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Figure 1: Our method is designed to modify high level attributes to match the prompt, all while
maintaining the core structure and background of the source image.

ABSTRACT

Rectified flow text-to-image models have shown remarkable progress. However,
editing complex scenes containing multiple objects remains challenging due to
semantic entanglement and structural inconsistency. To address this, we propose
a dual-domain framework that jointly refines temporal editing trajectories and
adapts frequency domain. First, we design a Starting Point Optimization (SPO)
strategy, which intelligently determines the optimal editing starting point based
on the structural complexity of different images. Second, we introduce a Tra-
jectory Optimization (TO) strategy. In the time domain, it performs semantic-
aware vector orthogonalization to suppress source bias while preserving target
semantics. In the frequency domain, it adaptively re-weights high and low fre-
quency residuals according to stage-specific spectral characteristics. Furthermore,
we leverage the frequency-aware capabilities of MM-DiT to dynamically inject
structural priors from the source image at different denoising steps. Our method
allows users to add, replace, or modify multiple objects, making it highly efficient
for editing complex scenes. Experiments show that our method significantly out-
performs existing methods for image editing and achieving higher user preference
in human evaluations.
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1 INTRODUCTION

The goal of image editing is to align a region of interest with text prompt while preserving the non-
edited areas. Recently, Rectified Flow (RF) models (Labs|, 2024)) have demonstrated superior per-
formance over diffusion models (DMs) (Rombach et al., 2022} Tang et al., 2023; Wang et al., [2024;
Song et al., 2022)) in both image quality and text alignment, by leveraging flow matching (Lipman
et al.,[2023; Liu et al.,[2022) and a multi-modal diffusion transformer (MM-DiT) (Esser et al., [2024;
Peebles and Xie, [2023} Huang et al., 2024). However, their effectiveness is limited when it comes to
fine-grained editing of specific, detailed regions within images containing multiple objects or com-
plex scenes. In practice terms, we aim to design a powerful and effective framework that excels at
image editing across a diverse range of image types.

The challenge in image editing is to precisely edit multi-object at specific locations within an image.
Existing text-guided image editing methods that leverage flow models (Wang et al., |2025; Deng
et al., 2024; |Avrahami et al., [2025) operate by inverting the source image into a latent space and
then performing conditional denoising. However, such methods often lead to significant deviations
between the edited and original images (Xie et al., 2025} [Kulikov et al} 2025). While some ap-
proaches utilize attention modification to enhance control (Xu et al., 2024} Tewel et al.| |2024; |Lv
et al |2025), they often face challenges. While attention-based methods are good at preserving the
original image structure, this strong control can also restrain the editing strength. When multiple
objects are present, these approaches often suffer from appearance leakage (Zhang et al., 2025; Sun
et al., [2025). Current multi-object editing methods (Zhu et al., 20254} |Yang et al., 2024; Huang
et al.| [2025) rely on masks, such methods often struggles to precisely bind specific attributes to their
geometrically defined regions, which can lead to inaccurate edits or content leakage.

To overcome the above challenges, we revisit the editing process. Unlike DM, RF allows the latent
noise to be inferred at each time step through linear interpolation. FlowEdit builds an ODE be-
tween the source and target images without inversion. Inspired by this, we propose an inversion-free
method that modifies specific regions directly on the source image at each step. We clearly divide the
editing process in the noise space into three distinct stages: the Chaos Phase, the Layout Phase,
and the Refinement Phase. Our key finding is that beginning the edit too early can compromise the
source image’s structural integrity, whereas starting too late may result in an ineffective edit. This
is further complicated by the fact that the structural complexity of different images, leading to a
non-uniform end point for the Chaos phase. To solve this issue, we introduce Starting Point Opti-
mization (SPO), a method that adaptively determines the optimal editing start point by calculating
the low frequency Mean Squared Error (MSE) between the source and target images.

Although the SPO strategy enhance structural fidelity, it still suffers from obvious visual artifacts and
insufficient editing strength. To this end, we propose a trajectory optimization strategy. This strategy
decomposes the editing direction into two orthogonal components, cross-cue and cross-track, in the
time domain, and eliminates its projection in the cross-cue direction by orthogonalizing the cross-
track term. In the frequency domain, we employ dynamic frequency weighting to adaptively adjust
the editing strength based on the frequency characteristics of each denoising stage. Furthermore,
we leverage the frequency-aware properties of MM-DiT. Instead of applying the same strategy to
all attention layers (Feng et al.| [2025), we select and utilize specific attention layers at different
diffusion stages to inject corresponding source image features.

In summary, our main contributions are as follows:

(a) We propose a novel SPO strategy that adaptively selects the optimal editing onset for dif-
ferent images based on their structural complexity.

(b) We introduce a Trajectory Optimization method. This method performs optimization in
both time and frequency domains. Additionally, it selectively injects structural features
from the source image into appropriate attention layers of the MM-DiT, based on the cur-
rent denoising step.

(c) We evaluate our method across various editing tasks,as shown in Figure[I] Extensive ex-
periments demonstrate that our method significantly outperforms state-of-the-art baselines
in single-object editing tasks and achieves competitive results in multi-object editing sce-
narios.
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2 RELATED WORK

2.1 INVERSION FOR IMAGE EDITING

Image editing methods fall into two main categories: inversion-based and inversion-free. Inversion
methods obtain the initial noise by iteratively adding predicted noise (Brack et al., 2024} [Deutch|
[2024). Null-text Inversion (Mokady et all 2022) achieves a more precise inverse recovery by
training null-text embeddings. Negative Prompt Inversion (Miyake et al.l [2024) replaces the nega-
tive prompt with the source prompt. RF models still reverse the ODE to gradually add noise. RF-
Inversion constructs a controlled ODE through source image and noise interpola-
tion. RF-solver and FireFlow introduce second-order Taylor
expansions to reduce reconstruction errors. Early inversion-free methods such as SDEdit
strike a balance between realism and fidelity by adding moderate noise, Delta De-
noising Score (Hertz et all [2023)) refines text-guided edits by subtracting noise gradients using a
reference-guided image-text pair. Infedit 2023) uses a special variance schedule such that
the denoising step takes the same form as multi-step consistency sampling. Recently, FlowEdit

likov et al.,[2025)) and FlowAlign (Kim et al., |2025) circumvents inversion by constructing a direct

flow drive between the source and target images.

2.2 MULTI-OBJECT IMAGE EDITING

Balancing structural preservation and semantic alignment in multi-object editing remains a chal-
lenging task. Early methods leveraged U-Net based DMs (Jiang et al, 2025}, [Simsar et al., 2024)
focusing on attention modification. P2P (Wang et al, [2022) manipulated cross-attention maps for
feature-prompt alignment, PnP (Tumanyan et al., |2022b) injected aligned internal controls, and
MastCtrl (Cao et al., [2023) achieved edits while preserving overall texture and consistency. Re-
cent methods (Sanjyal, [2023) introduce refined control strategies. OIR (Yang et al.,[2024) separates
editing pairs with masks and distinct inversion steps, LOMOE (Chakrabarty et al., [2024) restricts
edits to specified mask regions through a multi-diffusion process, and Paralleledits (Huang et al.
2025) employs parallel branches for a editing strategy. While RF models primarily (Rombach et al.
2022} |Labs| 2024) utilize the MM-DiT architecture, this domain remains underexplored. Existing
methods (Deng et all, 2024} [Zhu et al, 2025b}, [Avrahami et al., [2025)) adapt attention injection to
preserve fidelity, while others (Xu et al.| [2025) use Adaln to manipulate features for control. The
MM-DiT architecture is an area still requiring deeper investigation.
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3 METHOD

Our method is able to achieve semantic alignment while effectively maintaining the consistency of
image structure. Our method mainly consists of three parts: (i) based on the analysis of frequency
changes during denoising, We propose a novel Start Point Optimization (SPO) strategy; (ii) in-
troduce a Frequency aware trajectory optimization method; (iii) introduces our feature injection
process along with attention adaptation methods to enhance editability. An overview of our method
is presented in Fig.[2]

3.1 PRELIMINARY
3.1.1 RECTIFIED FLOW BASED MODELS.

Rectified flow models learn the probability paths between two distributions. Specifically, they lin-
early interpolate between two observed distributions xy ~ pg and x; ~ p1, and model such proba-
bility transport paths using the following ordinary differential equation (ODE):

x: =1tx1 + (1 —t)xg, t€]0,1], (1

dx; = Ue(Xt, t) dt, xo~po, tE€ [07 ]-L (2)

where vg(x¢, t) denotes a time-aware velocity field governing the transport dynamics. The training
objective is to directly regress the velocity field using the least-squares loss:

£ = Epaqo.1 ximmn |51 = %0) = vaxe, )] 3

3.1.2 INVERSION-FREE TEXT-BASED EDITING.

In text-based image editing using flow models, we aim to translate a source image X*™ to a target
image X' based on the text description of each image or the editing instruction. In particular, such
translation can be represented through a linear conditional flow between two image distributions:

ngit — X;ar _ X:rc + X(S)rc. (4)
Consequently, we can simulate the ODE for image editing by
dxedit
d—ltf = edit(t) = U(X;ar7 2 Ctar) - 'U(X;rcat7 Csrc)- ©)
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3.2 OBSERVATIONS ON PHASED EDITING IN NOISE SPACE

Previous work (Yu et al.l [2023; |Bao et al.
2025) have shown that diffusion models nat-
urally emphasize different frequency compo-
nents at different sampling timesteps. Inspired
by this, we analyze intermediate results dur-
ing the editing process at different denoising
timesteps, we categorize the image editing pro-
cess in the noise space into three distinct stages:
Chaotic Phase, Layout Phase, and Refine-
ment Phase.

Chaotic Phase: We introduce intermediate
variables V (X}, t, cyc). As shown in Fig.
during the early stage of the denoising process,
the predictions are primarily guided by the text
prompt, containing very little structural and se-
mantic information about the source image. By

Cosine Similarity Across Denoising Steps

—— Cossim1 All Frequencies
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Figure 4: CosSiml is the cosine similarity of
Vire) and V2", CosSim2 is the cosine similarity

ar
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analyzing the cosine similarity between the predictions and the target at different frequency compo-
nents as shown in Fig. 4] we identify a key pointTy. From this point, the image information begins
to guide the predictions, enabling the model to effectively reconstruct the source image’s structure.
Consequently, we propose a novel SPO strategy and define this transition point as the optimal start-
ing timestep , which adaptively determines the starting point based on an image’s characteristics.

Layout Phase and Refinement Phase: As illustrated in Fig. [3] after skipping the chaotic phase,
Vi 1s able to reconstruct the source image layout with high fidelity. The editing result then mainly
depends on the accuracy of the denoising direction V,4i;. We found that there is an intersection},,,.,
between CosSim1 and CosSim?2. Before this, it is mainly responsible for low frequency layout, and
after this, it is responsible for high frequency refinement. We use this observation to delineate the
Layout Phase and Refinement Phase.

3.3 TRAJECTORY OPTIMIZATION
3.3.1

After determining the editing start point, we use Eq. (6) to build a direct ODE process between the
source and target distributions. However, without explicit latent inversion, the generated V ¢%(t)
vector remains heavily constrained by the source structure, which limits the overall editing strength.

SEMANTIC AWARE VECTOR DECOUPLING

Vedit (t) = U(Xfar’ t, Ctar) - U(Xfar’ t, Csrc) + (,U(Xfar, t, Cs'rc) 6)

cross-prompt

- U(thrC) t, Cs'rc))

cross-trajectory

To address this, we orthogonalize the cross-
prompt term. By retaining only the compo-
nent that is independent of the cross-trajectory & -~
term, we avoid redundant superposition and

Flowedit

Turboedit  Orthogonalized

Hen V9 A N
achieve a more precise and controllable edit. \zﬁ‘?:. \* ) » \?f/‘,

Specifically, we define the cross-prompt vec-
tor as A;s and the cross-trajectory vector as
Ags. The orthogonalized cross-trajectory vec-
tor A¢T*" is computed as:
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Figure 5: Qualitative comparison. Orthogonal
calculation helps maintain background structure,
and frequency domain control helps increase edit-
ing power.

where Ay and Ay, represent the cross-prompt
and cross-trajectory vectors, respectively.
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e
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3.3.2 FREQUENCY AWARE TRAJECTORY OPTIMIZATION

In multi-object editing scenarios, we found that simply amplifying the cross-prompt term does not
effectively improve editing quality and can instead introduce unnecessary distortion, as shown in
Fig.[5] By performing a frequency domain analysis of V.4;;, we observed that the distribution of its
high and low frequency components changes dynamically with the timestep. Therefore, we propose
a frequency-adaptive scaling strategy to more precisely control the editing process.

Specifically, we first transform the editing vector into the frequency domain and apply adaptive
scaling to its low- and high-frequency components. This process is defined as:

UAti = [)\low (tz) . Mlow + )\high(ti) : Mhigh] O] -F(Atz) (9)

where F denotes the Fourier transform, and Mj,,, and M4y, are binary masks isolating the low
and high frequency components, respectively. A;o. (t;) and Anign (t;) are adaptive frequency scaling
coefficients. The transformed vector is then converted back to the time domain:

Vat, = F Y (Uas,) (10)

The frequency scaling coefficient Ayyp.(t;) is computed based on the relative energy concentration
within the residual spectrum Ua;,. This mechanism, controlled by parameter o, compensates for
missing frequency information and balances the contribution of low- and high-frequency compo-
nents during image editing. The coefficient is defined as:

Z(kr’ky)eRtwe ‘Utl (kﬂ ky)|>

- (1)
Z(km,ky)eRa“ Ut (K, Ky )

where type € {low, high}, Rjo, and Rp;gp denote the low and high frequency regions.

/\type(ti) =14+« (1

3.4 ATTENTION REMAPPING.

T2T SA w/o Injection
We construct the latent variable Z; by linearly ] J i
interpolating between a clean image and Gaus- 2o l%
sian noise. However, as shown in the figure, :
a conflict between the source image’s structure
and the target prompt can lead to reconstruction Figure 6: Edited results generated by injecting
errors such as editing leakage. features. 12I-SA and I2T-CA can effectively pre-
serve source image structure, I12I-SA interferes

Inspired by (Hertz et al.| 2022
nspired by (Hertz et al, ). We propose an with subsequent text alignment.

attention reconstruction method to correct these
errors. The MMDIT joint attention module can be decoupled into four core components: 12I-SA,
I2T-CA, T2I-CA, and T2T-SA. To evaluate their roles in image editing, we separately inject each
component into the target branch. Our experiments showed that while both I12I-SA and I2T-CA can
effectively preserve source image structure, I2I-SA interferes with subsequent text alignment. We
therefore selected I2T-CA as the final choice.

For the j-th token in the target prompt, if a corresponding source token exists with an index of ¢(j),
we reuse the cross-attention value from the source as By(;); otherwise, we amplify the original
attention A; by a dynamic scaling factor 5. Here, A; denotes the source’s cross-attention (CA)
value computed for the j-th token in the target prompt, and By, is the corresponding attention
value from the source prompt at index ¢(j). The final attention fusion is formulated as:

Aj = wj- By + (L—wy) - B- 4, (12)

where w; = 1 if a mapping exists, and w; = 0 otherwise. The mapping function ¢(j) assigns the
index of the source prompt token corresponding to the j-th target token.

The amplification factor ( is dynamically adjusted based on the denoising timestep ¢:

B: {17 %ft<1—‘turna (13)
Bo, ift > Tiym.

This dynamic adjustment mechanism ensures that the source’s CA prevents editing leakage or arti-

facts during the layout phase and the target’s CA increases the editing intensity during the refinement

phase. Furthermore, we found that each layer block of MMDIT also has a related frequency pat-

tern. Please see the appendix for details. For both the layout and refinement phases, we select the

corresponding attention layers to inject.
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Figure 7: Qualitative Comparison. Unlike existing methods, our method allows users to add,
replace, or modify multiple objects, making it highly efficient for editing complex scenes.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

4.1.1 DATASETS.

For single-object editing, we evaluate our method and baseline methods on 9 tasks from PIE-
Bench (Ju et al.L|2023). For multi-object edit, we evaluate our method on three multi-object datasets:
PIE-Bench++ (Huang et al [2025)), an augmented version of PIE-Bench designed for mixed edits
involving 2-3 object categories; and the OIR (Yang et all, 2024) include mixed edits across two
different task types. All three datasets provide paired sources and target prompts.

4.1.2 METRICS.

We evaluated our method from two perspectives: (a) source preservation and (b) text alignment. For

source preservation, we measured Structure Distance [Tumanyan et al,| (2022a), PSNR
and Ghanbari| (2008)), LPIPS [Zhang et al.| (2018), MSE, and SSIM. Note that the numbers of these
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metrics reported in this paper are scaled. For text alignment, we measure the CLIP similarity Rad-
ford et al.|(2021) between the whole image and the target prompt (Whole) and

4.1.3 BASELINES AND IMPLEMENTATION DETAILS

We mainly compare our method with previous state-of-the-art training-free image editing methods.
For RF-based models, we evaluate RF-Inversion (Rout et al., [2024), RF-solver (Wang et al., |2025)),
FireFlow (Deng et al.| [2024), Stable Flow (Avrahami et al.| 2025), and FlowEdit (Kulikov et al.,
2025)). For DMs, we evaluated DDIM+P2P (Hertz et al., [2022)), Direct Inversion+PnP (Tumanyan
et al.| 2022b), Infedit (Xu et al., 2023)), MasaCtrl (Cao et al., 2023)). In addition, we also include
multi-object editing method OIR (Yang et al., | 2024). We follow their official implementations for
evaluation. We implement our method based on FLUX (Labs, 2024)). Throughout the comparative
evaluations, our hyperparameters remain fixed: S = 4 for cross attention injection. Specifically, dur-
ing the Layout Phase, cross attention from the source image is injected into layers 5-20 of the target
branch. During the Refinement Phase, the injection occurs in layers 20-45. Further implementation
details are provided in Appendix.

4.2 EDITING RESULTS
4.2.1 QUALITATIVE EVALUATION.

Qualitative results are shown in Fig.[/| From our experiments, we observe the following: Firstly,
methods such as StableFlow, Fireflow, and RF-inversion often exhibit omitted edits when dealing
with complex scenes involving multiple materials, colors, or object modifications, leading to no-
ticeable text-image misalignment. Secondly, for multi-object editing approaches like OIR , their
performance is suboptimal in non-rigid editing tasks, such as object addition or removal. This is
primarily because these methods heavily rely on precise masks for editing, which makes it challeng-
ing to generate natural and contextually consistent results when an object needs to be completely
removed or created from scratch. Thirdly, FlowEdit demonstrates better editing performance in cer-
tain scenarios; however, it overlooks the variations in inversion steps across different images, which
can lead to suboptimal editing outcomes.

Structure Background Preservation CLIP Similarity
Method Distance X103 | PSNR1 LPIPS x102] MSE x10%] SSIM x1021 Whole1 Edited 1
DDIM+P2P 69.43 17.87 20.88 21.99 71.14 25.01 22.44
DI+PnP 24.29 22.46 10.61 8.045 79.68 25.41 22.62
InfEdit 13.78 28.51 4.758 3.209 85.66 25.03 2222
MasaCtrl 28.07 22.18 10.15 8.677 80.26 24.96 21.40
RF-Inversion 32.62 22.03 15.96 9.601 73.26 24.89 21.89
RF-Solver 24.17 26.12 11.88 4.064 86.50 25.19 22.07
StableFlow 14.41 25.98 7.246 4.471 92.08 24.20 20.86
FireFlow 22.42 2591 11.45 4.396 86.56 25.41 22.08
FlowEdit 21.07 23.59 8.889 6.631 88.89 24.90 21.66
Ours 8.754 28.50 4.143 2.111 94.69 25.44 22.00

Table 1: Comparison with different baselines for single-object edits in PIE benchmark. The best
score is highlighted in bold, and the second-best score is underlined.

4.2.2 QUANTITATIVE EVALUATION.

For single-object edits, the quantitative results are summarized in Table [T} Our method performs
well on most metrics, with the exception of the edited CLIP score and PSNR. Although DI+PnP
obtains a higher CLIP score, its ability to preserve the background and structure of the source image
is inferior to that of our method. For multi-object edits, the quantitative results are summarized in
Table[2} Our method achieves good performance on most metrics. Specifically, while InfEdit shows
better PSNR, its CLIP similarity is significantly lower than other methods. This suggests that its
strong background preservation capability hinders its editing ability. FlowEdit achieves a high CLIP
score but shows weak background and structure preservation. In summary, our method performs
well in both background preservation and editing, enabling precise editing without compromising
structural consistency or editability. Quantitative results for OIR are shown in the Appendix.
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Structure Background Preservation CLIP Similarity
Method Distance X103 ] PSNR1 LPIPS x102| MSE x103] SSIM x1021 Whole1 Edited 1
DDIM+P2P 43.57 18.48 18.83 19.01 73.55 20.72 19.58
DI+PnP 27.07 22.73 10.32 7.597 80.73 20.79 19.07
InfEdit 22.60 24.61 10.40 16.05 78.85 24.69 22.63
MasaCtrl 29.76 22.50 10.22 8.758 81.59 24.15 22.14
RF-Inversion 42.29 21.41 18.19 11.24 73.70 25.06 23.29
RF-Solver 23.83 26.65 11.523 3.778 87.26 24.46 22.30
StableFlow 16.43 26.38 6.582 4.038 91.76 22.79 21.48
FireFlow 20.49 27.06 10.50 3.854 88.21 24.52 22.80
FlowEdit 22.52 24.00 8.638 6.206 89.78 25.11 23.43
OIR 24.66 27.79 5.715 2.460 86.97 23.56 20.95
Ours 12.82 27.84 6.523 2.430 91.83 25.65 23.55

Table 2: Comparison with different baselines for multi-object edits in PIEBench++. The best score
is highlighted in bold, and the second-best score is underlined.

4.3 ABLATION STUDY

We conducted an ablation study on three core

technical components of our method: starting Source ours W/oSPO  w/oTnjection  w/o TO
point optimization, feature injection, and dif-

ference modulation. Table [3] presents quanti-

tative results. Without starting point optimiza- o

tion, a significant portion of the source struc- mockup of a wooden frame with a white (ree) rose on a white marble background
ture is lost in the edited images. This may stem 1' 1— -‘— Hr .s “
from extracting features from the latent space kTiW k"
that contain inaccurate information about the N 2 \
source image. Meanwhile, without feature in- ‘ Hﬂorl_yalmr‘abb/fwear/ngg/asses/ayonanewspﬂpﬂ'(
jection, the edits fail to fully align with the tar- \ | ; |
get prompt, leading to a lower text-alignment
score. Furthermore, without trajectory opti- ! , |
mization(TO), edits maintain high image sim-  asrre gt wearing(hat) sunglesses and o gray (chesshi eaning against aall
ilarity but yield lower CLIP scores, potentially
due to insufficient editing strength. These find-
ings collectively underscore the importance of
both source structure preservation and semantic alignment in image editing, objectives that our
method effectively achieves. Fig.[8|provides a qualitative comparison. As long as the correct starting
point is determined, the original image structure can be maintained. The other two strategies will
improve the text alignment.

Figure 8: Ablation examples for assessing the im-
pact of each technique in our method.

Structure Background Preservation CLIP Similarity
Method Distance X102 | PSNR{ LPIPS x103| MSE x10%| SSIM x1024 Whole1 Edited 1
w/o SPO 17.26 25.82 8.072 4.057 90.10 23.78 22.28
w/o Injection 15.00 26.14 7.749 3.374 90.11 24.54 22.70
w/o Modulation 13.45 27.72 6.256 2.650 91.06 24.24 22.65
Ours 12.82 27.84 5.523 2.430 91.83 25.65 23.55

Table 3: Ablations Study. Three strategies com plement each other and result in improved metrics.

5 CONCLUSION

In conclusion, we analyze the intermediate features at each timestep of inversion-free methods,
and propose a simple yet effective starting point optimization strategy. In addition, we introduce
Trajectory Optimization method to address the editing omission and detail loss problems in multi-
object and complex scene editing. We hope that our analysis of start point and frequency will serve
as a building block for future advancements in image editing.
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A APPENDIX

THE USE OF LLM

We acknowledge the use of a large language model (ChatGPT, GPT-5 by OpenAl) to assist in improving the
clarity and readability of the manuscript. The model was used only for language polishing (e.g., grammar
checking, wording refinement) and not for generating novel scientific content, experimental design, data anal-
ysis, or results. All technical ideas, methods, and contributions are solely the work of the authors.

A. DETAILED ANALYSIS

A.1 START POINT

As shown in Fig. 9] we present three examples of images with different levels of complexity. For a 50-step
process, their starting point is approximately the 10th timestep.

Y
¥

a (square)round cake with (strawberry) frosting on a (plastic)weeden plate

Source 0 5 SPhest 20 SP

Figure 9: Analysis of start point

A.2 ATTENTION LAYERS

As shown in Fig. |10} The MM-DiT architecture exhibits consistent frequency-domain characteristics across
different timesteps. The model, which consists of 57 blocks, processes information in a hierarchical manner.
As the layer number increases, the attention outputs progressively incorporate higher frequency components.
Specifically, the early layers establish the low frequency structure of the image, such as object placement
and motion, while the later blocks focus on high frequency details. Consequently, to inject low frequency
structural information, we should concentrate on the early layers. Conversely, for injecting high frequency
details, attention should be directed to the later layers.
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prompt: A dog wearing a chef's hat in a kitchen.
Visualization word: dog

Figure 10: Visual analysis of the layers of MM-DIT at each timesteps.

B. IMPLEMENTATION DETAILS

B.1 INJECTION LAYERS

The MM-DiT architecture exhibits similar frequency-domain properties. To leverage this, we conducted abla-
tion studies to determine the optimal attention injection strategy for both the layout phase and the refinement
phase.
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As shown in Fig. |10} we observed that the first five layers contain relatively limited information. For the layout
phase, we set the injection starting point at layer 5. As can be seen from Fig. IE Injecting source image
attention from layers 5 to 20 effectively removes editing artifacts. It is noteworthy that a narrower injection
range, such as layers 5-10 or 5-15, tends to generate unrelated objects. Conversely, extending the range to layer
25 excessively preserves source details, which constrains editing flexibility. Furthermore, if the injection starts
later at layer 10, editing artifacts reappear, proving that layers 5-10 are indispensable.

For the refinement phase as shown in Fig. we found that injecting attention from the 20th block effec-
tively enhances editing strength. This strategy aims to prevent editing omissions because the first 20 blocks
are primarily responsible for the image’s macro layout. Experiments indicate that layers 20-45 are the optimal
injection range. Using layers 20-35 still leads to editing leakage, while extending the range to 20-55 signif-
icantly limits the editing effect. Additionally, we found that injecting only into layers 5-20 does not improve
performance, and the results from layers 5-45 are similar to those from layers 20-45.

Source layer 5-10 layers 5-15 layers 5-20 layer 10-20 layers 5-25

|

. b _ | ,
a bowl of (fry rice) dumpling on the left and (knife)-chopsticks-on the right

(a horse and a pink pony) two-zebras in a lawn

Figure 11: Analysis of injection layers in layout phase

B.2 BASELINE IMPLEMENTATION

In this section, we describe the implementation details of the baselines we used.

For RF-Inversion, we follow their Github official implementation, the stopping timestep is set to 7/28, and the
strength is set to 0.9.

For RF-Solver-Edit, we follow their Github official implementation, guidance is set to 2 and inject is set to 5.
For Stable Flow, we follow their Github official implementation, the vital layers are the same as the official
implementation.

For FireFlow, we follow their Github official implementation, the number of steps is set to 8, and the inject is
setto 1.

For FlowEdit, we follow their Github official implementation, and use their default setting for FLUX.

For OIR, we follow their Github official implementation, reinversion step and reassembly step are both set to
10.

For InfEdit, we follow their Github official implementation.

For DDIM+P2P, DI+PnP and MasaCtrl, we follow the implementations from Direct Inversion codebase
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Source layer 5-20 layers 5-45

layer 20-35 layers 20-45 layers 20-55

parrot is sitting on (an icicle) a-branch

a red and white (Lego) airplane flying (through the close shot of the moon) in-the-sky
Sy ok 4 9 e & -

a (dog) weman jumps over (a zombie) roeks at sunset

Figure 12: Analysis of injection layers in refinement phase

C. ADDITIONAL QUALITATIVE EVALUATION

We performed additional qualitative comparisons against baselines. Extended comparison results on single-
object and multi-object are presented in Fig. [[3]and Fig.[T4] with more examples in Fig. [[5]and Fig.[T6]

D. ADDITIONAL QUANTITATIVE COMPARISON

We present the comprehensive results of our quantitative evaluation on the OIR-Bench and LoMOE-Bench
dataset in Tab [5] and Tab ??. To assess how well the original image’s structure is preserved, we used several
metrics: Structure Distance, PSNR, LPIPS, MSE, and SSIM. To measure how closely the edited image aligns
with the text prompt, we computed CLIP text similarity. This was done in two ways: one for the entire image
and another specifically for the editing mask region, which we refer to as "Whole Image Clip Similarity” and
”Edit Region Clip Similarity.”

D.1 OIR-BENCH

Our method achieves better perfomance across most metrics. Concretely, the results show that LOMOE has
a stronger ability to preserve source content, but this also limits its editing flexibility. As shown in the CLIP
scores, LOMOE performs relatively worse in terms of edited similarity. In summary, our method performs
well in both background preservation and editing, enabling accurate edits without compromising structural
consistency or editability.

D.2 DETAILS ON USER STUDY

We conducted two user studies, comparing our method against eight multi-object editing techniques, and eight
single-object editing methods. For the studies, we selected 8 images each from single-object and multi-object
editing tasks within our dataset. These images were generated from the same source image and target prompt
but using different methods. More than 20 participants are asked to select the image that best conformed to the
target prompt while effectively preserving the source image structure. As show in Table[d] We carried out a user
study to compare image editing methods, involving 28 anonymous Prolific users and 14 questions. Participants
were shown a source image and an editing instruction. Their task was to select one of eight edited images based
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on two criteria: edit accuracy and backgroud preservation . This process, exemplified in Fig.[I7} allows us to
analyze user preferences and inform the development of more effective and precise editing methods.

Comparison on single-object edits

Method DI+PnP  MasaCtrl Infedit RF-Inversion  RF-Edit FlowEdit  Stableflow  Ours
User Preference 4.3% 3.4% 8.4% 6.7% 7.3% 9.1% 10.3% 50.5%
Comparison on multi-object edits
Method DI+PnP  Inf-Edit = RF-Inversion RF-Edit FlowEdit Stableflow OIR Ours
User Preference 5.6% 3.2% 6.8% 7.2% 9.8% 7.2% 5.4% 54.8%

Table 4: User study results comparing our method with nine methods in single-object edits and
multi-object edits.

E.ADDITIONAL EXAMPLES OF ABLATION STUDIES ON EACH TECHNIQUE

E.1 EFFECT OF VARYING ﬁ IN CROSS-ATTENTION INJECTION
The effect of the hyperparameter § is presented in Fig.[T9] With =1, the model fails to fully align the edited
image with the text prompt. Increasing (3 significantly improves this alignment, as indicated by better compari-

son scores. However, an excessively large 3 can’t increase the editing effect Therefore, selecting an appropriate
[ is crucial. Based on this observation, we set =4 for all subsequent experiments.

E.2 EFFECT OF VARYING START POINT

The effect of the hyperparameter start point is presented in Fig. Starting editing too early will destroy the
original image structure, and starting editing too late will not align with the text prompt.

F.FUTURE WORK

We believe that image processing and video processing are inseparable from the frequency domain. Later we
will continue to explore the role of the frequency domain in the image and video fields.

Structure Background Preservation CLIP Similarity
Method Distance x10% | PSNR1 LPIPS x102| MSE x103] SSIM x1021 Wholet Edited 1
DI+PnP 33.74 22.60 10.88 6.796 83.30 28.18 25.56
MasaCtrl 26.62 22.76 10.67 7.261 81.44 21.81 19.79
RF-Inversion 44.89 21.01 16.56 9.95 79.81 27.72 25.32
RF-Solver 27.02 25.17 10.39 4.25 87.45 27.23 25.14
StableFlow 16.03 24.46 7.28 5.23 91.61 22.51 20.29
FireFlow 26.84 24.44 11.28 4.65 86.10 26.95 24.26
FlowEdit 31.59 22.81 9.256 6.92 88.43 27.07 24.70
OIR 21.56 28.65 4.608 2.342 83.11 28.74 26.51
Ours 18.47 30.53 3.295 2.910 92.27 28.88 26.09

Table 5: Comparison with different baselines for multi-object edits in OIR Bench. The best score is
in bold, and the second-best score is underlined.
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Source DI+PnP

RF-Inversion RF-Solver StableFlow FireFlow FlowEdit
\! . -

i - =
1 g === l g e W

a silver cat sculpture sitting next to a mirror

i | | 1l | |

a cartoon woman in a red cloak walking through the woods with-bat

el - l iﬁ

a woman in a hat and dress wealking (running) down a path at sunset

A" EYTEYN TeN T8y

(a pixel art of) a woman in a blue dress leaning against a wall

a white-(yellow) kitten sitting on a leopard print blanket

Figure 13: Additional evaluation comparisons on single-object editing.
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Source Stableflow Fireflow RF-inversion ~ RF-solver FlowEdit OIR LOMOE Ours
_ 2 - -

men-key (man) wearing colorful geggles (sunglasses)

a cup of coffee (with spoon) and a notebook on a checkered tablecloth (with a pen)

a cartoon painting of a cute ewd (cat) with a heart-(circle) on its body

Figure 14: Additional evaluation comparisons on multi-object editing.
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Source Image Edited Image  Source Image Edited Image  Source Image Edited Image

white brown gold makeup  blue makeup red heart pink heart

robin silver robin

A

Remove flower

Q/C'Ma;ioon“Style S digital art

“watercolor of a pop art style

Figure 15: Diverse edited results of our method on single-object editing. Our method allows
users to add, replace, change object, change color and change material.
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Source Image Edited Image Source Image Edited Image  Source Image Edited Image

bird crochet bird cat | dég
branch gold branch ~ bean bag chair  pumpkin rabbit squirrel

pickup rusty pickup
green trees  yellow trees pure blue  Milky Way sky

roses pumpkins carved
gift box pumpkin

tree sunflower
full moon crescent moon

black stones colorfor stones pink clolorful four gray two blue,two
cotton balls  cotton balls ~ Cushions white cushions

dog
wooden floor green grass

daisies roses

Figure 16: Diverse edited results of our method on multi-object editing. Our method allows
users to add, replace, change object, change color and change material.
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Original prompt: blue light, a black and white cat is playing with a flower
Edit prompt: blue light, a black and white dog is playing with a yellow ball

Figure 17: Example screenshot from the user study, displaying images generated using different
methods, where participants selected the one that best represents the intended edit.
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source

a (rusty) pickup surrounded by (yellow) green trees and houses

Figure 18: The effect of start point

Source

(a golden woman sculpture) woman-in a kimono standmg in a river

i-’-ﬁ--ﬂ--ﬂ.d-

a blaek(green) blrd Wzth a yellow beak and y@llew(blue) feet

. R
a (newspaper) book on a woodenfloor

Figure 19: The effect of 3
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