evaluated with long context QA
benchmarks (Section 4.4) and our knowledge retention ex-
periments (Section 4.5); (3) Robustness: we make nearly
a million updates to our memory pool and then test the
functionality of our model (Section 4.6).

4.2. Implementation Details
We train our model on the processed version of the C4
dataset (Raffel et al., 2020) from Red-Pajama (Computer,
2023). For the training processes in Section 3.2.1, we sam-
ple documents from the entire dataset, while the training
process in Section 3.2.2 is based on a subset of C4 (we call
this the long context subset) where all documents are of
length greater than 2048. For the last part, Section 3.2.3,
the documents are sampled randomly from the original C4
dataset and the long context subset. The training is per-
formed on 8 A100-80GB GPUs for three days.

4.3. Model Editing
4.3.1. EXPERIMENTAL SETUP

We follow the experimental setup in (Meng et al., 2022).
The benchmarks are:

5



MEMORYLLM: Towards Self-Updatable Large Language Models

Table 1. Quantitative Editing Results on Llama2-7B for ZsRE and CounterFactual Datasets. “w/EF” means “with editing facts”,
indicating the model after updating the memory pool with the new fact.

ZsRE Dataset CounterFactual Dataset

Editor Score Efficacy Generalization Specificity Score Efficacy Generalization Specificity

Llama2-7B 55.6 55.9 54.7 56.3 20.7 13.7 16.6 83.4
MemoryLLM-7B 51.2 50.0 49.1 54.8 22.6 15.7 17.6 82.1

FT 50.3 78.6 80.6 29.0 10.0 99.7 96.9 3.6
FT-L 69.8 81.4 76.8 56.6 33.8 47.2 18.0 83.3

ROME 69.3 88.7 70.2 56.3 69.2 82.6 75.2 55.8
IKE - - - - 70.7 99.8 96.2 45.4

MemoryLLM-7B (w/ EF) 79.2 99.8 96.7 57.1 75.3 98.5 82.2 57.0

zsRE (Levy et al., 2017): Zero-Shot Relation Extrac-
tion(zsRE) is first used in Mitchell et al. (2022); Cao et al.
(2021) for model editing evaluations. we use the first 10, 000
records in the dataset as the evaluation set, with each record
containing one factual statement.

CounterFactual (Meng et al., 2022): A set of more difficult
false facts in which the LLMs would have low scores when
prompted with these facts. Then after editing the model,
the model is queried again with these facts. Each example
includes the question, the original fact, and the false fact,
where we aim to inject the false fact into the model. The
first 2, 000 examples in this dataset are used for evaluation
(following the evaluation of GPT-J in (Meng et al., 2022)).

Evaluation metrics include Efficiency (the post-edit ac-
curacy), Generalization (post-edit accuracy of the para-
phrased version of the factual statement), and Specificity
(the post-edit accuracy on unrelated facts). The harmonic
mean of the three metrics is reported in column Score.

We compare our model with the following baselines2:
FT, FT-L (Zhu et al., 2020), IKE (Zheng et al., 2023),
ROME (Meng et al., 2022). The details of the baselines are
described in Appendix C.1.

4.3.2. OVERALL PERFORMANCE COMPARISON

The experimental results on dataset ZsRE and CounterFac-
tual are shown in Table 1. From the table, We observe
(1) Our model outperforms all baseline models in both
datasets, achieving the highest overall performance met-
rics. (2) While Fine-Tuning (FT) performs better in terms
of Efficacy and Generalization, which means the model ab-
sorbs the knowledge, but it tends to lag in “Specificity”,
meaning the model’s knowledge of other facts is affected by
the tuning. (3) With enforced constraints (FT-L), the model
performs better in terms of Specificity while compromising

2We tried MEND (Mitchell et al., 2022), but the existing code
is for GPT-style models. Our re-implementation of MEND on
Llama2 based on the published code constantly encounters nan.
In addition, MEND is inferior in the experiments in (Meng et al.,
2022), thus we omit MEND in our experiments.

Efficacy and Generalization, representing that the knowl-
edge is not absorbed by the model effectively. (4) ROME,
striking a reasonable balance between efficacy and speci-
ficity, compared with MEMORYLLM, may fall short in the
overall performance measurement. (5) IKE, conceptually
similar to our approach by incorporating the information
into the context, faces limitations in specificity, which could
be ascribed to the complexity of the prompts used in the
implementation, potentially disrupting the accuracy.

4.4. Long Context Evaluation

4.4.1. EXPERIMENTAL SETUP

In this section, we evaluate the long-context modeling ca-
pabilities of our model. Our assessment utilizes the Long-
Bench benchmark (Bai et al., 2023), specifically designed to
test performance in long-context scenarios. Since our model
has not undergone instruction fine-tuning, the baselines for
comparison are also not instruction finetuned. The base-
lines include Llama2-7B: our backbone; Longllama-3B-v1-
1(Tworkowski et al., 2023): The model employs contrastive
learning to extend the effective context length of existing
models. We adopt the 3B model here as only the 3B model
is open-sourced, derived from Openllama-V2; Openllama-
V2 (Geng & Liu, 2023): An open-sourced reproduction of
Llama. Llama2-LongLora-7B-16k (Chen et al., 2023b):
A novel attention mechanism, Shift Short Attention, is pro-
posed and used for longer context pertaining. This model,
based on Llama2-7B, is extended to accommodate a 16k
context length; Llama2-LongLora-7B-100k (Chen et al.,
2023b). The same method but context length is extended
to 100k. For 7B models, we omit the results of maximum
length being 16, 384 as we encounter the out-of-memory
(OOM) error even when using eight A100-80GB GPUs.
This shows another advantage of MEMORYLLM, as our
model needs one 48 GB GPU or two 40GB GPUs to run
inference regardless of the input length.

4.4.2. OVERALL PERFORMANCE COMPARISON

The results in Figure 4 reveal that: (1) MEMORYLLM out-
performs baselines in four out of six datasets when provided

6



MEMORYLLM: Towards Self-Updatable Large Language Models

Table 2. The performance comparison on long context QA bench-
marks of our model with and without BM25 retriever.

MEMORYLLM-16k MEMORYLLM-all-BM25

narrativeqa 20.64 15.60
qasper 19.57 20.30

multifieldqa en 29.56 33.08
hotpotqa 34.03 32.27

2wikimqa 27.22 24.17
musique 13.47 15.36

with extended contexts. However, a notable exception is
observed in the Qasper dataset, where MEMORYLLM ex-
hibits suboptimal performance. This could be attributed
to the model’s training predominantly on the C4 dataset,
without incorporating the arxiv dataset. Thus, the training
may affect the model’s ability on scientific datasets (such as
Qasper). (2) As the context length grows, the performance
of MEMORYLLM continues to improve, demonstrating the
knowledge retention ability of MEMORYLLM, where the
knowledge from multiple updates earlier could boost per-
formance. The performance of MEMORYLLM, when the
context length is less than 4k, is not the same as that of
Llama2-7B, which can be attributed to the subset we used
for training MEMORYLLM, as we do not need to use the
entire dataset for pertaining Llama2-7B for our model and
a subset would inevitably have distribution shift from the
original dataset.

4.4.3. COMPARISON WITH RAG METHODS

In this section, we aim to explore the role of RAG meth-
ods in QA tasks which we argue is orthogonal to MEMO-
RYLLM. The primary goal of MemoryLLM is to achieve
self-updatable LLM where the memory module serves as
the parameters that could keep updating along the inference
process, whereas RAG methods aim to retrieve the most
relevant piece of information from the history. Intuitively,
RAG is used to conduct coarse retrieval from millions of
documents, while MemoryLLM can process the retrieved
documents. We use BM25 retriever to extract 4k tokens
from the whole context and use MemoryLLM to process
these 4k tokens to generate the answer. The results are
shown in Table 2. Here MemoryLLM-7b-16k corresponds
to the results in Figure 4, and MemoryLLM-7b-all-BM25
means retrieving 4k tokens from the whole given context
and using MemoryLLM to process the retrieved 4k tokens.
The results show that using the BM25 retriever could en-
hance the model performance on certain datasets while not
universally beneficial.

4.5. Knowledge Retention Experiments

4.5.1. EXPERIMENTAL SETUP

The datasets are prepared as below:
SQuAD: Formatted as (context, question,
answer), where context and question are sen-

2k 4k 8k 12k 16k
Maximum Length

10

15

20

QA
-F

1-
Sc

or
e

narrativeqa

OpenLlama-3B-v2
LongLlama-3B-v1.1
Llama2-LongLora-7B-16k
Llama2-LongLora-7B-100k
Llama2-7B
MemoryLLM-7B

2k 4k 8k 12k 16k
Maximum Length

20

25

30

QA
-F

1-
Sc

or
e

qasper

OpenLlama-3B-v2
LongLlama-3B-v1.1
Llama2-LongLora-7B-16k
Llama2-LongLora-7B-100k
Llama2-7B
MemoryLLM-7B

2k 4k 8k 12k 16k
Maximum Length

20

25

30

QA
-F

1-
Sc

or
e

multifieldqa_en

OpenLlama-3B-v2
LongLlama-3B-v1.1
Llama2-LongLora-7B-16k
Llama2-LongLora-7B-100k
Llama2-7B
MemoryLLM-7B

2k 4k 8k 12k 16k
Maximum Length

25

30

35

QA
-F

1-
Sc

or
e

hotpotqa

OpenLlama-3B-v2
LongLlama-3B-v1.1
Llama2-LongLora-7B-16k
Llama2-LongLora-7B-100k
Llama2-7B
MemoryLLM-7B

2k 4k 8k 12k 16k
Maximum Length

20

25

QA
-F

1-
Sc

or
e

2wikimqa

OpenLlama-3B-v2
LongLlama-3B-v1.1
Llama2-LongLora-7B-16k
Llama2-LongLora-7B-100k
Llama2-7B
MemoryLLM-7B

2k 4k 8k 12k 16k
Maximum Length

8

10

12

QA
-F

1-
Sc

or
e

musique
OpenLlama-3B-v2
LongLlama-3B-v1.1
Llama2-LongLora-7B-16k
Llama2-LongLora-7B-100k
Llama2-7B
MemoryLLM-7B

Figure 4. Experimental Results on LongBench. The x-axis is
the maximum context length for the QA task. For instance, with a
maximum length of 4096, we truncate 4096 tokens from the given
context as input to the model. The y-axis is the F1 score.

tences, answer refers to the first answer in the list of
ground-truth acceptable answers. Then we extract all the
samples with answer shorter or equal to 3 tokens. The
model generates 10 new tokens from the prompt “Question:
Question Answer:”. Correct predictions cover the
3-token answer within the 10 generated tokens. A total of
2, 250 samples are used for the accuracy calculation.
NaturalQA: Formatted as (context, question,
answer), using the long answer as the context and the
short answer as the ground truth. Samples with answers
of 4 tokens or less are selected. Like SQuAD, the model
generates 10 new tokens, and the correct predictions cover
the 4-token answer. This yields 1,004 samples for analysis.

The results are shown in Figure 5. We assess MEMO-
RYLLM’s forgetting rate, comparing it against a baseline
(accuracy without context injected into the memory) and a
theoretical upper bound. Denote the accuracy at step 1 as
au, and the borderline accuracy as ab. Then at step t, we
calculate the point on the curve with the following equation:

at = (au − ab) ∗
(N −K

N

)t−1

(5)

In our instantiation, N = 7, 680 and K = 256. Our findings
indicate that the model retains knowledge even after 20 up-
dates. However, it falls short of the exponential decay curve

7



MEMORYLLM: Towards Self-Updatable Large Language Models

1 5 10 15 20
Steps

0.2

0.3

0.4

Ac
cu

ra
cy

Exponential Decay
Borderline
MemoryLLM-7B

(a) SQuAD

1 5 10 15 20
Steps

0.2

0.3

0.4

Ac
cu

ra
cy

Exponential Decay
Borderline
MemoryLLM-7B

(b) NaturalQA

Figure 5. Performance Comparison on SQuAD and NaturalQA.
The x-axis shows the number of updates we perform on the model,
where the context that contains the knowledge to answer the ques-
tion is injected in Step 1. The y-axis reveals the accuracy of the
model’s prediction after a certain number of updates. The accuracy
is higher than the borderline indicating that the knowledge is not
completely forgotten, while we wish the model to be more aligned
with the exponential decay, i.e., the theoretical upper bound.

0 1 2 3 4 5 6 7
10K Steps

0.35
0.36
0.37
0.38
0.39
0.40

Av
er

ag
e 

Ac
cu

ra
cy

Raw Accuracies
Smoothed (99.99%)

(a) SQuAD

0 1 2 3 4 5 6 7
10K Steps

0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50

Av
er

ag
e 

Ac
cu

ra
cy Raw Accuracies

Smoothed (99.99%)

(b) NaturalQA

Figure 6. Model Integrity Check with SQuAD and NaturalQA.
We plot accuracy along the updating process as well as the expo-
nential moving average as the Smoothed (99.99%) value. We do
not observe any decrease over 650k updates.

representing the upper bound. This gap can be attributed
to the fact that even if the knowledge is partially corrupted
after 20 steps of updating, it might be hard for the model
to reveal the exact answer. The performance exceeding the
upper bound at step 2 on the dataset SQuAD might be due
to (a) the variation of inference and (b) dropping a small
part of the memory may not affect the model predicting the
words, while the exponential curve would drop.

4.6. Model Integrity Analysis

To illustrate the integrity of our model, We update our model
with NaturalQA and SQuAD mentioned in Section 4.5.
Each time we go through the whole dataset, we shuffle
the dataset and inject it into the memory again. In this way,
we can simulate infinite updates. Then during the updating
process, we track if our model could answer the question
related to the most recent context, obtaining a long binary
array that indicates whether our model successfully answers
the question related to the most recently injected context.
With this binary array, we calculate the average accuracy
of the last 2, 250 samples for SQuAD and the last 1, 004
samples for NaturalQA. The results are shown in Figure

1 5 10 15
Step

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

NaturalQA Related Context at Step 1

K=256, N=20x256
K=256, N=10x256
K=512, N=10x512
K=256, N=30x256

(a) NaturalQA Acc Percentage

1 5 10 15
Step

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

SQuAD Related Context at Step 1

K=256, N=20x256
K=256, N=10x256
K=512, N=10x512
K=256, N=30x256

(b) SQuAD Acc Percentage

1 5 10 15
Step

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

NaturalQA Related Context at Step 1

K=256, N=20x256
K=256, N=10x256
K=512, N=10x512
K=256, N=30x256

(c) NaturalQA Accuracy

1 5 10 15
Step

0.2

0.3

0.4

Ac
cu

ra
cy

SQuAD Related Context at Step 1

K=256, N=20x256
K=256, N=10x256
K=512, N=10x512
K=256, N=30x256

(d) SQuAD Accuracy

Figure 7. Ablation Study with our knowledge retention experi-
ments on NaturalQA and SQuAD. All models are trained with the
same setting, 30×256 is our main model. The relevant knowledge
for answering the question is injected in step 1, and the x-axis
means the number of updates (steps) performed. The top figures
show the ratio of the accuracy at each step compared with the
accuracy at step 1 for better visualization of knowledge retention.

6. We continue running for up to 650, 000 steps for 3 days.
As shown in the figure, there is no sign of decreasing in
accuracy even after the 650, 000 steps, demonstrating the
integrity of our model. From this observation, we argue that
our model could be potentially updated for arbitrarily many
times without affecting the functioning ability.

4.7. Ablation Study

4.7.1. ABLATION STUDY OF DIFFERENT K AND N

In this section, we study the effects of different K and N
in Eq.(3) with our knowledge-retention experiments. Our
primary goal is to explore the forgetting ratio when the
model has different memory sizes (N ) and numbers of to-
kens to store the new knowledge (K). We vary N to be
{10 × 256, 20 × 256, 30 × 256}, and K to be {256, 512}.
We also tried K = 128, but to find that the accuracy is much
worse than the other settings (the step 1 accuracy of NQA
and SQuAD under the setting K = 128 are 0.34 and 0.25,
respectively), we omit this setting here. The results shown
in Figure 7 reveal that (1) When K is fixed, with greater N ,
the forgetting ratio is smaller; (2) When N is fixed, with
smaller K (10 × 512 vs. 20 × 256, the latter yields better
knowledge-retention ability), the forgetting ratio becomes
smaller. These experiments support our intuition and show
that with the improvement of N/K, we can enable better
knowledge-retention ability.

8



MEMORYLLM: Towards Self-Updatable Large Language Models

4.7.2. ABLATION STUDY OF THE MODEL STRUCTURES

In our main experiments, we train the model with the mem-
ory tokens augmented in every layer. To study the necessity
of this design, we tried the following several settings: (1)
Augment only one layer in the model with memory tokens;
(2) Augment the last half of the layers in the model with
the memory tokens (this design is inspired by Figure 6(a)
in Fang et al. (2024)). Then we find that design (1) leads
to almost zero improvements with the context compared
to the performance without the context, which means aug-
menting only one layer is almost useless. For design (2),
We record the accuracies after injecting the context for one
step: NaturalQA: 0.39, SQuAD: 0.22. For reference, the
accuracy of NaturalQA and SQuAD in Figure 7 at step 1
is 0.46 and 0.39 respectively. This shows that having the
memory tokens in both the first half and the second half
layers is necessary for better performance.

5. Related Work
5.1. Memory based methods

Previous memory-based methods share certain similarities
with MEMORYLLM. Among these methods, some use an
external encoder to inject knowledge into the memory pool,
such as the Memory Network (Weston et al., 2014), which
focuses on rectifying the forgetting problems in RNNs.
Follow-up work Sukhbaatar et al. (2015) computes the
weighted sum of the entire memory pool as the representa-
tive vector of the memory. Others use the language model
itself as the encoder to update the memory. Memory Trans-
former (Burtsev & Sapunov, 2020) and RMT (Bulatov
et al., 2022) propose to add memory tokens when read-
ing the contexts, where the memory pool is up to 20 tokens.
EMMA (Moro et al., 2023) has a slightly larger memory
pool, which is the size of the chunk when injecting the con-
texts into the memory. These fixed-sized memory pools
show promising results, although performance is limited
by the size of the memory pool. This also shows the chal-
lenges of expanding memory and incorporating information
without disturbing the original capability of the model.

Other memory-based methods integrate the memory pool
with unfixed size, where different forgetting mechanisms
are adopted to handle the ever-growing problem. In this
case, the memory pool would be in the form of (1) hidden
states, such as (Adel, 2022) and MemoryBank (Zhong et al.,
2023); (2) key-value pairs, represented by KNN-LM (Khan-
delwal et al., 2019), LONGMEM (Wang et al., 2023). (3)
vectors in hidden space. This involves the image captioning
task (Cornia et al., 2020) and Memformer (Wu et al., 2022).
(4) raw texts. RET-LLM (Modarressi et al., 2023) proposes
to save the knowledge with triplets into the memory and
then use API query to retrieve related information in the

memory given the context. These methods have a more
flexible memory pool. However, the memory pool might be
redundant in terms of the stored knowledge.

5.2. Downsteam Tasks

As MEMORYLLM has a large memory pool that can be
used to store knowledge, it could be used for downstream
tasks such as model editing and long context tasks.

For model editing tasks (Yao et al., 2023), MEND (Mitchell
et al., 2022) and ROME (Meng et al., 2022) propose to
modify the parameters of the LLM with the new given
fact. During inference, MEND needs back-propagation
and ROME requires the optimization for new MLP weights,
while MEMORYLLM, regarding the memory pool as part
of the model parameters, could directly update the memory
pool to store new facts. IKE (Zheng et al., 2023) proposes to
simply put the new facts in context, which is straightforward
and intuitively similar to MEMORYLLM in terms of this
task. However, IKE would encounter the same problem as
long context methods, i.e., the ever-growing contexts.

For Long context tasks, representative methods can be cat-
egorized as follows: (1) Efficient Attention such as Long-
former (Beltagy et al., 2020), Linformer (Wang et al., 2020),
LongNet (Jiayu et al., 2023), (2) Positional Encoding like
Alibi (Press et al., 2021), Positional Interpolation (Chen
et al., 2023a) and Extrapolation (Sun et al., 2023), (3) Fine-
tuning with longer context (Xiong et al., 2023; Tworkowski
et al., 2023), (4) Memory-based methods (Wang et al., 2023;
Bulatov et al., 2022; Wu et al., 2022). Among all these
categories, MEMORYLLM could fit into the fourth category
where long contexts are absorbed into the memory, which is
used for future prediction.

6. Conclusion and Future Work
In this paper, we propose MEMORYLLM, a language model
consisting of a transformer and a huge memory pool within
the latent space of the transformer, which serves as the
self-updatable parameters of the model. MEMORYLLM
can perform self-updates on the memory with new knowl-
edge, enabling effective knowledge incorporation and slow
forgetting of previous knowledge. Comparisons against
baselines for model editing and long context, together with
a dedicated customized evaluation for knowledge retention
analysis, demonstrate the superiority of MEMORYLLM in
effectively absorbing new knowledge and knowledge reten-
tion ability. In the future, it is of interest to extend the mem-
ory size as well as increase the compression rate, i.e., using
fewer memory tokens during self-update to store the new
knowledge. In addition, we aim to extend MEMORYLLM
to be multimodal, as the memory tokens of MEMORYLLM
may be suitable for storing multimodal knowledge.

9



MEMORYLLM: Towards Self-Updatable Large Language Models

Impact Statement
This paper presents work that aims to advance the field of
Natural Language Processing, specifically the Large Lan-
guage Models. There are many potential societal conse-
quences of our work associated with LLMs, such as AI
safety and reliability. Beyond LLMs, we feel no other con-
sequences must be highlighted here.

References
Adel, A. A. Global memory transformer for processing long

documents. CoRR, abs/2212.01650, 2022.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer:
The long-document transformer. CoRR, abs/2004.05150,
2020. URL https://arxiv.org/abs/2004.
05150.

Bulatov, A., Kuratov, Y., and Burtsev, M. S. Recurrent
memory transformer. In NeurIPS, 2022.

Burtsev, M. S. and Sapunov, G. V. Memory transformer.
CoRR, abs/2006.11527, 2020. URL https://arxiv.
org/abs/2006.11527.

Cao, N. D., Aziz, W., and Titov, I. Editing factual knowledge
in language models. In EMNLP (1), pp. 6491–6506.
Association for Computational Linguistics, 2021.

Chen, S., Wong, S., Chen, L., and Tian, Y. Extending
context window of large language models via positional
interpolation. arXiv preprint arXiv:2306.15595, 2023a.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. arXiv preprint arXiv:2309.12307,
2023b.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gener-
ating long sequences with sparse transformers. CoRR,
abs/1904.10509, 2019. URL http://arxiv.org/
abs/1904.10509.

Computer, T. Redpajama: an open dataset for training
large language models, 2023. URL https://github.
com/togethercomputer/RedPajama-Data.

Cornia, M., Stefanini, M., Baraldi, L., and Cucchiara, R.
Meshed-memory transformer for image captioning. In
CVPR, pp. 10575–10584. Computer Vision Foundation /
IEEE, 2020.

Fang, J., Tang, L., Bi, H., Qin, Y., Sun, S., Li, Z., Li, H.,
Li, Y., Cong, X., Yan, Y., et al. Unimem: Towards a
unified view of long-context large language models. arXiv
preprint arXiv:2402.03009, 2024.

Geng, X. and Liu, H. Openllama: An open reproduction
of llama, May 2023. URL https://github.com/
openlm-research/open_llama.

Jiayu, D., Shuming, M., Li, D., Xingxing, Z., Shao-
han, H., Wenhui, W., and Wei†, F. Longnet: Scaling
transformers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486, 2023.

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L.,
and Lewis, M. Generalization through memorization:
Nearest neighbor language models. arXiv preprint
arXiv:1911.00172, 2019.

Levy, O., Seo, M., Choi, E., and Zettlemoyer, L. Zero-
shot relation extraction via reading comprehension. In
Levy, R. and Specia, L. (eds.), Proceedings of the 21st
Conference on Computational Natural Language Learn-
ing (CoNLL 2017), Vancouver, Canada, August 3-4,
2017, pp. 333–342. Association for Computational Lin-
guistics, 2017. doi: 10.18653/V1/K17-1034. URL
https://doi.org/10.18653/v1/K17-1034.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in gpt. Advances in Neu-
ral Information Processing Systems, 35:17359–17372,
2022.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Manning,
C. D. Fast model editing at scale. In ICLR. OpenRe-
view.net, 2022.

Modarressi, A., Imani, A., Fayyaz, M., and Schütze, H. Ret-
llm: Towards a general read-write memory for large lan-
guage models. arXiv preprint arXiv:2305.14322, 2023.

Moro, G., Ragazzi, L., Valgimigli, L., Frisoni, G., Sartori,
C., and Marfia, G. Efficient memory-enhanced trans-
former for long-document summarization in low-resource
regimes. Sensors, 23(7):3542, 2023.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Sukhbaatar, S., Weston, J., Fergus, R., et al. End-to-end
memory networks. Advances in neural information pro-
cessing systems, 28, 2015.

10

https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2006.11527
https://arxiv.org/abs/2006.11527
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://doi.org/10.18653/v1/K17-1034


MEMORYLLM: Towards Self-Updatable Large Language Models

Sun, Y., Dong, L., Patra, B., Ma, S., Huang, S., Benhaim,
A., Chaudhary, V., Song, X., and Wei, F. A length-
extrapolatable transformer. In ACL (1), pp. 14590–14604.
Association for Computational Linguistics, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Canton-Ferrer, C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N.,
Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas,
M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A.,
Koura, P. S., Lachaux, M., Lavril, T., Lee, J., Liskovich,
D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra,
P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J.,
Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith,
E. M., Subramanian, R., Tan, X. E., Tang, B., Taylor,
R., Williams, A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I.,
Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez,
A., Stojnic, R., Edunov, S., and Scialom, T. Llama 2:
Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023.

Tworkowski, S., Staniszewski, K., Pacek, M., Wu, Y.,
Michalewski, H., and Miłoś, P. Focused transformer:
Contrastive training for context scaling. arXiv preprint
arXiv:2307.03170, 2023.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wang, W., Dong, L., Cheng, H., Liu, X., Yan, X., Gao, J.,
and Wei, F. Augmenting language models with long-term
memory. arXiv preprint arXiv:2306.07174, 2023.

Weston, J., Chopra, S., and Bordes, A. Memory networks.
arXiv preprint arXiv:1410.3916, 2014.

Wu, Q., Lan, Z., Qian, K., Gu, J., Geramifard, A., and
Yu, Z. Memformer: A memory-augmented transformer
for sequence modeling. In AACL/IJCNLP (Findings),
pp. 308–318. Association for Computational Linguistics,
2022.

Xiong, W., Liu, J., Molybog, I., Zhang, H., Bhargava, P.,
Hou, R., Martin, L., Rungta, R., Sankararaman, K. A.,
Oguz, B., et al. Effective long-context scaling of founda-
tion models. arXiv preprint arXiv:2309.16039, 2023.

Yao, Y., Wang, P., Tian, B., Cheng, S., Li, Z., Deng,
S., Chen, H., and Zhang, N. Editing large language
models: Problems, methods, and opportunities. CoRR,
abs/2305.13172, 2023.

Zheng, C., Li, L., Dong, Q., Fan, Y., Wu, Z., Xu, J., and
Chang, B. Can we edit factual knowledge by in-context
learning? arXiv preprint arXiv:2305.12740, 2023.

Zhong, W., Guo, L., Gao, Q., and Wang, Y. Memorybank:
Enhancing large language models with long-term mem-
ory. arXiv preprint arXiv:2305.10250, 2023.

Zhu, C., Rawat, A. S., Zaheer, M., Bhojanapalli, S., Li,
D., Yu, F. X., and Kumar, S. Modifying memories in
transformer models. CoRR, abs/2012.00363, 2020.

11



MEMORYLLM: Towards Self-Updatable Large Language Models

A. Details in Methodology
A.1. Self-Update Process

In Section 3.1.2, we illustrate the self-update process with the scenario of the input context xc having more than K tokens.
As for the case when xc has less than K tokens, we draw the process in Figure 8. As shown in this figure, we input elθ and
hl into the transformer layer ϕl to obtain elθ

′ where the last nxc
tokens are passed into the next layer.

Figure 8. Self-Update process when the number of tokens is smaller than the number of memory tokens needed.

A.2. Training Strategy for New Knowledge Incorporation

As shown in Figure 9, compared with Section 3.2.1, the ideal case is to perform the whole process, i.e., self-update and the
prediction on x2, with gradient flow, so that the cross-entropy loss could be backpropagated to x1. However, this would
induce unaffordable memory consumption, thus we decompose this process into two processes in Figure 2.

Figure 9. Ideal Training Routine for Latest Knowledge Incorporation

12



MEMORYLLM: Towards Self-Updatable Large Language Models

B. Implementation Details
B.1. Details for Mitigating Forgetting Problems

As mentioned in Section 3.2.3, we need to sample one main document d = {x1, · · · , xn} and multiple side documents and
inject all the side documents into the memory after the injection of {x1, · · · , xn−1}, then we calculate the loss on xn to
update the model. However, instead of sampling multiple documents at each step, we develop a more efficient strategy
during training. We provide the pseudo-code in Algorithm 1.

Algorithm 1 Training Strategy for Mitigating Forgetting Problems
Require: Training data D;

1: Initialize the indicator r0 = 1, l = 0;
2: Initialize the cache xcache = None;
3: for d ∈ D do
4: n = the number of contexts in d;
5: {x1, · · · , xn} = d;
6: if r0 == 1 or l == 0 then
7: r = 0;
8: else
9: r = Random(0, 2);

10: end if
11: if r == 0 and r0 == 0 then
12: Inject {x1, · · · , xn−1} into the memory pool;
13: Calculate the cross-entropy loss on xn and update the model;
14: l+ = n;
15: else if r == 0 and r0 == 1 then
16: Inject {x1, · · · , xn−1} into the memory pool;
17: Calculate the cross-entropy loss on xn and update the model;
18: xcache = xn;
19: l+ = n;
20: else if r == 1 then
21: Calculate the cross-entropy loss on xcache and update the model;
22: l = 0;
23: end if
24: r0 = r;
25: end for

Note that at every step, we inject the knowledge into the memory pool, thus after a random number of steps, the useful
knowledge for predicting xcache must be somewhere in the memory pool, we need to encourage the model to extract the
relevant knowledge. If the model could extract the knowledge from the memory that was injected long ago, we could
mitigate the forgetting problems.

C. Additional Experiments
C.1. Baselines for Model Editing

We introduce the details of the baselines for the model editing experiments here:

FT (Finetuning): which applies Adam with early stopping at one layer to finetune the model on the given fact.

FT-L (Constrained Finetuning) (Zhu et al., 2020): a parameter-space L∞ norm constraint is imposed on the weight changes.

IKE (In-context knowledge editing) (Zheng et al., 2023): The facts used to edit the model are saved in the contexts, which
are inputted into the model during inference. This method is only implemented on CounterFactual so we compare our model
with it on the CounterFactual benchmark.

13



MEMORYLLM: Towards Self-Updatable Large Language Models

ROME (Rank-One Model Editing) (Meng et al., 2022): After identifying that MLPs in LLMs are the major modules for
saving knowledge, ROME proposes to alter the MLP matrix by regarding the matrix as a key-value store and then insert a
new key-value pair into the matrix, obtaining a new one that contains the injected information.

14


