
Particle-Based Score Estimation for State Space
Model Learning in Autonomous Driving

Anonymous Author(s)
Affiliation
Address
email

Abstract: Multi-object state estimation is a fundamental problem for robotic ap-1

plications where a robot must interact with other moving objects. Typically, other2

objects’ relevant state features are not directly observable, and must instead be3

inferred from observations. Particle filtering can perform such inference given4

approximate transition and observation models. However, these models are often5

unknown a priori, yielding a difficult parameter estimation problem since obser-6

vations jointly carry transition and observation noise. In this work, we consider7

learning maximum-likelihood parameters using particle methods. Recent meth-8

ods addressing this problem typically differentiate through time in a particle filter,9

which requires workarounds to the non-differentiable resampling step, that yield10

biased or high variance gradient estimates. By contrast, we exploit Fisher’s iden-11

tity to obtain a particle-based approximation of the score function (the gradient of12

the log likelihood) that yields a low variance estimate while only requiring step-13

wise differentiation through the transition and observation models. We apply our14

method to real data collected from autonomous vehicles (AVs) and show that it15

learns better models than existing techniques and is more stable in training, yield-16

ing an effective smoother for tracking the trajectories of vehicles around an AV.17

Keywords: Autonomous Driving, Particle Filtering, Self-supervised Learning18

1 Introduction19

Multi-object state estimation is a fundamental problem in settings where a robot must interact with20

other moving objects, since their state is directly relevant for decision making. Typically, other21

objects’ relevant state features are not directly observable. Instead, the robot must infer them from22

a stream of observations it receives via a perception system. For example, an autonomous vehicle23

(AV) selects actions based on the state of nearby road users. However, such road users are only24

partially observed, owing to limited field of view, occlusions, and imperfections in the AV’s sensors25

and perception systems. Such partial observability negatively affects many downstream tasks in a26

robot’s behavioural stack that depend on observations, e.g., action planning.27

Addressing partial observability requires sequential state estimation, to which Bayesian filtering of-28

fers a generic probabilistic approach. In particular, sequential Monte Carlo methods, also known as29

particle filtering, have been successfully applied to state estimation in many robotics applications [1].30

However, Bayesian filters require models that reasonably approximate the transition and observation31

models of a state-space model (SSM). In some special cases, these models can be derived analyti-32

cally from first principles, e.g., when the physical dynamics are well understood, or by modeling a33

sensor’s physical characteristics. In many real-world applications, however, these models cannot be34

specified analytically. For example, the transition model may encode complicated motion dynamics35

and environmental physics. In multi-agent settings, other agents’ behaviour must also be modelled.36

Modelling observations is also difficult. Modern perception systems often involve multiple stages37

and combine information from multiple sensors, making observation models practically impossible38

to specify by hand. By contrast, collecting observations from a robotic system is relatively easy and39

*These authors contributed equally to this work.

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

cheap. We are interested, therefore, in algorithms that can leverage such observations to learn tran-40

sition and observation models in a self-supervised fashion, and yield an effective particle smoother.41

Learned transition and observation models can also be independently useful for other applications,42

such as the evaluation of AVs by simulating realistic observations.43

In this work, we propose Particle Filtering-Based Score Estimation using Fisher’s Identity (PF-44

SEFI), a method for jointly learning maximum-likelihood parameters of both the transition and45

observation models, that is applicable to a wide class of SSMs. Unlike many recently proposed46

methods [2, 3, 4, 5, 6, 7], our approach avoids differentiable approximations of the resampling step.47

We achieve this by revisiting a methodology originally proposed in statistics [8, 9] that relies on a48

particle approximation of the score, i.e., the gradient of the log likelihood of observation sequences,49

obtained through Fisher’s identity. This only requires differentiating through the transition and50

observation models. Unfortunately, a direct particle approximation of this identity provides a high51

variance estimate of the score. While [8] propose an alternative low variance estimate, it admits a52

O(N2) cost, where N is the number of particles. Furthermore, these methods compute and store53

the gradient of the marginal log-likelihood with respect to model parameters for each particle. This54

requires computing Jacobian matrices, which are slow to compute using automatic differentiation55

tools such as TensorFlow and PyTorch [10, 11] which rely on Jacobian-vector products. This makes56

these methods impractical for large models. By contrast, PF-SEFI is a simple scalableO(N) variant57

with only negligible bias. PF-SEFI marginalises over particles before computing gradients, allowing58

automatic differentiation tools to make use of efficient Jacobian-vector product operations, making it59

significantly faster and allowing us to scale to larger models. To the best of our knowledge, previous60

particle methods estimating the score have been limited to SSMs with few parameters, whereas we61

apply PF-SEFI to neural network models with thousands of parameters.62

We apply PF-SEFI to jointly learn transition and observation models for tracking multiple objects63

around an AV, using a large set of noisy trajectories, containing almost 10 hours of road-user tra-64

jectories observed by an AV. We show that PF-SEFI learns an SSM that yields an effective object65

tracker as measured by average displacement and yaw errors. We compare the learned observation66

model to one trained through supervised learning on a dataset of manually labelled trajectories, and67

show that PF-SEFI yields a better model (as measured by log-likelihood on ground-truth labels)68

even though it requires no labels for training. Finally, we compare PF-SEFI to a number of existing69

particle methods for jointly learning transition and observation models and show that it learns better70

models and is more stable to train.71

2 Related Work72

Particle filters are widely used for state estimation in non-linear non-Gaussian SSMs where no closed73

form solution is available; see e.g., [12] for a survey. The original bootstrap particle filter [13] sam-74

ples at each time step using the transition density particles that are then reweighted according to75

their conditional likelihood, which measures their “fitness” w.r.t. to the available observation. Parti-76

cles with low weights are then eliminated while particles with high weights are replicated to focus77

computational efforts into regions of high probability mass. Compared to many newer methods,78

such as the auxiliary particle filter [14], the bootstrap particle filter only requires sampling from the79

transition density, not its evaluation at arbitrary values, which is not possible for the compositional80

transition density used in this work.81

In most practical applications, the SSM has unknown parameters that must be estimated together82

with the latent state posterior (see [9] for a review). Simply extending the latent space to include83

the unknown parameters suffers from insufficient parameter space exploration [15]. While particle84

filters can estimate consistently the likelihood for fixed model parameters, a core challenge is that the85

such estimated likelihood function is discontinuous in the model parameters due to the resampling86

step, hence complicating its optimization; see e.g. [6, Figure 1] for an illustration.87

Instead, the score vector can be computed using Fisher’s identity [8]. However, as shown in [8],88

performance degrades quickly for longer sequences if a standard particle filter is used, due to the89

path degeneracy problem: repeated resampling of particles and their ancestors will leave few or even90

just one remaining ancestor path for earlier timesteps, resulting in unbiased, but very high variance91

estimates. Methods for overcoming this limitation exist [8, 16, 17], but with requirements making92

them unsuitable in this work. Poyiadjis et al. [8] store gradients separately for each particle, making93

2

this approach infeasible for all but the smallest neural networks. Ścibior and Wood [17] propose94

an improved implementation with lower memory requirements by smartly using automatic differen-95

tiation. However, their approach still requires storing a computation graph whose size scales with96

O(N2) as the transition density for each particle pair must be evaluated during the forward pass.97

Both previous methods’ computational complexity also scales quadratically with the number of par-98

ticles, N , which is problematic for costly gradient backpropagation through large neural networks.99

Lastly, Olsson and Westerborn [16] require evaluation of the transition density for arbitrary values,100

which our compositional transition model does not allow. Instead, in this work, we show that fixed-101

lag smoothing [18, 19] is a viable alternative to compute the score function of large neural network102

models in the context of extended object tracking.103

There is extensive literature on combining particle filters with learning complex models such as104

neural networks [2, 3, 4, 5, 6, 20, 21, 22, 23, 24]. In contrast to our work, they make use of a105

learned, data-dependent proposal distribution. However, for parameter estimation, they rely on dif-106

ferentiation of an estimated lower bound (ELBO). Due to the non-differentiable resampling step,107

this gradient estimation has either extremely high variance or is biased if the high variance terms108

are simply dropped, as in [2, 3, 4]. As we show in Section 5, this degrades performance noticeably.109

A second line of work proposes soft resampling [5, 20, 21], which interpolates between regular110

and uniform sampling, thereby allowing to trade off variance reduction through resampling with111

the bias introduced by ignoring the non-differentiable component of resampling. Lastly, Corenflos112

et al. [6] make the resampling step differentiable by using entropy-regularized optimal transport,113

also inducing bias and a O(N2) cost.114

Extended object tracking [25] considers how to track objects which, in contrast to “small” objects115

[26], generate multiple sensor measurements per timestep. Unlike in our work, transition and mea-116

surement models are assumed to be known or to depend on only a few learnable parameters. Similar117

to our work, the measurement model proposed in [27] assumes measurement sources lying on a118

rectangular shape. However, our model is more flexible, for example, allowing non-zero probability119

on all four sides simultaneously.120

3 State-Space Models and Particle Filtering121

3.1 State-Space Models122

A SSM is a partially observed discrete-time Markov process with initial density, x0 ∼ µ(·), transi-123

tion density xt|xt−1 ∼ fθ(·|xt−1), and observation density yt|xt ∼ gθ(·|xt), where xt is the latent124

state at time t and yt the corresponding observation. The joint density of x0:T , y0:T satisfies:125

pθ(x0:T , y0:T) = µ(x0)gθ(y0|x0)

T∏
t=1

fθ(xt|xt−1)gθ(yt|xt). (1)

Given this model, we are typically interested in inferring the states from the data by126

computing the filtering and one-step ahead prediction distributions, {p(xt|y0:t)}t∈0,...,T127

and {p(xt+1|y0:t)}t∈0,...,T−1 respectively, and more generally the joint distributions128

{p(x0:t|y0:t)}t∈0,...,T satisfying129

pθ(x0:t|y0:t) =
pθ(x0:t, y0:t)

pθ(y0:t)
, pθ(y0:T) =

∫
pθ(x0:T , y0:T)dx0:T . (2)

Additionally, to estimate parameters, we would also like to compute the marginal log likelihood:130

`T (θ) = log pθ(y0:T) = log pθ(y0) +

T∑
t=1

log pθ(yt|y0:t−1), (3)

where pθ(y0) =
∫
gθ(y0|x0)µ(x0)dx0 and pθ(yt|y0:t−1) =

∫
gθ(yt|xt)pθ(xt|y0:t−1)dxt for t ≥ 1.131

For non-linear non-Gaussian SSMs, these posterior distributions and the corresponding marginal132

likelihood cannot be computed in closed form.133

3.2 Particle Filtering134

Particle methods provide non-parametric and consistent approximations of these quantities. They135

rely on the combination of importance sampling and resampling steps of a set of N weighted parti-136

3

cles (xit, w
i
t), where xit denotes the values of the ith particle at time t and wit is corresponding weight137

satisfying
∑N
i=1 w

i
t = 1. We focus on the bootstrap particle filter, shown in Algorithm 1, which138

samples particles according to the transition density.139

Algorithm 1 Bootstrap Particle Filter

Sample Xi
0

i.i.d.∼ µ(·) for i ∈ [N] and set ˆ̀
0(θ)← log

(
1
N

∑N
i=1 gθ(y0|xi0)

)
.

For t = 1, ..., T

1. Compute weights wit−1 ∝ gθ(yt−1|xit−1) with
∑N
i=1 w

i
t−1 = 1.

2. Sample ait−1 ∼ Cat(w1
t−1, ..., w

N
t−1) then xit ∼ fθ(·|x

ait−1

t−1) for i ∈ [N].

3. Set xi0:t ← (x
ait−1

0:t−1, x
i
t) for i ∈ [N] and ˆ̀

t(θ)← ˆ̀
t−1(θ) + log

(
1
N

∑N
i=1 gθ(yt|xit)

)
.

Let k ∼ Cat(α1, ..., αN) denote the categorical distribution withN categories, where the probability140

of the k taking the ith category is αi. At any time t, this algorithm produces particle approximations141

142

p̂θ(x0:t|y0:t) =

N∑
i=1

witδxi
0:t

(x0:t), ˆ̀
t(θ) =

T∑
t=0

log

(
1

N

N∑
i=1

gθ
(
yt|xit

))
, (4)

of pθ(x0:t|y0:t) and `t(θ) = log pθ(y0:t), where δα is the Dirac delta distribution centred at α. Step 2143

resamples, discarding particles with small weights while replicating those with large weights before144

evolving according to the transition density. This focuses computational effort on the “promising”145

regions of the state space. Unfortunately, resampling involves samplingN discrete random variables146

at each time step and as such produces estimates of the log likelihood that are not differentiable w.r.t.147

θ as illustrated in [6, Figure 1].148

While the resulting estimates are consistent as N → ∞ for any fixed time t [28], this does not149

guarantee good practical performance. Fortunately, under regularity conditions the approximation150

error for the estimate p̂θ(xt|y0:t) and more generally p̂θ(xt−L+1:t|y0:t) for a fixed lag L ≥ 1 as well151

as log pθ(y0:t)/t does not increase with t for fixed N . However, this is not the case for the joint152

smoothing approximation because successive resampling means that p̂θ(x0:L|y0:t) is eventually ap-153

proximated by a single unique particle for large enough t, a phenomenon known as path degeneracy;154

see e.g. [12, Section 4.3].155

4 Score Estimation using Particle Methods156

To estimate the parameters θ of a given SSM (1) along with a dataset of observations y0:T , we want157

to maximise via gradient ascent the marginal log likelihood in (3). However, the gradient of the158

marginal log likelihood, i.e., the score function, is intractable. As explained in Section 2, automatic159

differentiation through the filter is difficult due to the non-differentiable resampling step.160

4.1 Score Function Using Fisher’s Identity161

We leverage here instead Fisher’s identity [8] for the score to completely side-step the non-162

differentiability problem. This identity shows that163

∇θ`T (θ) =

∫
∇θ log pθ(x0:T , y0:T) pθ(x0:T |y0:T)dx0:T , (5)

i.e., the score is the expectation of ∇θ log pθ(x0:T , y0:T) under the joint smoothing distribution164

pθ(x0:T |y0:T). Plugging in (1), the score function can be simplified to165

∇θ`T (θ) =

T∑
t=0

∫
∇θ log gθ(yt|xt) pθ(xt|y0:T)dxt

+

T∑
t=1

∫
∇θ log fθ(xt|xt−1) pθ(xt−1:t|y0:T)dxt−1:t. (6)

4

4.2 Particle Score Approximation166

The identity (6) shows that we can simply estimate the score by plugging particle approximations167

of the marginal smoothing distributions p(xt−1:t|y0:T) into (6). This identity makes differentiating168

through time superfluous and thereby renders the use of differentiable approximations of resampling169

unnecessary. However, as discussed in Section 3.2, naive particle approximations of the smoothing170

distribution’s marginals, pθ(xt|y0:T) and pθ(xt−1:t|y0:T), suffer from path degeneracy. To bypass171

this problem, [8, 17] propose an O(N2) method inspired by dynamic programming. We propose172

here a simpler and computationally cheaper method that relies on the following fixed-lag approxi-173

mation of the fixed-interval smoothing distribution, which states that for L ≥ 1 large enough,174

pθ(xt−1:t|y0:T) ≈ pθ
(
xt−1:t|y0:min{t+L,T}

)
. (7)

This approximation simply assumes that observations after time t + L do not bring further infor-175

mation about the states xt−1, xt. This is satisfied for most models and the resulting approximation176

error decreases geometrically fast with L [19]. The benefit of this approximation is that the particle177

approximation of pθ
(
xt−1:t|y0:min{t+L,T}

)
does not suffer from path degeneracy and is a simple178

byproduct of the bootstrap particle filtering of Algorithm 1; e.g., for t + L < T we consider the179

particle approximation p̂θ(x0:t+L|y0:t+L) =
∑N
i=1 w

i
t+Lδxi

0:t+L
(xi0:t+L) obtained at time t+L and180

use its corresponding marginals in xt−1, xt and xt to integrate respectively ∇θ log fθ(xt|xt−1) and181

∇θ log gθ(yt|xt). For t+L ≥ T , we just consider the marginals in xt−1, xt and xt of p̂θ(x0:T |y0:T).182

So finally, we consider the estimate,183

∇̂θ`T (θ) =

T∑
t=0

∫
∇θ log gθ(yt|xt) p̂θ(xt|y0:min{t+L,T})dxt

+

T∑
t=1

∫
∇θ log fθ(xt|xt−1) p̂θ(xt−1:t|y0:min{t+L,T})dxt−1:t. (8)

4.3 Score Estimation with Deterministic, Differentiable, Injective Motion Models184

We have described a generic method to approximate the score using particle filtering techniques.185

For many applications, however, the transition density function, fθ(xt|xt−1), is the composition of a186

policy, πθ(at|xt−1), which characterises the action distribution conditioned on the state, and a poten-187

tially complex but deterministic, differentiable, and injective motion model, τ : Rnx × Rna → Rnx188

where na < nx, which characterises kinematic constraints such that xt = τ(xt−1, at) = τ̄xt−1
(at).189

Under such a composition, the transition density function on the induced manifold Mxt−1
=190

{τ̄xt−1
(at) : at ∈ Rna} is thus obtained by marginalising out the latent action variable, i.e.,191

fθ(xt|xt−1) = I(xt ∈Mxt−1)

∫
δ(xt − τ̄xt−1(at)) πθ(at|xt−1)dat. (9)

It is easy to sample from this density but it is intractable analytically if the motion model is only192

available through a complex simulator or if it is not invertible. This precludes the use of sophisticated193

proposal distributions within the particle filter. Additionally, even if it were known, one cannot use194

the O(N2) smoothing type algorithms developed in [8, 16] as the density is concentrated on a low-195

dimensional manifold [29]. This setting is common in mobile robotics, in which controllers factor196

into policies that select actions and motion models that determine the next state. Indeed, this is197

precisely the case in our application setting of estimating the state of observed road users around198

an AV (see Section 5). Learning the corresponding SSM reduces to learning the parameters θ of199

the policy, πθ(at|xt−1), and the observation model, gθ(yt|xt). Thankfully, even if the explicit form200

of the motion model is unknown, we can still compute ∇ log fθ(xt|xt−1) as required by the score201

estimate (8).202

Lemma 4.1. For any x ∈ Rnx , let τx : Rna → Rnx where na < nx be a smooth and injective203

mapping. Then, for any fixed xt−1 and xt ∈ Mxt−1
, the gradient of the transition log density,204

i.e., ∇θ log fθ(xt|xt−1), reduces to the gradient of the policy log density, i.e., ∇θ log πθ (at|xt−1),205

where at is the unique action that takes xt−1 to xt.206

Proof. For xt−1 and xt ∈ Mxt−1 , we denote by J [τ̄xt−1](τ̄−1xt−1
(xt)) ∈ Rnx×na the rectangular207

Jacobian matrix and write at = τ̄−1xt−1
(xt), i.e., this is the unique action such τ̄xt−1

(at) = xt. By a208

5

(a) Observations from the real data. (b) Observations from the synthetic data.

Figure 1: Observations from real and synthetic data. In each plot, the AV (orange) observes a set
of 2D points (blue) forming a convex polygon around the observed road users. The actual bounding
boxes corresponding to each observed road user (green) were manually labelled in the real data, and
are determined while constructing the synthetic data.

standard result from differential geometry [30, 31], the transition density (9) satisfies209

fθ(xt|xt−1) = πθ (at|xt−1)
∣∣∣det J [τ̄xt−1]T(at)J [τ̄xt−1](at)

∣∣∣−1/2I(xt ∈Mxt−1). (10)

It follows directly that∇θ log fθ(xt|xt−1) = ∇θ log πθ (at|xt−1). �210

Indeed for the marginals p̂θ
(
xt−1:t|y0:min{t+L,T}

)
, we can store the actions corresponding to tran-211

sitions xt−1 → xt during filtering, and it follows that for the class of SSMs described above, the212

score estimate reduces to:213

∇̂θ`T (θ) =

T∑
t=0

∫
∇θ log gθ(yt|xt) p̂θ(xt|y0:min{t+L,T})dxt

+

T∑
t=1

∫
∇θ log πθ(at|xt−1) p̂θ(xt−1:t|y0:min{t+L,T})dxt−1:t, (11)

where we use Lemma 4.1 to replace the gradient of the transition log density with the gradient of214

the policy log density in (8), and where at is the action sampled to go from xt−1 to xt.215

5 Experiments216

Problem Setting. Our experiments focus on the problem of state estimation of observed road users217

(in particular other vehicles) from the viewpoint of an AV, which involves the estimation of 2D218

poses from an observed sequence of 2D convex polygons in a “bird’s eye view” (BEV) constructed219

from LiDAR point clouds at each time step. For these experiments, we assume that the size of the220

observed objects, the pose of the AV, and the association of observations with their corresponding221

objects are known a priori. Some observations (and their corresponding states) are shown in Figure222

1a. Here, the observation model must learn to describe the likelihood of 2D points around the pe-223

riphery of the observed road user (see [25] for a review on such models), while the transition model224

must learn to describe driving behaviour. We use a feed-forward neural network to parameterise our225

observation model, where we provide it with range, bearing, and relative bearing from the viewpoint226

of the corresponding AV as features (Appendix A), and factor our transition model into a determin-227

istic and differentiable motion model based on Ackermann dynamics [32] (Appendix B.1), and a228

policy parameterised by another feed-forward neural network (Appendix B.2).229

Baselines, Datasets, and Metrics. We compare the quality of the models learned using PF-SEFI230

(our method), DPF-SGR [17], PFNET [5], and differentiating through a vanilla PF (ignoring the231

bias introduced by resampling). We evaluate our method (and the baselines) on real data collected232

from an AV in an urban environment, equipped with LiDARs, cameras, and radar sensors. All233

sensors were used to associate LiDAR points to their corresponding objects, and the observations234

shown in Figure 1a were obtained via a convex hull computation of the associated LiDAR points.235

6

In addition to using real data, we generate two synthetic datasets (with 25 and 50 step trajectories),236

using a hand-crafted policy, and an observation model trained using supervised learning on manually237

labelled trajectories (see Appendix A and B for more details). Example observations are shown in238

Figure 1b. Unlike with real data, where the true models are unknown, synthetic datasets allow us239

to compare the learned models against a known ground truth. We measure the quality of learned240

models using the following metrics:241

• Marginal Log Likelihood (MLL): The marginal log likelihood `T (θ) given by filtering obser-242

vations y0:T using the learned models.243

• Average Displacement Error (ADE) and Average Yaw Error (AYE): The average error in the244

positions and yaws respectively of the smoothed state estimates Eθ(x0:T |y0:T) against the true245

poses, x̄0:T . For the synthetic data, the true poses are sampled while generating the data; for246

the real data, the true poses are obtained by humans manually labelling object trajectories from247

videos. These measure the quality of the learned models for the purposes of state estimation.248

• Average Observation True Log Likelihood (AOTLL): The average log likelihood of observa-249

tions conditioned on the corresponding true states under the learned observation model, i.e.,250
1

T+1

∑T
t=0 log gθ(yt|x̄t). This measures the standalone quality of the learned observation251

model.252

• Average Policy True Log Likelihood (APTLL): The average log likelihood of true actions,253

ā1:T , (only available for experiments with synthetic data since it is not possible to manually254

label latent actions) conditioned on the corresponding true states under the learned policy, i.e.,255
1
T

∑T
t=1 log πθ(āt|x̄t−1). This measures the standalone quality of the learned policy.256

Results. Figure 2 shows the progress of the learned models by tracking MLL of held out test data257

for each of the three datasets (synthetic data with 25 steps, synthetic data with 50 steps, and real data258

with 60 steps), and for each of the four methods (PF-SEFI, DPF-SGR, PFNET, and PF). Table 1 sum-259

marise the performance of the learned models at convergence. We pick the best hyper-parameters,260

smoothing lag L for PF-SEFI, and trade-off parameter α for PFNET, in each of the experiments.261

Appendix C includes analysis of the training sensitivity of each of the hyper-parameters (see Fig-262

ures 5, 6, and 7). We find that PF-SEFI improves with increasing L up to a point, past which it is263

insensitive to the choice of L (see Figure 6, Appendix C).264

In our experiments with synthetic data with 25 steps (Figure 2a and Experiment A in Table 1), we265

observe a clear gap in performance of PF-SEFI and DPF-SGR relative to PFNET and PF. The im-266

provements over PF are likely due to the bias in PF’s score estimates due to the non-differentiable267

resampling step, while the improvements over PFNET are likely due to adverse effects of not re-268

sampling with the correct distribution at each time step. While PF-SEFI and DPF-SGR perform269

similarly on this dataset, the difference is stark in the case of synthetic data with 50 steps (Figure 2b270

and Experiment B in Table 1). PF-SEFI is invariant to the length of the trajectories used, converging271

stably; however, all other methods, struggle to learn useful models. We postulate that since each of272

the baselines, in one way or another, differentiate through all time steps of the filter, the variance in273

their score estimates is too high for good learning through gradient ascent.1274

The results of our experiments with real data with 60 steps (Figure 2c and Experiment C in Table275

1) are consistent with Experiment B (i.e., with experiments on synthetic data with 50 steps) and276

show that PF-SEFI is able to learn useful models. The learned observation model using PF-SEFI277

performs even better than the model that was trained offline through supervision with manually278

labelled data (see AOTLL in Table 1 for Experiment C). We also find that sampling from the learned279

model produces observations that are qualitatively similar to the real data (Appendix D). While the280

supervised model is trained only on the subset of the observations that are labeled (labelling only a281

subset is common in practical applications due to the cost of labelling), PF-SEFI, by contrast, can282

leverage all observations in a self-supervised fashion. Moreover, we speculate that the labels contain283

noise and that the labelling distribution is biased towards observations that are easy to label. Both284

limitations hinder supervised learning.285

1The authors of DPF-SGR [17] recommend the use of stop gradients not only for particle weights after
resampling, i.e., ṽit = v̄a

i

t /⊥v̄a
i

t [17, Algorithm 1], but also, in the case of bootstrap particle filters, while com-
puting the likelihood ratio vit = ṽit−1pθ(x

i
t, yt|xa

i

t−1)/⊥qθ(xit|xa
i

t−1) before resampling, and while sampling
from xit ∼ qθ(·|xa

i

t−1) [17, Section 4.1]. While these additional stop gradients significantly reduce variance, our
experiments with them yielded extremely poor overall performance (even with synthetic data with 25 steps).
The results we report here thus make use of stop-gradients only for particle weights after resampling.

7

(a) MLL of test synthetic data with
25 step trajectories.

(b) MLL of test synthetic data with
50 step trajectories.

(c) MLL of test real data with 60
step trajectories.

Figure 2: Marginal Log Likelihood (MLL) on synthetic and real test data for models trained using
PF-SEFI (us), DPF-SGR, PFNET, and PF, plotted against the corresponding training steps. For
synthetic data we also show the MLL of the true models.

Table 1: Metrics computed on held out synthetic test data comparing PF-SEFI (us) against baselines
DPF-SGR, PFNET, and vanilla PF, on three experiments - (A) learning from synthetic data with
25 steps, (B) learning from synthetic data with 50 steps, and (C) learning from real data with 60
steps. For experiments (A) and (B), we also compare against the performance of the true models.
For experiment (C), we compare against the supervised observation model trained using manually
labelled trajectories. For MLL, AOTLL, and APTLL, higher values imply better models, while for
ADE and AYE, lower values imply better models.

Exp. Method MLL AOTLL APTLL ADE (m) AYE (rad)

A

TRUE -3.161± 0.003 -2.128 2.674 0.090± 0.001 0.014± 0.000
PF-SEFI (us) -3.147± 0.004 -2.285± 0.028 2.661± 0.014 0.186± 0.021 0.016± 0.000
DPF-SGR -3.159± 0.004 -2.265± 0.010 2.594± 0.027 0.165± 0.008 0.014± 0.000
PFNET -3.225± 0.004 -2.487± 0.026 2.621± 0.013 0.264± 0.019 0.017± 0.000
PF -3.229± 0.006 -2.484± 0.026 2.576± 0.021 0.245± 0.021 0.017± 0.000

B

TRUE -3.145± 0.002 -2.165 2.693 0.088± 0.001 0.012± 0.000
PF-SEFI (us) -3.141± 0.005 -2.283± 0.015 2.505± 0.042 0.165± 0.013 0.014± 0.000
DPF-SGR -3.966± 0.050 -2.636± 0.031 0.811± 0.130 2.828± 0.415 0.142± 0.016
PFNET -4.169± 0.046 -2.901± 0.039 0.539± 0.077 2.809± 0.176 0.148± 0.008
PF -4.118± 0.038 -2.841± 0.025 0.681± 0.122 2.502± 0.042 0.137± 0.007

C

SUPERVISED N/A -2.224± 0.006 N/A N/A N/A
PF-SEFI (us) -2.447± 0.029 -1.973± 0.029 N/A 0.275± 0.011 0.034± 0.006
DPF-SGR -3.297± 0.287 -2.236± 0.218 N/A 0.643± 0.177 0.081± 0.477
PFNET -4.019± 0.098 -2.752± 0.079 N/A 0.746± 0.091 1.015± 0.159
PF -3.848± 0.045 -2.639± 0.140 N/A 0.701± 0.109 1.082± 0.364

6 Discussion, Limitations, and Future Work286

In this work, we proposed an efficient particle-based approach for estimating the score function to287

learn a wide class of SSMs in a completely self-supervised way. Compared to previous particle-288

based methods that estimate the score, our method is more computationally efficient, allowing us to289

scale to learning models with many parameters. Unlike alternative methods, PF-SEFI is applicable290

to SSMs where the transition distribution is concentrated on a low-dimensional manifold, allowing291

us to apply it to a real-world AV object tracking problem. We also showed empirically that our292

method learns better models and is more stable in training than recent methods that use automatic293

differentiation to estimate the score, and that we can learn an observation model that outperforms294

one trained through supervised learning, without using any labels.295

While this solution is ideal for our problem, it does have a number of limitations. Most notably, it296

is restricted to maximising the marginal log-likelihood of the data, while differentiating through the297

filter allows for arbitrary differentiable loss functions. Furthermore, our method is not suitable for298

estimating the parameters of a proposal distribution. Beyond these algorithmic limitations, in our299

application, the models that we used were not very expressive. For the observation model, we did300

not model important phenomena that affect partial observability such as occlusions and we restricted301

our states and observations to 2D. For the policy, we used a simplified policy with only basic features302

8

that are insufficient for controlling an agent in simulation. Furthermore, the policy and the motion303

model are both specific to vehicles, and currently exclude other road users such as pedestrians.304

In future work, we aim to scale up our problem setting, by making both models more expressive,305

and to estimate more state dimensions, such as full 3D poses and sizes of objects. We also believe306

that learning policies as components of an SSM to explicitly account for observation noise is, in307

practice, critical for learning good driving behaviour from demonstrations. Such policies could be308

used as models for predicting the behaviour of other road-users, or to control agents in simulation,309

and the method we proposed in this work offers an ideal starting point to explore this.310

9

References311

[1] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.312

[2] T. A. Le, M. Igl, T. Rainforth, T. Jin, and F. Wood. Auto-encoding sequential Monte Carlo. In313

International Conference on Learning Representations, 2018.314

[3] C. J. Maddison, J. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet, and Y. Teh.315

Filtering variational objectives. Advances in Neural Information Processing Systems, 30, 2017.316

[4] C. Naesseth, S. Linderman, R. Ranganath, and D. Blei. Variational sequential Monte Carlo. In317

International Conference on Artificial Intelligence and Statistics, pages 968–977, 2018.318

[5] P. Karkus, D. Hsu, and W. S. Lee. Particle filter networks with application to visual localization.319

In Conference on Robot Learning, pages 169–178, 2018.320

[6] A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet. Differentiable particle filtering321

via entropy-regularized optimal transport. In International Conference on Machine Learning,322

pages 2100–2111, 2021.323

[7] J. Lai, J. Domke, and D. Sheldon. Variational marginal particle filters. In International Con-324

ference on Artificial Intelligence and Statistics, pages 875–895, 2022.325

[8] G. Poyiadjis, A. Doucet, and S. S. Singh. Particle approximations of the score and observed326

information matrix in state space models with application to parameter estimation. Biometrika,327

98(1):65–80, 2011.328

[9] N. Kantas, A. Doucet, S. S. Singh, J. Maciejowski, and N. Chopin. On particle methods for329

parameter estimation in state-space models. Statistical science, 30(3):328–351, 2015.330

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,331

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-332

fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,333

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-334

houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,335

and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.336

URL http://tensorflow.org/. Software available from tensorflow.org.337

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,338

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-339

jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative340

style, high-performance deep learning library. In Advances in Neural Information Processing341

Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.342

cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.343

[12] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fifteen years344

later. Handbook of Nonlinear Filtering, 12(656-704):3, 2009.345

[13] N. J. Gordon, D. J. Salmond, and A. F. Smith. Novel approach to nonlinear/non-Gaussian346

Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140(2):107–347

113, 1993.348

[14] M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. Journal of the349

American Statistical Association, 94(446):590–599, 1999.350

[15] E. L. Ionides, C. Bretó, and A. A. King. Inference for nonlinear dynamical systems. Proceed-351

ings of the National Academy of Sciences, 103(49):18438–18443, 2006.352

[16] J. Olsson and J. Westerborn. Efficient particle-based online smoothing in general hidden353

markov models: the PaRIS algorithm. Bernoulli, 23(3):1951–1996, 2017.354

[17] A. Ścibior and F. Wood. Differentiable particle filtering without modifying the forward pass.355

arXiv preprint arXiv:2106.10314, 2021.356

10

http://tensorflow.org/
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[18] G. Kitagawa and S. Sato. Monte Carlo smoothing and self-organising state-space model. In357

A. Doucet, N. De Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in Practice,358

pages 177–195. Springer, 2001.359

[19] J. Olsson, O. Cappé, R. Douc, and E. Moulines. Sequential Monte Carlo smoothing with360

application to parameter estimation in nonlinear state space models. Bernoulli, 14(1):155–361

179, 2008.362

[20] X. Ma, P. Karkus, D. Hsu, and W. S. Lee. Particle filter recurrent neural networks. In AAAI363

Conference on Artificial Intelligence, 2020.364

[21] X. Ma, P. Karkus, D. Hsu, W. S. Lee, and N. Ye. Discriminative particle filter reinforcement365

learning for complex partial observations. In International Conference on Learning Represen-366

tations, 2020.367

[22] R. Jonschkowski, D. Rastogi, and O. Brock. Differentiable particle filters: End-to-end learning368

with algorithmic priors. In Proceedings of Robotics: Science and Systems, 2018.369

[23] M. Zhu, K. Murphy, and R. Jonschkowski. Towards differentiable resampling. arXiv preprint370

arXiv:2004.11938, 2020.371

[24] A. Kloss, G. Martius, and J. Bohg. How to train your differentiable filter. Autonomous Robots,372

45(4):561–578, 2021.373

[25] K. Granstrom, M. Baum, and S. Reuter. Extended object tracking: Introduction, overview and374

applications. arXiv preprint arXiv:1604.00970, 2016.375

[26] R. S. S. Blackman, Popoli. Design and Analysis of Modern Tracking Systems. Artech House,376

Boston, 1999.377

[27] K. Granström, S. Reuter, D. Meissner, and A. Scheel. A multiple model PHD approach to378

tracking of cars under an assumed rectangular shape. In 17th International Conference on379

Information Fusion (FUSION). IEEE, 2014.380

[28] P. Del Moral. Feynman-Kac Formulae. Springer, 2004.381

[29] F. Lindsten, P. Bunch, S. S. Singh, and T. B. Schön. Particle ancestor sampling for near-382

degenerate or intractable state transition models. arXiv preprint arXiv:1505.06356, 2015.383

[30] S. G. Krantz and H. R. Parks. Geometric Integration Theory. Springer Science & Business384

Media, 2008.385

[31] A. L. Caterini, G. Loaiza-Ganem, G. Pleiss, and J. P. Cunningham. Rectangular flows for386

manifold learning. Advances in Neural Information Processing Systems, 34, 2021.387

[32] K. M. Lynch and F. C. Park. Modern Robotics. Cambridge University Press, 2017.388

11

(a) Input features provided to the observation model’s
neural network.

(b) Output representation of an observed point yit using
the triplet

(
eit, α

i
t(e

i
t), β

i
t(e

i
t)
)
.

Figure 3: Input and output representations for the observation model.

A Observation Model389

For the problem setting described in Section 5, our observation model is concerned with the distribu-390

tion of 2D points around the peripheries of observed road users. Such models are reviewed in [25].391

Let the ith point from an observation yt be yit. We assumed independence across different points,392

i.e.393

gθ(yt|xt) =
∏
i

gθ
(
yit|xt

)
. (12)

In order to conveniently sample yit or to measure its likelihood, we represented each point via a394

triplet,
(
eit, α

i
t

(
eit
)
, βit
(
eit
))

, where eit ∈ {0, 1, 2, 3} is a categorical variable encoding the edge395

of the road user’s bounding box, αit
(
eit
)

is the corresponding parallel offset, and βit
(
eit
)

is the396

corresponding perpendicular offset (see Figure 3b). Such a triplet uniquely determines yit, and we397

used following generative model to sample such points:-398

eit ∼ Categorical
(
φ0θ (xt) , φ

1
θ (xt) , φ

2
θ (xt) , φ

3
θ (xt)

)
,

399

if eit = 0, αit ∼ Uniform(0, w) and

βit ∼ Laplace
(
µ = φ4θ (xt) , b = φ5θ (xt)

)
,

if eit = 1, αit ∼ Uniform(0, l) and

βit ∼ Laplace
(
µ = φ6θ (xt) , b = φ7θ (xt)

)
,

if eit = 2, αit ∼ Uniform(0, w) and

βit ∼ Laplace
(
µ = φ8θ (xt) , b = φ9θ (xt)

)
,

if eit = 3, αit ∼ Uniform(0, l) and

βit ∼ Laplace
(
µ = φ10θ (xt) , b = φ11θ (xt)

)
,

where l and w are the length and the width of the road user’s bounding box respectively,400

and φ0:11θ (xt) are the outputs from a neural network with weights θ. While the mapping401 (
eit, α

i
t

(
eit
)
, βit
(
eit
))
→ yit is unique, the reverse mapping has four representations depending on402

the choice of eit, i.e., eit is a latent variable. The likelihood of a point, gθ
(
yit|xt

)
, was therefore403

obtained by:-404

gθ
(
yit|xt

)
=

3∑
eit=0

φ
eit
θ (xt) pθ

(
αit
(
eit
)
, βit
(
eit
)
|eit, xt

)
, (13)

where we project yit →
(
eit, α

i
t

(
eit
)
, βit
(
eit
))

for each eit ∈ {0, 1, 2, 3}, and marginalise over it. We405

use a feed-forward neural network with 4 hidden layers, each with 16 Tanh units, which outputs406

12 parameters, φ0:11θ (xt). We provide the network with 5 input features - range, bearing, relative407

bearing, length, and width - of the road-user’s bounding box as measured from the observing AV’s408

viewpoint (see Figure 3a).409

For each of the experiments in Section 5 (with synthetic and real data), we used the same obser-410

vation model design. Moreover, we trained an observation model using supervision from a dataset411

of manually labelled trajectories, x̄0:T , by maximising the AOTLL. This model was then used to412

generate the synthetic data and also as a baseline for the experiments with real data.413

12

B Transition Model414

As described in Section 4, the class of SSMs that we are concerned with involves a transition func-415

tion, fθ(xt|xt−1), that factorises into a policy which produces actions, πθ(at|xt−1), and a deter-416

ministic, differentiable, and injective motion model, such that xt = τ(xt−1, at). In this section, we417

provide more details on the motion model and on the policies used for the experiments described in418

Section 5.419

B.1 Motion Model420

All experiments used a state space that consists of the 2D Pose (x, y, θ) of an observed road user,421

in addition to its instantaneous linear speed v and curvature κ. Moreover, the action space used422

consists of linear acceleration a and pinch p, i.e., the instantaneous rate of change of curvature.423

This choice of actions, i.e. acceleration and pinch, naturally maps to the controls exercised by424

road users (vehicles users in particular), i.e., to gas and rate of change of steering respectively.425

The calculations below compute the next state, (x(t), y(t), θ(t), v(t), κ(t)), from the previous state426

(x0, y0, θ0, v0, κ0) under the influence of constant actions (a, p) for t ∈ [0,∆t].427

Clearly κ̇(t) = p ⇒ κ(t) = κ0 + pt, (14)
and v̇(t) = a ⇒ v(t) = v0 + at. (15)

428

Since θ̇(t) = v(t)κ(t), we have (16)

θ̇(t) = v0κ0 + (v0p+ aκ0)t+ apt2, (17)

⇒ θ(t) = θ0 + v0κ0t+ (v0p+ aκ0)
t2

2
+ ap

t3

3
. (18)

429

Finally, using ẋ(t) = v(t) cos θ(t), and ẏ(t) = v(t) sin θ(t), we have (19)

x(t) = x0 +

∫ t

0

v(s) cos θ(s) ds, (20)

and y(t) = y0 +

∫ t

0

v(s) sin θ(s) ds (21)

= y0 +

∫ t

0

v(s) cos
(π

2
− θ(s)

)
ds. (22)

To make these integrals analytically tractable, we drop the cubic term in θt, i.e. ap t
3

3 , and use the430

integral2
∫

(a + bs) cos(c + ds + es2) ds with appropriate coefficients to compute x(t) and y(t).431

This approximation is justified as for the experiments described in Section 5, we use a small ∆t of432

≈ 0.33 seconds.433

B.2 Policy434

For synthetic data, we designed a simple state-dependent stochastic policy that modulated its mean435

acceleration and pinch as a function of speed. The mapping from state to actions is described in436

Figure 4. The policy then had 2 learnable parameters - the standard deviations of its acceleration437

and pinch. The advantage of having only 2 learnable parameters is that it allowed us to easily verify438

if a method was converging to the correct values or not.439

On real data, we used a more expressive policy which produces a multivariate Gaussian distribution440

over acceleration and pinch conditioned on its inputs. The policy’s inputs are the instantaneous441

speed and curvature of an object, which are then fed to a 3-layer feedforward neural network, with442

2 hidden layers with 32 ReLU units, outputting 5 parameters - the means of acceleration and pinch,443

and the 3 elements of the lower triangular matrix representation of the covariance of the two. This444

gives a total of 1,317 learnable parameters.445

2The closed form integral was obtained using Wolfram Alpha.

13

Figure 4: State to action mapping of the simple policy. The solid line represents the mean action
taken at a given speed, while the shaded regions represent one standard deviation of Gaussian noise
around that action. At a high-level, the policy accelerates at low speeds and decelerates at higher
speeds. The policy also applies less pinch at higher speeds.

(a) MLL of test synthetic data
with 25 step trajectories using
PF-SEFI with different values for
the smoothing lag (L).

(b) MLL of test synthetic data
with 50 step trajectories using
PF-SEFI with different values for
the smoothing lag (L).

(c) MLL of test real data with
60 step trajectories using PF-
SEFI with different values for the
smoothing lag (L) using 2048
training particles.

Figure 5: Marginal Log Likelihood (MLL) of synthetic test data for models trained using PF-SEFI
with different values for the smoothing lag (L) plotted against the corresponding training steps.

C Training Setup446

In this section, we present our training setup for the experiments described in Section 5. We show447

sample trajectories from each of the datasets (synthetic and real), and provide the set of hyper-448

parameters that were used for each of the experiments. All experiments (including the ones used449

for picking the best set of hyper-parameters) were repeated 10 times to obtain the median and in-450

terquartile ranges that are shown in Figures 2, 5, and 7, and in Table 1. All experiments used the451

default settings of the Adam optimiser in TensorFlow with a learning rate of 0.01. We found that452

smaller learning rates yield similar results, but require proportionately longer training time, while453

larger learning rates cause instability.454

C.1 Training on Synthetic Data455

Sample trajectories from the generated synthetic data are shown in Figure 8. These samples were456

generated using a hand-crafted policy (see Section B.2), the motion model derived in Section B.1,457

and an observation model trained with supervised learning (see Section A). We generated two458

datasets (with 25 and 50 steps respectively), each containing 10 scenes with 100 objects each for459

training, and 2 scenes also with 100 objects each for evaluation. For every train step, we used all460

100 objects from a single randomly sampled training scene, while for every evaluation step, we used461

all 100 objects from both evaluation scenes.462

Table 2 tabulates the set of hyper-parameters that were used for the experiments discussed in Section463

5. Figures 5a and 5b show the effect of different values for the smoothing lag hyper-parameter (L)464

14

Figure 6: Maximum MLL of test real data with 60 step trajectories using PF-SEFI sweeping over
different values for the smoothing lag (L) using different numbers of particles for training.

(a) MLL of test synthetic data with
25 step trajectories using PFNET
with different values for the trade-
off parameter (α).

(b) MLL of test synthetic data with
50 step trajectories using PFNET
with different values for the trade-
off parameter (α).

(c) MLL of test real data with 60
step trajectories using PFNET with
different values for the trade-off pa-
rameter (α).

Figure 7: Marginal Log Likelihood (MLL) of synthetic and real test data for models trained us-
ing PFNET with different values for the trade-off parameter (α) plotted against the corresponding
training steps.

for PF-SEFI on synthetic data, while 5c shows the effect of L on real data. We observed that for465

synthetic data, the performance started to plateau at L = 8, and hence picked L = 8 for the final466

experiments. On real data, performance continues to improve at higher values of L up to around467

L = 14 and we also note that variance in training is high when L is too small. Moreover, Figures 7a468

and 7b show the effect of different values for the trade-off parameter (α) for PFNET. While learning469

failed on synthetic data with 50 steps, we observed that α = 0.8 marginally outperformed α = 1.0470

and significantly outperformed α = 0.6.471

Table 2: Hyper-parameters used for experiments A (synthetic data with 25 step trajectories) and B
(synthetic data with 50 step trajectories). Smoothing lag (L) is only relevant for PF-SEFI, and the
trade-off parameter (α) is only relevant for PFNET.

Hyper-Parameter Value

Learning Rate 0.01
Number of Epochs 100
Smoothing Lag (L) for PF-SEFI 8
Trade-off Parameter (α) for PFNET 0.8
Number of Particles for Training 1024
Number of Particles for Evaluation 4096

15

(a)

(b)

Figure 8: Examples of synthetic trajectories. The figure shows 3 snapshots of the state of multiple
objects, each occurring 10 steps apart from each other. The green boxes are the true states of the
objects at different timesteps, while the blue polygons are the observations that the AV (orange)
makes. The green dots are the true (x, y) coordinates of the objects at all timesteps.

C.2 Training on Real Data472

For training on real data, we used a dataset of real-world road-user trajectories observed by an473

AV. Many of the frames in this set were also labelled manually by human-labelers, allowing us to474

compute relevant tracking metrics such as ADE, AYE, and AOTLL under the different models that475

we learned.476

All trajectories were approximately 20 seconds long, where each step corresponded to 0.33 seconds477

in real time, giving 60 steps in discrete time. The dataset consisted of a training set with 1502478

trajectories, and a test set containing 404 trajectories. Figure 9 shows some example trajectories.479

We ran hyper-parameter sweeps over learning rates, the smoothing lag (L) for PF-SEFI, the trade-480

off parameter (α) for PFNET, and the number of training particles. The final results are using the481

best settings of these parameters which we list in Table 3, though we note that results were quite482

insensitive to most of these settings. Figure 6 shows the effect of L on the maximum achieved483

test MLL on real data for different numbers of training particles. As can be seen, PF-SEFI does484

significantly better as L increases from 0 to 10, highlighting the added benefit of smoothing. On the485

other hand, it is quite insensitive to the smoothing lag L beyond this point, except that the variance486

16

(a) The AV in a crowded multi-
lane road surrounded by mostly
stationary objects.

(b) The AV decelerating, yielding for other objects at an intersection.

Figure 9: Examples of real-data trajectories. The figure shows 3 snapshots of the state of multiple
objects, each occurring 5 seconds apart from each other. The green boxes are the labelled bounding
boxes of objects at different timesteps, while the blue polygons are the observations that the AV
(orange) makes. The dots represent the labelled (x, y) coordinates of the objects over time.

Figure 10: Sampled observations on the same labelled states from the real data that were shown in
Figure 9. Notice the qualitative similarity in the observations in this figure relative to Figure 9.

17

Table 3: Hyper-parameters used for experiment C (real data with 60 step trajectories). Smoothing
lag (L) is only relevant for PF-SEFI, and the trade-off parameter (α) is only relevant for PFNET.

Hyper-Parameter Value

Learning Rate 0.01
Global Grad Norm Clipping 0.5
Number of Epochs 15
Smoothing Lag (L) for PF-SEFI 15
Trade-off Parameter (α) for PFNET 0.8
Number of Particles for Training 4096
Number of Particles for Evaluation 4096

(a) MLL of test real data after training models using
30 step sequences.

(b) MLL of test real data after training models using
15 step sequences.

Figure 11: Marginal Log Likelihood (MLL) of real test data for models trained on shorter sequences
plotted against the corresponding training steps.

appears to increase when L gets too large. We also find that PF-SEFI consistently improves with487

more particles.488

When training on real data, all methods were subject to very large gradients at times, especially489

earlier on when failing to track objects is much more likely, leading to very high losses and cor-490

responding gradients. In order to stabilise training, we clipped the maximum global norm of all491

gradients to 0.5. This is particularly necessary for the methods that require differentiating through492

the filter.493

D Sampled Observations from Learned Observation Model494

Figure 10 shows sampled observations from the observation model learned on real data using PF-495

SEFI. These observations were sampled using the checkpoint that produced the highest MLL, and496

for the same (labelled) states that were shown in Figure 9. The qualitative similarity between the497

real and sampled observations indicates the efficacy of our method for learning generative models498

that can be used to sample observations in closed-loop simulation.499

E Training on Shorter Sequences500

In the case of synthetic data, we note that some methods such as DPF-SGR performed poorly when501

trained on 50 step sequences (Figure 2b), however performed much better when trained on shorter502

25 step sequences (Figure 2a). We conducted similar experiments on real data to see if a similar503

improvement can be attained. Figure 11 shows the results when training DPF-SGR and other base-504

lines on 30 and 15 step sequences of real data (instead of 60). At 30 steps (Figure 11a), we find that505

all 3 baselines still fail to learn good models, while PF-SEFI performs almost as well as on length506

18

Table 4: Metrics computed on held out synthetic test data comparing PF-SEFI (us) against baselines
DPF-SGR, PFNET, and vanilla PF, on two experiments - (A) learning from synthetic data with 25
steps, and (B) learning from synthetic data with 50 steps. The Smoothing ADE and AYE reported
here are the same as in Table 1. They are contrasted with the Filtering ADE and AYE, which measure
the performance of the learned models in the online setting of state estimation.

Exp. Method Smoothing ADE (m) Filtering ADE (m) Smoothing AYE (rad) Filtering AYE (rad)

A

TRUE 0.090± 0.001 0.144± 0.001 0.014± 0.000 0.034± 0.000
PF-SEFI (us) 0.186± 0.021 0.233± 0.009 0.016± 0.000 0.039± 0.000
DPF-SGR 0.165± 0.008 0.222± 0.008 0.014± 0.000 0.035± 0.001
PFNET 0.264± 0.019 0.333± 0.030 0.017± 0.000 0.047± 0.001
PF 0.245± 0.021 0.345± 0.024 0.017± 0.000 0.047± 0.001

B

TRUE 0.088± 0.001 0.154± 0.001 0.012± 0.000 0.038± 0.000
PF-SEFI (us) 0.165± 0.013 0.239± 0.007 0.014± 0.000 0.043± 0.000
DPF-SGR 2.828± 0.415 2.888± 0.232 0.142± 0.016 0.189± 0.008
PFNET 2.809± 0.176 3.133± 0.108 0.148± 0.008 0.213± 0.009
PF 2.502± 0.042 3.207± 0.106 0.137± 0.007 0.212± 0.008

60 sequences. At 15 steps (Figure 11b), however, the baselines do actually perform much better,507

though the final performance for all methods is worse than PF-SEFI on 60 steps.508

This highlights an advantage of PF-SEFI, which is that it is relatively invariant to the length of509

sequences that it is trained on. Depending on the problem setting, there is usually a minimum510

sequence length required to obtain enough information to learn the correct models. If that sequence511

length is longer than the maximum sequence length for which a method such as DPF-SGR is stable512

to train, then one must sacrifice model quality for stable learning by cutting the sequences to shorter513

subsequences or by subsampling the sequences, throwing away some of the observations. In this514

case, shortening the sequences to 15 steps allowed for reasonable (though suboptimal) models to515

be learned using the baseline methods. In other problems it may well be the case that even more516

trimming and/or subsampling would be needed.517

F Performance on the Filtering Task518

In Section 5, we considered metrics such as ADE and AYE that pertain to the task of state estimation519

in the offline setting (known as smoothing), i.e., where we assume access to the entire sequence520

of observations, i.e. y1:T . In this section, we additionally consider the online setting (known as521

filtering) where the task is state estimation at each time step t, with observations from time step 0522

up to time step t, i.e. p(xt|y0:t). This setting is relevant for the use of our learned models on-board523

the AV.524

Table 4 reports ADE and AYE using both the smoothing and filtering distribution for the offline and525

online task of state estimation respectively. The patterns are unchanged relative to the ones observed526

in Section 5 and in Table 1. However, these results highlight the applicability of the learned in both527

settings.528

G Training with Higher Dimensional Observations529

In Section 5, we reported experiments with 32 dimensional observations (16 2D points). In this530

section, we report additional experiments with even higher dimensional observations (32 and 64531

2D points, i.e., 64 and 128 dimensional observations respectively) on the synthetic dataset with 25532

steps, trained using PF-SEFI. In Table 5 we summarise the empirical findings of these experiments.533

In each case, the learned models match the performance of the true models as measured by MLL.534

These results suggest that PF-SEFI scales well with higher dimensional observations.535

H Effect of a Noisy AV State on Learning536

In Section 5, we assume that the AV state is known precisely. In practice, we expect there to be some537

minimal errors in state estimation. To test our sensitivity to the same, we ran additional experiments538

19

Table 5: MLL computed on held out synthetic test data comparing PF-SEFI (us) against the true
models on synthetic dataset generated with 32 (A), 64 (D), and 128 (E) dimensional observations.

Exp. Method MLL

A TRUE -3.161± 0.003
PF-SEFI (us) -3.152± 0.006

D TRUE -3.171± 0.003
PF-SEFI (us) -3.163± 0.007

E TRUE -3.188± 0.003
PF-SEFI (us) -3.177± 0.006

Figure 12: Marginal Log Likelihood (MLL) of synthetic test data using models trained on synthetic
data with noisy AV states.

with the 25 steps synthetic dataset by injecting Gaussian noise (with a standard deviation of 0.5m539

in x and y, and 0.05rad in θ) in the AV’s 2D pose. We retrained our models using PF-SEFI in the540

presence of such noise, and observe no change in MLL at convergence over the held out test data541

(see Figure 12), nor in training stability.542

20

	Introduction
	Related Work
	State-Space Models and Particle Filtering
	State-Space Models
	Particle Filtering

	Score Estimation using Particle Methods
	Score Function Using Fisher's Identity
	Particle Score Approximation
	Score Estimation with Deterministic, Differentiable, Injective Motion Models

	Experiments
	Discussion, Limitations, and Future Work
	Observation Model
	Transition Model
	Motion Model
	Policy

	Training Setup
	Training on Synthetic Data
	Training on Real Data

	Sampled Observations from Learned Observation Model
	Training on Shorter Sequences
	Performance on the Filtering Task
	Training with Higher Dimensional Observations
	Effect of a Noisy AV State on Learning

