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Abstract

Subseasonal forecasting—predicting temperature and precipitation 2 to 6 weeks
ahead—is critical for effective water allocation, wildfire management, and drought
and flood mitigation. Recent international research efforts have advanced the sub-
seasonal capabilities of operational dynamical models, yet temperature and precipi-
tation prediction skills remains poor, partly due to stubborn errors in representing
atmospheric dynamics and physics inside dynamical models. To counter these
errors, we introduce an adaptive bias correction (ABC) method that combines state-
of-the-art dynamical forecasts with observations using machine learning. When
applied to the leading subseasonal model from the European Centre for Medium-
Range Weather Forecasts (ECMWF), ABC improves temperature forecasting skill
by 60-90% and precipitation forecasting skill by 40-69% in the contiguous U.S. We
couple these performance improvements with a practical workflow, based on Co-
hort Shapley, for explaining ABC skill gains and identifying higher-skill windows
of opportunity based on specific climate conditions.

1 Introduction

Water and fire managers rely on subseasonal forecasts 2-6 weeks in advance to allocate water, manage
wildfires, and prepare for droughts and other weather extremes. However, skillful forecasts for the
subseasonal regime are lacking due to the complex dependence on both local weather and global
climate variables and the chaotic nature of weather. Bridging the gap between short-term and seasonal
forecasting has been the focus of several recent large-scale research efforts which have advanced
the subseasonal capabilities of operational physics-based models (1; 2; 3). However, despite these
advances, dynamical models still suffer from persistent systematic errors, which limit the skill of
temperature and precipitation forecasts for longer lead times from 2 to 6 weeks ahead.

To overcome observed systematic errors of physics-based models on the subseasonal timescale, there
have been parallel efforts in recent years to demonstrate the value of machine learning and deep

NeurIPS 2022 AI for Science Workshop.



learning methods in improving subseasonal forecasting (4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14). While
these works demonstrate the promise of statistical models for subseasonal forecasting, they also
highlight the complementary strengths of physics- and learning-based approaches and the opportunity
to combine those strengths to improve forecasting skill (6; 11).

To harness those complementary strengths, we introduce a hybrid dynamical-learning framework for
improved subseasonal forecasting. In particular, we learn to adaptively correct the biases of dynamical
models and apply our novel adaptive bias correction (ABC) to improve the skill of subseasonal
temperature and precipitation forecasts. ABC can be applied operationally as a computationally
inexpensive enhancement to any dynamical model forecast, and we use this property to substantially
reduce the forecasting errors of eight operational dynamical models, including the state-of-the-art
ECMWF model. We couple these performance improvements with a practical workflow for explaining
ABC skill gains using Cohort Shapley (15) and identifying higher-skill windows of opportunity (16)
based on relevant climate variables. To facilitate future deployment and benchmarking, we release
our model and workflow code through the subseasonal_toolkit Python package.

2 Methods

We consider two prediction targets: average temperature (◦C) and accumulated precipitation (mm)
over a two-week period. These variables are forecasted at two time horizons: 15-28 days ahead
(weeks 3-4) and 29-42 days ahead (weeks 5-6). We forecast each variable at 𝐺 = 376 grid points
on a 1.5◦ × 1.5◦ grid across the contiguous U.S., bounded by latitudes 25N to 50N and longitudes
125W to 67W. To provide the most realistic assessment of forecasting skill (17), all predictions
in this study are formed in a real forecast manner that mimics operational use. In particular, to
produce a forecast for a given target date, all learning-based models are trained and tuned only on
data observable on the corresponding forecast issuance date. We evaluate each forecast according
using uncentered anomaly correlation skill. For a collection of target dates, we report average skill
using progressive validation (18) to mimic operational use. All data used in this work was obtained
from the SubseasonalClimateUSA dataset (19).

2.1 Operational ECMWF and CFSv2 debiasing

We bias correct a uniformly weighted ensemble of the ECMWF control forecast and its 50 ensemble
forecasts following the ECMWF operational protocol (20): for each target forecast date, we bias
correct the ECMWF 51-member ensemble using the last 20 years of reforecasts with dates within ±6
days from the target month-day combination. The average of ensemble reforecasts on the 1.5◦ × 1.5◦
degree grid are used for debiasing.

Following (21), we bias correct the 32-member CFSv2 ensemble forecast in the following way:
for each target forecast date, we bias correct the CFSv2 control and ensemble forecasts using the
twelve-year period from 1999 to 2010 of reforecasts. The average of the ensemble reforecasts on the
1.5◦ × 1.5◦ degree grid are used for debiasing.

2.2 Adaptive bias correction

ABC is a uniformly-weighted ensemble of three machine learning models that we introduce in this
work and describe below in details: Climatology++, Dynamical++, and Persistence++. Supplemen-
tary algorithm descriptions can be found in Appendix B.

After averaging dynamical forecasts over a range of issuance dates and lead times, Dynamical++
debiases the ensemble forecast for each grid cell by adding the mean value of the target variable
and subtracting the mean forecast over a learned window of observations around the target day of
year. For a given target date 𝑡★ and lead time 𝑙★, the Dynamical++ training set T is restricted to
data fully observable one day prior to the issuance date, that is, to dates 𝑡 ≤ 𝑡★ − 𝑙★ − 𝐿 − 1 where
𝐿 = 14 represents the forecast period length. Unlike standard debiasing strategies, which employ
static ensembling and bias correction, Dynamical++ adaptively selects the range of ensembled lead
times L, the number of averaged issuance dates 𝑑★, and the size 𝑠 of the observation window using
an automated tuning procedure.
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For each target date, Dynamical++ is run with the hyperparameter configuration that achieved
the smallest mean progressive geographic root mean squared error (RMSE) over the preceding
3 years. Here, progressive indicates that each candidate model forecast is generated using all
training data observable prior to the associated forecast issuance date. Every configuration with
𝑠 ∈ {0, 14, 28, 35}, 𝑑★ ∈ {1, 7, 14, 28, 42}, and L = {29} for the weeks 5-6 lead time and L ∈
{{15}, [15, 22], [0, 29], {29}} the weeks 3-4 lead time was considered.

Climatology++ is a locally constant prediction rule that minimizes historical forecasting error,
specified by a user-supplied loss function, over all days in a window around the target day of year.
For a given target date 𝑡★ and lead time 𝑙★, the Climatology++ training set T is restricted to data
fully observable one day prior to the issuance date, that is, to dates 𝑡 ≤ 𝑡★ − 𝑙★ − 𝐿 − 1 where 𝐿 = 14
represents the forecast period length. The number of training years 𝑌 and the size of the observation
window (quantified by the span, the number of days 𝑠 included on each side of the target day of year)
are determined adaptively using an automated tuning procedure, described below.

For each target date, Climatology++ is run with the hyperparameter configuration that achieved the
smallest mean progressive geographic RMSE over the preceding 3 years. All spans 𝑠 ∈ {0, 1, 7, 10}
were considered. All precipitation configurations used the geographic MSE loss and all available
training years. All temperature configurations used the geographic RMSE loss and either all available
training years or 𝑌 = 29.

Persistence++ fits a least-squares regression per grid point to optimally combine lagged temperature
or precipitation measurements, climatology, and a dynamical ensemble forecast. For a given target
date 𝑡★ and lead time 𝑙★, the Persistence++ training set T is restricted to data fully observable one
day prior to the issuance date, that is, to dates 𝑡 ≤ 𝑡★− 𝑙★− 𝐿 −1 where 𝐿 = 14 represents the forecast
period length.

3 Results
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Figure 1: Average model skill for ECWMF and SubX dynamical models (red) and their ABC-
corrected counterparts (blue) across the contiguous U.S. and the years 2018–2021. For each forecast-
ing task and dynamical model input, ABC provides a pronounced improvement in skill.

Figure 1 highlights the advantage of ABC over raw dynamical models when forecasting accumulated
precipitation and averaged temperature in the contiguous U.S. Here, ABC is applied to the leading
subseasonal model, ECMWF, and to each of seven operational models participating in the Subseasonal
Experiment (SubX, 2). Subseasonal forecasting skill, measured by uncentered anomaly correlation,
is evaluated at two forecast horizons, weeks 3-4 and weeks 5-6, and averaged over all available
forecast dates in the four-year span 2018–2021. We find that, for each dynamical model input and
forecasting task, ABC leads to a pronounced improvement in skill. For example, when applied
to the U.S. operational model CFSv2, ABC improves temperature forecasting skill by 109-289%
and precipitation skill by 165-253%. When applied to the leading ECMWF model, ABC improves
temperature skill by 60-90% and precipitation skill by 40-69%. Moreover, for precipitation, even
lower-skill models like CCSM4 enjoy skill comparable to the best after the application of ABC.
Overall and despite significant variability in dynamical model skill, ABC consistently reduces the
systematic errors of its input model, bringing forecasts closer to observations for each target variable
and time horizon.

We next examine, in Figure 2, the spatial distribution of skill for CFSv2, ECMWF, and their ABC-
corrected counterparts at three forecast horizons. At the shorter-term horizon of weeks 1-2, both
CFSv2 and ECMWF enjoy reasonably high skill throughout the contiguous U.S. However, skill drops
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Figure 2: Spatial skill distribution of dynamical models and ABC corrections. Across the contiguous
U.S. and the years 2018–2021, dynamical model skill drops precipitously at subseasonal timescales
(weeks 3-4 and 5-6), but ABC attenuates the degradation, doubling or tripling the skill of CFSv2
and boosting ECMWF skill 40-90%. Taking the same raw model forecasts as input, ABC also
provides consistent improvements over operational debiasing protocols, tripling the precipitation skill
of debiased CFSv2 and improving that of debiased ECMWF by 70%. The average skill over all sites
is displayed above each map.

precipitously for both models when moving to the subseasonal horizons (weeks 3-4 and 5-6). This
degradation is particularly striking for precipitation, where prediction skill drops to zero or below
in the central and northeastern parts of the U.S. For temperature prediction, CFSv2 has a skill of
zero across a broad region of the East, while ECMWF produces isolated pockets of zero skill in the
West. At these subseasonal timescales, ABC provides consistent improvements across the U.S. that
either double or triple the mean skill of CFSv2 and increase the mean skill of ECMWF by 40-90%.
Notably, ABC also improves over standard operational debiasing protocols (labeled debiased CFSv2
and debiased ECMWF in Figure 2), tripling the average precipitation skill of debiased CFSv2 and
increasing that of debiased ECMWF by 70%.

An important component contributing to the overall accuracy of ABC is a reduction of the systematic
bias introduced by its dynamical model input. Figure 3 examines the spatial distribution of this bias
by plotting the average difference between forecasts and observations over all forecast dates. The
precipitation maps reveal a wet bias over the northern half of the U.S. for CFSv2 (average bias: 8.32
mm) and a dry bias over the south-east part of the U.S. for ECMWF (average bias: −8.12 mm). In
this case, ABC eliminates the CFSv2 wet bias (average bias: −0.46 mm) and slightly alleviates the
ECMWF dry bias (average bias: −6.24 mm). For temperature, we observe a cold bias over the eastern
half of the U.S. for CFSv2 (average bias: −1.2°C) and notice a mixed pattern of cold and warm biases
over the western half of the U.S for ECMWF (average bias: −0.30°C). In this case, although ABC
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does not eliminate these biases entirely, it reduces the magnitude of the cold eastern bias by bringing
CFSv2 forecasts closer to observations (average bias: −0.18C) and reduces the mixed ECMWF bias
(average bias: −0.04C).

CF
Sv

2

Weeks 1-2 Weeks 3-4 Weeks 5-6

AB
C-

CF
Sv

2

-15 -10 -5 0 5 10 15
model bias (mm)

Precipitation

CF
Sv

2

Weeks 1-2 Weeks 3-4 Weeks 5-6

AB
C-

CF
Sv

2

-4 -2 0 2 4
model bias (°C)

Temperature

EC
M

W
F

Weeks 1-2 Weeks 3-4 Weeks 5-6

AB
C-

EC
M

W
F

-15 -10 -5 0 5 10 15
model bias (mm)

Precipitation

EC
M

W
F

Weeks 1-2 Weeks 3-4 Weeks 5-6

AB
C-

EC
M

W
F

-4 -2 0 2 4
model bias (°C)

Temperature

Figure 3: Spatial distribution of model bias over the years 2018–2021. Across the contiguous U.S.,
ABC reduces the systematic model bias of its dynamical model input for both temperature and
precipitation.

The results presented so far assess overall model skill, averaged across all forecast dates. However,
there is a growing appreciation that subseasonal forecasts can also benefit from selective deployment
during “windows of opportunity,” periods defined by observable climate conditions in which specific
forecasters are likely to have higher skill (16). Here, we propose a practical opportunistic ABC
workflow that uses a candidate set of explanatory variables to identify windows in which ABC
is especially likely to improve upon a baseline model. This workflow is described in details in
Appendix A. The same workflow can be used to explain the skill improvements achieved by ABC in
terms of the explanatory variables.

The opportunistic ABC workflow is based on the optimal credit assignment principle (22) and
measures the impact of explanatory variables on individual forecasts using Cohort Shapley (15) and
overall variable importance using Shapley effects (23). We use these Shapley measures to interpret
the contexts in which ABC offers improvements in terms of climate variables with known relevance
for subseasonal forecasting skill. As a running example, we use our workflow to explain the skill
differences between ABC-ECMWF and debiased ECMWF when predicting precipitation in weeks
3-4. As our candidate explanatory variables we use Northern Hemisphere geopotential heights (HGT)
at 500 and 10 hPa, the phase of the Madden-Julian Oscillation (MJO), Northern Hemisphere sea
ice concentration (ICEC), global sea surface temperatures (SST), the multivariate El Niño-Southern
Oscillation index (MEI.v2, 24), and the target month. All variables are lagged appropriately to ensure
that they are observable on the forecast issuance date.

We first use Shapley effects to determine the overall importance of each variable in explaining
the precipitation skill improvements of ABC-ECMWF. We find the most important explanatory
variables to be the first two principal components (PCs) of 500 hPa geopotential height, the MJO
phase, the second PC of 10 hPa geopotential height, and the first PC of sea ice concentration. These

5



Decile 1 : .83 ± .11 Decile 2 : .5 ± .15 Decile 3 : .6 ± .15 Decile 4 : .41 ± .15 Decile 5 : .6 ± .15

Decile 6 : .64 ± .14

-139

0

139

M
ean 500 hPa geopotential height anom

alies

Decile 7 : .29 ± .14 Decile 8 : .62 ± .15 Decile 9 : .12 ± .1 Decile 10 : .62 ± .15

Impact of hgt_500_pc1 on ABC-ECMWF skill improvement for precipitation, weeks 3-4

Lagged 500 hPa HGT anomalies

-139

0

139

O
bs

er
ve

d

-20 -10 0 10 20
Precipitation anomalies

D
eb

ia
se

d 
EC

M
W

F

Skill: 26%

AB
C-

EC
M

W
F

Skill: 46%

Forecast with largest hgt_500_pc1 impact in decile 1: 2020-12-18

Figure 4: Top: To summarize the impact of hgt_500_pc1on ABC-ECMWF skill improvement
for precipitation weeks 3-4, we divide our forecasts into 10 bins, determined by the deciles of
hgt_500_pc1, and compute the probability of positive impact in each bin, as shown above each
bin map. The highest probabilities of positive impact are shown in blue and the lowest probabilities
of positive impact are shown in red. We find that hgt_500_pc1is most likely to have a positive
impact on skill improvement in decile 1, which features a positive Arctic Oscillation (AO) pattern,
and least likely in decile 9, which features AO in the opposite phase. Bottom: The forecast most
impacted by hgt_500_pc1in decile 1 is also preceded by a positive AO pattern and replaces the
wet debiased ECMWF forecast with a more skillful dry pattern in the west.

variables are consistent with the literature exploring the dominant contributions to subseasonal
precipitation (25; 26; 27; 28).

We next use Cohort Shapley to identify the contexts in which each variable has the greatest impact
on skill. For example, Figure 4 summarizes the impact of the first 500 hPa geopotential heights PC
(hgt_500_pc1) on ABC-ECMWF skill improvement. This display divides our forecasts into 10
bins, determined by the deciles of hgt_500_pc1, and computes the probability of positive impact
in each bin. We find that hgt_500_pc1 is most likely to have a positive impact impact on skill
improvement in decile 1, which features a positive Arctic Oscillation (AO) pattern, and least likely in
decile 9, which features AO in the opposite phase. The ABC-ECMWF forecast most impacted by
hgt_500_pc1 in decile 1 is also preceded by a positive AO pattern and replaces the wet debiased
ECMWF forecast with a more skillful dry pattern in the west.

Finally, we use the identified contexts to define windows of opportunity for operational deployment.
Indeed, since all explanatory variables are observable on the forecast issuance date, one can selectively
apply ABC when multiple variables are likely to have a positive impact on skill and otherwise issue
a default, standard forecast (e.g., debiased ECMWF). We call this selective forecasting model
opportunistic ABC. How many high-impact variables should we require when defining these windows
of opportunity? Requiring a larger number of high-impact variables will tend to increase the skill
gains of ABC but simultaneously reduce the number of dates on which ABC is deployed. Figure 5
illustrates this trade-off for ABC-ECMWF and shows that opportunistic ABC skill is maximized when
two or more high-impact variables are required. With this choice, ABC is used for approximately
81% of forecasts and debiased ECMWF is used for the remainder.
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# High-impact % Forecasts High-impact skill (%)
variables using ABC ABC Debiased

0 or more 100.00 20.94 15.28
1 or more 95.93 20.99 14.84
2 or more 80.62 22.29 13.12
3 or more 58.61 23.56 12.00
4 or more 31.82 24.72 8.18
5 or more 14.59 26.51 8.35
6 or more 6.46 29.72 10.55
7 or more 2.15 45.00 17.53 0 1 2 3 4 5 6 7

Minimum number of high-impact features

0.1
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0.4

Sk
ill

ABC-ECMWF on high-impact dates
Deb. ECMWF on high-impact dates
Opportunistic ABC on all dates

Figure 5: Defining windows of opportunity for opportunistic ABC forecasting of precipitation weeks
3-4. Left: When more explanatory variables fall into high-impact deciles or bins (e.g., the blue
bins of Figure 4), the mean skill of ABC-ECMWF improves, but the percentage of forecasts using
ABC declines. Right: The overall skill of opportunistic ABC is maximized when ABC-ECMWF is
deployed for target dates with two or more high-impact variables and standard debiased ECMWF is
deployed otherwise.

4 Discussion

Dynamical models have shown increasing skill in accurately forecasting the weather (29), but they
still contain systematic biases that compound on subseasonal time scales and suppress forecast
skill (30; 31; 32; 33). Our proposed solution, ABC, learns to correct these biases by adaptively
integrating dynamical forecasts, historical observations, and recent weather trends. When applied
to the leading subseasonal model from ECMWF, ABC improves forecast skill by 60-90% for
precipitation and 40-69% for temperature. The same approach substantially reduces the forecasting
errors of seven additional operational models, with less skillful input models performing nearly as
well as ECMWF after correction. This finding suggests that systematic errors in dynamical models
are a primary contributor to observed skill differences and that ABC provides an effective mechanism
for reducing these heterogeneous errors. Because ABC is also simple to implement and deploy in
real-time operational settings, adaptive bias correction represents a computationally inexpensive
strategy for upgrading operational models, while conserving valuable human resources.

Moreover, ABC is, by its nature, adaptive to changes in systematic biases. As operational models are
upgraded and systematic biases evolve, our ABC training protocol is designed to ingest the upgraded
model forecasts and hindcasts reflecting those changes. In addition, the same protocol can be adapted
to correct probabilistic subseasonal forecasts that estimate the distribution of future weather (34).

To capitalize on higher-skill forecasts of opportunity, we have also introduced an opportunistic ABC
workflow that explains the skill improvements of ABC in terms of a candidate set of environmental
variables, identifies high-probability windows of opportunity based on those variables, and selectively
deploys either ABC or a baseline forecast to maximize expected skill. The same workflow can
be applied to explain the skill improvements of any forecasting model and, unlike other popular
explanation tools (e.g., 35; 36), requires no expensive model retraining, no generation of additional
forecasts beyond those routinely generated for operational or hindcast use, and allows for explanations
in terms of variables that were not explicitly used in training the model.

Overall, we find that correcting dynamical forecasts using ABC yields an effective and scalable
strategy for building the next generation of subseasonal forecasting models. We anticipate that our
hybrid dynamical-learning framework will benefit both research and operations, and we release our
open-source code to facilitate future adoption and development.
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Figure 6: Schematic of the opportunistic ABC workflow. Opportunistic ABC uses historical ABC
and baseline forecasts and a candidate set of explanatory variables to identify windows of opportunity
for selective deployment of ABC in an operational setting.
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A Supplementary Method Details

Here we detail the steps of the opportunistic ABC workflow illustrated in Figure 6 using ECMWF as an example
dynamical input. The same workflow applies to any other dynamical input.

1. Identify a set of 𝑉 candidate explanatory variables. Here we use the temporal variables enumerated in (6,
Fig. 2) augmented with the first two PCs of 500 hPa geopotential heights and the target month. To ensure
that the workflow can be deployed operationally, we use lagged observations with lags chosen so that each
variable is observable on the forecast issuance date.

2. Compute the skill difference between ABC-ECMWF and debiased ECMWF for each target date in the
evaluation period.

3. Use the cohortshapley Python package to compute global variable importances (measured by Shapley
effects) and forecast-specific variable impact values explaining the skill differences.

4. For each continuous explanatory variable (e.g., hgt_500_pc2), divide the evaluation period forecasts into 10
bins, determined by the deciles of the explanatory variable. For each categorical variable (e.g., mjo_phase),
divide the forecasts into bins determined by the categories (e.g., MJO phases).

5. Estimate the probability of positive variable impact in each bin and compute a 95% bootstrap confidence
interval. Flag all bin probabilities within the confidence interval of the highest probability bin as high impact
and all bin probabilities within the confidence interval of the lowest probability bin as low impact. Visualize
and interpret the highest and lowest impact bins.

6. Identify the forecast most impacted by the explanatory variable in the high impact bins. Visualize the
ABC-ECMWF and debiased ECMWF forecasts and the associated explanatory variable for that target date.

7. For each 𝑘 ∈ {0, . . . , 𝑉}, compute opportunistic ABC skill when 𝑘 or more explanatory variables fall into
high impact bins. Let 𝑘★ represent the integer at which opportunistic ABC skill is maximized.

8. At each future forecast issuance date, deploy ABC-ECMWF if 𝑘★ or more explanatory variables fall into
high impact bins and deploy debiased ECMWF otherwise.
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B Supplementary Model Details

This section presents the algorithm details for the three machine learning models underlying ABC: Dynamical++,
Climatology++, and Persistence++.

Algorithm 1 Dynamical++

input test date 𝑡★; lead time 𝑙★; # issuance dates 𝑑★; span 𝑠; training set ground truth and dynamical
forecasts (y𝑡 , f𝑡 ,𝑙)𝑡∈T ,𝑙∈L

initialize days per year 𝐷 = 365.242199; # training years 𝑌 = 12
S = {𝑡 ∈ T : year_diff ≔ ⌊ 𝑡★−𝑡

𝐷
⌋ ≤ 𝑌 and day_diff ≔ 365

2 −|⌊(𝑡★−𝑡) mod 𝐷⌋− 365
2 | ≤ 𝑠}

// Form dynamical ensemble forecast across issuance dates and lead times 𝑙 ∈ L
for training and test dates 𝑡 ∈ S ∪ {𝑡★} do

f̄𝑡 = mean((f𝑡−𝑙★−𝑑+1,𝑙)1≤𝑑≤𝑑★,𝑙∈L)
output f̄𝑡★ + mean((y𝑡 − f̄𝑡 )𝑡∈S)

Algorithm 2 Climatology++

input test date 𝑡★; # training years 𝑌 ; span 𝑠; loss∈ {RMSE,MSE}; training set ground truth (y𝑡 )𝑡∈T
initialize days per year 𝐷 = 365.242199
S = {𝑡 ∈ T : year_diff ≔ ⌊ 𝑡★−𝑡

𝐷
⌋ ≤ 𝑌 and day_diff ≔ 365

2 −|⌊(𝑡★−𝑡) mod 𝐷⌋− 365
2 | ≤ 𝑠}

output argminy
∑

𝑡∈S loss(y, y𝑡 )

Algorithm 3 Persistence++

input lead time 𝑙★; training set ground truth, climatology, and dynamical forecasts
(y𝑡 , c𝑡 , f𝑡 ,𝑙)𝑡∈T ,𝑙∈L

initialize forecast period length 𝐿 = 14
// Form dynamical ensemble forecast across subseasonal lead times 𝑙 ≥ 𝑙★

for training dates 𝑡 ∈ T do
f̄𝑡 = mean((f𝑡 ,𝑙)𝑙≥𝑙★)

// Combine ensemble forecast, climatology, and lagged measurements
for grid points 𝑔 = 1 to 𝐺 do

�̂�𝑔 ∈ argmin𝜷

∑
𝑡∈T (𝑦𝑡 ,𝑔 − 𝜷⊤ [1, 𝑐𝑡 ,𝑔, 𝑦𝑡−𝑙★−𝐿−1,𝑔, 𝑦𝑡−2𝑙★−𝐿−1,𝑔, 𝑓𝑡−𝑙★−1,𝑔])2

output coefficients ( �̂�𝑔)𝐺𝑔=1
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