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Abstract
Diagnostic imaging modalities like magnetic resonance imaging (MRI) or computed tomog-
raphy (CT) are crucial for medical and industrial inspection. However, labeled datasets are
not always available for segmentation of rare cancer types or other defects. Therefore, a
new training strategy named gradual learning is proposed for one-shot segmentation, thus
requiring only one labeled example slice. A segmentation network trained on this input
generates suitable pseudo labels in a local neighborhood, with the quality degrading with
distance. These adjacent pseudo labels can be incorporated into the training process re-
peatedly, to process the unlabeled slices step-by-step. Experiments were conducted on MRI
head scans for skull-stripping. A total of 30 models were trained using gradual learning,
receiving one scan with one annotated slice each. On a separate test set (n = 30 scans),
the mean intersection over union (mIoU), averaged over all models, increased from 0.885
to 0.935 using gradual learning compared to training without it. When trained with the
ground truth (GT) of the same slices instead the models achieved a 0.955 mIoU.
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1. Introduction
In medical imaging, artificial intelligence has achieved considerable success in recent years.
One of the central application fields is segmentation, which, for instance, helps physicians
with the diagnosis (Liu et al., 2021). Despite the notable achievements of learning-based
methods in this area, many approaches are limited to supervised learning, which requires a
large amount of labeled training data. The acquisition of this data is very time-consuming
and not always achievable. Our developed method, however, addresses this issue and can be
applied to any slice-based 3D image data. By developing a semi-supervised method, only a
single labeled slice from the entire 3D slice stack is required to produce a full segmentation.
This is achieved using a one-shot segmentation algorithm, as exemplified on MRI head scans
to perform skull-stripping (Hoopes et al., 2022) in the following.

2. Methods
For most learning processes, it is helpful to gradually increase the task difficulty. Even if
it were possible to go from zero to hero, it might be more advantageous to take a step-
wise (Konishi et al., 2021), or in this case slice-wise, learning approach. The fundamental
concept is shown in Algorithm 1. Given a stack of images, a segmentation network can be
trained on one manually annotated starting slice. The trained network is then applied to
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the remaining slices which generates pseudo labels (Ito et al., 2019). However, if the input
data is less known to the model, the quality of the pseudo labels may deteriorate. Compared
to (Grewal et al., 2023), it is not feasible to use entropy for uncertainty estimation because
an ensemble trained on a single example might exhibit correlated uncertainties. Therefore,
for this slice-wise approach, we assume the following: The greater the real-world distance
between the training slice and the input slices, the higher the uncertainty. Thus, by focusing
only on the local neighborhood of the training slice, we leverage their high similarity. After
each training run, the network generates pseudo labels for the adjacent slices, which are
then added to the training set.

Algorithm 1: Gradual Slice-Wise Training
// MRI slices, labeled start-slice at index i, and hyperparameters;
Input: slices, start_label, start_i, num_runs, step_size
Output: data
data[start_i] ← [start_label, slices[start_i]];
for run← 1 to num_runs do

trainer ← Trainer();
trainer.train(data);
for i← 1 to run× step_size do

data[start_i± i] ← [trainer.predict(slices[start_i± i]), slices[start_i± i]];
end

end

For proof of concept, the Calgary-Campinas Public Dataset (Souza et al., 2017) for skull-
stripping, namely the segmentation of brain matter, was used. In total, 60 out of 359 scans
were selected, 30 each for training and testing, each containing 100 to 150 slices with an
input dimension of 256 × 256. The U-Net++ (Zhou et al., 2018) architecture was used to
evaluate the gradual learning. For each training scan, a separate model was trained, using
only a single annotated starting slice. Each model was then trained for ten runs, each with a
step size of five and 10000 iterations, as outlined in Algorithm 1. Subsequently, each model
was evaluated on all test scans.

3. Results and Discussion
Figure 1 shows different quantitative results for the test data set. The average achieved
mIoU at each gradual run, compared to the performance of a second model that was trained
using the GT labels instead of the pseudo labels, is depicted (1(a)). Figure 1(b) illustrates
the average, slice-wise mIoU obtained for different gradual run numbers with pseudo labels.
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(b) Average mIoU per slice (pseudo labels).
Figure 1: The average mIoU performance on the test set (30 scans).
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The mIoU increased using both pseudo labels and GT for these slices. The gradually
trained approach achieved a performance gain of about half that observed with the GT (an
increase of +0.05 vs. +0.07) relative to the baseline (mIoU at run number 1). The first
run had a high standard deviation, which emphasized a large number of uncertain slices.
This uncertainty decreased over subsequent runs. Figure 1(b) clearly shows the increased
performance per slice, as many slices, particularly around the middle (index ≈ 70), were not
segmented accurately after the first run. These slices, which typically depict the transition
between brain hemispheres, contain challenging information. Gradual learning, however,
efficiently bridged this gap.

Figure 2 shows pairs of input images and masks at run numbers 1, 5, and 10. The
initial run was based solely on a single available starting slice. Run numbers 5 and 10 were
additionally trained on the obtained pseudo labels or GT labels, respectively. The figure
depicts both the distance from the starting slice and the achieved IoU for each slice.
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Figure 2: Different qualitative examples showing input images and the achieved masks after
different runs for both the pseudo-label-trained and GT-trained networks. True
positives = , false positives = , and false negatives = .

In Figure 2, the first run shows examples of false positives and false negatives, which
were improved in subsequent runs. The best results from using pseudo labels for gradual
learning occurred in run 5, which suggests a potential cumulative error that could degrade
performance after too many runs.

4. Conclusion
This paper proposes a strategy for one-shot segmentation of slice-based imaging modalities.
With this gradual learning, slices can be processed sequentially, leveraging the potential of
the already acquired pseudo labels. Both the quantitative and qualitative evaluations are
promising when compared to the baseline network that was trained without this gradual
strategy. Notably, the proposed method has also achieved similar performance with other
industrial and medical datasets. This method can be applied to the segmentation of 3D
objects, provided there is a suitable initial annotation and the subsequent slices have high
similarity. Future work may include incorporating active learning.
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