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ABSTRACT

Dynamical phenomena, such as recurrent neuronal activity and perpetual motion
of the eye, are typically overlooked in models of bottom-up visual perception. Re-
cent experiments suggest that a tiny inter-saccadic eye motion (“fixational drift”)
enhances visual acuity beyond the limit imposed by the density of retinal photore-
ceptors. Here we hypothesize that such an enhancement is enabled by recurrent
neuronal computations in early visual areas. Specifically, we explore a setting
involving a low-resolution dynamical sensor that moves with respect to a static
scene, with drift-like tiny steps. This setting mimics a dynamical eye, viewing
objects in perceptually-challenging conditions. The dynamical sensory input is
classified by a convolutional neural network with recurrent connectivity added to
its lower layers, in analogy to recurrent connectivity in early visual areas. Apply-
ing our system to CiFAR-10 and CiFAR-100 datasets down-sampled via 8x8 sen-
sor, we found that (i) classification accuracy, which is drastically reduced by this
down-sampling, is mostly restored to its 32x32 baseline level when using a mov-
ing sensor and recurrent connectivity, (ii) in this setting, neurons in the early lay-
ers exhibit a wide repertoire of selectivity patterns, spanning the spatio-temporal
selectivity space, with neurons preferring different combinations of spatial and
temporal patterning, and (iii) curved sensor’s trajectories improve visual acuity
compared to straight trajectories, echoing recent experimental findings involving
eye-tracking in challenging conditions. Our work sheds light on the possible role
of recurrent connectivity in early vision as well as the roles of fixational drift and
temporal-frequency selective cells in the visual system. It also proposes a solu-
tion for artificial image recognition in settings with limited resolution and multiple
time samples, such as in edge AI applications.

1 INTRODUCTION

Biological vision is known to be a dynamical process. Two factors contributing to these dynamics
are eye motion and recurrent neuronal connections in the brain. Our eyes move constantly with
movements that, kinematically, can be divided into saccades - quick gaze shifts, and drifts - small
scanning movements between saccades (often referred to as “fixational drift”) (Rucci et al., 2018).
These dynamical aspects of vision are reflected only partially in contemporary computer vision
systems. Some works addressed large scale shifts in visual attention resembling saccades (Mnih
et al., 2014). Others explored properties and benefits of recurrent top down connections (Nayebi
et al., 2018), reminiscent of top-down processing in biological vision (Hochstein & Ahissar, 2002).
Notably, the dynamics of low-level visual processes, occurring early in the bottom-up visual hier-
archy and sensitive to the fixational drift (Snodderly et al., 2001; Ölveczky et al., 2003; Malevich
et al., 2020; Hohl & Lisberger, 2011), remains largely overlooked in models of vision as well as in
bio-inspired computer vision systems.

In fact, since the seminal studies by Hubel & Wiesel (1962), selectivity in primary visual cortex
has been traditionally described in terms of static spatial filters (e.g., simple and complex spatial
fields or Gabors of varying frequency and orientation). In convolutional neural networks (CNNs)
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(Krizhevsky et al., 2012), which have dominated computer vision over the last decade, features
resembling the spatial filters deduced from biological studies emerge spontaneously over the course
of training (Zeiler & Fergus, 2014; Lindsey et al., 2019). In some cases, remarkable correlations
were found between spatial neural representations in CNNs and those identified in the biological
brain (Yamins & DiCarlo, 2016).

On the other hand, temporal dynamics, and sensitivity to temporal features, characterize visual neu-
rons throughout the visual system, from retinal receptors and ganglion cells to thalamic and cortical
neurons (Berry et al., 1997; Chichilnisky, 2001; Lee et al., 1981; Levick et al., 1972; Reinagel &
Reid, 2000; Shimaoka et al., 2018). Existing evidence suggests that both eye motion (Snodderly
et al., 2001; Ahissar & Arieli, 2001; Ölveczky et al., 2003; Malevich et al., 2020; Gruber et al.,
2021; Hohl & Lisberger, 2011) and recurrent neuronal connectivity (Bejjanki et al., 2011; Samonds
et al., 2013) contribute to this temporal dynamics. Furthermore, it was found that recurrent connec-
tions improve correlates of artificial neural networks to neural activity in visual cortical areas (Kar
et al., 2019; Kubilius et al., 2019; Kietzmann et al., 2019).

One niche where spatio-temporal computation is probably necessary is the perception of tiny ob-
jects. It is well known that the acuity of biological vision is not limited by the spatial resolution
of retinal photoreceptors (“visual hyperacuity”; Westheimer (2009); Barlow (1979)). Vernier acuity,
for example, is dramatically higher than might be expected from pure spatial acuity derived from the
photoreceptor density in the retinal mosaic (Westheimer, 2009). Whether hyperacuity is obtained
via spatial, temporal, or spatio-temporal mechanisms is not yet known (Rucci et al., 2018). In any
case, it is evident that the visual processing allowing hyperacuity, or perception of any tiny stimulus,
should cope with the fixational drift; if it doesn’t, the drift, whose amplitude is at least two orders of
magnitude larger than the smallest perceivable spatial offsets, would impair acuity (Ahissar & Arieli,
2001; Rucci et al., 2018; Ratnam et al., 2017). The same drift motion could potentially improve acu-
ity if spatio-temporal computations are employed. Such computations can be based on the emphasis
of high-frequency spatial details (Rucci et al., 2007), temporal coding of spatial offsets (Ahissar &
Arieli, 2001; 2012), Bayesian inference (Anderson et al., 2020), or on any other derivative of the
interactions between ocular motion and the external image. Furthermore, it is reasonable to attribute
such spatio-temporal computations to early visual areas, which are known to exhibit faster dynamics
and shorter integration windows compared to regions upstream in the visual processing chain (Gau-
thier et al., 2012). Indeed, it had been shown that the recurrent neuronal circuitry in early visual
areas could enable countering the blurring from retinal motion (Burak et al., 2010).

Using the information available from over-sampling low-resolution images has an extensive history
in computer vision as part of the field of super-resolution (Milanfar, 2017). Multi-image super-
resolution (MISR) (Farsiu et al., 2004), distinguished from single-image super-resolution (Glas-
ner et al., 2009; Dong et al., 2015), aims to reconstruct high-resolution images from a set of low-
resolution ones (Arefin et al., 2020; Ge et al., 2018; Bhat et al., 2021; Li et al., 2017). An adjacent
field of research, low-resolution object recognition, investigates algorithms to maximize the perfor-
mance on a given task (Xi et al., 2020; Ge et al., 2018). Both fields use low-resolution images as
input but differ in the goal of the training and evaluation.

In this paper, we introduce a classifier that exploits spatio-temporal computations in early layers to
perceive tiny images. More specifically, we trained a convolutional neural network with recurrent
connectivity introduced to early layers. The network receives a sequence of low-resolution images
generated via sensor motion mimicking ocular drift. We used high-resolution images to obtain a
set of features that were then used to facilitate learning in a teacher-student framework (Hinton
et al., 2015). The outcome is a dynamical classifier that suffers from only a small drop in accuracy
when tasked with a significant decrease in spatial resolution, a decrease that substantially impairs
the accuracy of a comparable static feed-forward classifier.

Using a novel generative model, we found that our dynamical classifier developed features that were
primarily sensitive to spatial changes, others that were primarily sensitive to temporal changes, and
a majority that exhibited sensitivity to mixed spatio-temporal patterns.

Finally, when examining the correlations between patterns of motion and accuracy of classification,
we observed that curved trajectories are favorable for recognition, consistent with recent findings
of the curvature of fixational drift trajectories in humans. (Intoy & Rucci, 2020; Gruber & Ahissar,
2020).
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2 RESULTS

2.1 TASK AND MODELS

To create a synthetic setting reminiscent of ocular drift, we used images from popular CiFAR
datasets (Krizhevsky et al., 2009), embedded in a large (200x200 pixel) scene padded by zeros.
Sensor position was defined in units of pixels on the scene and its motion was modeled by a stochas-
tic process that is discussed below. The sensor’s frames were obtained by cropping a 32x32 pixels
window from the scene around the sensor position. Resolution was then reduced to 8x8 using a
standard OpenCV (Bradski, 2000) function (that does not include anti-aliasing filter) with bi-cubic
interpolation (Fig. 1A).

A ResNet50 (He et al., 2016) network pre-trained on ImageNet (Deng et al., 2009), which is avail-
able as a part of Keras package (Chollet, 2015), was used as a model of reference. The model was
fine-tuned to one of the CiFAR datasets, reaching accuracy of 96.83 and 82.94 percent for CiFAR-
10 and CiFAR 100, respectively (Table 1, Standard resolution (32x32)). In order to feed the 32x32
pix CiFAR images to the network, images were upsampled by factor of 7 to (32x7)x(32x7) pix (i.e.
224x224 pix which are the dimensions of ResNet50 input).

In order to verify the generality of our conclusions, we tested another more compact variant of
reference CNN with 3M parameters. This smaller network that we refer to as Small-net (Table
S7,S8) receives 32x32 pix images as input, therefore, eliminating the need to upsample the CiFAR
images before feeding them into the network. This smaller network also simplified the analysis of
internal representations as explained below.

2.1.1 TRAINING

We applied a feature learning paradigm (Hinton et al., 2015). while using our reference network as
teachers for the dynamical recurrent classifier (DRC) student.

Typical CNNs perform a series of spatial pooling operations. Max pooling layers in the reference
CNNs effectively reduce spatial resolution while preserving relevant information about the underly-
ing scene. To develop our DRC, we exploited this spatial pooling line-up. We thus took instances
of trained CNNs and replaced their bottom layers with recurrent convolutional networks (Fig. 1B).
Specifically, we used a stack of ConvGRU layers (Ballas et al., 2015; Van Valen et al., 2016) with-
out spatial poolings to replace the original network all the way from the input to the point where
the CNN’s spatial resolution is reduced by the desired factor (Table S3). In our case, the reso-
lution was decreased by factor of 4, therefore the appropriate resolution was achieved after the
second max-pooling layer. At this layer’s output, the resolution of the ResNet50-based teacher is
(8x7)x(8x7) (the ’x7’ factor is due to the upsampling of the original 32x32 images by a factor of
7 to (32x7)x(32x7)); while the Small-net-based teacher resolution is 8x8. We refer to the bottom
recurrent part of the DRC as DRC-front-end (DRC-FE). For the rest of the processing stack we reuse
the reference (teacher) network architecture (either ResNet50 or Small-net). We refer to this reused
part of the DRC as DRC- back-end (DRC-BE) (Fig. 1B).

We trained the DRC in two steps - first, the DRC-FE was trained to reproduce features of the teacher
network 1. Here we used mean-squared loss between the teacher network and the DRC-FE (other
optimization goals, such as mean absolute loss and cosine similarity, resulted in very similar per-
formance and are not shown). Positional data were concatenated with the images time series; see
Appendix B.4 for further details. Next, the DRC-BE was fine-tuned using cross-entropy loss.

Our model was mostly implemented in the Keras package (Chollet, 2015), with the convolutional
GRU layer adapted from the project of (Van Valen et al., 2016).

2.2 PERFORMANCE

2.2.1 BASELINE

In order to evaluate the performance improvement which can be attributed to the unique architecture
of the DRC, we considered a few baseline solutions.

1The code can be found at https://github.com/orram/DynamicalRecurrentClassifier
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Figure 1: Description of the the task and the system - A. A time-series of low-resolution images,
simulating a sequence of frames generated by a sensor moving in a static scene, is fed to the network
one-by-one following the order of acquisition, along with optional position information; the network
integrates the information from the whole sequence of images and outputs a class. A sample tra-
jectory composed of T = 3 steps (orange→ red→ blue) is illustrated on the full resolution image
together with the corresponding 3 generated frames. B. Network architecture and training proce-
dure: Teacher is a feed-forward convolutional neural network, e.g., ResNet50 or Small-net. Student
is a multilayer recurrent convolutional neural network. At the first phase of training, Student’s
bottom layers (DRC-FE) are trained to reproduce teacher’s features. These features are extracted
from the teacher at the layer where the teacher’s spatial resolution corresponds to the student’s in-
put resolution. The top shared layers (DRC-BE) are then fine-tuned to improve the accuracy of the
low-resolution task. See main text for more details.
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Table 1: Test-set accuracy [%] of various baseline solutions based on ResNet50 compared to
ResNet50-DRC in various configurations. Results are presented as mean ± std.

CiFAR-10 CiFAR-100

Standard resolution (32x32) 96.83± 0.09 82.94± 0.23
Low resolution (8x8) baseline:
Naive training 78.88± 0.54 54.41± 0.21
Naive training + teacher 78.54± 0.09 54.75± 0.14
Averaged prediction, 5 steps 83.86± 0.47 60.24± 0.22
Averaged prediction, 10 steps 83.87± 0.23 60.22± 0.25
Averaged prediction, 5 steps + teacher 84.04± 0.15 61.56± 0.23
ResNet+GRU, 5 steps, w/o position input 83.52± 0.22 59.32± 0.20
ResNet+GRU, 5 steps, with position input 83.94± 0.12 59.61± 0.59
ResNet+convGRU, 5 steps, w/o position input 83.73± 0.10 58.62± 0.16
ResNet+convGRU, 5 steps, with position input 83.84± 0.09 58.05± 0.24
GAN-based (Xi et al., 2020) 88.1 –
Low resolution (8x8) DRC:
DRC 5 steps, not moving 75.87± 0.29 52.02± 0.07
DRC 5 steps, w/o position input 87.83± 0.38 67.23± 0.30
DRC 10 steps, w/o position input 90.16± 0.59 70.38± 0.67
DRC 5 steps, with position input 92.26± 0.19 74.23± 0.11
DRC 5 steps, deeper, with position input 93.45± 0.15 76.24± 0.21
DRC 10 steps, with position input 94.77±0.09 78.75±0.55

The accuracy of the ResNet50 reference (teacher) network when applied to a single low resolution
image, was chosen as a simplistic baseline. The performance of this network, shown in Table 1
(’Naive training’), demonstrates a large degradation of accuracy in both datasets (See also Table S4
for network’s architecture). To facilitate fair comparison, we also trained such a naive classifier with
feature learning as done in DRC. The results here did not change significantly.

As a more advanced baseline, we considered an averaged prediction (AP) of a feed-forward model
over the T sampled frames. Namely, the estimated probability p̂k of a class k is given by p̂k =
1
T

∑T
t=1 p̂

t
k, where p̂tk are predictions of the above naive baseline. The situation here is similar to

test time data augmentation (Perez & Wang, 2017) with sensor motion being the augmenter. Notably,
the AP saturated with the number of time steps while our full system kept improving, as described
below (Table 1). Here application of a teacher slightly improves the accuracy, and in the case of
CiFAR-100, the improvement is significant (1.34% on average).

Next, we evaluated models where a convGRU (resp. GRU) is connected before (resp. on the
top of) the last global average pooling layer of ResNet; we denote it as Resnet+convGRU (resp.
ResNet+GRU) (Table S6). At their best, these models achieved accuracy lower by approximately
4% and 7% for CiFAR-10 and CiFAR-100 datasets respectively, compared to 5-step DRC w/o posi-
tional information. The fact that these models and the AP achieve approximately equal performance
indicates that trainable recurrent connectivity in top layers has little benefit over simplistic integra-
tion. This is in contrast to the DRC, where recurrent connectivity is implemented in the low layers.
This result is not surprising since convolutional networks tend to develop invariance to small shifts
(Zeiler & Fergus, 2014), such as those that DRC relies on, albeit with notable caveats (Azulay &
Weiss, 2018).

Finally, we refer to a recent work (Xi et al., 2020) that uses a generative adversarial network to en-
hance feature representation in CiFAR-10 task with 8x8 resolution. This solution performs slightly
better than DRC without positional information and five timesteps but underperforms versus the
same DRC setting with ten steps. Furthermore, no results for CiFAR-100 are available in this work.
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Table 2: Accuracy [%] of Small-net variants with 10 time-steps. Each column corresponds to a
single realization. The version, marked by ∗ is used for further representation analysis.

depth position input CiFAR-10
Standard resolution (32x32) 88.6
Low resolution (8x8) DRC 3 no 84.6*

3 yes 85.2
6 no 85.8
6 yes 87.1

2.2.2 OUR MODEL

Table 1 Summarizes the performance of the DRC on both datasets. The simplest version, with five
time-steps and with no positional encoding outperforms the baseline solutions, including the GRU-
based one. It can be clearly seen that adding time steps or increasing the network’s depth is leveraged
to higher accuracy in both datasets. The version with the ten time steps achieves accuracy which is
just 2-4% inferior to the full resolution setting.

To check whether DRC advantage vs. baselines relies solely on the recurrent computation in the
bottom layers, we tested it without motion. The corresponding result in Table 1 indicates that this is
not the case.

Table 2 reports four representative examples of Small-nets trained on CiFAR-10. Here we see that
same trends of performance hold for a shallower and more compact network architecture and for
teacher trained from scratch, without transfer learning.

2.3 REPRESENTATION

To better understand how our dynamical network extracts high-level features from low-resolution
images, we analyzed the activation sensitivity of each of the 64 neurons of the final layer of the DRC-
FE (“feature-neurons”). We started by using activation maximization with gradient ascent over the
input pattern space (Zeiler & Fergus, 2014) and obtained the maximally-activating patterns (AMs)
for the teacher network (Fig. S7). Unfortunately, applying this tool to the spatio-temporal features
learned by the student network failed to converge systematically (Fig. S4). We thus developed a deep
generator network (DGN) (Table S9 and Appendix A), partially inspired by (Nguyen et al., 2016),
that proved capable of repeatably producing AMs with spatio-temporal patterns, while remaining
consistent with the results obtained using gradient ascent in a purely spatial setting (Fig. S7).

For each feature-neuron, we found a specific series of images that maximized its activity, by allow-
ing the generator to devise unconstrained spatio-temporal patterns. As previously seen in (Zeiler &
Fergus, 2014), we found that Gabor-like images maximized the activation of many feature-neurons
of the teacher network, reminiscent of the sensitivity of neurons in the early visual system to simi-
lar stimuli (Carandini et al., 2005). As expected, we also found that the Gabor-like patterns in our
(dynamic) students’ feature-neurons were often reminiscent of those of the (static) teacher. Impor-
tantly, however, the features presented in our student network exhibited dynamics with high spatial
and temporal variability, resembling visual receptive fields for drifting Gabors (Figures 2A, S8, S9).

To isolate the contribution of spatial and temporal variations to the AM of each feature-neuron
we explored two settings of constrained maximization (see Fig. 2B for visualization of both con-
straints). Specifically, we tasked the generator with creating either purely spatial input patterns,
where all frames must be identical (see middle rows in examples at Fig. 2B), or purely temporal
patterns in which differences between frames were allowed, but all the pixels of each individual
frame were identical (e.g., bottom rows in Fig. 2B). We found features that were more sensitive to
temporal dynamics along with others that were more sensitive to spatial dynamics, with the majority
of features exhibiting mixed spatio-temporal sensitivity patterns (Fig. 2B).

Interestingly, many features exhibited spatio-temporal AMs that were substantially higher than the
corresponding purely spatial and purely temporal AMs, suggesting specific coding benefits for
spatio-temporal fields in our dynamic network. This finding illustrates the importance of studying
spatio-temporal receptive fields in the visual system (DeAngelis et al., 1993; Rust et al., 2005).
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Figure 2: Spatial and temporal receptive fields in the top recurrent layer - A. Examples of
six pairs of teacher (high-resolution, left) and student (low-resolution, right) feature AM. Note the
visual resemblance between the teacher’s and student’s features and the dynamical nature of the
student’s features. The arrow illustrates time flow. B. Central plot: the values along the X- (and
resp. the Y-)axis represent the activation values in constrained maximization setting when limiting
the DGN to purely temporal (resp. spatial) changes. The size and the color of the dots represent
the intensity of activity in the full unconstrained (spatio-temporal) maximization. Call-outs depict
predominantly temporal (bottom-right dot), predominantly spatial (top-left dot), and mixed spatio-
temporal (center-left dot) selectivity. Rows correspond to spatio-temporal (ST), purely spatial (S),
and purely temporal (T) maximization. Columns correspond to timesteps where eight timesteps out
of ten are shown for visual clarity.

2.4 SENSOR’S TRAJECTORY AND ITS EFFECT ON PERFORMANCE

While ocular drift is considered a diffusive, stochastic process, recent evidence suggests that its
high-level properties are controlled by the brain in stimulus or task-dependent manner. In particular,
Gruber & Ahissar (2020); Intoy & Rucci (2020) demonstrated that ocular drifts in human subjects
exhibit more curved paths when viewing more informative regions. We thus examined the effect of
our sensor trajectory on recognition accuracy. We devised a family of stochastic diffusive trajectories
with controllable curvature properties. To do that, we assumed that the random distribution of angles
between successive intervals is governed by von Mises distribution (Appendix B for details).

Testing our DRC with varying κ (the parameter which controls the trajectory’s mean curvature;
see Appendix B for details), we found that the recognition performance improved with curvature,
providing a possible functional interpretation for the experimental findings of (Gruber & Ahissar,
2020; Intoy & Rucci, 2020). Figure 3 shows gradual improvement in accuracy on CiFAR-100 dataset
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as κ decreases. Representative trajectories for each tested value are shown in the top panel with their
corresponding accuracy presented in the bottom panel.

To distinguish between the properties of the actual trajectory with the generated sequence of points
as opposed to the collection of sample points, we performed a shuffling experiment. Fig. 3 shows
that randomly shuffling points on the trajectory mostly affects trajectories with low curvature. For
trajectories with negative kappa, shuffled trajectory visually resembles non-shuffled ones and, there-
fore, it comes with no surprise that shuffling has little or no effect. On the other hand, for trajectories
with low curvature shuffling does have a significant effect. This implies that while the same infor-
mation is available in both cases, the decoding is compromised in the case of a shuffled path.

To leverage the advantage of the trajectory’s curvature further, we devised another family of trajecto-
ries for which curvature was explicitly enforced. We refer to these trajectories as “spirals” (Appendix
for details). As can be seen in Fig. 3 the ’spiral’ trajectories resulted in the best performance. The
’spiral’ ensemble of trajectories is the one that is reported in Tables 1 and 2.

We used the curvature-index defined in Gruber & Ahissar (2020) (See also Appendix B) in order
to compare our synthetic trajectories with real drift trajectories acquired in an experiment (Gruber
& Ahissar, 2020). We found that by using κ values of -1.0 and 0.0 the generated distributions
have similar characteristics (see details in Appendix B) to the ones observed in the experiment
with the relevant condition- recognizing small 2d shapes. The empirical distributions in (Gruber &
Ahissar, 2020) were obtained by dividing the data to periods where relevant information is projected
on the retina, and periods where such stimulus is not available to the retina (compare Fig. S10
with Fig. 3, ’Natural-small’ curvature-index distributions in Gruber & Ahissar (2020)). These
similarities demonstrate that (a) the range of κ we were using is biologically relevant, and (b) our
model can be used for exploring the mechanistic details underlying the biological control preferring
such curvatures, as they demonstrate their advantage in recognition.

To conclude, we find that a curved motion of the sensor is beneficial for our DRC setting, offer-
ing a potential functional interpretation to similar kinematics observed in human vision (Gruber &
Ahissar, 2020; Intoy & Rucci, 2020).

Figure 3: Sensor’s trajectory and its impact on performance. Top: representative examples of
trajectories are shown for 5-time steps long trajectories with gradually increasing curvature, which
corresponds to decreasing κ (Equation 1). Spiral trajectories governed by Equation 2 are also shown.
See Appendix B for details. Bottom: accuracy for DRC performing 5 time steps on CiFAR-100 is
plotted for each setting for original (blue) and randomly shuffled (orange) trajectories.

3 DISCUSSION

We introduced a dynamical recurrent classifier (DRC), a system that recruits tiny sensor motions to
compensate for low spatial resolution with temporal over-sampling. This setting is novel, although
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some of its components had been used before (Kanazawa et al., 2021; Arefin et al., 2020). We
introduced recurrent dynamics to the low layers of the network (the DRC-FE in Fig. 1B), followed
by time averaging and by feed forward convolutional layers. This architecture is reminiscent of the
biological brain: the dynamics in early visual areas is faster and the integration windows are shorter
than in higher areas. Therefore, the assumption of static (or slowly varying) representation in high
areas is reasonable. Furthermore, high visual areas (e.g. V4 and IT) exhibit invariance to variety of
stimulus distortions (Cadieu et al., 2007; Rust & DiCarlo, 2010), which is absent in the low areas
(V1, V2). This fact is echoed by our training method which allows the student and the teacher to
have different low level representations but implies similarity of representations from the point along
processing hierarchy, upstream of which, a common architecture is used (DRC-BE in Fig. 1B).

Moving the sensor over the image may be considered as yet another variant of test-time data aug-
mentation. However, we find that the recurrent computation provides an extra benefit compared to
the averaged prediction baseline (Table 1) corresponding to such an augmentation.

Importantly, the task of recognition from a series of low-resolution frames differs from the related
task of MISR (Farsiu et al., 2004; Arefin et al., 2020). While the latter task requires high-resolution
reconstruction of the input scene, the former one does not. The DRC does not need to learn all
the particularities required to reconstruct a high-resolution image; instead, it focuses on extracting
the necessary features for the given task. Future work may compare the performance of the DRC
with standard classifiers that use task driven super-resolution (Haris et al., 2018) as a preprocessing
step. These solutions are applicable in a variety of settings such as body worn cameras, UAVs
and self-driving cars with the need of performing real-time image recognition tasks, on a stream of
visual input images captured from a moving vision sensor of limited quality, e.g. (Desai et al., 2015;
Merenda et al., 2020; Howard et al., 2017; Jiang et al., 2018). Table 1 suggests that in a setting with
large number of samples and limited resolution DRC may be competitive e.g. vs. Xi et al. (2020).

Recently, Anderson et al. (2020) performed an approximate Bayesian inference to decode features
that could account for the improvement in acuity observed in the experiments of Ratnam et al.
(2017). Our approach relies on the assumption that the primitives are shaped by the stimuli in full
resolution – i.e. in the regime of convenience – rather than handcrafted, and are then adapted to
the more challenging regime of low resolution. Furthermore the inference is performed by a trained
neuronal agent as opposed to the idealistic Bayesian estimate in (Anderson et al., 2020).

A teacher network assisted our DRC in developing its latent neuronal representation. In biological
terms, this would be analogous to hyperacuity being based on representations developed using reg-
ular acuity. Consistent with this analogy are the findings that (i) the development of hyperacuity in
humans follows the development of regular acuity (tested using Snellen tables) (Skoczenski & Nor-
cia, 2002; Wang et al., 2009) and (ii) recognizing the smallest Snellen optoypes, which improves
with age (Wang et al., 2009), likely requires hyperacuity (Ratnam et al., 2017; Intoy & Rucci,
2020). Interestingly, there is evidence that the fixational drift contributes to the perception of the
small Snellen optotypes (Ratnam et al., 2017; Intoy & Rucci, 2020).

The trajectory along which samples are taken affects the recognition accuracy, echoing experimental
findings (Gruber & Ahissar, 2020; Intoy & Rucci, 2020). Notably, the sensor trajectories in this work
were generated independently of the underlying scene. This is a possibly sub-optimal situation, and
future work may focus on closed-loop interaction between sensor trajectory and the perceived scene
(Ahissar & Assa, 2016; Gruber et al., 2021; Rucci et al., 2018; Intoy & Rucci, 2020). This could
also shed light on the ongoing effort to identify controllable ingredients in the ocular drift motion
(Ratnam et al., 2017).

The results of this work can be used when constructing specific hypotheses about the ways in which
the visual system copes with tiny images. Specifically, our work suggests that the ocular drift plays
a major role in such conditions, supporting earlier hypotheses and empirical findings (Marshall &
Talbot, 1942; Steinman & Levinson, 1990; Ahissar & Arieli, 2001; Snodderly et al., 2001; Rucci
et al., 2007; Ratnam et al., 2017; Anderson et al., 2020; Gruber & Ahissar, 2020; Gruber et al.,
2021; Intoy & Rucci, 2020) and that the processing of the drift-derived spatio-temporal information
requires recurrent processing in retinal, sub-cortical or cortical visual networks (Burak et al., 2010).
Our results also support the inclusion of eye position signals in such processing (Burak et al., 2010);
the accuracy required from such signals likely dictates that they should be derived from retinal
signals (e.g., Ahissar et al. (2015)).
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A FEATURE VISUALIZATION TRAINING PROCEDURE

As a first attempt of feature visualization training we followed the general guidelines of (Erhan et al.,
2009; Nguyen et al., 2016). The code we used was based on an online available code example2. The
activation of a feature i in a layer j of our network is denoted by Hij(θ, x), where θ is the network’s
parameters, and x is the input. Using gradient ascent we optimize the input x to maximize the
feature activation Hij . Following Erhan et al. (2009) x was initialized randomly and the gradient
ascent algorithm was applied modifying it iteratively. While this procedure has been shown to work
with typical Convolutional Neural Network layers it failed to converge with the DRC-front-end,
probably due to its higher dimensional input and complexity of the recurrent layers, (Fig. S4).
Therefore, we designed a new training procedure that includes a deep generative network (DGN)
which generates the synthetic input x, and uses gradient ascent to update the DGN weights using
the Adam optimizer. The DGN architecture is shown in Table S9, the architecture was modified to
enable the constraints we enforced over the system, i.e. using 3D,2D and 1D Transpose Convolution
for the corresponding spatio-temporal, spatial-only and temporal-only activation maximization.

Supplementary Figure S4: Convergence of AM generator - on the left, a plot of the DGN converging
to a stable AM feature, and on the right, non-convergence of the standard gradient ascent algorithm.
Data points were downsampled and normalized for clarity

Activation maximization is usually a non-convex optimization problem, and therefore we do not
expect to reach the same global maxima on each run. We applied a combination of two regularization
methods, Batch-normalization over the networks layer output (Ioffe & Szegedy, 2015) and added
Gaussian noise, with µ = 0 and σ = 0.05 empirically chosen, to obtain repeatability of AM in
each individual feature, while maintaining a significant difference between features. We averaged
the results over ten different initialization of the generator to report more consistent results; see (Fig.
S5 for examples of the convergence behavior of the algorithm.

B IMPLEMENTATION OF DRC TRAJECTORIES

B.1 TRAJECTORIES WITH CONTROLLED CURVATURE

To create a family of trajectories with controllable curvature, we assumed that at each time-step the
sensor location x(t), y(t) is updated via polar increment δr, δφ. Namely:

φ(t) = φ(t− 1) + δφ(t)

x(t) = x(t− 1) + δr cos(φ(t))

y(t) = y(t− 1) + δr sin(φ(t)) (1)

With δφ(t) being i.i.d. stochastic variables drawn from a von Mises distribution with controlled
parameter κ. Zero κ corresponds to uniform distribution of δφ(t), positive values of κ correspond

2https://keras.io/examples/vision/visualizing_what_convnets_learn/
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Supplementary Figure S5: Boxplots displaying the distribution over intra-DRC AM values. The
data represents six independent training trials of the generator with a single DRC-front-end. (A)
boxplots of spatial only AM, we report the Coefficient of variation (CV) CV = 0.043, (B) temporal
only AM CV = 0.134 (C) spatio-temporal AM CV = 0.066. The box represents the quarterlies of
the data, and the whiskers mark the rest of the distribution. Outliers are marked in the graph. As can
be seen, training the generators leads to a relatively consistent local minimum.

to straighter trajectories and negative κ corresponds to more curved ones (here we define that for
κ < 0, δφ = π + δφ′ with φ′ ∼ von Mises(−κ)).
The second parameter, δr was drawn from a half-normal distribution, so that δr = r0 + |r1| where
r1 ∼ N (0, 1) and where we set r0 =

√
2 to ensure that two consequent steps do not fall on the same

point for any angle φ after rounding to integer pixel coordinates.

B.2 SPIRALS

Spirals were created by setting:

φ(t) = φ(t− 1) + δφ(t)

r(t) = r(t− 1) + δr(t)

x(t) = r(t) cos(φ(t))

y(t) = r(t) sin(φ(t)) (2)

with δφ(t) ∼ N (±π2 ,
π
8 ), φ(0) drawn uniformly from circle, and the polarity of ± is fixed along

each individual trajectory. The parameters r(0) = 3, δr ∼ N (−0.1, 0.162) were picked heuristi-
cally to optimize Small-net performance as well as prevent trajectories from coinciding. Regarding
coinciding and repetition of trajectories, we found that approximately 10.3K distinct trajectories
were generated for a single pass over 45K large training set, making any fitting to specific trajectory
unlikely.
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Supplementary Figure S6: Boxplots display the distribution over inter-DRC AM values, comparing
different DRC trained on the same teacher. The data represent three independent DRCs, each trained
on the same Small-net teacher. The box notation is as in the Fig S5. Spatial onlyCV = 0.1, temporal
only CV = 0.16, spatio-temporal CV = 0.104.

B.3 CURVATURE INDEX DISTRIBUTIONS

The same curvature index as in Gruber & Ahissar (2020) was used in order to compare our synthetic
trajectories to biological drift motion. The index is defined as follows: CI = 1−ds/l where l is the
length of the trajectory and ds is the final displacement (i.e. the distance between the starting and
ending point of the trajectory). Using this definition we get one index per trajectory where highly
curved trajectory would result with number close to (and smaller than) one while low curvature
trajectories would result with number close to (and greater than) zero.

Comparing the curvature index distributions obtained with κ = −1.0 and κ = 0.0 (Fig. S10)
with the relevant distributions from Gruber & Ahissar (2020) (Figure 3, ’Natural-small’ curvature-
index distributions), where distribution of curvature index with κ = −1.0 corresponds to ’border’
drift trajectories distribution and distribution of curvature index with κ = 0.0 corresponds to ’non-
border’ drift trajectory distribution, we see similar trends: The κ = 0.0 (’non-border’) distribution
is shifted to the left and broader compared to the κ = −1.0 (’border’) distribution. The means of the
distributions are also comparable and exhibit the same trend: 0.699± 0.002 and 0.597± 0.003 for
κ = −1.0 and κ = 0.0 respectively, and 0.65± 0.05 and 0.55± 0.02 for ’border’ and ’non-border’
conditions respectively.

B.4 INTEGRATION OF POSITIONAL INFORMATION

The positional information fed into the network contained the (x,y) normalized coordinates of the
lower left corner of each frame relative to the center position of the original CiFAR image. It was
integrated into the network by first broadcasting it to the two dimensions (height and width) of a
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Supplementary Table S3: DRC network architecture

DRC (time steps = 10, for ResNet50: W=H=56, for Small-Net: W=H=8)
Layer Number of

outputs
Kernel size Padding Activation

Function
(Small-
Net/ResNet)

Input

Input image 10*8*8*3
Input trajectory 10*2
Front-end

Broadcast trajectory 10*8*8*2
Concat 10*8*8*5
Upsample ×7
(ResNet50 only)

10*W*H*5

ConvGRU 10*W*H*32 3 * 3 same* ELU/ReLU
ConvGRU 10*W*H*64 3 * 3 same ELU/ReLU
ConvGRU 10*W*H*64 3 * 3 same ELU/ReLU
AveragePooling1D W*H*64 10
LayerNormalization -
Back-end

Weights Copied from
Teacher
ResNet+Classifier 10/100 softmax

*”same” padding refers to padding to the input image so that the input image gets fully covered by
the filter and specified stride

Supplementary Table S4: Baseline ResNet50 based network architecture

Reference Net
Layer Number of

outputs
Kernel size Padding Activation

Function

ResNet50 14*14*2048

Classifier

GlobalAvrgPooling 7 * 7 * 2048 2 * 2
Fully Connected 1024 ReLU
Fully Connected 512 ReLU
Fully Connected 10/100 softmax

single input frame (8,8,2) and then concatenating it with the frame. resulting in a (8,8,5) input for
each time-step (three dimensions for RGB and two dimensions for location).

For ResNet+convGRU controls the positional information was fed similarly to the first recurrent
layer, with appropriate scaling (approximately square root of the layer depth).
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Supplementary Table S5: ResNet+GRU network architecture (applied to time series)

Control Net v2
Layer Number of

outputs
Kernel size Padding Activation

Function

ResNet50 (applied at
each timestep)

5*14*14*2048

Classifier

GlobalAvrgPooling 5*7*7*2048
GRU 5*1024 sigmoid-tanh
GRU 512 sigmoid-tanh
Fully Connected 10/100 softmax

Supplementary Table S6: ResNet+ConvGRU network architecture (applied to time series)

Control Net v3
Layer Number of

outputs
Kernel size Padding Activation

Function

ResNet50 (applied at
each timestep)

5*14*14*2048

Classifier

ConvGRU 5*1024 3*3 sigmoid-tanh
ConvGRU 512 3*3 sigmoid-tanh
GlobalAvrgPooling 5*7*7*512
Fully Connected 10/100 softmax
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Supplementary Table S7: Base Small-net network architecture

Teacher
Layer Number of

outputs
Kernel size Padding Activation

Function
Front-end
Input image 32*32*3
Convolution 32*32*32 3 * 3 same ELU
Convolution 32*32*32 3 * 3 same ELU
MaxPooling2D 16*16*32 2 * 2
Dropout - 0.2 -
Convolution 16*16*64 3 * 3 same ELU
Convolution 16*16*64 3 * 3 same ELU
MaxPooling2D 8*8*64 2 * 2
LayerNormalization -

Back-end

Convolution ResNet 8*8*64

[
3 ∗ 3, 128
3 ∗ 3, 128
3 ∗ 3, 64

]
× 3 same ELU

LayerNormalization -
Fully Connected 128 ELU
Dropout - 0.0 -
Fully Connected 10/100 softmax

Supplementary Table S8: Small-net v2 network architecture

Teacher
Layer Number of

outputs
Kernel size Padding Activation

Function
Front-end
Input image 32*32*3
Convolution 32*32*32 3 * 3 same ELU
Convolution 32*32*64 3 * 3 same ELU
MaxPooling2D 16*16*64 2 * 2
Dropout - 0.2 -

Convolution ResNet 16*16*64

[
3 ∗ 3, 128
3 ∗ 3, 128
3 ∗ 3, 64

]
× 3 same ELU

MaxPooling2D 8*8*64 2 * 2
LayerNormalization -

Back-end

Convolution ResNet 8*8*64

[
3 ∗ 3, 128
3 ∗ 3, 128
3 ∗ 3, 64

]
× 3 same ELU

LayerNormalization -
Fully Connected 128 ELU
Dropout - 0.0 -
Fully Connected 10/100 softmax
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Supplementary Table S9: Activation Maximization DGN

Generator
Layer Number of

outputs
Kernel size stride Padding Activation

Function
input 100
Fully Connected 128 LeakyReLU
Reshape 1*1*1*128
Conv3DTranspose 2*2*2*128 2 * 2 * 2 2 * 2 * 2 valid LeakyReLU
Conv3DTranspose 5*4*4*128 3 * 2 * 2 2 * 2 * 2 valid LeakyReLU
Conv3DTranspose 10*8*8*128 2 * 2 * 2 2 * 2 * 2 valid LeakyReLU
Conv3DTranspose 10*8*8*3 3 * 3 * 3 1 * 1 * 1 same tanh

Supplementary Figure S7: Comparing results of activation maximization of the teacher and student
networks. Left: results of gradient ascent over the input pixels for the teacher network. Right: output
of DGN trained to generate maximizing input for the student network. The easily observed similarity
between the two panels confirms the validity of the DGN approach as an activation maximization
methods for spatial networks.

21



Published as a conference paper at ICLR 2022

Supplementary Figure S8: Teacher features vs. student features. Same as Fig. 2A for all the features.
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Supplementary Figure S9: Teacher features vs student features, continued. Same as Fig. 2A for all
the features.
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Supplementary Figure S10: Dsitributions of curvature index. Dsitributions of curvature index of
trajectories generated with κ = −1.0 (blue) and κ = 0.0 (orange).
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