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Reproducibility Summary1

Scope of Reproducibility2

The authors claim that their proposed method is able to, given an ensemble of deep neural networks, capture the3

uncertainty estimation and decomposition capabilities of the ensemble into a single model. The authors also claim that4

this only results in a small reduction in classification performance compared to the ensemble. Most of the authors’5

experiments on the CIFAR-10 dataset were reproduced.6

Methodology7

The proposed method was re-implemented in tf.keras. The surrounding data pipelines, pre-processing, and experi-8

mentation code were also re-implemented. As in the original paper, the models were based on VGG-16 networks with9

random initialization, but trained within the project. Training and evaluation was done on two consumer-grade GPUs,10

for a total of 273 hours.11

Results12

Our findings support the authors’ central claims. In terms of uncertainty estimation our EnD2 achieved (99± 1) % of13

the AUC-ROC of our ensemble on the OOD-detection task. The corresponding value in the original paper was (100±1)14

%. In terms of classification our EnD2 had (16± 1)% higher error than our ensemble. The corresponding values in the15

original paper was (11± 6)%. Other metrics showed similar agreement, but, significantly, in the OOD-detection task16

our EnD performed at least as well as our EnD2. This is in stark contrast with the original paper.17

We also took a novel approach to visualizing the uncertainty decomposition by plotting the resulting distributions on18

a simplex, offering a visual explanation to some surprising results in the original paper, while mostly supporting the19

authors’ intuitive justifications for the model.20

What was easy21

The original paper features a thorough mathematical formulation of the method, aiding conceptual understanding. The22

datasets used by the authors are publicly available. The use of the simpler datasets also meant that it was computationally23

feasible for us to reproduce these results. The base model used is well known with several implementation available,24

allowing us to focus on the novel aspects of the method.25

What was difficult26

While the theoretical explanations of the method are excellent, we initially found it hard to translate this into an27

implementation. Our difficulty was likely caused by our inexperience with the subject matter. Nonetheless, a28

pseudocode, such as the one we have provided, would havee simplified the re-implementation. We were not able to29

reproduce the results on some of the datasets due to limited computational resources.30

Communication with original authors31

We did not contact the original authors directly, but we did refer to a public GitHub and blog post created by one of the32

authors. At the same time as submitting this report to the ML Reproducibility Challenge 2020 we also sent a copy to33

the authors and asked for their feedback.34

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction35

Uncertainty estimation can help to make deep learning safer and more usable by allowing the model to identify cases it36

is not suitable to handle. There are different kinds of uncertainty, however, and it is especially interesting to separate37

uncertainty caused by ambiguities or contradictions in the data from the uncertainty that arises when a model faces a38

situation it has not been trained for. Ensemble-based methods of uncertainty estimation are capable of making this39

distinction but suffer from computational requirements at the evaluation phase [1]. The authors of Ensemble Distribution40

Distillation (EnD2) [2] address this issue by using the output of an ensemble to train a so-called Prior Network (PN) [3],41

distilling the ensemble down to a single model while also preserving its uncertainty decomposition abilities. This can42

be contrasted with regular ensemble distillation models [4] (EnD), which are not able to decompose uncertainty. The43

reproduced paper was accepted to ICLR2020.44

2 Scope of reproducibility45

We consider the setting of using CIFAR10 [5] as an in-distribution dataset, and LSUN [6] as an out-of-distribution46

dataset. Our supplementary material also examines the setting of using a synthetic dataset in R2 for visualization.47

The claims from the original article that this reproduction is testing are as follows:48

1. Classification performance: In terms of error rate, prediction rejection rate, and negative log-likelihood49

EnD2has worse performance than the ensemble, but similar performance to EnD and PriorNet, and better50

performance than the individual model. In terms of expected calibration error, EnD2 has worse performance51

than the ensemble, but better performance than the other methods. On CIFAR-10 in particular, EnD2 has the52

best expected calibration error of all models. This claim corresponds to Table 3 in the original paper.53

2. Out-of-distribution detection performance: In terms of AUC-ROC on CIFAR-10 vs. LSUN, EnD2 without54

auxiliary dataset performs worse than the ensemble and the PriorNet, similar to the individual model, and55

better than EnD. With the auxiliary dataset, however, EnD2 performs as well as the ensemble, almost as well56

as PriorNet, and better than EnD. Using knowledge uncertainty as opposed to total uncertainty on CIFAR-1057

vs. LSUN does not yield an improved AUC-ROC. This claim corresponds to Table 4 in the original paper.58

3. Dependency on ensemble size: Using 20 models in the ensemble does better than using 5 models, but there59

is no conclusive gain when using more than 20 models.60

4. Dependency on temperature: It is necessary to use temperature of at least 5 to successfully distribution-distill61

the ensemble. Using higher initial temperatures do not result in conclusive improvement.62

5. Uncertainty decomposition: EnD2 trained with an auxiliary dataset is able to reconstruct the uncertainty63

decomposition made possible by ensembles.64

We reproduce all experiments of the main article and most of the appendix, except for the use of CIFAR100 and Tiny65

Imagenet datasets. Some of these results can be found in our supplementary material. From their appendix, we do not66

reproduce Table 7 in appendix B. We did not recreate the OOD-detection plots when reproducing the ablation study.67

3 Methodology68

3.1 Model description69

We consider the same seven models as the original authors:70

• IND: A single classification model.71

• ENSM: An ensemble of independently trained IND models.72

• EnD: A single model distilling ENSM trained according to [4].73

• EnD2: A single model distribution-distilling ENSM trained according to [2].74

• EnD+AUX: Like EnD, but trained with auxiliary data.75

• EnD2
+AUX: Like EnD2, but trained with auxiliary data.76

• PN+AUX: A PriorNet model with auxiliary data trained according to [3]77

These models are all based on almost identical VGG16 architectures [7], adapted to CIFAR-10 data as in [3] by adding78

dropout, batch normalization and reducing the size of the fully connected layers. The only exception being that batch79

normalization is not used for PN.80
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Table 1: Datasets used in the CIFAR-10 setting
Dataset No. samples No. classes Image dimensions Link

CIFAR-10 train 50000 10 32x32x3 https://www.cs.toronto.edu/ kriz/cifar.html
CIFAR-100 train 50000 100 32x32x3 https://www.cs.toronto.edu/ kriz/cifar.html

CIFAR-10 test 10000 10 32x32x3 https://www.cs.toronto.edu/ kriz/cifar.html
LSUN test 10000 10 256x256x3 https://www.yf.io/p/lsun

Table 2: Training parameters in the CIFAR-10 setting
Model Epochs Cycle len. η0 ηmax ηmin Dropout T0 Annealing AUX data

DNN 45 30 10−3 10−2 10−6 0.5 - - -
EnD 90 60 10−3 10−2 10−6 0.7 2.5 No -
EnD+AUX 90 60 10−3 10−2 10−6 0.7 2.5 No CIFAR-100
EnD2 90 60 10−3 10−2 10−6 0.7 10 Yes -
EnD2

+AUX 90 60 10−3 10−2 10−6 0.7 10 Yes CIFAR-100
PN 45 30 0.5 ·10−3 0.5 ·10−2 0.5 ·10−6 0.7 - No CIFAR-100

3.2 Dataset81

The training set of CIFAR-10 was used as the primary training dataset. The training set of CIFAR-100 was used82

as an auxiliary dataset. For evaluating the classification task the test set of CIFAR-10 was used. For evaluating the83

out-of-distribution detection task the CIFAR-10 test set was used as in-domain dataset, while the LSUN test set was84

used as the out-of-domain dataset. Information about the datasets is listed in Table 1.85

Each image x was normalized according to x′ = x/127.5− 1 where the operations are elementwise, causing all values86

to lie in the range (-1, 1). The LSUN images were also scaled down to 32x32. Furthermore, dataset augmentation was87

used for all models, consisting of rotations with 15◦ range, horizontal flips, width and height shifts of up to 4 pixels in88

each direction, and using nearest-neighbour interpolation.89

3.3 Hyperparameters90

The models were trained with the hyperparameters listed in Table 2.91

3.4 Experimental setup and code92

Using these models and dataset we ran a number of experiments, as detailed below. The full code is available93

on https://anonymous.4open.science/r/4ee2c9ef-295f-44e2-8214-f0818b932817/. Our implementation was made in94

TensorFlow Keras, as opposed to the original implementation which was made in PyTorch.95

Classification: The classification task was evaluated on the test set of CIFAR-10. We use the same four metrics as in96

the original paper, ERR, PRR, ECE, and NLL. ERR is the mean classification error. PRR is the prediction rejection97

area ratio introduced in Appendix B of [2]. ECE is the expected calibration error1. Finally, NLL is the negative98

log-likelihood. This experiment tests Claim 1.99

Out-of-distribution detection: The OOD-detection task was evaluated with the CIFAR-10 test set as the in-domain100

set, and the LSUN test set as the out-of-domain set. The AUC-ROC was computed both when total uncertainty and101

when only knowledge uncertainty is used to make rejection decisions. This experiment tests Claim 2.102

Ensemble size ablation study: Our examination of the effect of ensemble size goes slightly beyond the original103

authors. We extend the error analysis to also consider the sensitivity of EnD2 to variations in the underlying ensemble.104

We began by training a set of 400 VGG16 models on CIFAR-10. Next, we sampled randomly from this set to create 4105

different sets, each consisting of 100 models. For each N ∈ {1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 25, 30, 45, 60, 75, 100} we106

trained four EnD2 models on an ensemble consisting of the first N models in the first of the four sets, corresponding to107

what was done in the original study. We also trained one model on an ensemble consisting of the first N models for108

each of the three remaining sets, capturing the sensitivity of EnD2 to changes in the underlying ensemble. All ensemble109

and EnD2 models were then evaluated on the classification task. This experiment tests Claim 3.110

1We used the open-source implementation in https://github.com/google/uncertainty-metrics.
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Table 3: Classification metrics on CIFAR-10. Error bounds signify two standard deviations, taken over three models.
Up-arrow (↑) indicates that higher is better, down-arrow (↓) indicates that lower is better.

Crit. IND ENSM EnD EnD2 EnD+AUX EnD2
+AUX PN+AUX

ERR↓ 9.87±0.70 8.80±NA 8.70±0.53 9.90±0.20 9.90±0.20 10.17±0.12 10.00±0.35
PRR↑ 69.80±1.31 80.30±NA 78.67±0.12 76.97±0.83 78.37±1.21 77.20±0.72 56.57±9.49
ECE↓ 68.18±0.57 1.65±NA 1.56±0.09 2.39±0.22 1.77±0.31 3.04±0.49 9.37±0.62
NLL↓ 1.58±0.01 0.25±NA 0.26±0.01 0.33±0.00 0.29±0.00 0.34±0.00 0.46±0.00

Table 4: OOD AUC-ROC↑ on CIFAR-10 (in) and LSUN (out). Error bounds signify two standard deviations, taken
over three models. Up-arrow (↑) indicates that higher is better, down-arrow (↓) indicates that lower is better.

Unc. IND ENSM EnD EnD2 EnD+AUX EnD2
+AUX PN +AUX

Tot. 86.63±0.31 90.00±NA 89.87±0.46 88.33±0.42 90.60±0.20 90.23±0.12 92.03±0.46
Know. - 89.30±NA - 84.70±1.25 - 88.07±0.46 90.97±0.42

Temperature ablation study: We reproduce the temperature ablation study by training EnD2 models for various initial111

temperatures. For each T ∈ {1, 2, 3, 4, 5, 7.5, 10, 15, 20} we trained three EnD2 models with initial temperature T on112

an ensemble consisting of 100 VGG16 models. The EnD2 models were then evaluated on the classification task. In this113

experiment, we have chosen to use a slightly finer spacing between the temperatures than what the original authors114

used. This experiment tests Claim 4.115

Simplex visualization: A key motivation for EnD2 is the idea that an ensemble can distinguish between knowledge116

uncertainty and data uncertainty, and that this distinction is retained by the EnD2 model. This is communicated using a117

schematic figure showing ensemble predictions on a simplex. A similar schematic figure can be found in [3], depicting118

a Dirichlet PDF of a PriorNet on a simplex. We recreated these figures using experimental data in order to examine119

Claim 5 from a novel perspective. A new training set was created, consisting of all images from the CIFAR10 train set120

with one of three labels chosen for their similarity: ’deer’, ’horse’, and ’dog’. The remaining images were reserved as121

out-of-distribution dataset for testing. CIFAR-100 was used as auxiliary data. An ensemble and EnD2 was then trained122

on this data using the same architecture and processed as before. We then selected various images from the test set and123

visualized the ensemble predictions as well as the PDF of the EnD2 model. The simplex visualization was created using124

open source code 2.125

3.5 Computational requirements126

Training and evaluation were performed on two mid-range consumer GPUs (RTX 2070, GTX 1660s) locally. Regarding127

VRAM, at least 4711 MiB is required for the models. The total number of GPU time required for the final results is128

11.4 GPU days on an RTX 2070. The accumulated GPU days during the reproduction is 3-5 times this amount. We129

provide detailed numbers in the supplementary materials.130

4 Results131

4.1 Classification performance132

The classification results are shown in Table 3. Overall, the ensemble seems to perform best, and when it does not, it is133

still within error bounds. Curiously, EnD2
+AUX seems to perform worse than the individual model in regards to ERR.134

4.2 Out-of-distribution detection performance135

The OOD-detection results are shown in Table 4. The results suggest plain EnD2 performs worse than ENSM, but136

that the addition of an auxiliary dataset brings the performance up to at least the level of ENSM. More surprising,137

perhaps, is that EnD2 seems to perform worse than EnD. In both metrics PN+AUX has a significant lead. Using knowledge138

uncertainty instead of total uncertainty decreases the effectiveness of all tested models. The supplemental material139

contains histograms showing the distribution of estimated total and knowledge uncertainty over the images.140

2http://blog.bogatron.net/blog/2014/02/02/visualizing-dirichlet-distributions/
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4.3 Ensemble size ablation study141

Figure 1 shows the results of the ensemble size ablation study. The lines ’ENSM Paper’ and ’EnD2 Paper’ show the142

results of the original paper. The bands indicate two standard deviations. Two bands surround the ’EnD2
+AUX’ line,143

representing the two types of variation we have examined. The purple band represents the variation of four EnD2144

models each trained on a different ensemble. The orange band represents the variation of four EnD2 models all trained145

on the same ensemble. The band surrounding the ’EnD2
+AUX Paper’ line corresponds to the latter type of variation.146

There appears to be a trend of small improvement when the number of models is increased, but the high level of147

uncertainty makes it difficult to draw conclusions from the remaining points. Nonetheless, the results seem to generally148

indicate that EnD2 is not particularly sensitive to ensemble size.149

Figure 1: Ensemble size ablation study on CIFAR-10 classification.

4.4 Temperature ablation study150

The results of our temperature ablation study are shown in Figure 2, along with the results of the original paper. For151

initial temperature equal to 1 and 2 our models fail to converge, resulting in poor classification performance. Raising the152

initial temperature to 3 allows the model to converge. Increasing the initial temperature further has no significant effect.153

It is worth noting the negative PRR values for T = 2. The original authors mention this possibility when they propose154

the metric, and offer the interpretation that this means that the model is increasing the classification error by rejecting155

samples, performing worse than simply rejecting at random.156

4.5 Simplex visualization157

Predictions for four images are visualized in Figure 3. These four images were selected from the CIFAR10 dataset for158

respectively having the lowest total uncertainty, highest data uncertainty, highest knowledge uncertainty, and highest159

total uncertainty, as measured by the ensemble. The third row shows the Dirichlet PDF of EnD2. There is a strong160

tendency towards extremely sharp distributions, even when the ensemble has high spread, making comparison difficult.161
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For this reason the fourth row plots the PDF after being transformed by the transformation log(x+1). It is now possible162

to see that the PDF is adapting to the distribution of the ensembles.163

Figure 2: Temperature ablation study on CIFAR-10 classification.

Figure 3: Visualization of ensemble distribution and EnD2 PDF. The classes are, from left, to top, to right, Deer, Horse
and Dog.
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Figure 4: Random images from in-domain.

Figure 5: Random images from out-of-domain.

We also plot randomly selected images from the in, out, and auxiliary datasets respectively. The PDF has again been164

transformed using log(x+ 1). Figure 4 shows images from the in-domain dataset, and Figure 5 shows images from the165

out-of-domain dataset. The PDF appears to follow the ensemble fairly well, but it is noteworthy that the ensembles166

show such a low degree of spread despite encountering samples on which they have not been trained.167

5 Discussion168

5.1 Comparison with original paper169

We now revisit the six claims which we specified in Section 2.170

1. Classification performance: When compared to the original table we see overall worse performance. This is171

likely rooted in the fact that we were unable to achieve as high accuracy on our base VGG16 as in the original172

article. We therefore instead consider the relative performance between the models. Our supplementary173

material contains a table allowing for easy comparison with the original results. For example, we find that our174

EnD2 has 112.5% of the classification error of the ensemble, while in the original paper this figure is 117.7%.175

The absolute difference is the same in both papers, 1.1 percentage units. Our results generally agree well, with176

those of the authors. There are some discrepancies in expected calibration error, but our extremely high ECE177

for the individual model suggests that there might be an issue in our computations of this metric. Overall our178

findings support Claim 1.179

2. Out-of-distribution detection performance: For the most part, our results agree with Claim 2. For instance,180

we found that using total uncertainty EnD2 without auxiliary data had 98.1% of the AUC-ROC of the ensemble,181

while the corresponding figure with auxiliary data was 100.0%. In the original paper, these figures were182

96.8% and 99.8% respectively. There is one very significant discrepancy, however. With auxiliary dataset, our183

EnD2had 99.6% of the AUC-ROC of our EnD, while in the original paper this figure is 106.5%. A similar184

relationship exists without the auxiliary dataset. It is worth noting that in the original paper EnD performs185

worse than even the individual model, and the authors themselves note that this is odd. Since EnD2 is designed186

to overcome certain shortcomings of EnD in terms of uncertainty estimation we believe that this warrants187

further investigation.188

3. Dependency on ensemble size: For prediction error and negative log-likelihood, our results confirm the189

relative performance between ensembles and EnD2
+AUX, with increased resolution. For expected calibration190
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error, the relative performance is confirmed for a large number of models, but for a small number of models, we191

get contradictory results. Their results seem to suggest that smaller ensembles have worse calibration, which is192

not expected, as per [1]. Our results confirm this expectation. In their paper, they state this expectation, but we193

see no comment for this discrepancy. For prediction rejection rate, we confirm the relative performance, and194

also show that it starts to drop rapidly below their tested range.195

4. Dependency on temperature annealing: Our results diverge heavily from the results in the paper for196

temperatures 1 and 2. While the original authors are able to train working but sub-par models with these197

temperatures, we are unable to get the models to converge at all. We re-did the experiments with a new198

ensemble, and experimented with the smoothing factor and auxiliary data, but were unable to find any199

explanation for this difference. Nevertheless, these findings support the claim that temperature annealing is200

essential for successful use of the EnD2 method. The authors suggested temperature 5 as a minimum value201

beyond which larger values make no difference. Our findings support this as well, although our increased202

resolution reveals that the minimum value for the CIFAR-10 dataset is closer to 3 than 5.203

5. Uncertainty decomposition: Based on the description in [3] an image with a high knowledge uncertainty204

should produce a Dirichlet PDF with a close to uniform spread. Our simplex visualizations on the 3-class+AUX205

dataset shows that this is not the case. This is not too surprising, given that high knowledge uncertainty206

correlates with small alphas, and this in turn produces convex as opposed to flat probability density surfaces.207

Overall, these plots suggest that EnD2can capture the uncertainty decomposition of the ensemble.208

The plots also show an interesting behaviour in the ensemble. The ensembles agree to a surprising extent on209

the out-of-domain samples. In fact, when they do disagree it normally takes the form of data uncertainty as210

opposed to knowledge uncertainty. This could perhaps shed some light on the observation that knowledge211

uncertainty does not seem to be useful for OOD-detection on CIFAR-10. The original authors explain this212

as essentially being a property of the dataset. We feel, based on the visualizations, that another possibility213

might be that the ensemble models simply are not diverse enough to provide a useful measure of knowledge214

uncertainty.215

5.2 What was difficult216

Although the general idea of the paper is well formulated in mathematical terms, the original paper does not provide217

many hints regarding how to implement the method. In our case, this imposed a significant barrier to immediately218

reproducing the work, since our inexperience meant that we’re unable to immediately see how it could be implemented219

in a modern deep learning framework. There is some code available in a public repository hosted by one of the authors220

but this is not mentioned in the paper, and so we could not treat it as an official implementation. We have provided a221

pseudocode in our supplemental material, in order to hopefully assist future reproducers.222

There are also some missing details regarding the models used. Most importantly, the authors mention that they have223

used a modified VGG model, but do not specify what these modifications are. The authors also do not specify the min224

and max value of the cyclic LR. These details may explain the consistently worse performance of our models despite225

the attempt of replication.226

5.3 What was easy227

The synthetic dataset was fairly easy to reconstruct, and the other datasets are well known and publicly available. The228

data augmentation was straightforward and easy to incorporate into a training pipeline. The base model (VGG16) used229

in most of the experiments is well known and was computationally feasible to train. Similarly, the datasets are not230

excessively demanding in terms of computation, although in our case training time did become a limiting factor due to231

the amount of time we spent on implementation and experimentation. The mathematical formulation of the model is232

very good, helping the conceptual understanding.233

5.4 Communication with original authors234

We did not communicate with the authors while reproducing their work, although we did refer to some resources which235

one of the authors has made publicly available, including an repository 3 made for [3] containing an implementation of236

EnD2. At the same time as submitting this report, we also sent a copy to the authors and asked for their comments.237

3https://github.com/KaosEngineer/PriorNetworks/tree/master/prior_networks
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