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Abstract. The Fermat distance has been recently established as a valuable tool for ma-
chine learning tasks when a natural distance is not directly available to the practitioner or
to improve the results given by Euclidean distances by exploiting the geometrical and sta-
tistical properties of the dataset. This distance depends on a parameter α that significantly
affects the performance of subsequent tasks. Ideally, the value of α should be large enough
to navigate the geometric intricacies inherent to the problem. At the same time, it should
remain restrained enough to avoid any deleterious effects stemming from noise during the
distance estimation process. We study both theoretically and through simulations how to
select this parameter.

1. Introduction

The Fermat distance and other density based distances have recently attracted interest in
machine learning and shown usefulness in various application domains. For example, they
have been used in topological data analysis to detect cancer fingerprints [4], in signal analysis
to detect periodicity and anomalies in ECG and in the reconstruction of dynamical systems
[9]. The also have shown interesting potential in semi-supervised learning and in definition
of notions of data depth [3]. Exploiting both the geometric and statistical properties of
datasets, the Fermat distance favor geodesic paths to go through high data density areas
- by reducing distances between points there - and avoid low density areas - by increasing
distances between points there - of the space in which they are defined. The influence of
the density in the definition of the Fermat distance depends on a parameter α whose choice
is critical: the performances of subsequent tasks, such as clustering, tend to improve as α
increases while at the same time the estimation of the Fermat distance tends to become
dramatically sensitive to noise. The overall objective of this paper is to better understand
the role and behavior of this parameter α in the estimation of the Fermat distance and its
impact on clustering subsequent tasks.

Let Qn = {q1, . . . , qn} ⊂ RD be independent random points with common density f :M⊂
RD 7→ R≥0 supported on a smooth Riemannian manifoldM embedded in RD. We assume
that f is a density with respect to the volume form on M. Typically, d := dim(M) < D,
but it can take any value 1 ≤ d ≤ D.

We first recall the definition of the sample Fermat distance and the macroscopic Fermat
distance [11, 14, 18].
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Definition 1.1 (Sample Fermat distance). For α ≥ 1 and x, y ∈ RD we define,

DQn,α(x, y) = inf

{
k−1∑
j=1

|qj+1 − qj|α : (q1, . . . , qk) is a path from x to y, k ≥ 1

}
, (1.1)

where | · | denotes the D-dimensional Euclidean norm, q1 and qk are the nearest neighbors
in Qn of x and y, respectively.

Definition 1.2 (Macroscopic Fermat distance). For α ≥ 1 and x, y ∈M,

Dd
α(x, y) = inf

γ∈Γx,y

ˆ
γ

1

f (α−1)/d
, (1.2)

where Γx,y is the set of rectifiable paths γ : [0, 1]→M such that γ(0) = x, γ(1) = y.

These distances have been used in several situations and proved to be useful in a variety
of learning tasks [5, 9, 11, 16, 17, 18, 26]. Under different assumptions onM and f , it has
been shown that when α > 1, as n→∞,

n(α−1)/dDQn,α(x, y) −→ µ(α, d)Dd
α(x, y), a.s., (1.3)

where µ(α, d) is a positive constant depending only on the intrinsic dimension d ofM and
the parameter α [9, 11, 14].
It is worth noting that in the works [16, 18], a different definition of Fermat distance is

introduced, specifically expressed as

D̄Qn,α(x, y) = DQn,α(x, y)
1/α. (1.4)

This alternative definition carries implications for practical implementations, each accompa-
nied by its advantages and limitations, which must be considered when using it along with
specific subsequent machine learning tasks.

Our study sheds light on some key points about the use of the Fermat distance, as given
in Definition 1.2, for both clustering and classification tasks.

Contributions. Firstly, we demonstrate the existence of a critical value α0, dependent
on the underlying distribution’s geometric parameters and its intrinsic dimensionality. For
values α > α0, both classification and clustering tasks become feasible for large sample
sizes, which implies that the derivation of a meaningful distance measurement hinges upon
α exceeding this pivotal threshold. Under regularity assumptions, we show that α0 scales
linearly with the dimension. Contrary to this point, we also highlight that using large values
of α leads to drawbacks due to increased variability in the sample Fermat distance. This
effect has a negative impact on the distance estimation for finite samples. We prove that
the variance of the sample Fermat distance scales exponentially with α in dimension one,
and we obtain exponential bounds in terms of α/d in higher dimensions. We conclude that
a sensible choice for α is crucial and provide guidelines to perform this choice.

To illustrate our findings, we conduct experiments on synthetic datasets and observe that
there is a practical critical window of values of α where the performance is optimal. Although
the definitions and results presented in this study are relevant to both the supervised context
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of classification and the unsupervised tasks of clustering, our subsequent analysis in the
following sections will be framed within the context of clustering analysis.

2. Population clusters and a lower bound on α

We start with a definition of clusters that extends the one given by the level sets of a
density.

Definition 2.1 (Clusters). For a measure with density f (with respect to the volume form)
on the Riemannian manifold M ⊂ RD and a family of sets C := (Ci)

m
i=1, Ci ⊂ RD, we say

that C are α−clusters of f if there exists ϵ > 0 such that

Dd
α(x, y) ≤ Dd

α(x, y
′)− ϵ, for all 1 ≤ i ≤ m, j ̸= i, x, y ∈ Ci, y

′ ∈ Cj. (2.1)

If this holds for some α ≥ 1, we will say that the clustering problem (C, f) is α−feasible or
just feasible.

Note that this definition of clusters aligns with clustering methods that find clusters by
comparing intra-cluster distances with inter-cluster distances. In practice, this is usually
done by finding centers or centroids c1, . . . , cm (e.g., K−medoids or K−means techniques)
such that,

Dd
α(x, ci) ≤ Dd

α(x, cj)− ϵ, for all 1 ≤ i ≤ m, j ̸= i, x ∈ Ci. (2.2)

This last notion is the one that is used to find the empirical centroids (i.e., estimators
of c1, . . . , cm) and then the clusters. We could adopt this definition and state our results
regarding this property, but we prefer to use (2.1) to avoid dealing with centroid estimations
and their consistency properties. We remark that all the statements and definitions below
can be rephrased to fit the notion of clusters that involves centroids.

If a macroscopic clustering problem is feasible, we define the critical parameter as the least
α0 ≥ 1 for which (2.1) holds for every α > α0. More precisely,

α0 = inf{α′ ≥ 1: C are α−clusters of f for all α > α′}. (2.3)

We will demonstrate that using the Fermat distance in our definition enables us to address
various natural scenarios characterized by clusters effectively. This also generalizes other
notions of clusters based on level sets of f (see Proposition 2.2 below). We will also show the
existence of a finite critical parameter α0 under mild conditions. Observe that the clusters
of f need not be uniquely defined.

2.1. Preliminaries. We first introduce notations used in the sequel. Given a set C ∈ RD,
the distance function to C, denoted by dC , is defined by

dC(x) = inf
y∈C
|x− y|. (2.4)

Notice that since C =
{
x ∈ RD : dC(x) = 0

}
, the distance function dC fully characterize C

as soon as C is closed.
We call r-offset of C, denoted by Cr, the set of points at distance at most r of C, or

equivalently the sublevel set defined by

Cr =
{
x ∈ RD | dC(x) ≤ r

}
. (2.5)
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Finally, we define the reach of C, denoted as rch(C) as the largest value r > 0 such that
for all y ∈ Cr, there exists a unique x ∈ C such that |x − y| = dC(y). The reach of a set
quantifies how far a compact set C is from being convex. Notice that rch(C) is small if either
C is not smooth or if C is close to being self-intersecting. On the other hand, if C is convex,
then rch(C) =∞.
Consider two disjoint, connected and compact sets A,B ⊂ RD such that C = A ∪ B. We

denote the shortest Euclidean distance between A and B by

dist(A,B) = inf {|a− b| : a ∈ A, b ∈ B} . (2.6)

If dist(A,B) = δ > 0 and if we call p ∈ RD ∖ C the middle point of a shortest straight line
from A to B, then the projection of p onto C is not unique as it has at least one candidate
on A and one on B. We can then state that rch(C) ≤ δ/2. Moreover, if A and B are convex,
rch(C) = δ/2. The interested reader can refer to [1, 6, 8] for a more detailed introduction
to these concepts.

2.2. Existence of a critical parameter. We can now state the existence of a critical
parameter α0.

Proposition 2.2. Let C = (Ci)
m
i=1 be a family of compact and connected sets such that

C =
⋃m

i=1 Ci has positive reach τ > 0. Suppose that f(x) ≥ a1 for all x ∈ C, and f(x) ≤ a0
for all x /∈ C, with a1 > a0. Then, there exists a positive constant β0 ≥ 0 depending on the
diameters of the Ci’s, the reach of C and the intrinsic dimension d of C such that for all

α > 1 + d
β0

log(a1/a0)
, (2.7)

the macroscopic clustering problem (C, f) is α−feasible. If the length of geodesics in C is
uniformly bounded, the constant β0 can be taken independent of d (and hence, the bound
from below for the critical parameter is linear in d).

Proof. The proof of this proposition is postponed to Appendix A. □

Remark 2.3. As pointed out before, the reach encodes the geometric complexity of the
problem. A small reach is associated with a more complex problem. This is present in the
previous result in the dependence of the constant β0 on the reach. The constant β0 can be
computed explicitly, and in fact, an explicit formula is given in the course of the proof of
the proposition. When C is such that the geodesic path lengths are not uniformly upper
bounded, the parameter β0 turns out to scale proportional to d, giving that the bound from
below for α0 scales as d2.

Remark 2.4. The hypothesis of Proposition 2.2 forces f to be discontinuous (otherwise, we
necessary have a0 = a1). We prefer to first deal with this restrictive situation to simplify
the exposition, but in fact, this restriction can be removed to cover the case when f is a
continuous density by defining a0 more carefully. In that case, we choose a0 < a1 in such
a way that there is a region around each cluster that separates the level sets f−1(a0) and
f−1(a1). It is worth observing the behavior of the lower bound as a0 → 0 and as a0 → a1.
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Proposition 2.5. Let C = (Ci)1≤i≤m and C =
⋃
Ci as before. Suppose that f ≥ a1 in C,

and let a0 be such that 0 < η = inf
{
|s−t| : s ∈ f−1([0; a0]), t ∈ f−1([a1;∞])

}
< τ = rch(C).

Then, there exists c > 0 such that for every 0 < r < τ − η

α > 1 + d
log
(

r
τ−(r+η)

(cr−d ∨ 1)
)

log(a1/a0)
, (2.8)

the macroscopic clustering problem is α−feasible. If the length of geodesics in C is uniformly
bounded, we can take α as in (2.7) with the constant β0 independent of d (and hence the
bound from below for the critical parameter is linear in d).

Proof. The proof is postponed to Appendix A. □

3. Empirical clusters

In this section, we leverage the concepts established in the preceding section to address
the clustering quandary in the context of finite samples. Our goal is to ascertain the specific
conditions under which a clustering problem can be solved solely by harnessing the properties
of the Fermat distance.

Definition 3.1 (Clustering). Given a family of clusters (Ci)
m
i=1 ⊂ RD and points Qn =

{q1, . . . , qn} ⊂ RD, we say that the empirical clustering problem is α−feasible for Qn if there
exists ϵ > 0 such that

n(α−1)/dDQn,α(x, y) ≤ n(α−1)/dDQn,α(x, y
′)− ϵ, (3.1)

for all 1 ≤ i ≤ m, x, y ∈ Qn ∩ Ci, and y′ ∈ Qn ∩ Cj, j ̸= i. When Qn is random, we call
F (α, ϵ, n) = F (α, ϵ,Qn, C1, . . . , Cm) the event under which the samples are such that (3.1)
holds.

The idea here is that a simple classification rule using Fermat distance should be sufficient
to reach a perfect clustering. We can now state the main result of this section, which relates
the macroscopic problem to the microscopic one.

Proposition 3.2. Let C = (Ci)1≤i≤m be a family of disjoint, compact and connected sets,
and C =

⋃m
i=1 Ci. Assume (C, f) is α−feasible for α large enough. Assume further that C is

a closed d−dimensional Riemannian manifold embedded in RD and f is a smooth probability
density function with lim infM f(x) > 0.

Then there exist ϵ > 0, constants δ, c, γ > 0 and an integer n̄ such that for n ≥ n̄, we have
for α > α0,

P(F (α, ϵ, n)c) ≤ e−cnγ

.

Conversely, for every δ > 0 there is α0 − δ < α < α0 such that for every n ≥ n̄,

P(F (α, ϵ, n)c) ≥ 1− e−cnγ

.

Proof. The proof is given in Appendix A □

Remark 3.3. Following [9], given α and d, the constant γ can be chosen in the open interval
(0, α(2α + d)). It is an open problem to determine n̄ as a function of α and d.
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3.1. Example with piecewise constant densities (clutter). In Rd, we denote the
d−dimensional ball centered in the origin 0 with radius r by Bd(r), and the volume of Bd(1)
by ωd. Consider two d−dimensional ring C1, C2 centered at 0 contained in an hypercube K:
C1 = Bd(

5
4
) ∖ Bd(1), C2 = Bd(

10
4
) ∖ Bd(

9
4
), K = [−3, 3]d. Let PC be the uniform measure

supported on C = C1 ∪ C2, and PK be the uniform measure supported on K. Suppose
Qn = {q1, . . . , qn} is a random sample generated from a mixture of PC and PK ,

X1, . . . , Xn ≡ Pcl ∼ λPC + (1− λ)PK , (3.2)

with λ ∈ [0, 1] being a proportion parameter that quantifies the signal-to-noise ratio in the
sample (see Figure 1a).

This model is usually called clutter noise in the literature. We are observing data points
near or in C, but we aim at finding a bi-partition of K such that C1 and C2 are strictly
contained in two different clusters. We plug the sample Fermat distance in the K−medoids
algorithm, that we denote Fermat K−medoids (see Section 5 for more details). We are
interested in the relation between the parameter α and the predictions for any point in
C1 ∪ C2.

Notice that the distribution Pcl admits a density f with respect to the Lebesgue measure,

f(x) =
λ

|C1|+ |C2|
(1C1(x) + 1C2(x)) + (1− λ)

1

|K|
1K(x), (3.3)

where |C1|, |C2| and |K| denote the volume of C1, C2 and K, respectively.
Our goal now is to find an explicit bound for the critical parameter. The argument follows

the same lines as the proof of Proposition 2.2 but with explicit quantities. The idea is
that it is sufficient to set α such that the Fermat cost of the shortest straight line between
C1 and C2 and outside C1 ∪ C2, is always greater than any Fermat distance between two
points inside the same cluster. We need to compute the longest geodesic distance (with
respect to the Euclidean norm) lying in C denoted by L. This model’s explicit upper bound
is L ≤ 5π/2. In the proof of Proposition 2.2, the upper bound on L is computed for a
general case and depends on the r-covering number of C, with 0 < r < rch(C). We have,
rch(C) = dist(C1, C2)/2 = 1/2, a1 = λ/(|C1|+ |C2|), and a0 = 1− λ/|K|.
Any continuous path that intersects both C1 and C2 has an Euclidean length of at least

dist(C1, C2) = 1. Then, the Fermat distance of any path lying in two distinct clusters is at

least a
(1−α)/d
0 . It suffices to choose α such that the Fermat cost between C1 and C2 is always

greater than

a
(1−α)/d
0 > La

(1−α)/d
1 , α > 1 + d

log(L)

log(a1/a0)
. (3.4)

We have obtained the upper bound

α0 ≤ 1 + d
log
(
5π
2

)
log(a1/a0)

, (3.5)

meaning that (C1, C2) are α−clusters for every α ≥ α0. Figure 1 shows the result of applying
K−medoids for different choices of α and different values of λ with sample size n. We observe
that we can achieve clustering above this threshold for the theoretical values of α0 found
using (3.5).
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Figure 1. An example of predictions of the Fermat K−medoids algorithm
on data with common density f for (A) λ = 0.99, n = 1000 and (B) λ = 2/3,
n = 1500. The theoretical values for the critical value of α based on (3.5) give
α0 ≤ 1.45 and α0 ≤ 2.2, respectively, meaning that above those values we are
able to perform an efficient clustering with high probability for large n.

Remark that α0 is the theoretical critical parameter. In practice, we use the sample Fermat
distance, so the threshold fluctuates (see Proposition 3.2). This synthetic example illustrates
that the parameter α calibrates the sensitivity of the distance to both the geometry and
density of the data. Note that when α = 1, the Fermat distance boils down to the Euclidean
distance, and predictions result from the classical K−medoids algorithm. By pushing up the
α value, the algorithm captures the structure of both rings despite the noise and performs a
partition that perfectly identifies C1 and C2.
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4. Variability as a function of α

When opting for a large value of α to get a distance that aptly captures the intricacies
of the geometry and the data distribution, it is essential to recognize that this choice can
introduce two noteworthy challenges.

(1) Heightened variability of Sample Fermat Distance. Choosing a large value of α can
lead to amplified variability within the sample Fermat distance.

(2) Floating point arithmetic. There is the concern of numerical inaccuracies arising due
to the utilization of larger α that lead to the manipulation of numbers that differ in
orders of magnitude.

This section delves into the first of these issues, furnishing preliminary insights into the
exploration of variance within the sample Fermat distance statistic.

Deriving exact characterizations of the variance of n(α−1)/dDQn,α(x, y) in dimensions larger
than one have been shown to be challenging [2, 13] and is still an open problem in the
context of First Passage Percolation. The one-dimensional case is much more tractable, but
the computations are not obvious even in this case.

Since we are interested in comparing the variability of the Fermat distance for different
values of α, we need a measure that does not depend on the scale of the statistic as α varies.
We consider the coefficient of variation of Dd

Qn,α
,√

Var
(
Dd

Qn,α

)
E[Dd

Qn,α
]2

, (4.1)

when α varies and n is fixed. In particular, we aim to understand the effect of the parameter
α on the variation, giving an idea of a threshold which we might better set α below in
practice.

4.1. One-dimensional case. For the one-dimensional case, we can explicitly calculate the
spacings between consecutive points in the optimal path. In that case, we are going to
consider a sample Qn = {q1, q2, . . . , qn} of uniform independent points in [0, 1] and study the
microscopic Fermat distance. In this simple case, it is given by,

Dd=1
Qn,α =

n∑
i=0

|q(i+1) − q(i)|α =:
n∑

i=0

∆α
i (4.2)

with q(1), . . . , q(n) the order statistics of Qn, q
(0) = 0 and q(n+1) = 1.

Proposition 4.1. The expectation and variance of Dd=1
Qn,α

for the uniform case verify

lim
n→∞

E[nα−1Dd=1
Qn,α] = Γ(α + 1),

lim
n→∞

n Var[nα−1Dd=1
Qn,α] = Γ(2α + 1)− (α2 + 1)Γ(α + 1)2

Proof. The proof is provided in the Appendix A. □
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This result shows how the variability of the Fermat distance increases exponentially with
the value of α. If we consider the coefficient of variation given by√

Var(Dd=1
Qn,α

)

E[Dd=1
Qn,α

]2
≍

n→∞

1√
n

√
Γ(2α + 1)− (α2 + 1)Γ(α + 1)2

Γ(α + 1)2
(4.3)

this scales exponentially as a function of α, given large values even for small values of α.
Notice that this result further implies that the constant µ(α, d) involved in Equation (1.3)
satisfies µ(α, 1) = Γ(α + 1).

4.2. Higher dimensions. In higher dimensions, as already mentioned, the asymptotic be-
havior in n of the variance of Fermat distance is an open problem even for Poisson point
processes in Euclidean space. Similarly, we cannot prove a sufficiently informative bound on
the variance of the Fermat distance in terms of the parameter α. This is due to the difficulty
in finding quantitative lower bounds for the Fermat distance.

However, we conjecture that the coefficient of variation scales exponentially in θ = α/d.
This suggests that we should choose α in order to guarantee that α/d is not too large. We
now prove a bound for the moments of the Fermat distance for an intensity one Poisson
process in Euclidean space, showing that moments of order k are at most of order Γ(kθ+1).

Proposition 4.2. Let Qn be a Poisson process with intensity n in the hypercube of Rd. Then
we have,

E
((

n
α−1
d Dd

Qn,α(0, e1)
)k) ≤ 2e dθ+α/2θθ(1 + Γ(kθ + 1)).

Proof. The proof is provided in the Appendix A. □

5. Experiments

We consider here a series of clustering experiments involving the Fermat distance for
different choices of α. We are going to evaluate the trade-off between small values of α for
which clustering is not feasible (Section 2)and large values of α where finite sampling effects
distort the distance (Section 4).

5.1. Fermat K−medoids. We use the K−medoids algorithm for clustering [10, 15], a
robust version of K−means in which the centroids of each cluster are forced to be a point
in the set Qn. An advantage of K−medoids is that different notions of distances can be
used, leading to different partitions. The algorithm consists of alternating updates in the
estimated cluster centroids ĉi and cluster Ĉi ⊂ Qn until the cluster assignment does not
change. These updates are sequentially given by

ĉi ← argminc∈Ci

∑
x∈Ĉi

DQn,α(x, c), (5.1)

Ĉi ← {x ∈ Qn : DQn,α(ĉi, x) ≤ DQn,α(ĉj, x)∀j ̸= i} . (5.2)

Note that different values of α give different partitions. If α = 1, the sample Fermat distance
boils down to the Euclidean distance, and both FermatK−medoids and classicalK−medoids
coincide. For α > 1, clusters are not necessarily convex.
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α
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α
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Figure 2. Different clustering performance indices for the Swiss Roll dataset.
Solid lines correspond to the mean, median, and best performance archived
by Fermat K-medoids over different samplings of the dataset. Dashed lines
correspond to the performance obtained by the best output between Isomap
and C-Isomap. This experiment has been presented previously in ICLR 2018
Workshop Track [23].

5.2. Synthetic data. We evaluate the performance of the Fermat K-medoids clustering
algorithm when analysing the Swiss-roll generated dataset. We consider four clusters sampled
from a Gaussian distribution in two dimensions with different means and then mapped to
three dimensions using the map (x, y) 7→ (x cos(ωx), ay, x sin(ωx)) for a = 3, ω = 15. We
consider a total of n = 1000 random samples, equally split between four different clusters.
This generates the dataset illustrated in Figure 2. When evaluating the performance of
Fermat K-medoids using adjusted mutual information, adjusted rand index, accuracy, and
F1 score [19, 20, 27], we observe that smaller values of α result in poor performances for
all performance metrics. As we increase the value of α, the performance increases until the
performance decays again for large values of α, having an optimal value at some middle range
of values for α. We also observe large variances in performance for large values of α, resulting
in decaying median performances over new samplings. We compare the performance using
K-medoids but with the distance obtained using Isomap [25] and C-Isomap [24].

These experiments show that there is an optimal range of values of α that results in better
clustering performance. This illustrates the point made in previous sections, showing that
both small and large values of α result in poor performances.

5.3. Clustering MNIST. We now consider an example that inhabits a higher-dimensional
and inherently more realistic realm: the digits 3 and 8 extracted from the MNIST dataset.
Our approach begins by subjecting the data to preprocessing through PCA, resulting in a
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Figure 3. Performance of Fermat K−medoids algorithm compared to stan-
dard K−means and Robust expectation-maximization. Simulations credit to
Alfredo Umfurer.

reduced-dimensional representation of dimension 40. We then cluster this representation
using K−medoids with the Fermat distance. We compute the mean adjusted mutual in-
formation (AMI) and compare it to the performances of K−means with Euclidean distance
and a robust EM procedure [21, 22] recognized for its consistently good performance as a
fully unsupervised method.

The findings are consolidated in Figure 3. In this instance, the clear presence of an ad-
vantageous parameter range becomes apparent. Notably, the remarkable advantage gained
from operating within this window, compared to employing the Euclidean distance, is strik-
ing. Furthermore, it is remarkable that even a relatively straightforward algorithm like
K−medoids can yield performance akin to significantly more computationally intricate meth-
ods when paired with the appropriate distance parameter.

5.4. Coefficient of variation. We conclude this section by conducting a numerical explo-
ration of the influence of noise on the coefficient of variation of the Fermat distance. We plot
in Figure 4 the coefficient of variation defined in 4.1 in the case of a uniform distribution
on [0, 1]d as a function of α/d. As conjectured, we observe an exponential behaviour in the
parameter α/d, demonstrated in dimension one and conjectured in higher dimensions.
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[7] A. Erdélyi and F. G. Tricomi. The asymptotic expansion of a ratio of gamma functions.
Pacific Journal of Mathematics, 1(1):133 – 142, 1951.

[8] Herbert Federer. Curvature measures. Transactions of the American Mathematical
Society, 93(3):418–491, 1959.

[9] Ximena Fernández, Eugenio Borghini, Gabriel Mindlin, and Pablo Groisman. Intrinsic
persistent homology via density-based metric learning. Journal of Machine Learning
Research, 24(75):1–42, 2023.

[10] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics New York, 2001.

[11] Pablo Groisman, Matthieu Jonckheere, and Facundo Sapienza. Nonhomogeneous eu-
clidean first-passage percolation and distance learning. Bernoulli, 28(1):255–276, 2022.

[12] C. D. Howard and C. M. Newman. Euclidean models of first-passage percolation. Prob-
ability Theory and Related Fields, 108(2):153–170, 1997.

[13] C. D. Howard and C. M. Newman. Geodesics and spanning trees for Euclidean first-
passage percolation. Ann. Probab., 29(2):577–623, 2001.

[14] S. J. Hwang, S. B. Damelin, and A. O. Hero, III. Shortest path through random points.
Ann. Appl. Probab., 26(5):2791–2823, 2016.

[15] Leonard Kaufman. Partitioning around medoids (program pam). Finding Groups in
Data, 344:68–125, 1990.

[16] A. Little, D. McKenzie, and J. M. Murphy. Balancing geometry and density: Path
distances on high-dimensional data. SIAM Journal on Mathematics of Data Science,
4:1, 2022.



THE PARAMETER OF THE FERMAT DISTANCE 13

[17] Andriana Manousidaki, Anna Little, and Yuying Xie. Clustering and visualization of
single-cell rna-seq data using path metrics. bioRxiv, pages 2021–12, 2021.

[18] D. Mckenzie and S. Damelin. Power weighted shortest paths for clustering euclidean
data. Foundations of Data Science, 1(3):307, 2019.
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Appendix A. Proofs

Proof of Proposition 2.2. We prove that there exists α0 ≥ 1 such that for all α ≥ α0 there is
ϵ > 0 such that for 1 ≤ i ≤ m and x, y ∈ Ci,

Dd
α(x, y) ≤ Dd

α(x, y
′)− ϵ, for all y′ ∈ Cj, j ̸= i.

First, we bound from below the Fermat distance between two points in two different sets.
By assumption, rch(C) = τ > 0. Since τ ≤ min

i ̸=j
dist(Ci, Cj)/2, for all x /∈ C, f(x) ≤ a0 and

any path from Ci to Cj has measure at least 2τ in the complement of C when i ̸= j, we have
for x ∈ Ci, y

′ ∈ Cj,

Dd
α(x, y

′) ≥ a
(1−α)/d
0 2τ. (A.1)

Second, we bound from above the Fermat distance between two points x and y in the same
cluster Ci. Since C is compact, we can consider a finite covering by Nr D-dimensional balls,
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BD, with radius r < τ , and centers V = {v1, . . . , vNr} ⊂ C, i.e.,

C ⊂
Nr⋃
l=1

BD(vl, r) ⊂ Cr.

We are going to build a path from x to y inside Cr
i ⊂ Cr and project it onto C. By

construction, we know that the path will be projected onto Ci. Let Vi = {V ∩ Ci}. Observe
that (BD(vl, r) : vl ∈ Vi) is a covering of Ci by card(Vi) = Nr(Ci) < Nr balls. Consider the
weighted graph Gi with vertex set Vi in which two vertices are connected if and only if their
respective balls intersect. The weight of an edge is given by the Euclidean distance between
the two points. By construction, this graph is connected, and the weight of each edge is at
most 2r. We connect x to the center v(x) ∈ Vi of a ball containing it. We have |x−v(x)| ≤ r.
Similarly, we connect y to a v(y) ∈ Vi such that |y − v(y)| ≤ r.
By definition, the shortest path from x to y inside Gi, denoted by γ, cannot go through

the same vertex more than once. Then the Euclidean length of γ, denoted by |γ| verifies

|γ| ≤ Nr(Ci) 2r ≤ Nr 2r.

As γ ⊂ Cr and r < τ , the projection of γ onto C, πC(γ) = γi, is well defined. Moreover

πC(γ) ⊂ Ci. The projection map is Lipschitz, with Lipschitz constant
τ

τ − r
([8, Theorem

4.8]). Then we have,

|γi| = |πC (γ) | ≤ τ

τ − r
Nr 2r.

The path γi, from x to y, is contained in Ci ⊂ C and for all x ∈ Ci, f(x) ≥ a1. Then,

Dd
α(x, y) ≤

ˆ
γi

1

f (α−1)/d
≤ a

(1−α)/d
1

τ

τ − r
Nr 2r. (A.2)

Next, we calibrate α to ensure the clustering feasibility, i.e., one get,

a
(1−α)/d
0 2τ > a

(1−α)/d
1

τ

τ − r
Nr 2r, (A.3)

which is equivalent to,

α > 1 + d

log

(
r

τ − r
Nr

)
log(a1/a0)

.

Now, suppose that Nr is optimal, i.e., it is the smallest number of balls BD(vl, r) that
covers C. As C is compact, there exists a positive constant c (depending on the dimension)
such that Nr ≤ cr−d ∨ 1, where d is the intrinsic dimension of C. Choose r = τ

2
to get,

α > 1 + d
log
(
c( τ

2
)−d ∨ 1

)
log(a1/a0)

. (A.4)

The first part of the proof finishes by taking β0 = (c( τ
2
)−d ∨ 1).
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If C is smooth enough so that the length of geodesics in C is uniformly bounded by R, we
can take instead γi to be the geodesic from x to y to obtain the bound

Dd
α(x, y) ≤

ˆ
γi

1

f (α−1)/d
≤ a

(1−α)/d
1 R,

instead of (A.2). The rest of the proof follows verbatim to obtain

α > 1 + d
log(R/2τ)

log(a1/a0)
. (A.5)

□

Proof of Proposition 2.5. The proof follows the same lines as the one of Proposition 2.2, but
we need to be more careful. Recall that C is compact, f ≥ a1 in C and a0 is such that there
exists a region around each cluster that strictly separates the level-sets f−1(a1) and f−1(a0)
with the projection being well defined. More precisely, we have that for

η = inf
{
|s− t| : s ∈ f−1([0; a0]), t ∈ f−1([a1;∞])

}
> 0,

the inequality τ = rch(C) > η is verified.
We first prove that rch(Cη) = rch(C)− η = τ − η. To do that, observe that for any δ > 0,

(Cη)δ = Cη+δ. In fact, if x ∈ (Cη)δ, as C is compact, we know that there exists at least one
projection of x onto C denoted by πC(x). Applying the customs passage theorem, we have
{[x, πC(x)] ∩ ∂(Cη)} ≠ ∅. Call z the point lying at this intersection. We have,

dC(x) = inf
p∈C
|x− p| ≤ |x− z|+ inf

p∈C
|z − p| ≤ δ + η.

Then x ∈ Cη+δ. On the other hand, for x ∈ Cη+δ either dC(x) ≤ η and x ∈ (Cη)δ, or
dC(x) > η. Suppose dCη(x) > δ. As we assumed that dCη(x) > δ, |x− z| > δ and

|x− πC(x)| = |x− z|+ |x− πC(x)| > δ + η.

A contradiction. Hence dCη(x) ≤ δ and x ∈ Cη+δ = (Cη)δ. This proves our claim

rch(Cη) = rch(C)− η = τ − η.

The bound from below for the macroscopic Fermat distance between two points lying in
two different clusters is the same as in A.1, and we omit it here.

The upper bound for the macroscopic Fermat distance between two points lying in the
same cluster is also very similar. The only difference is that we need to build an r-covering of
Cη instead of C, with r < rch(Cη) = τ−η. We define the shortest path (in the neighborhood
graph restricted to Cη

i ) inside (Cη
i )

r = Cη+r
i , 1 ≤ i ≤ m, in the same manner. The length of

this path is smaller than 2(τ − η)Nr, where Nr is the covering number of Cη.
We first project this path on Cη, which will be projected on Cη

i by construction. We
project this new path on C, which is still by construction projected on Ci. Applying two
times Federer’s theorem ([8], Theorem 4.8-(8)), the condition A.3 on α becomes

a
(1−α)/d
0 2τ > a

(1−α)/d
1

(
τ − η

τ − η − r

)(
τ

τ − η

)
Nr 2r,
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which is equivalent to

α > 1 + d
log
(

r
τ−(r+η)

Nr

)
log(a1/a0)

.

□

Next, we prove Proposition 3.2. We will use the following lemma, whose proof is elemen-
tary and is omitted.

Lemma A.1. Assume M is compact and that for all x ∈ M, |f(x)| > ι > 0. Then
for every ϵ > 0 there is δ > 0 such that for every u, v ∈ M with |u − v| ≤ δ we have
|Dd

α(u, x)−Dd
α(v, x)| ≤ ϵ for every x ∈M.

Proof of Proposition 3.2. We first prove that the definition of α-clusters implies with over-
whelming probability for n large enough. Using the definition of α0, for α > α0 > 1 there
exists ϵ > 0 such that,

Dd
α(x, y) ≤ Dd

α(x, y
′)− ϵ, for all x, y ∈ Ci, y

′ ∈ Cj, j ̸= i. (A.6)

Consider the events,

An,α =
{∣∣∣n(α−1)/dDQn,α(x, y)− µDd

α(x, y)
∣∣∣ ≤ ϵ/3, for all x ∈ Qn

}
.

By Proposition 2.6 in[9], there is γ > 0 and c > 0 such that for n large enough

P (Ac
n,α) ≤ e−cnγ ∀1 ≤ i ≤ m.

Now, on An,α, we have for x, y ∈ Ci and y′ ∈ Cj, j ̸= i,

n(α−1)/dDQn,α(x, y) ≤ µDd
α(x, y) + ϵ/3

≤ µDd
α(x, y

′) + ϵ/3− ϵ (by the clustering condition (2.1))

≤ n(α−1)/dDQn,α(x, y
′) + 2ϵ/3− ϵ.

Since 2ϵ/3− ϵ = −ϵ/3 < 0, we have

n(α−1)/dDQn,α(x, y) ≤ n(α−1)/dDQn,α(x, y
′)− ϵ/3,

on An,α. Hence
P (F (α, n)c) ≤ P(Ac

n,α) ≤ e−cnγ

,

for n large enough.
Next, take α < α0 such that (C, f) is not α−feasible and suppose that the microscopic

clustering conditions (3.1) are satisfied, i.e., there exists ϵ > 0 such that for every i ̸= j,
x, y ∈ Ci ∩Qn and y′ ∈ Cj ∩Qn we have

n(α−1)/dDQn,α(x, y) ≤ n(α−1)/d DQn,α(x, y
′)− ϵ. (A.7)

So, on An,α we have,

µDd
α(x, y) ≤ n(α−1)/dDQn,α(x, y) + ϵ/3

≤ n(α−1)/dDQn,α(x, y
′) + ϵ/3− ϵ (by (A.7))

≤ µDd
α(x, y

′) + 2ϵ/3− ϵ.
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We have,

Dd
α(x, y) ≤ Dd

α(x, y
′)− ϵ/3µ,

which can not hold since (C, f) is not α−feasible. This means that An ⊂ F (n, α)c and the
conclusion of the proposition follows. □

Proof of proposition 4.1. The study of the statistic Dd=1
Qn,α

boils down to the study of the

uniform spacings given by ∆i = q(i+1)−q(i) for i = 1, 2, . . . , n−1, ∆0 = q(1) and ∆n = 1−q(n).
Using that the joint density p of the order statistics q(1), q(2), . . . , q(n) is given by

p(t1, t2, . . . , tn) = n!1{0≤t1≤...≤tn}≤1}

it is easy to derive the joint distribution of the vector (∆0, . . . ,∆n−1) which is uniformly
distributed on the n dimensional simplex denoted by

Sn =

{
(s0, s1, . . . , sn−1) ∈ Rn, s0, s1, . . . , sn−1 > 0,

n−1∑
i=0

si ≤ 1

}
.

That is (∆0, . . . ,∆n) ∼ Dir(a), where Dir(a) denotes the flat Dirichlet distribution with
parameter a ∈ Rn+1, a = (1, . . . , 1) and ∆n = 1 −

∑n−1
i=0 ∆i. The moments of the Dirichlet

distribution can be easily found as

E[∆α
i ] = E(∆0,...,∆n)∼Dir((1,1,...,1))[∆

α
0 ] =

Γ(n+ 1)

Γ(n+ α + 1)
Γ(α + 1),

E[∆α
i ∆

α
j ] = E(∆0,...,∆n)∼Dir((1,1,...,1))[∆

α
0∆

α
1 ] =

Γ(n+ 1)

Γ(n+ 2α + 1)
Γ(α + 1)2.

The relative asymptotic behaviour of Gamma functions given by [7]

Γ(x+ a)

Γ(x+ b)
= xa−b

(
1 +

(a− b)(a+ b− 1)

2x
+O

(
1

x2

))
. (A.8)

implies that Γ(n+ α + 1)/(n+ 1)αΓ(n+ 1)→ 1 as n→∞. Then,

lim
n→∞

nαE[∆α
i ] = Γ(α + 1), lim

n→∞
n2αE[∆α

i ∆
α
j ] = Γ(α + 1)2.

Finally,

nα−1E[Dd=1
Qn,α] = nα−1E

[
n∑

i=0

∆α
i

]
= E [(n∆1)

α]
n→∞−−−→ Γ(α + 1).

On the other hand, the second moment can be computed as

E[(Dd=1
Qn,α)

2] = E

[
(

n∑
i=0

∆α
i )

2

]
= (n+ 1)E

[
∆2α

1

]
+ n(n+ 1)E[∆α

1∆
α
2 ]

= (n+ 1)
(
E
[
∆2α

1

]
− E[∆α

1 ]
2
)
+ E[Dd=1

Qn,α]
2

+ n(n+ 1) (E[∆α
1∆

α
2 ]− E[∆α

1 ]E[∆α
2 ]) .
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Rearranging the terms in the last expression, we obtain

nVar[nα−1Dd=1
Qn,α] =

n+ 1

n

(
E[n2α∆2α

1 ]− E[nα∆α
1 ]

2
)

+ (n+ 1)Cov(nα∆α
1 , n

α∆2
2).

As n→∞, the first term on the right-hand side converges to Γ(2α+ 1)− Γ(α+ 1)2. Based
again in Equation (A.8), we have

E[∆α
1∆

α
2 ]− E[∆α

1 ]E[∆α
2 ] =

(
Γ(n+ 1)

Γ(n+ 2α + 1)
− Γ(n+ 1)2

Γ(n+ α + 1)2

)
Γ(α + 1)2

=

(
1

n2α
+

(
1− 2α(2α− 1)

2n+

+O(n−2)

)
− 1

n2α
+

(
1− α(α− 1)

2n+

+O(n−2)

)2)
Γ(α + 1)2

=

(
−α2

n+

+O(n−2)

)
Γ(α + 1)2

n2α
+

,

where n+ = n+ 1. This implies

lim
n→∞

(n+ 1)Cov(nα∆α
1 , n

α∆2
2) = −α2Γ(α + 1)2,

which finally gives

lim
n→→∞

nVar[nα−1Dd=1
Qn,α] = Γ(2α + 1)− (α2 + 1)Γ(α + 1)2.

□

Proof of Proposition 4.2. Note that we can turn results for a Poisson process of intensity n
in the hypercube to a scaled Poisson process n1/dQn which is essentially (up to exponentially
small probability events) to a unit Poisson process P in the hyperplane (see Theorem 2.4 in
[12]). Hence with l = n1/d, we replace n(α−1)/dDd

Qn,α
(0, e1) by l−1Dd

P,α(0, le1), and now work
with a unit Poisson process. The proof is based on constructing a specific (sub-optimal)
path that has been considered previously in [13]. Define the sets,

Dt(q) = {q + b ∈ Rd, ≤ b1, for 2 ≤ i ≤ d}0 ≤ b1 ≤ t, 0 ≤ σibi

where σi = −1qi>0 + 1qi≥0. Let us now construct inductively the specific path of l points
q0, . . . ql such that for k ≤ l,

q̃0 = 0,

Xk = inf{t > 0, there is a point in Dt(q̃k−1)},
q̃k = particle present in DXk

(q̃k−1),

Finally, ql+1 = le1. Observe that,

|q̃k − q̃k−1|α ≤ d
α
2 Xα

k and |q̃l+1 − le1|α ≤
l∑

i=1

d
α
2 Xα

i .
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Using basic properties of Poisson processes, we get that the random variables (Xi)1≤i≤l are
i.i.d. Now,

P(Xi ≥ x) = P( no points in Dx(0) ) = e−(1/d)xd

.

Therefore,

P(Xα
i ≥ x) = e−(1/d)xd/α

= e−(1/d)x1/θ

.

Hence,

Dd
α,P(0, le1) ≤

l∑
i=1

|q̃i − q̃i−1|α + |q̃l − le1|α,

which gives that

P(Dd
α,P(0, le1) ≥ lx) ≤ P

(
2

N∑
i=1

|q̃i − q̃i−1|α > lx

)
,

≤ P

(
2

l∑
i=1

|q̃i − q̃i−1|α > lx

)

≤ P

(
l∑

i=1

Xα
i > lx/2dα/2

)
.

Note that if α > d, we cannot use the usual large deviation bounds as the variable Xi

does not have an exponential moment. We can, however, use their usual moments. Our
computations are similar to the ones in [28].

Observe that P(Y ≥ x) = e−x
1
θ /d implies E(Y γ) = dγθΓ(γθ + 1).

Let Yi = Xα
i and take γ ≥ 1. Then,

P

(
l∑

i=1

Yi ≥ t

)
≤ E

[( l∑
i=1

Yi

)γ]
t−γ, (A.9)

≤

(
l∑

i=1

E(Y γ
i )

1/γ

)γ

t−γ, (A.10)

= lγdγθΓ(γθ + 1)t−γ, (A.11)

≤ lγdγθ(γθ)γθt−γ. (A.12)

We use the bound Γ(x+1) ≤ xx for x ≥ 1 in the last line. Taking t such that lγdθγ(γθ)γθt−γ =
e−γ, we can state that for all γ ≥ 1

P

(
l∑

i=1

Yi ≥ edθ(γθ)θl

)
≤ e−γ,

and γθc = x with c = 2edθ+α/2θθ, leads to

P

(
1

l

l∑
i=1

Yi ≥
x

2dα/2

)
≤ e−(x/c)1/θ ,
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for all x > c. Hence

E

(
1

l

l∑
i=1

Yi

)k

≤ c+

ˆ ∞

c

e−(x/c)1/kθdx,

≤ c+ cΓ(kθ + 1).

We obtain,

E
((

l−1Dd
α,P(0, le1)

)k) ≤ c+ cΓ(kθ + 1).

□
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