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ABSTRACT

Flow Matching provides a method to train Ordinary Differential Equation (ODE)-
based generative models and facilitates various probability path designs between
initial and target distributions. Among these designs, straight flows are particu-
larly interesting for reducing sampling steps. While some works have success-
fully straightened flows and achieved image generation in a few steps, they of-
ten suffer from cumulative errors or provide only piecewise or minibatch-level
straightness. We propose Adversarial Self Flow Matching (ASFM), which can
straighten flows and align the generated data distribution with the real data distri-
bution. ASFM consists of two complementary components. Online Self Training
straightens flows by constructing a conditional vector field using paired data, en-
abling one-step image generation during training. Adversarial Training aligns the
one-step generated data with real data, thereby reducing cumulative errors when
straightening flows. Experiments demonstrate that ASFM can build straight flows
across the entire time span between two complete distributions and achieve highly
competitive results across multiple datasets among Flow Matching-based meth-
ods. For instance, ASFM achieves 8.15 and 14.9 FID scores with NFE=6 on
CelebA-HQ (256) and AFHQ-Cat (256), respectively.

1 INTRODUCTION

Flow Matching (FM) provides a straightforward method for obtaining ODE-based generative mod-
els by directly regressing on the conditional vector field. Unlike Diffusion Models (DMs), which
constrain the probability path between distributions to follow a noise-adding and denoising process,
FM offers a much broader design space for probability path. This simplicity and flexibility have
attracted widespread attention across different fields, like image generation (Esser et al.| 2024} |Sun
et al., [2024)), structural biology (Huguet et al., [2024; [Nor1 & Jin, [2024), audio generation (Wang
et al.,[2024)) and optimal transport (Tong et al., [2023; |Pooladian et al., [2023)).

ODE-based generative models suffer from long sampling time. Although using more precise solvers
can generate high-quality data in fewer steps, the core issue lies in the high curvature of the flows
generated by the model (Lee et al.,|2023). Given that FM offers a large design space for probability
paths, finding models within this space that can generate straight flows becomes the key to accel-
erating sampling in ODE-based generative models. Some recent works have already attempted to
straighten the flows. |[Liu et al.| (2022) suggest using the Reflow method to reduce the intersections
of straight line paths, thereby straightening the sampling trajectories. However, since generated data
is used as the training set during the Reflow training process, an accumulation of errors becomes in-
evitable, causing the final generated data distribution to deviate from the real data distribution. The
methods proposed in [Yan et al| (2024) and |Yang et al.| (2024) for straightening flows require seg-
menting the flow in the time dimension, resulting in piecewise straight flows. However, they do not
guarantee that the flow is straight over the entire time span. Both [Tong et al.| (2023) and |Pooladian
et al.| (2023)) propose non-trivial pairing of noise and data samples within a minibatch during training
to straighten the flow. Nevertheless, these methods fail to achieve optimal pairing for data outside
the minibatch, making it impossible to construct straight flows between two complete distributions.

To enable the model to generate straight flows between two complete distributions over the entire
time span, while ensuring that the generated data does not deviate from the real data distribution,
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we propose Adversarial Self Flow Matching (ASFM), and summarize it in Figure Eﬂ ASFM is
primarily divided into two components: Adversarial Training and Online Self Training. Adversarial
Training leverages the straight flow characteristic of ASFM to obtain the generated data in a single
step during training. This result, along with real data, is fed into the discriminator, ensuring that the
distribution of generated data closely aligns with the real data distribution. On the other hand, Online
Self Training generates training data using the model itself, progressively straightening the flow by
learning the vector field with repaired data, ensuring that the flow remains sufficiently straight over
the entire time span and between two complete distributions. These two components complement
each other: Adversarial Training ensures that the training data generated by Online Self Training
aligns better with the real data distribution, while Online Self Training straightens the flow and
thereby improves the quality of one-step generation in Adversarial Training.

Our contributions can be summarized as follows:

1. Our method demonstrates that within the broad probability path design space provided by
Flow Matching, finding straight flows between two complete high-dimensional distribu-
tions across the entire time span is feasible. ASFM finds such flows using complementary
Adversarial Training and Online Self Training, and fundamentally reduces the number of
steps required for sampling in ODE-based generative models.

2. We introduce Adversarial Training into the Flow Matching training process, using a dis-
criminator to align the distribution of generated data with that of real data, which reduces
the cumulative errors in the Online Self Training process. ASFM provides new possibilities
for integrating adversarial training with ODE-based generative models.

3. We conducted extensive experiments to validate the effectiveness of our method. On
CIFAR-10, ASFM can achieve FID scores of 5.07 and 4.56 with NFE=1 and NFE=2, re-
spectively. On high-resolution datasets like AFHQ-Cat and CelebA-HQ, ASFM achieves
FID scores of 14.9 and 8.15 with NFE=6, respectively.

old Training Dataset

(%0,%1) Initial Distribution Target Distribution r
pair =

-
i : .
L — '\ \ /
Training ‘ 3 A -
Memory S~o
S A 1
- Al
.ﬁ - Vector Field Discriminator 52,(‘2
- fo(xt, ) Dg(x)
Xreal

New

(%0,%1) %o
pair Sampling

S,

)

b Xp

> >

v

Figure 1: The pipeline of ASFM. Training Memory stores paired data (g, 1) for training, con-
tinually updated by discarding old pairs and adding newly generated pairs. During training, vector
field f is trained using Online Self Training and Adversarial Training. The former pulls the vector
field to align with the direction from xq to 1 (x¢ and x; are repaired), while the latter draws the
one-step generated data &, closer to the distribution of real data. Additionally, discriminator D is
trained using both real data x,.,; and &;. During sampling, ODE solvers (such as Euler) are used
to generate data.

2 RELATED WORKS

Flow Matching Training ODE-based generative models through regression is not feasible, as the
ground-truth vector field u(x) cannot be directly obtained. Flow Matching (FM) (Lipman et al.,
2022)) proposes regressing on the conditional vector field w(x|x1) to solve this problem. Similarly,

!"To keep things concise, we use a single x; to illustrate both Online Self Training and Adversarial Training.
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Liu et al.| (2022)) proposes learning the vector field to follow the straight paths between samples
from two distributions, while |Albergo & Vanden-Eijnden| (2022)) suggests randomly interpolating
between sampling points of two distributions to learn the vector field. These works share similar
principles and offer new, simplified methods for training ODE-based generative models. Unlike
Diffusion Models (DMs), which constrain probability paths to follow a noise-adding and denoising
process, these approaches allow for greater flexibility in designing probability paths. In this case,
designing ODE-based generative models that generate straight flows becomes an attractive task,
as straight flows can fundamentally accelerate the sampling process. |Yang et al.[ (2024) enforces
self-consistency property in the vector field, enabling the flow to exhibit piecewise straight charac-
teristics. [Yan et al| (2024)) divides the flow into multiple time segments and applies Reflow (Liu
et al., [2022) within each segment, transforming the flow into a piecewise straight one. [Pooladian
et al.| (2023) and [Tong et al.| (2023) straighten the flow within a minibatch by pairing the sampling
points from the two distributions within the minibatch. Additionally, Lee et al.| (2023)) reduces the
trajectory curvature of ODE-based generative models by learning the forward process.

Adversarial Training Generative Adversarial Networks (GANs) (Goodfellow et al., [2020; Sauer,
et al., 2022bj; 2023a)) use adversarial training to improve the quality of generated images: the gen-
erator tries to create images that can deceive the discriminator, while the discriminator attempts to
determine whether the images come from the real image dataset. Some recent works have attempted
to apply adversarial training to Stochastic Differential Equation (SDE)/ODE-based generative mod-
els, but these efforts have primarily focused on DMs and distillation-related tasks. The application
of adversarial training in FM is still relatively unexplored. [Kong et al.| (2024} uses Adversarial Con-
sistency Training to reduce the Jensen-Shannon divergence between distributions, improving both
generation quality and convergence of DMs. |Luo et al.|(2024);|Xiao et al.[(2021));|Gong et al.[(2024));
Xu et al.[(2024)) propose several diffusion-GAN hybrid models that aim to leverage the strengths of
both approaches while mitigating their weaknesses, resulting in models with faster sampling speeds
and better mode coverage. [Sauer et al.| (2023b) applies adversarial training in model distillation,
where the discriminator distinguishes between the student model’s output and real images to im-
prove generation quality. |Lee et al.| (2024) applies adversarial training to flow matching in the field
of waveform generation. It is important to note that, not only is this work in a different domain from
ours, but the algorithms are also significantly different. Our method leverages the mutual enhance-
ment between Online Self Training and Adversarial Training, continuously straightening the flow
while ensuring that the distribution of generated data aligns with that of real data. In contrast, their
method does not incorporate any online self training components.

3 METHOD

3.1 PRELIMINARIES: FLOW MATCHING AND ADVERSARIAL TRAINING

Let py and p; denote initial distribution and target distribution on data space R"™, respectively. An
ODE-based generative model aims to transform sampling point xy from the initial distribution into
some sampling point x; from the target distribution, and the dynamics of the sampling point are
described by the following ODE:

d

aFt(l‘) = f(z,10), )

Io(x) = o, )

where t € [0, 1]. In the above equation, f(x,t;80) : R™ x [0,1] — R™ represents a time-dependent
vector field, and T'\(x) is a ﬂo that describes the trajectory of sample point x; starting from x
at t = 0. Besides, a probability density patlﬂ is a time-dependent probability density function
p(zx,t) : R™ x [0,1] — R™ describing how the distribution of &, changes over time t while satisfying

pi(x)dx = 1. The vector field and the probability path are related through the following continuity
equation (Villani et al., [2009):

op(x) = =V - (f(z, )p()). 3)

ZFor simplicity, in this paper we will sometimes use time t as a subscript. For example, we use I'\(z) to
represent I'(, t), pi(x) to represent p(x, t) and fi(x) to represent f(x,t).
3We will also refer to the probability density path as the probability path for simplicity.
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FM (Lipman et al.|[2022) represents the vector field using a neural network, with parameters 6. An
intuitive optimization objective £/ (0) for training this network is:

Ex () [ fi(2) — w(@)][?], €y

where v is the ground-truth vector field. However, learning vector field f,(x) from () is infea-
sible since u () is difficult to obtain directly. FM provides a novel way to solve this problem: it
allows fi(x) to regress on the conditional vector field w(x|x1) and proves that Equation {4| and the
following optimization objective L s provide the same gradient information for 6:

Eg(an),m(alen) [ fi(@) — w(zl@)| ), )
where q is the distribution of real data.

The core mechanism of adversarial training is to have the generator and discriminator compete: the
generator tries to create data that can confuse the discriminator, while the discriminator attempts to
distinguish the generated data from real data (Goodfellow et al., [2020). It can be expressed as the
following minimax optimization problem:

rrgn mg,XV((ﬁ, "p) = Ew'r'ealNPI [D(mreal; ¢)] + EwoNPO [_D((G(ﬂ’?o; "p))a ¢)]’ (6)

where D(x; ¢) represents the discriminator’s prediction and G(x¢; %)) is the data generated by the
generator.

3.2 CONSTRUCTING STRAIGHT FLOWS POINTING TOWARD REAL DATA DISTRIBUTION

Given a set of initial random samples, our task is to construct straight flows that progressively trans-
form these samples to align with the distribution of real data. Inspired by recent methods (Lipman
et al., 2022; [Liu et al.} 2022; [Sauer et al., 2023b), we continuously straighten flows through Online
Self Training and use Adversarial Training to guide the generated data to align with the real data
distribution, creating a novel ODE-based generative model based on the Flow Matching method.
Our innovation lies in establishing a training framework where the model continuously generates
data for training itself, while incorporating Adversarial Training into FM. The overview of the pro-
posed method is illustrated in Figure[T] In Section[3.2.1} we introduce Online Self Training, which is
implemented using two components: Flow Matching with paired data and Training Memory. Then
Section[3.2.2]discusses how to perform one-step generation during training and apply the generated
results in adversarial training. Section summarizes the algorithm and presents the complete
training procedure.

3.2.1 ONLINE SELF TRAINING

Online Self Training means that the model gener-

ates data to train itself (self training), and after up-

dating the model parameters, it generates new data

for training (online training), continuously repeating -
this process. Inspired by Reflow (Liu et al.| [2022),

in order to obtain straight flows, we can train the

model using paired data generated by the model it- -
self. This leverages the non-crossing property of
flows to repair data and therefore continuously re- Initial Distribution Target Distribution
duces the occurrence of linear interpolation inter-

sections between training pairs, resulting in straight  Fjoure 2: Model-generated training data

flows. As shown in Figure E], when the linear in-  |eads to repairing, and using the new pairs
terpolations of two sets of paired data (®o, 1) and (o train the vector field f, will result in a
(a0, 1) intersect at certain time t, the learned vec-  girajghter, updated vector field f!.

tor field f; will reassign their pairing. As the new
pairings (xo, }) and (x(, x1) are used as training
data, no intersections exist between their linear interpolations. Therefore, the flows guided by the
newly learned vector field f; no longer need to approach intersection points. Given that the sum of
the lengths of two sides of a triangle is greater than the third side, and the straight line between two
points is the shortest path, the learned vector field f/ will become straighter. It should be emphasized

Vector Field f;,
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that how ReFlow straightens the vector field is incomplete. Specifically, an (m + 1)-rectified flow
can only try to eliminate intersections that occur in an m-rectified flow, but cannot remove intersec-
tions that may exist within itself. In contrast, Online Self Training continuously updates the model,
reducing the likelihood of creating linear interpolation intersections in generated data pairs in real
time. Additionally, our method is more efficient in utilizing data, which we will elaborate in detail
through experiments in Section 4.3

Flow Matching with Paired Data To train model with paired data, we extend the conditional flow
matching to a case conditioned on paired data, which can be expressed by the following equation,

Et,q(wo,wl),p[(wlwo,wl)[Hft(w) — w(z|zo, ‘131)H2]7 @)

where q represents the joint distribution of 2y and ;. And when flow (conditioned on x( and 1)
can be described as I'(x) = (1 — t)@o + te, ¢ € [0, 1], Equation [7]can be written as

El,q(moywl),pl(m\mo,wl)[”ft(m) — (1 — 1'0)“2]' )

Denote Equation[5|as £¢pas () and Equation[7|as Lo rar (0). We propose the following proposi-
tion. For the detailed proof, please refer to Appendix

Proposition 1. Assuming that p;(x) > 0 for all x € R™ and t € [0,1], then, Lopp+ and
Lo are equal, up to a constant independent of 6. Therefore, VoLcrn+(0) = VoLlrpyn(0) =
VoLcrnr(0). And when flow (conditioned on xy and x1) can be described as T'\(x) = (1 —t)x +
te1, Lopn+ Is the same as Equation

Training Memory During our experiments, we found that when using Online Self Training directly,
where only the newly generated data is used each time the model is trained, causing the model’s
training to fail to converge, as demonstrated in the ablation study of Section To address this
issue, we propose a Training Memory module. This module stores a fixed amount of paired training
data, for example k pairs of (zg,x1). Newly generated training pairs are added to this Training
Memory, and when the pairs exceed the module’s storage capacity, the oldest pairs are discarded in
a first-in-first-out manner. When selecting pairs for the current training, A batch of pairs is randomly
sampled with replacement from the Training Memory. Thus, when the Training Memory has not
been updated, the optimization objective for training is as follows:

ELQTM(mo,m1),pl(m\wo,m1) [| ‘ft(w) - ut(w|w()’ m1)||2]7 &)

where g (o, 1) represents the joint distribution of @ and @, from Training Memory. This de-
sign retains the real-time updating characteristic of online training while making the training process
more stable.

3.2.2 ADVERSARIAL TRAINING

When using ODE numerical solution methods like
Euler to generate data, as shown in Figure[3] errors

are introduced. Additionally, since our method Vector Field

adopts an Online Self Training approach, training o~
the model with generated data that contains certain / \ ///'/”"‘\\\/ \
deviations can lead to the accumulation of these (% ) ( \\\xl\\
errors. Eventually, this will cause the generated X ‘ j\\
data distribution to deviate from the real data dis- . ng \J
tribution. To solve this problem, we incorporate Ifitial Distribution Target DistribUtion

Adversarial Training into our method to make the
generated data distribution align more closely with Figure 3: 1 and @ are respectively the results
the real data distribution as shown in Figure [3] of moving along the vector field and the numer-

One-step Generation in Training Process Ad- ical solution at t = 1, starting from xo. The
versarial Training requires obtaining generated difference between x; and x reflects the de-
data during training. However, unlike the gener- Viation of the generated data distribution from
ator in GANs, which can generate data with just the target distribution, and Adversarial Train-
one evaluation of the network, ODE-based gener- g attempts to eliminate this deviation.

ative models require the use of an ODE solver and

multiple evaluations of the network. This not only
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significantly increases the time needed for each step of training but also causes a substantial increase
in size of gradient information, leading to higher memory usage. To overcome this issue, our method
leverages the sufficiently straight sampling trajectories of the model and generates data in one-step
during training by:

Gz, t) =21 = x + (1 —t) f(, 1), (10)

where x is a sample point of p,(x|xo, x1). Notably, the above equation holds under the condition
that the sampling trajectories are sufficiently straight. Then, denoting discriminator as D and its
parameters as ¢, we can incorporate the adversarial loss £ 44, (0) when training vector field f;:

D(z1; ¢) = D(G(z,1); ). (11

When training discriminator DD, we use the one-step generated data &1 along with real data x,..,; to
get the discriminator loss £ p;s.(¢):

CDisc((ﬁ) = D(:ﬁl) - D(xreal) = D(G(CCI, t)) - D(mreal)~ (12)

In this way, Online Self Training and Adversarial Training complement each other: on the one
hand, Online Self Training causes the flows produced by the model to become increasingly straight,
ensuring that Adversarial Training can obtain accurate &1 through one-step generation during the
training process. On the other hand, Adversarial Training ensures that the vector field at any point
x, points toward the manifold of the real data, reducing the cumulative error that may arise from the
data generation process in Online Self Training.

3.2.3 TRAINING PROCEDURE

In this section, we summarize the en- Algorithm 1: Training

tire training procedure. At the be- —
ginning of training, each training step 1nPut: Vector field f (z,t;6), Discriminator D(; @),
generates data to add to the Training Training Memory @, Training Memory size k,
Memory until it is filled up. After- Training Memory update frequency freq,
ward, new training data is generated maximum training steps mazx _step, ODE solver
and added to update Training Memory . S olvgr.(:co, ft), learning rate 7, and 7

at intervals determined by the update Initialize Training Memory @ = [J;

frequency freq. This ensures that the foOT step = 0 to maz_step do

data in the Training Memory is fully if step < k or step mod freq ==

utilized across all time t. When up- Sample zo from (0, 1);

dating the parameters, the vector field x1 = Solver(zo, f(x,;07));

network parameters 8 are updated ac- Q.enqueue((xo, z1));

cording to the following loss, if len(Q) > k

Loss1(6) | Q.dequeue() ; // Online Self Training

=Lorm+(0) + M Ladw(0)+ (13)
XoL Addition (0)

where \; is the weight coefficient
for £ aqv, L Addition 1S an additional
loss, such as the LPIPS loss (Zhang
et al.l, [2018) that can enhance the vi-
sual quality of generated images and
Ao is its weight coefficient. Network
parameters ¢ of the discriminator are
updated based on the following loss,

Sample (o, Z;) from Q;

Sample t; from U0, 1];

Ty, = (1 —t1)&o + t121;

é1 = G(ilutl);

Lossy = || f(&,,t1;0) — (&1 — Zo)[|* +
MD(21; @) + Xolpips(&1, %1);

0 =0 —1nVLossy;

Sample t from U0, 1];

Ty, = (1 —t2)To + toy;

i’/l = G(leat2);

Lossy = D(&); ¢) — D(real; P);

¢ = ¢ — 12V Lossy; // Adversarial Training
LOSSQ(d)) = EDisc(qb)' (14) _

We summarize the entire training process in Algorithm[I] Parameters of the neural network that are
processed by Exponential Moving Average (EMA), are marked with a superscript —, i.e., 8~. For
specific parameter settings, please refer to Appendix
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4 EXPERIMENTS

Experimental Settings We validated the effectiveness of our method on the task of unconditional
image generation using three datasets. Specifically, we used the CIFAR-10 (Krizhevsky et al.,[2009)
dataset with 32 x 32 images in Section[4.1] and two high-resolution datasets with 256 x 256 images,
i.e., CelebA-HQ and AFHQ-Cat 2020) in Sectiond.2] For the evaluation
metrics, we selected the Frechet Inception Distance (FID) score (Heusel et al.,[2017) and Inception
Score (IS) (Salimans et al [2016), which are widely used in the field of image generation. The
vector field network f(a,t; @) in our model is initialized using the checkpoint of the pretrained 1-
rectified flow, and its architecture is the U-Net architecture of DDPM++ (Song et al., 2020b). The
discriminator part D uses the discriminator model from StyleGAN-T (Sauer et al.,[2023a).

Baselines We compared ASFM with various methods on the CIFAR-10 dataset, including sev-
eral typical GANs, Consistency Models, representative Diffusion Models (including some advanced
solvers and distillation methods), and recent works related to FM. On high-resolution datasets, we
mainly compared ASFM with Rectified Flow 2022)), Consistency Flow Matching
[2024), BOSS (Nguyen et al., 2023), and MTC (Lee et al [2023). It is worth mentioning

that although ASFM uses adversarial training, its theoretical foundation remains the same as ODE-
based generative models, thus giving it zero-shot capabilities in downstream tasks that GANs cannot
achieve. For detailed zero-shot experiments, please refer to Appendix [C]

=

4.1 ASFM i1s HIGHLY COMPETITIVE AMONG FM-RELATED METHODS

(a) ASFM (NFE=1) on (b) ASFM (NFE=2) on (c) ASFM+lpips (NFE=1) (d) ASFM+lpips (NFE=2)
CIFAR-10. CIFAR-10. on CIFAR-10. on CIFAR-10.

Figure 4: Generated images by ASFM, sampling with Euler Solver in 1 or 2 steps. The two images
on the right are generated by ASFM trained with a loss function that includes the LPIPS loss.

The generative performance of ASFM on CIFAR-10 dataset is shown in Figure 4] and quantitative
results are given in Table[I] As seen in Table[T} ASFM achieves competitive results in unconditional
image generation on CIFAR-10. With Number of Function Evaluations (NFE)=1 and NFE=2, the
FID scores reach 5.65 and 4.90, respectively. When the LPIPS loss is added to the loss function, the
FID scores reach 5.07 and 4.56 with NFE=1 and NFE=2, surpassing those of several representative
GANs, DMs, DMs+Advanced Solvers, and DMs+Distillation. Additionally, the performance of
ASFM-+Ipips with NFE=2 exceeds all the FM-related works with same or more NFE.

4.2 HIGH-RESOLUTION IMAGE GENERATION WITH EXTREMELY FEW STEPS

Table 2] presents the quantitative results of ASFM and other FM-related methods on high-resolution
datasets, and generated images are given in Figure [3] It is evident that even with NFE=1, ASFM
outperformed 1-rectified flow with NFE=8. Moreover, ASFM with NFE=2 achieves results compa-
rable to recent works like Consistency FM and BOSS with NFE=6. And when the NFE of ASFM
reaches 6, its performance significantly surpassed those of all other methods.
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Table 1: Sample quality on CIFAR-10. Lower FID and higher IS are better.

Method NFE FID() IS(1)
GAN

BigGAN (Brock} 2018) 1 14.7 9.22
AutoGAN (Gong et al.| 1 12.4 8.55
TransGAN (Jiang et al.} 2021) 1 9.15 8.80
StyleGAN2-ADA (Karras et al| 1 2.39 10.0
StyleGAN-XL 4120 1 1.85 -

Diffusion

DDPM (Ho et al} 2020) 1000  3.17 9.46

DDIM (Song et al |[20 20 6.84 -
DPM-Solver-2 (Lu | 10 5.94 -
Knowledge Distillation 1 9.36 -
Progressive Distillation 1 8.34 8.69
Score SDE (Song 2000 2.20 9.89
EDM (Karras et al.| Mi 35 1.97 -
CM

CT (Song et al | 1 8.70 8.49
CT - 2 5.83 8.85
M

1-Rectified Flow (Liu et al. 1 379 1.13
2-Rectified Flow (Liu et al. 1 12.2 8.13
3-Rectified Flow (Liu et al.} 2022, 1 7.43 8.56
1-Rectified Flow 2 170 2.93
2-Rectified Flow 2 6.34 8.69
3-Rectified Flow 2 5.22 8.75
OT-CFM _Tong et al.|[2023) 1 231 -
OT-CFM - 2 93.4 -
MTC (Lee et al.|[2023) 5 18.7 8.09
MTC - 9 8.66 8.67
Consistency FM 1 50.3 6.88
Consistency FM 2 5.38 8.67
BOSS . 6 am -
ASFM (Ours 1 5.80 8.89
ASFM (Ours) 2 4.82 8.93
ASFM-+lpips (Ours) 1 5.07 8.85
ASFM-+lpips (Ours) 2 4.56 9.02

(a) ASFM (NFE=6) on AFHQ. (b) ASFM (NFE=6) on CelebA-HQ.

Figure 5: Generated high-resolution images by ASFM, sampling with Euler Solver in 6 steps.

4.3  ABLATION STUDY
To validate the effectiveness of various designs in ASFM, we conduct ablation experiments on each
module. We design an offline model as the baseline model, which generates 512 batches of (x, 1)

pairs as a training set (batch size = 512). Then, we design three models:

A. Online Self Training + Training Memory of size 1 batch.
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Table 2: Sample quality on high-resolution datasets, i.e., AFHQ and CelebA-HQ.

Method AFHQ-Cat 256 x 256  CelebA-HQ 256 x 256
NFE FID (}) NFE FID (})
1-Rectified-Flow (Liu et al.|[2022) 1 217 1 264
1-Rectified-Flow 2 95.5 2 195
1-Rectified-Flow 6 57.2 6 101
1-Rectified-Flow 8 51.1 8 78.7
Consistency FM (Yang et al.|[2024) 6 22.5 6 36.4
BOSS (Nguyen et al.;[2023) 6 26.10 6 18.67
MTC (Lee et al.; [2023) - - 128 10.4
ASFM (Ours) 1 44.0 1 79.0
ASFM (Ours) 2 22.9 2 222
ASFM (Ours) 6 14.9 6 8.15
340 Offline 345 Offline
Online Self + Train Memory 1 batch Online Self 4 Train Memory 1 batch
335 Online Self + Train Memory 128 batch 340 Online Self + Train Memory 128 batch
330 —— Online Self + Train Memory 128 batch + Discriminator —— Online Self + Train Memory 128 batch + Discriminator
335
325
330
a =0 O ¥
9315 = O
320
25
. 20
15 O 15 O
10 10
5 . . ‘ 5
10 20 30 40 50 60 10 20 30 40 50 60
Training Steps / x1000 steps Training Steps / x1000 steps
(a) Sampling with Euler Solver in 1 step. (b) Sampling with Euler Solver in 2 steps.

Figure 6: The image generation quality (measured by FID) of the Baseline Model and Models A,
B, and C on CIFAR-10 as training steps progress is shown in (a) and (b). Both figures use the Euler
Solver, but the former uses 1 sampling step, while the latter uses 2. The size of each data point in
the figures represents the amount of data used at that training step, and the points marked with black
borders indicate those using the same data amount as the Baseline Model.

B. Online Self Training + Training Memory of size 128 batches.
C. Online Self Training + Training Memory of size 128 batches + Adversarial Training.

Each model is trained for 60k steps and when using Online Self Training, the model generates 1
batch of data every 100 steps to update the Training Memory. Figure [f] shows the change in the
quality of generated images for each model as training progresses. As can be seen from the figure,
the FID of Model A remains high consistently, indicating that training using only newly generated
data leads to failure in model convergence. However, when the size of Training Memory is increased
to 128 batches, the model converges properly, demonstrating the effectiveness of Training Memory.
Model C, which adds Adversarial Training on top of Model B, significantly improves image gener-
ation quality, surpassing the Baseline Model, thus proving the effectiveness of Adversarial Training.

Table 3: Comparison of image generation quality on CIFAR-10 between ASFM and 2-Rectified-
Flow-Online at the same training step, using different amounts of data.

Method Training Steps Data Size FID (})
NFE=1 NFE=2

2-Rectified-Flow-Online 50000 50000% 512 15.80 11.00

ASFM (Ours) 50000 (500+127)x 512 6.34 5.56

Although rectified flow offers an approach to train k-rectified flow (k > 2) using Online Training,
we need to point out that it does not employ Self Training. Its training data is generated by a fixed-
parameter model, which is not directly related to the model being trained. In contrast, in our method,
the model generating the training data is the same as the model being trained. Online Self Training
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can adjust the model parameters in real-time to straighten the flows. A comparison between ASFM
and the 2-Rectified-Flow trained using Online Training is shown in Table From the table, it is
clear that our model uses less data and achieves better generation results, demonstrating that ASFM
has a higher data utilization efficiency.

5 CONCLUSIONS

We propose Adversarial Self Flow Matching (ASFM), a Flow Matching (FM)-based method that
generates high-quality images in a few steps by leveraging straightened flows. Our method em-
ploys Online Self Training to straighten flows, where intersections between the linear interpolations
of training pairs are eliminated in real time. Furthermore, our approach incorporates Adversarial
Training to reduce the deviation between the generated data distribution and the real data distri-
bution caused by ODE solvers. Experiments demonstrate that ASFM can generate straight flows
and produce high-quality images in a few steps across three datasets: CIFAR-10 (32), AFHQ-Cat
(256), and CelebA-HQ (256). The effectiveness of each component in our method is validated
through ablation studies. Additionally, ASFM retains the beneficial capabilities of ODE-based gen-
erative models, such as zero-shot image editing. Our method offers a novel approach to attaining
ODE-based generative models that produce straight flows based on FM, highlighting its potential
applications in image generation tasks.

However, for more complex tasks like text-to-image generation, extending ASFM to large-scale
datasets and enhancing the model’s capability for controllable generation are necessary. In the fu-
ture, we will focus on addressing these issues to further improve ASFM’s performance.
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A  FLOW MATCHING WITH PAIRED DATA
Proposition 1. Assuming that p,(x) > 0 for all x € R™ and t € [0,1], then, Lopm+ and
Lery are equal, up to a constant independent of 6. Therefore, VoLcpn+(0) = VoLpp(0) =

VoLcrr(0). And when flow (conditioned on xy and x1 ) can be described as T'i(x) = (1 —t)xo +
txy, Lopay is the same as[§)

Proof. To prove this proposition, we first clarify the relationship between the conditional vector
field and the marginal vector field.

Based on the properties of the conditional probability density function and continuity equation [3}

we obtain:
d d
apm(w)z// (dtp;(mlcco,wl)> q(xo, z1)dxodx;

—//V~ (u(z|@o, T1)pe (|0, 1)) g0, T1 ) dOdXTA (15)

-V (//ut(ﬂwo,a:l)pl(a:|as0,acl)q(:co,wl)dasodw1> .

According to continuity equation [3} we obtain:
d
ap:(w) ==V (w(z)p(x)). (16)

Since the right-hand side of Equation 151is equal to the right-hand side of Equation 16, we obtain:
[ w(z|xo, z1)p (2|20, 21)9(20, 21 )dXT0dTA

()

In the following proof, we use similar setup as in [Lipman et al.|(2022): assuming that ¢(xo, 1)
and p,(x|xg, x1) are decreasing to zero at a sufficient speed as ||x|| — oo to ensure existence of all
integrals and to allow the changing of integration order (by Fubini’s Theorem), and that u, f;, Vg f;
are bounded.

w(x) = (17)

We will now prove that Vo Lor a4+ and Vg Ly are equal. Since Vg Ly, is known to be equal to
VeLcry (Lipman et al} [2022), we can conclude that Vo Lopar+ = VoLry = VoLlcory.

Expanding the 2-norms in Lo g+ and L)y, we obtain:
1 fi(®) — (|, 1)1 = [ fi(@)|]* — 2(fi(@), u(@|zo, 1)) + [Juc(z|@o, 1), (18)

i) — w(@)|* = 1 fi(2)]* = 2(ful@), w(z)) + [[u()]. (19)
The third terms on the right-hand side of Equation [18|and Equation [19]are independent of 8, so we
will focus on the first two terms.

By deriving the first term on the right-hand side of both equations, we obtain:

By (o) | @) = / (@) |pe (@) decdt

= /// Hft(w)||2pt(m|w07:cl)q(:co,:cl)d:vd:codwldt
— Et

(20)

,q(x0,21)p(x|20,21) -

By deriving the second term on the right-hand side of both equations, we obtain:

By o (i3 // fut a:|a:o,wl)pt(w|m(0,Tl)q(mo,ml)dmod$1> () dacdt

// filz //ut (x|xo, z1)p (|20, 1)9(20, T1)dTodT,)dXTdt
- ////U[(w)’u‘(w'wo’$1)>pt(w|w07$1)Q(iD0,w1)dwodw1dwdt

= ]Et,q(:vo,w1)7l)t(w|wo,w1) <ft(m)7 ut(.’I}|.’130, $1)>

21
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In this way, we prove that Lo a4+ and Loy are equal up to a constant independent of 6. There-
fore, VoLcorn+(0) = VoLrm(0) = VoLorn(0).

When flow (conditioned on @ and @) can be described as I'i(x) = (1 — t)xg + tx1, we have that:

d (= (e A))mo + (t+ Aty ] — [(1 — o + tay]
(@) = limg At 22)
=X — Xy .

Therefore, when I'y () = (1 — t)xg + txy, u(x|xo, 1) = 1 — T, and Loy is the same as

It is noteworthy that Equation [8| is consistent with the loss function used in |Liu et al.| (2022)), in-
dicating that the above proof establishes a connection between Flow Matching and Rectified Flow.
This suggests that Rectified Flow can be viewed as a specific instance of Flow Matching with a
designated conditional flow.

O
B HYPERPARAMETERS FOR ASFM
We summarize the setting of hyperparameters in ASFM as shown in Table [d] On CIFAR-10, we
trained two models: one without using an additional loss £ 44g;tion during training, and the other

using LPIPS loss as the additional loss £ Aqqition-

Table 4: ASFM hyperparameters for different datasets.

- Training
Training Memor
Dataset Batch | Memory Updat ey Maximum Training ODE A A . ’
Size Size k P Steps max_step Solver 1 2 m 2
Frequency
(batches)
freq
CIFAR-10 512 128 100 100,000 RK45 001 | 0.0 | 2e-4 | 2e-4
CIFAR-10 512 128 100 160,000 RK45 0.01 1.0 | 2e-4 | 2e-4
AFHQ-Cat 64 128 100 120,000 RK45 0.01 0.0 | 2e-4 | 2e-4
CelebA-HQ 64 128 100 120,000 RK45 0.01 0.0 | 2e-4 | 2e-4

C ZEO-SHOT IMAGE EDITING

Despite incorporating Adversarial Training, ASFM fundamentally remains an ODE-based genera-
tive model, which enables it to perform certain zero-shot image editing tasks. Unlike GANs, which
cannot find latent space representations for sampling points in the target distribution, ASFM, due to
the reversible nature of ODEs, can identify corresponding sampling points in the initial distribution
for each sampling point in the target distribution, thus serving as latent space representations. By
manipulating these latent space representations, ASFM possesses the capability for zero-shot image
editing. We will introduce the application of ASFM in image mixture in Section [C.1]

C.1 IMAGE MIXTURE

We selected an image of a yellow cat and an image of a white cat for mixing. Each image is split
in half horizontally, with the upper half of the former combined with the lower half of the latter to
create a mixture image. By using the mixture image as the initial value condition to solve the ODE
in reverse (with NFE=300 to get the exact solution), we can obtain its latent space representation.
Following [Liu et al.| (2022)), we have two ways to manipulate the latent space representation: one
is to multiply it directly by a coefficient «, represented by x{, = «x; the other is to compute
a weighted sum with a predetermined Gaussian noise ¢, represented by x{, = axg + V1 — a?e.
By using the processed latent space representation as the initial value condition to solve the ODE
forward, the mixed image can be obtained. The results are illustrated in Figures|/|and

When using the first operation method, a large « allows for a smooth blending of the two images.
In the second method, since a predetermined Gaussian noise ¢ is incorporated, a smaller « results in
the blended image being closer to the image corresponding to that noise.
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Figure 8: x(, = ao + V1 — aZe.

D INTERPOLATION

Due to the manifold hypothesis (Belkin & Niyogil 2003} [Roweis & Saul, 2000), image data is

sparsely distributed in pixel space, making it challenging to achieve smooth and natural transitions
between images through direct interpolation in pixel space. However, ASFM can connect the ini-
tial distribution (a Gaussian distribution) with the target distribution (the image data distribution)
and consider the sampling points from the corresponding Gaussian distribution as latent space rep-
resentations of the images. By interpolating in this latent space and then using ASFM to obtain
the corresponding sampling points in the target distribution, smooth and natural transitions between
images can be achieved.

As shown in Figure EL by interpolating between the initial distribution sample point ¢ and x|,
corresponding to the target distribution sample point 1 and «, and then sampling through ASFM,
we can achieve a high-quality and smooth transition process between @ and .

When interpolating between sample points o and x{, of the initial distribution, we employed spher-

ical linear interpolation, which ensures a smooth transition during the interpolation process. When

applying spherical linear interpolation, first we compute the angle 3 between two vectors o and
/

7

8= cos? (—| 20 20 ) 23)

EIEA
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The interpolation between o and x{, is controlled by a parameter « in the range from 0 to 1. Then
we computes the weights for each vector as follows:

sin ((1 — @)3)

W =

_ sin(8) (24)
, sin(af)
WV = —F—.
sin(3)
The interpolated result is shown as follows:
xo(a) = wxg + Wy (25)

Figure 9: An illustration of interpolation among the images at the corners (sampling with NFE=6).

E HYPERPARAMETER ABLATION STUDY

We conducted ablation studies on the hyperparameters in ASFM, including Training Memory Up-
date Frequency freq A1 and Ao to validate the effectiveness of the parameters used in
our experiments. We trained ASFM on the CIFAR-10 dataset for 50,000 steps and computed the
corresponding FID by performing one-step image generation using the Euler solver.
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Ablation Study of Parameter freq
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Figure 10: ablation study freq

Ablation Study of Parameter A;
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Figure 11: ablation study lambda 1

For the selection of the hyperparameter Training Memory Size k (batches), we aim for the number
of images in the Training Memory to slightly exceed the corresponding dataset size. For instance, on
the CIFAR-10 dataset, the Training Memory contains 512 x 128 = 65, 536 ~ 50, 000+ 10, 000 (the
size of CIFAR-10 train + CIFAR-10 test) images. Similarly, on the AFHQ-Cat dataset, the Training
Memory contains 64 x 128 = 8,192 ~ 5,653 (the size of AFHQ-Cat) images. However, due to
the higher resolution and the large size of the CelebA-HQ dataset, which contains 30,000 images,
generating excessive data can impose storage pressure. Therefore, we choose the Training Memory
Size k (batches) for CelebA-HQ to be consistent with that of AFHQ-Cat.
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Ablation Study of Parameter A,
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Figure 12: ablation study lambda 2

F MORE GENERATED IMAGES

Figure 13: ASFM (1 NFE) on CIFAR-10.
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Figure 14: ASFM (NFE=2) on CIFAR-10.

Figure 15: ASFM+lpips (1 NFE) on CIFAR-10.
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Figure 16: ASFM+lpips (NFE=2) on CIFAR-10.

4 i Al

(a) ASFM (NFE=1) on AFHQ-Cat. (b) ASFM (NFE=2) on AFHQ-Cat.

Figure 17: Generated high-resolution images by ASFM, sampling with Euler Solver in 1 and 2 steps.
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(a) ASFM (NFE=1) on CelebA-HQ. (b) ASEM (NFE=2) on CelebA-HQ.

Figure 19: Generated high-resolution images by ASFM, sampling with Euler Solver in 1 and 2 steps.
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=6) on CelebA-HQ.

Figure 20: ASFM (NFE
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G BASELINE GENERATED IMAGES

(a) 1-Rectified Flow (NFE=1) on CIFAR-10. (b) 1-Rectified Flow (NFE=2) on CIFAR-10.

Figure 21: Generated images by 1-Rectified Flow, sampling with Euler Solver in 1 and 2 steps.
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(a) 2-Rectified Flow (NFE=1) on CIFAR-10. (b) 2-Rectified Flow (NFE=2) on CIFAR-10.

Figure 22: Generated images by 2-Rectified Flow, sampling with Euler Solver in 1 and 2 steps.
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(a) 3-Rectified Flow (NFE=1) on CIFAR-10. (b) 3-Rectified Flow (NFE=2) on CIFAR-10.

Figure 23: Generated images by 3-Rectified Flow, sampling with Euler Solver in 1 and 2 steps.

(a) 1-Rectified Flow (NFE=1) on (b) 1-Rectified Flow (NFE=2) on (c) 1-Rectified Flow (NFE=6) on
AFHQ-Cat. AFHQ-Cat. AFHQ-Cat.

Figure 24: Generated images by 1-Rectified Flow, sampling with Euler Solver in 1, 2 and 6 steps.

(a) 1-Rectified Flow (NFE=1) on (b) 1-Rectified Flow (NFE=2) on (c) 1-Rectified Flow (NFE=6) on
CelebA-HQ. CelebA-HQ. CelebA-HQ.

Figure 25: Generated images by 1-Rectified Flow, sampling with Euler Solver in 1, 2 and 6 steps.
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