
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEERING LLMS’ REASONING WITH ACTIVATION
STATE MACHINES

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning Large Language Models (LLMs) for specialized skills often comes
at a steep cost: catastrophic forgetting of their broad general abilities. Activation
steering offers a promising alternative, but existing methods are typically stateless,
applying a constant intervention that fails to capture the dynamic, history-dependent
nature of a reasoning process. We introduce the Activation State Machine (ASM),
a lightweight dynamic steering mechanism inspired by state-space models from
control theory. The ASM learns the latent dynamics of an ideal reasoning trajec-
tory from a set of examples and, at inference time, applies real-time corrective
interventions to the LLM’s hidden states. We demonstrate that ASM steering im-
proves zero-shot accuracy across multiple domains, enhancing performance on
both mathematical reasoning and physical reasoning. In addition, we show that
while supervised fine-tuning incurs a significant performance drop on an unrelated
creative writing task, our method preserves over 95% of the base model’s fluency
measured in perplexity. Our work presents a new paradigm for modular skill
injection, enabling the enhancement of specialized capabilities in LLMs without
compromising their foundational generality.

1 INTRODUCTION

Many applications of Large Language Models (LLMs) require outputs that are not just fluent, but
also logically sound and factually consistent, especially in multi-step reasoning tasks (Beaglehole
et al., 2025; Ye et al., 2023). This has motivated extensive work on methods to enhance and control
the reasoning abilities of LLMs. Two fundamental, often conflicting, requirements emerge in this
problem space:

• Task-Specific Accuracy: How effectively does the method improve performance on a target
reasoning domain, such as mathematics or science?

• General Capability Preservation: Does the method enhance the specialized skill without degrad-
ing the model’s broad, pre-existing abilities (i.e., avoiding catastrophic forgetting)?

Most existing methods succeed on one axis but sacrifice the other, creating a spectrum of solutions
with inherent trade-offs. Broadly, they fall into two families: (1) Weight-Modification Methods:
Supervised Fine-Tuning (SFT) is the canonical example (Hu et al., 2021). SFT can be highly effective
at increasing accuracy on the target task. However, this performance gain comes at a great cost: by
permanently altering the model’s weights, SFT is well-documented to cause catastrophic forgetting,
degrading the model’s performance on other, unrelated tasks (Luo et al., 2025). (2) Stateless Steering
Methods: Inference-time interventions like activation steering (Beaglehole et al., 2025; Chen et al.,
2025) are also non-destructive. These methods typically apply a static "concept vector" to the
model’s activations at every step. While useful for static attributes like sentiment, this approach is
fundamentally misaligned with the nature of reasoning. Reasoning is not a fixed state but a dynamic
trajectory, where each step depends causally on the evolving context.

Thus, the current landscape of methods for enhancing reasoning reveals a challenging trade-off
between task-specific accuracy and the preservation of general capabilities. What is missing is a
method that can balance between improving reasoning accuracy and being non-destructive. 4

We propose the Activation State Machine (ASM), a dynamic, stateful steering method that resolves
this tension. ASM is framed as a lightweight, real-time "navigator" for the LLM’s thought process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An overview of ASM steering process at inference time. The prompt is fed into the LLM,
and for each transformer block being steered, an independent ASM performs a predict-correct cycle.
ASM first predicts the ideal state (ẑt|t−1) based on its previous state, then observes the LLM’s raw
activation (at), and finally corrects its internal state (ẑt) based on the error. This new, smoothed state
is used to compute a steering vector that is added to the LLM’s activation.

Inspired by control theory, its architecture is a simplified, deterministic form of a Kalman filter
(Kalman, 1960), designed to track and guide a dynamic system based on noisy observations. ASMs
learn the latent dynamics of an ideal reasoning trajectory from examples. At inference time, ASMs
observe the LLM’s raw activations and applies a corrective nudge only when needed, keeping the
model on a coherent path. This mechanism allows the ASM to be both highly effective and minimally
invasive. Our experiments show that ASM achieves a new state-of-the-art in the trade-off between
task-specific performance and general capabiilty preservation.

In this work, we make the following contributions:

• Dynamic reasoning guidance. We introduce ASM, a lightweight state-machine architecture
that adapts steering signals in real time, inspired by deterministic state-space models such as
the Kalman filter (Kalman, 1960).

• Skill injection without forgetting. Across mathematical and physical reasoning tasks,
ASM improves zero-shot accuracy while preserving more than 95% of the model’s creative
fluency—where fine-tuning severely degrades performance.

• A new paradigm for modular enhancement. By enabling reasoning skills to be added
without overwriting general abilities, ASM points toward a compositional and non-destructive
approach to LLM specialization.

2 RELATED WORKS

2.1 REASONING IN HIDDEN STATES OF MODERN LLMS

A growing body of research confirms that sophisticated reasoning capabilities are encoded in the
hidden states of LLMs. For arithmetic tasks, information from early layers is transmitted to the
last token via attention, where late MLP modules then process this information to generate results
(Stolfo et al., 2023). For multi-hop problems, intermediate layers form interpretable representations
of parallel reasoning paths and potential answers, with feed-forward blocks facilitating the transition
to final solutions (Shalev et al., 2024). This observation has led to the concept of "latent thoughts"
(Ruan et al., 2025), where the model’s internal state represents a more verbose, continuous reasoning
process than what is captured in the final text. Methods like Coconut (Hao et al., 2024) and recurrent
depth architectures explicitly leverage this by creating recurrent connections in the latent space,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Gemma (b) Qwen (c) Llama

Figure 2: Pareto fronts comparing BERTScore (higher is better) on the ClimaQA dataset and Negative
Perplexity (higher is better) on Creative Writing for (a) Gemma-2-9B-it, (b) Qwen2-7B-Instruct,
and (c) Llama-3.1-8B-Instruct. We plot negative perplexity vs. BERTScore so that the top-right
corner represents the ideal outcome for both metrics. The red line indicates the Pareto front, which is
constructed by identifying the set of methods for which no other single method is strictly superior on
both axes.

demonstrating that the model’s internal state can be treated as a dynamic, evolving system (Yue et al.,
2025; Hao et al., 2024; Geiping et al., 2025). This body of work provides the foundational premise
for our approach: if reasoning is a dynamic trajectory in the activation space, then a steering method
should be able to model and guide that trajectory.

2.2 INTERVENTIONS IN THE REASONING PROCESS

The SFT Paradigm: The most standard method for teaching a model a new skill is Supervised
Fine-Tuning (SFT) (Ouyang et al., 2022). While powerful, SFT directly modifies the model’s weights,
which often leads to catastrophic forgetting—degrading the model’s performance on other, unrelated
tasks (Luo et al., 2025). Even modern, parameter-efficient fine-tuning (PEFT) methods like LoRA
(Hu et al., 2021) are not immune to this issue (Ren et al., 2024).

Activation Steering: Recent approaches in activation steering are designed to offer more fine-grained
control. Activation Transport, for example, is a general framework that steers activations guided
by optimal transport theory. It accounts for causal relationships across activations by estimating
transport maps incrementally for each layer (Rodriguez et al., 2024). Sparse Activation Steering
(SAS) leverages sparse autoencoders to steer LLM behavior in sparse spaces for modular control
(Bayat et al., 2025). In addition, Conceptors utilize steering matrices for "soft projection" onto a
target space, a more nuanced manipulation than simple vector addition, though they can be more
computationally expensive and require more data (Postmus & Abreu, 2024).

While these methods push towards greater adaptivity, Recursive Feature Machine (RFM) and Steerable
Reasoning Calibration (SEAL) offer specific advancements for reasoning (Beaglehole et al., 2025;
Chen et al., 2025). RFM extracts linear representations of general concepts directly from model
activations to enable targeted steering and even enhance reasoning capabilities (Beaglehole et al.,
2025). SEAL is a training-free method that specifically addresses inefficiencies in Chain-of-Thought
(CoT) reasoning by identifying and mitigating redundant reflection and transition thoughts through
dynamic interventions in the latent space (Chen et al., 2025). However, while both RFM and SEAL
offer powerful inference-time interventions for reasoning, their steering mechanisms typically rely on
pre-computed steering vectors. This stateless approach limits their ability to adapt to the evolving
context of a complex problem, forcing an unfavorable trade-off between intervention strength and
model fluency. In contrast, our stateful ASM dynamically computes interventions at each step.

As shown in Figure 2, the dynamic guidance of ASM is the key to achieving a better balance between
improving reasoning accuracy without catastrophic forgetting.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 STATEFUL STEERING WITH ACTIVATION STATE MACHINE

We propose a stateful approach that explicitly models the temporal dynamics of reasoning using a
state-space model. We propose a method called Activation State Machine (ASM) Steering. This
approach models the internal activation dynamics of an LLM as a linear state-space system on a
per-layer basis, where we train an independent ASM assigned to each transformer block we wish to
steer. This per-layer independence is a crucial design choice motivated by the principle of functional
specialization in deep transformers (Kumar et al., 2024). Different layers learn to process information
at different levels of abstraction, from syntactic features in early layers to complex semantic and
logical relationships in later layers. By training an independent ASM for each layer, we allow each
one to become a specialized observer, learning the unique dynamics of information processing at its
specific depth. In the following section, we first formally define the ASM’s architecture, then detail its
use for inference-time steering, and finally describe the training procedure.

3.1 ACTIVATION STATE MACHINE: MODEL DEFINITION

The state of our ASM, ẑt ∈ Rds , is a vector that represents the smoothed, filtered estimate of the
LLM’s "ideal" reasoning state at time step t, where ds is the dimension of the state space. As
illustrated in 1, it first uses its internal model to predict where the ideal reasoning state should go
next, then it observes the LLM’s actual activation, and finally it uses this observation to correct its
own state, ensuring its guidance remains grounded. This forms a corrective feedback loop, which is a
simplified, deterministic form of a Kalman filter.

The system is defined by the following components:

• Observation Vector: at ∈ Rda , which is the raw activation vector from the corresponding LLM
layer at time step t. da is the hidden dimension of the LLM.

• State Estimate Vector: ẑt ∈ Rds , which is the ASM’s output.

• State Transition Matrix: F ∈ Rds×ds , a learned parameter that models the linear dynamics of
how the reasoning state evolves.

• Observation Matrix: H ∈ Rda×ds , a learned parameter that maps the latent state space back to
the activation space for comparison.

• Constant Gain Matrix: K ∈ Rds×da , a learned parameter that serves as a fixed blending factor,
determining how much of the observed error is used to correct the state prediction.

The state update is defined by the following recurrence relation:

ẑt = Fẑt−1 +K(at −H(Fẑt−1)). (1)

To ensure numerical stability during the recurrent updates, especially over long sequences, we apply
spectral normalization (Miyato et al., 2018) to the learned matrices F and K, which constrains their
largest singular value to be at most 1.

3.2 TRAINING PROCEDURE

The goal of our training procedure is to learn the parameters (F,H,K) of an Activation State
Machine for a single, target layer within a specific language model. The input to this process is
a dataset, D, which comprises a set of "ideal" reasoning trajectories. Each trajectory, {at}Tt=1, is
a sequence of hidden state activations recorded from the target layer of the LLM as it processes a
correct "prompt+answer" sequence from a reasoning benchmark.

We frame the training as a form of imitation learning, where the objective is to minimize the one-step
prediction error over these recorded trajectories. As illustrated in 1, the ASM observes an activation
sequence {at} and updates its internal estimate {ẑt}. The training process, detailed in 1, adjusts
ASM’s parameters so that the state estimate at one step, ẑt, becomes a good predictor of the next
observed activation in the trajectory, at+1. This procedure is repeated independently for each layer
we wish to steer, allowing each ASM to learn the activation dynamics present at its specific depth.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Activation State Machine Training
1: Input: Dataset of ideal activation trajectories D = {{at}Tt=1}i where T is the number of tokens.
2: Input: Learning rate η, Number of epochs Nepochs

3: for epoch = 1 to Nepochs do
4: for each trajectory {a(i)t }Tt=1 in D do
5: ẑ

(i)
0 ← Initialize(a(i)0)

6: ẑ
(i)
t ← Fẑ

(i)
t−1 +K(a

(i)
t −H(Fẑ

(i)
t−1)) for t = 1, . . . , T

7: â
(i)
t+1 ← Hẑ

(i)
t for t = 0, . . . , T − 1

8: L ← 1
T

∑T−1
t=0 ||â

(i)
t+1 − a

(i)
t+1||2

9: (gF, gH, gK)← ∇F,H,KL
10: Update F,H,K using gF, gH, gK

3.3 INFERENCE-TIME STEERING

At inference time, ASMs are attached to their respective transformer layers using forward hooks. As
the LLM generates its response token by token, each ASM observes the LLM’s raw activation, updates
its internal state, and applies a corrective steering vector α∗(H ∗ ẑt−at), where α is a hyperparameter
controlling the strength of steering. This vector provides a corrective nudge, gently pushing the
LLM’s internal state away from its potentially flawed path and back towards the ideal trajectory
learned during training. This intervention is applied at each steered layer before the activation is
passed to the next component in the transformer block, as detailed in Algorithm 2.

Algorithm 2 Inference-Time Steering with ASM
1: Input: Pre-trained ASM parameters Fl,Hl,Kl for each steered layer l
2: Input: LLM, initial prompt, steering strength α
3: al,0 ← LLM.get_activation(prompt) // Get prompt activations for each steered layer.
4: ẑl,0 ← Initialize(al,0) // Initialize the state for each layer from its prompt activation.
5: for each token generation step t = 1, . . . , N do
6: for each steered layer l = 1, . . . , L do
7: al,t ← LLM.get_activation()
8: ẑl,t|t−1 ← Flẑl,t−1

9: ẑl,t ← ẑl,t|t−1 +Kl(al,t −Hlẑl,t|t−1)

10: asteered
l,t ← al,t + α(Hlẑl,t − al,t)

11: LLM.set_activation(asteered
l,t)

12: tokent+1 ← LLM.generate_token()

Computational Complexity. The computational overhead of our steering method is minimal,
consisting of a series of small, fixed-size matrix operations for each token generated and for each
layer being steered. This additional computation is encapsulated within the loop in 2 (lines 4-10). The
cost is dominated by four matrix-vector multiplications: one for the state prediction (F matrix, line
6), two for the state correction (H and K matrices, line 7), and one for computing the final steering
vector (H matrix, line 8).

Let da be the LLM’s activation dimension and ds be the ASM’s state dimension. The total complexity
of these operations per token, per layer is O(d2s + 3dads). This cost is constant with respect to the
sequence length.

4 EXPERIMENTS

Our experiments are designed to evaluate the effectiveness of the Activation State Machine (ASM)
in improving the zero-shot reasoning capabilities of modern Large Language Models, including
gemma-2-9b-it (Team et al., 2024), Llama-3.1-8b-Instruct (Grattafiori et al., 2024), and Qwen2-
7B-Instruct (qwe, 2024). We test our method on two distinct reasoning domains: mathematical

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

reasoning and physical reasoning, using GSM8k (Cobbe et al., 2021) and ClimaQA (Manivannan
et al., 2025). We train ASMs on the middle to final layers of each language model on each dataset for
30 epochs. Then, we perform a sweep over the steering strength hyperparameter, α, to identify the
optimal configuration for our evaluation. The best-performing configuration for each model and task
is reported in our results. All experiments reported were conducted on NVIDIA A100 GPUs.

We compare our method against a carefully selected set of baselines to evaluate its performance
along different axes of intervention. We include Supervised Fine-Tuning (SFT) (Hu et al., 2021) as
it is a standard paradigm of teaching a model a new skill. To compare against other inference-time
steering methods, we include Recursive Feature Machine (RFM) (Beaglehole et al., 2025) and SEAL
(Chen et al., 2025). RFM is a representative example of a stateless steering technique, where a single,
static concept vector is used for intervention. SEAL represents the state-of-the-art in training-free
reasoning calibration, which also applies a static intervention to guide the model’s latent thoughts.

Table 1: Evaluated accuracies on the GSM8k mathematical reasoning benchmark, with methods
grouped by intervention type.

Method Gemma-2-9B-it Qwen2-7B-Instruct Llama-3.1-8B-Instruct

Prompting Methods
Zero Shot 0.7544 0.8006 0.7642
CoT 0.7619 0.8258 0.8788

Weight-Modification
SFT 0.7589 0.7710 0.7498

Inference-Time Steering
RFM 0.5985 0.7273 0.8636
SEAL 0.7273 0.8636 0.8030
ASM 0.7703 0.8052 0.7718

Figure 3: The plot shows the KL Divergence between the steered and unsteered logit distributions
at each step of the generation process for a single example. "Divergence Points" indicate moments
where ASM intervention had caused the model to choose a different token.

GSM8k: Our experimental results on the GSM8k benchmark demonstrate the effectiveness of ASMs.
As shown in Table 1, ASMs provide a reliable performance improvement over the Zero Shot baseline
across all three models tested. While Chain of Thought (CoT) prompting (Wei et al., 2022) proves to
be a particularly strong baseline, especially for the Llama-3.1 model, our ASM shows competitive
results. Notably, our method compares favorably to Supervised Fine-Tuning (SFT), which yields
surprisingly poor performance on both the Qwen2 and Llama models. It is possible that modern
instruction-tuned models have already been exposed to the GSM8k training set, and further fine-
tuning on this data can disrupt their well-calibrated reasoning abilities rather than enhance them. In
this context, our ASM’s success is particularly significant; by operating on the latent dynamics of
activations, it offers a distinct and effective learning signal, proving to be a reliable paradigm for
modular skill injection than re-training on potentially saturated data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

A key observation we made while analyzing what makes a steered sequence correct is that the most
impactful interventions are not small, constant nudges, but large, targeted corrections at specific
moments in the reasoning process. We show an example below:

Problem: Candice put 80 post-it notes in her purse before she headed out to her job at the coffee
shop. On her way, she stopped off at the store and purchased a package of Post-it notes; At work,
she placed a single Post-it note on each of 220 different cups of coffee. If she had 23 post-it notes
remaining overall, how many Post-it notes were in the package that she purchased?

Unsteered Response: Here’s how to
solve the problem:
Start with the total: Candice began with
80 Post-it notes.
Subtract the used notes: She used 220
Post-it notes at work.
Calculate the difference 80 - 220 = -140.
This means she was short 140 Post-it
notes.
Add the remaining notes: Since she had
23 left, she must have had -140 + 23 =
-117 Post-it notes before buying more.
Find the package amount: She needed to
buy 117 Post-it notes to make up for the
shortage.
Answer: Candice purchased a package of
117 Post-it notes.

Steered Response: Here’s how to solve
the problem:
Start with the total: Candice had 80 Post-
it notes + the package she bought.
Subtract the used notes: She used 220
Post-it notes, so she had 80 + package -
220 left.
Set up an equation: We know she had 23
left, so 80 + package - 220 = 23
Solve for the package:
* Combine the constants: -140 + package
= 23
* Add 140 to both sides: package = 163
Answer: Candice bought a package of 163
Post-it notes.

A key intervention in this example is the subtle but profound semantic shift from the unsteered
model’s "Candice began with 80 Post-it notes" to the steered model’s "Candice had 80 Post-it notes."
The former frames 80 as a fixed total, trapping the model in a flawed subtraction-first reasoning path.
The latter creates a more flexible representation of the initial state, allowing the model to correctly
incorporate the unknown "package" variable and form a valid algebraic equation. This is confirmed
by the KL divergence plot in Figure 3, which shows that for most of the generation, the divergence is
near-zero, indicating the ASM is not disrupting the model’s natural fluency. However, at a few critical
"Divergence Points," ASM can also apply a strong corrective force. This combination of minimal
intervention with high-impact corrections at key moments gives our method a decisive edge, allowing
it to preserve the model’s fluency while ensuring the final answer is correct.

ClimaQA: Our results on the ClimaQA physical reasoning task demonstrate the effectiveness of
ASMs as a dynamic steering method. As shown in Table 2, ASM consistently outperforms other
advanced prompting and steering techniques such as RFM and SEAL across all three base models,
establishing its superiority as a lightweight intervention. While Chain-of-Thought (CoT) prompting
(Wei et al., 2022) achieves slightly higher scores on n-gram overlap metrics like BLEU (Papineni et al.,
2002) and ROUGE-L (Lin, 2004), ASMs consistently yields higher semantic similarity as measured by
BERTScore (Zhang et al., 2019), suggesting it produces answers that are more semantically aligned
with the ground truth. Furthermore, while SFT achieves a higher performance ceiling on Gemma
and Qwen2, our ASM attains a stronger result on Llama-3.1, demonstrating its potential as a robust
alternative, particularly in scenarios where fine-tuning may not yield optimal performance.

Analysis of Catastrophic Forgetting: A primary motivation for our method is to avoid catastrophic
forgetting, a key drawback of Supervised Fine-Tuning (SFT) where a model’s general capabilities
degrade after being specialized on a new task (Luo et al., 2025). To test this, we compare a SFT
fine-tuned models against a base model guided by variaous steering method. Both are evaluated on a
creative writing task (Fan et al., 2018), with performance measured by perplexity, a standard metric
for linguistic fluency where a lower score is better.

As shown in Table 3, across all three base models, the SFT version exhibits a significant increase
in perplexity, indicating a degradation of its core language abilities. In contrast, the perplexity of
ASM-steered models remain close to that of the un-steered baseline, especially in Qwen and Llama,
where the perplexities are almost identical as the original LLM. This provides strong evidence that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Evaluation results on ClimaQA, grouped by intervention type. Best overall performance is
in bold; best among inference-time methods is underlined.

Method Metric Gemma-2-9B-it Qwen2-7B-Instruct Llama-3.1-8B-Instruct

Prompting Methods

Zero Shot
BLEU 0.0240 0.0245 0.0280
ROUGE-L 0.1174 0.1096 0.1378
BERTScore 0.8304 0.8400 0.8416

CoT
BLEU 0.0379 0.0363 0.0411
ROUGE-L 0.1724 0.1436 0.1514
BERTScore 0.8364 0.8437 0.8407

Weight-Modification

SFT
BLEU 0.2257 0.1975 0.0373
ROUGE-L 0.3676 0.3468 0.1419
BERTScore 0.8984 0.8967 0.8389

Inference-Time Steering

RFM
BLEU 0.0250 0.0234 0.0243
ROUGE-L 0.1116 0.0939 0.0973
BERTScore 0.8202 0.8266 0.8274

SEAL
BLEU 0.0251 0.0238 0.0260
ROUGE-L 0.1331 0.1002 0.1055
BERTScore 0.8274 0.8332 0.8293

ASM
BLEU 0.0295 0.0276 0.0328
ROUGE-L 0.1140 0.1404 0.1428
BERTScore 0.8445 0.8429 0.8446

Table 3: Average Perplexity of story generated using Writing Prompts Dataset

Dataset Method Gemma-2-9B-it Qwen2-7B-Instruct Llama-3.1-8B-Instruct

LLM Zero Shot 8.21 5.47 5.36

ClimaQA
SFT 9.07 12.22 8.89

SEAL 8.55 6.01 5.44
RFM 8.83 6.87 5.93
ASM 8.60 5.82 5.94

GSM8k
SFT 9.61 7.88 6.03

SEAL 11.93 11.58 10.07
RFM 14.53 12.03 8.08
ASM 8.63 5.48 5.38

our method is non-destructive; by operating on activations at inference time rather than permanently
altering the model’s weights, ASMs act as a modular skill injector that enhances reasoning without
sacrificing the model’s foundational generality. In addition, we perform a pareto front on the trade-off
between task-specific performance (BERTScore on ClimaQA) and general fluency (Perplexity),
further confirming this finding.

Pareto Front Analysis of Perplexity vs. BERTScore As shown in Figure 2, the Pareto analysis
reveals the high cost of SFT. Across all three base models, the SFT version often achieves the
highest BERTScore, demonstrating its effectiveness at specializing in the target task. However,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on KLD-gated steering with a threshold of τ = 0.1. We report the best
accuracy achieved with continuous (non-gated) steering versus the best accuracy achieved with
conditional, gated steering across the optimal layers for each model on GSM8k.

Method Gemma-2-9B-it Qwen2-7B-Instruct Llama-3.1-8B-Instruct
Zero Shot 0.7544 0.8006 0.7642
Continuous Steering (Best) 0.7703 0.8052 0.7718
KLD-gated Steering (Best) 0.7665 0.8089 0.7642

SFT’s specialization comes at the cost of a drastic increase in perplexity on the creative writing
task, indicating significant degradation of its core language abilities. In contrast, our ASM-steered
model consistently lies on the Pareto front, achieving a BERTScore far superior to the baseline while
maintaining a perplexity score that is only marginally higher. This provides strong evidence that our
method is non-destructive while achieving state-of-the-art steering results on ClimaQA.

Ablation Study: The Impact of Conditional Steering A key hypothesis is that ASM’s effectiveness
stems from precise interventions at critical moments. To test this, we conducted an ablation study
using KLD-gated inference. This method makes steering conditional based on its immediate potential
impact. At each generation step t, we first calculate the steering vector that ASMs would apply. We
then compute the KL Divergence between the model’s original output logit distribution and the
distribution that would result if we applied the steering vector. The intervention is only actually
applied if this KLD value exceeds a fixed threshold, τ . This provides an gating mechanism for
steering, activating only when ASMs propose a correction that significantly alters the model’s next-
token decision.

For Gemma and Llama, performance remains remarkably stable, dropping only marginally from
0.7703 to 0.7665 and 0.7718 to 0.7642, respectively. This demonstrates that a large portion of the
low-KLD "gentle nudges" can be filtered out while still retaining most of the performance benefits,
suggesting that the high-impact corrections at key "Divergence Points" are the primary drivers of
success. Interestingly, for Qwen, the gated approach not only maintains performance but achieves a
slight improvement, rising from 0.8052 to 0.8089. This suggests that for some models, the continuous
stream of low-impact nudges may introduce a small amount of noise, and a sparse, high-impact
intervention strategy can be even more effective. Together, these findings validate our hypothesis that
ASM’s power lies in its ability to make targeted corrections at critical moments.

5 CONCLUSION AND DISCUSSION

In this work, we introduced the Activation State Machine (ASM), a novel, dynamic steering mech-
anism designed to address the limitations of stateless interventions and the risks of catastrophic
forgetting from fine-tuning. By modeling the latent dynamics of an LLM’s reasoning process as a
state-space system, our method provides a robust way to guide the model along a more coherent
trajectory. Our empirical results validate this approach, showing significant zero-shot accuracy gains
on both the GSM8k mathematical and ClimaQA physical reasoning benchmarks. Furthermore, our
direct comparison with Supervised Fine-Tuning (SFT) confirmed that our modular, inference-time
intervention is non-destructive. The ASM thus presents a promising paradigm for modular skill
injection, where specialized capabilities can be applied on-demand without permanently altering the
foundational model.

We acknowledge several limitations that motivate future work. The current ASM is a linear model, and
the optimal layer and steering strength were determined empirically; future work could explore non-
linear state models and develop more systematic methods, such as diagnostic probes, for identifying
optimal intervention points. Additionally, the current training via backpropagation through time can
be less effective for long sequences, suggesting a need for more scalable architectures. We believe
addressing these limitations is a significant step towards building more reliable and controllable Large
Language Models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All code and scripts required
to replicate the experiments presented in this paper will be made publicly available in a GitHub
repository upon publication.

Data: All datasets, including GSM8k (Cobbe et al., 2021) and ClimaQA(Manivannan et al., 2025),
used in our experiments are publicly available.

Models: The base Large Language Models used in our experiments: Gemma-2-9B-it(Team et al.,
2024), Qwen2-7B-Instruct(qwe, 2024), and Llama-3.1-8B-Instruct(Grattafiori et al., 2024), are all
publicly available on the HuggingFace Hub.

Code: The repository will include Python scripts for: (1) collecting the activation traces from the
base LLMs; (2) training the Activation State Machine (ASM) models; (3) running inference with
ASM steering; and (4) evaluating the results for all tasks. The implementation is primarily based on
PyTorch and the Hugging Face ‘transformers‘ and ‘datasets‘ libraries.

ETHICS STATEMENT

The research presented in this paper adheres to the ICLR Code of Ethics. Our work aims to contribute
positively to society by developing methods that make Large Language Models more reliable and
accurate at complex reasoning tasks. All datasets used are publicly available benchmarks, and all
code and models will be released to ensure scientific transparency and reproducibility.

We also acknowledge the potential for dual-use applications. Any method that grants finer control
over an LLM’s generative process could, in principle, be adapted for malicious purposes, such
as generating more coherent or believable misinformation. Furthermore, as our method learns
from example data, any biases present in the training datasets could be learned and propagated
by the steering mechanism. We believe that the societal benefit of creating more controllable and
demonstrably robust reasoning systems is a crucial step towards mitigating the broader risks of
powerful AI, and that transparently sharing this research is the most effective path toward developing
shared safeguards.

REFERENCES

Qwen2 technical report. 2024.

Reza Bayat, Ali Rahimi-Kalahroudi, Mohammad Pezeshki, Sarath Chandar, and Pascal Vincent.
Steering large language model activations in sparse spaces. arXiv preprint arXiv:2503.00177,
2025.

Daniel Beaglehole, Adityanarayanan Radhakrishnan, Enric Boix-Adserà, and Mikhail Belkin. Toward
universal steering and monitoring of ai models, 2025.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free, 2025. URL https://arxiv.org/
abs/2504.07986.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation, 2018. URL
https://arxiv.org/abs/1805.04833.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

10

https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/1805.04833

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and Abhishek Kadianand
others. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.1115/1.3662552. URL https:
//doi.org/10.1115/1.3662552.

Sreejan Kumar, Theodore R. Sumers, Takateru Yamakoshi, Ariel Goldstein, Uri Hasson, Kenneth A.
Norman, Thomas L. Griffiths, Robert D. Hawkins, and Samuel A. Nastase. Shared functional
specialization in transformer-based language models and the human brain. Nature Communications,
15(1):5523, June 2024. ISSN 2041-1723. doi: 10.1038/s41467-024-49173-5. URL https:
//doi.org/10.1038/s41467-024-49173-5.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/W04-1013/.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning, 2025. URL
https://arxiv.org/abs/2308.08747.

Veeramakali Vignesh Manivannan, Yasaman Jafari, Srikar Eranky, Spencer Ho, Rose Yu, Duncan
Watson-Parris, Yian Ma, Leon Bergen, and Taylor Berg-Kirkpatrick. Climaqa: An automated
evaluation framework for climate question answering models, 2025. URL https://arxiv.
org/abs/2410.16701.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks, 2018. URL https://arxiv.org/abs/1802.05957.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, pp. 311–318, USA, 2002. Association for Computational
Linguistics. doi: 10.3115/1073083.1073135. URL https://doi.org/10.3115/1073083.
1073135.

Joris Postmus and Steven Abreu. Steering large language models using conceptors: Improving
addition-based activation engineering. arXiv preprint arXiv:2410.16314, 2024.

Weijieying Ren, Xinlong Li, Lei Wang, Tianxiang Zhao, and Wei Qin. Analyzing and reducing
catastrophic forgetting in parameter efficient tuning, 2024. URL https://arxiv.org/abs/
2402.18865.

Pau Rodriguez, Arno Blaas, Michal Klein, Luca Zappella, Nicholas Apostoloff, Marco Cuturi, and
Xavier Suau. Controlling language and diffusion models by transporting activations, 2024. URL
https://arxiv.org/abs/2410.23054.

Yangjun Ruan, Neil Band, Chris J Maddison, and Tatsunori Hashimoto. Reasoning to learn from
latent thoughts. arXiv preprint arXiv:2503.18866, 2025.

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1038/s41467-024-49173-5
https://doi.org/10.1038/s41467-024-49173-5
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2410.16701
https://arxiv.org/abs/2410.16701
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/2203.02155
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2402.18865
https://arxiv.org/abs/2402.18865
https://arxiv.org/abs/2410.23054

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel reasoning
processes in multi-hop reasoning. arXiv preprint arXiv:2406.13858, 2024.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
arithmetic reasoning in language models using causal mediation analysis. arXiv preprint
arXiv:2305.15054, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, et al. Gemma
2: Improving open language models at a practical size, 2024. URL https://arxiv.org/
abs/2408.00118.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2022.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: satisfiability-aided language models using
declarative prompting. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Zhenrui Yue, Bowen Jin, Huimin Zeng, Honglei Zhuang, Zhen Qin, Jinsung Yoon, Lanyu
Shang, Jiawei Han, and Dong Wang. Hybrid latent reasoning via reinforcement learning.
ArXiv, abs/2505.18454, 2025. URL https://api.semanticscholar.org/CorpusId:
278905447.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert, 2019.

A DECLARATION OF LLM USAGE

Large Language Models (LLMs) are the object of study in this work. However, no LLM was used as
a component of our core proposed methodology, or for any part of the experimental data analysis.
We used Google’s Gemini Pro as a writing assistant throughout the research process. Its use included
refining prose, generating explanatory text for concepts, drafting document outlines, creating figure
captions, and assisting with the generation of boilerplate code for data processing and plotting. All
final claims, experimental designs, results, and conclusions were conceived and verified by the human
authors, who take full responsibility for the scientific content of this paper.

12

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://api.semanticscholar.org/CorpusId:278905447
https://api.semanticscholar.org/CorpusId:278905447

	Introduction
	Related Works
	Reasoning in Hidden States of Modern LLMs
	Interventions in the Reasoning Process

	Stateful Steering with Activation State Machine
	Activation State Machine: Model Definition
	Training Procedure
	Inference-Time Steering

	Experiments
	Conclusion and Discussion
	Declaration of LLM Usage

