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Abstract
The advent of large vision-language models (LVLMs) represents a remarkable advance in the quest for artificial
general intelligence. However, the models’ effectiveness in both specialized and general tasks warrants further
investigation. This paper endeavors to evaluate the competency of popular LVLMs in specialized and general tasks,
respectively, aiming to offer a comprehensive understanding of these novel models. To gauge their effectiveness in
specialized tasks, we employ six challenging tasks in three different application scenarios: natural, healthcare, and
industrial. These six tasks include salient/camouflaged/transparent object detection, as well as polyp detection, skin
lesion detection, and industrial anomaly detection. We examine the performance of three recent open-source
LVLMs, including MiniGPT-v2, LLaVA-1.5, and Shikra, on both visual recognition and localization in these tasks.
Moreover, we conduct empirical investigations utilizing the aforementioned LVLMs together with GPT-4V, assessing
their multi-modal understanding capabilities in general tasks including object counting, absurd question answering,
affordance reasoning, attribute recognition, and spatial relation reasoning. Our investigations reveal that these LVLMs
demonstrate limited proficiency not only in specialized tasks but also in general tasks. We delve deep into this
inadequacy and uncover several potential factors, including limited cognition in specialized tasks, object
hallucination, text-to-image interference, and decreased robustness in complex problems. We hope that this study
can provide useful insights for the future development of LVLMs, helping researchers improve LVLMs for both
general and specialized applications.
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1 Introduction
The emergence of large language models (LLMs) [1, 2]
has sparked a revolution in the field of natural language
processing, owing to their promising generalization and
reasoning capabilities. Motivated by this progress, re-
searchers have pioneered the development of powerful
large vision-language models (LVLMs) [3–7], leveraging
the impressive capabilities of LLMs to enhance compre-
hension of visual semantics. This advance particularly im-
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proves model performance in complex vision-language
tasks [4, 8, 9], and represents a major step toward artificial
general intelligence (AGI). AGI refers to intelligent sys-
tems that are capable of solving any task that can be per-
formed by humans or animals [10]. Generally, tasks per-
formed by humans can be divided into general and special-
ized tasks according to whether special domain knowledge
is required. Therefore, the capabilities of LVLMs can be
categorized into these two aspects accordingly, and both
of them are essential for LVLMs on the path toward AGI.

Recently, many studies have assessed and investigated
the general and specialized capabilities of LVLMs [8, 9,
11–15]. Qin et al. [9] conducted empirical studies encom-
passing various general tasks, such as object detection and
counting to evaluate the visual understanding capabilities
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of Google Bard. Fu et al. [15] introduced a comprehen-
sive evaluation benchmark to assess the perceptual and
cognitive capabilities of recent LVLMs on general tasks
(e.g., optical character recognition and object counting).
Zhang et al. [11] explored the potential of GPT-4V [5] in
visual anomaly detection, while Tang et al. [12] general-
ized Shikra [7] to challenging camouflaged object detec-
tion scenarios without training. However, as these stud-
ies primarily focus on evaluating the general capabilities
of LVLMs [8, 9, 15] or exploring the effectiveness of a par-
ticular LVLM in a specialized domain [11–14], there is a
lack of quantitative analysis regarding the performance of
recent LVLMs in a diverse range of specialized tasks, lead-
ing to an insufficient understanding of their capabilities.

In this paper, we conduct a comprehensive assessment of
several recent open-source LVLMs, spanning a diverse ar-
ray of challenging specialized and general tasks. Our evalu-
ation platform is illustrated in Fig. 1. To evaluate the ability
of LVLMs to perform specialized tasks, we select three re-
cent open-source LVLMs (MiniGPT-v2 [4], LLaVA-1.5 [6],
and Shikra [7]) and conduct quantitative assessment on
six challenging specialized tasks in three different ap-
plication scenarios: natural, healthcare, and industrial.
For natural scenarios, we select salient object detection
(SOD) [17–19], transparent object detection (TOD) [20]
and camouflaged object detection (COD) [21, 22], as these

tasks involve targets that are increasingly rare in real life
and have increasingly complex characteristics, thereby
presenting distinct challenges to LVLMs. In the field of
healthcare, the effectiveness of LVLMs is evaluated by
skin lesion detection [23] and polyp detection [24], which
show prominent and slightly weaker visual features, re-
spectively. Besides, anomaly detection (AD) [25], a vital
task in industrial scenarios, is also selected for assessment.
In academia, these six tasks come with tailored datasets
and cover broad specialized domains, thereby enabling
comprehensive evaluation of specialized capabilities of
LVLMs. As illustrated in Fig. 1, given inherent challenges
posed by these tasks in terms of recognizing and localiz-
ing target objects, we employ tailored prompts to assess
the recognition (Sect. 2) and localization (Sect. 3) capa-
bilities of the models. Furthermore, we conduct empiri-
cal investigations on a universal dataset (COCO [16]) that
is free from domain-specific expertise. We refrain from
specifying particular object types (“camouflaged”, “trans-
parent”, or other) in prompts, aiming to explore multi-
modal understanding capabilities (Sect. 4) of the above-
mentioned models and GPT-4V in general tasks (i.e., ob-
ject counting, absurd question answering, affordance rea-
soning, attribute recognition, and spatial relation reason-
ing). The assessed prominent LVLMs, include MiniGPT-
v2 [4], LLaVA-1.5 [6], Shikra [7], and GPT-4V [5], all of

Figure 1 Overall diagram of our evaluation platform. We evaluate the recent LVLMs in both specialized and general tasks using tailored prompts,
with and without specifying object types. The specialized tasks include salient object detection (SOD), transparent object detection (TOD),
camouflaged object detection (COD), polyp detection, skin lesion detection, as well as industrial anomaly detection (AD). The evaluation is realized
by conducting recognition (Sect. 2) and localization (Sect. 3) under these tasks, and three recent open-source LVLMs (MiniGPT-v2 [4], LLaVA-1.5 [6],
and Shikra [7]) are tested. Besides, empirical investigations are conducted on the COCO [16] dataset to reflect the capabilities of LVLMs in general
tasks (§ 4), including object counting, absurd question answering, affordance reasoning, attribute recognition, and spatial relation reasoning.
Examples are presented in each figure group, where “〈. . .〉” indicates a placeholder that can be replaced with other words/phrases in different tasks
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which have garnered significant research attention as key
players in the field. Among them, three accessible open-
source models, i.e., MiniGPT-v2, LLaVA-1.5, and Shikra,
are selected to ensure feasibility and reproducibility of the
evaluation in specialized tasks.

Our investigations reveal that while these models show
strong potential for specialized tasks, they still exhibit sub-
optimal performance and limited cognitive capabilities.
This reveals their inadequate transfer ability in this par-
ticular context. Performance issues are further magnified
by typical weaknesses of LVLMs such as object hallucina-
tion, text-to-image interference, and decreased robustness
in complex problems. In addition to the shortcomings re-
vealed in specialized tasks, these models also show signif-
icant room for improvement in general tasks, particularly
in object counting, spatial reasoning, and absurd question
answering.

In summary, the main contributions of this paper are
three-fold: (1) We construct an evaluation platform com-
prising six specialized tasks and five general tasks to as-
sess the effectiveness of LVLMs. (2) On the evaluation plat-
form, we evaluate the specialized capabilities of three re-
cent open-source LVLMs and also the general capabilities
of four LVLMs. (3) We analyze their performance and lim-
itations for both specialized and general tasks, and discuss
the future development and application of LVLMs.

2 Recognition via LVLMs in specialized tasks
When LVLMs are applied in these specialized tasks, recog-
nizing these target objects is a crucial step, which reflects
models’ global understanding of such tasks and directly
influences their effectiveness. Therefore, we first conduct
quantitative evaluation of their recognition capabilities on
the aforementioned six specialized tasks. Subsequently, we
carry out additional tests to delve into failure cases and
gain further insights.

2.1 Quantitative investigation
2.1.1 Experimental setup
Recognition in specialized tasks involves determining the
existence of targets and classifying them. The first eval-
uation of recognition capabilities is to judge object exis-
tence, requiring models to answer either “Yes” or “No” to
questions such as “Are there any 〈camouflaged objects〉 in
the picture? Please answer Yes or No.”, as demonstrated
in Fig. 1. The placeholder “〈. . .〉” in the queries denotes
flexible words/phrases that can be substituted in different
tasks, such as “polyps” in polyp detection. The evaluation
considers two different setups: the full set, which includes
both positive and negative samples, and the positive set,
which includes only positive samples.

Beyond the first evaluation, we delve deeper into the
fine-grained recognition ability of LVLMs by asking them
to categorize targets. Our method is to prompt LVLMs

to designate the most suitable category for a target ob-
ject from a pre-defined set of potential categories (w/ vo-
cabulary). Within this experiment, the questions such as
“Which of the following is the most likely category for the
camouflaged object in the picture? ‘seahorse, mantis, spi-
der. . . ’ ” are used. The pre-defined set contains all cate-
gories that appear in the dataset. Besides, another evalu-
ation is considered, featuring an open-vocabulary inquiry
without giving a pre-defined set (w/o vocabulary). In this
test, a straightforward question like “What is the camou-
flaged object in the picture?” is used.

The versions of LLavA-1.5 [6], Shikra [7], and MiniG-
PT-v2 [4] that are equipped with language models of ap-
proximately 7 billion parameters are selected for evalua-
tion. All configurations of each model are set as default
during evaluation. Since all tests in this paper are based
on the above configurations, we will not mention again in
the following sections.

2.1.2 Metrics
As for the first evaluation, accuracy (A) is employed to
measure the performance of LVLMs in judging object ex-
istence, while the probability of positive responses (re-
sponses indicating “yes”) on the full set is also reported for
reference. A and the probability of positive responses (Y)
can be formulated as follows:

A =
TP + TN

TP + FP + TN + FN
, (1)

Y =
TP + FP

TP + FP + TN + FN
, (2)

where TP, FP, TN, and FN denote true positive, false pos-
itive, true negative, and false negative, respectively.

For fine-grained recognition, LVLMs typically select cat-
egories from a pre-defined set when available, enabling di-
rect matching with labels for accuracy assessment. How-
ever, in the absence of such a set, the generated categories
exhibit significant variation, posing challenges in directly
evaluating correctness through class matching. Hence, we
utilize accuracy (A∗) and semantic similarity (S) [26] to
measure the performance in these two settings, respec-
tively. The former quantifies the fraction of responses that
contain correct category names, while the latter quanti-
fies the semantic similarity between responses and ground
truth labels. Considering that LVLMs may occasionally
generate similar categories not included in the pre-defined
set, S is also employed to evaluate the performance of the
w/ vocabulary setting.

2.1.3 Benchmark datasets
A total of 10 datasets from SOD (DUTS [27] and SOC [28]),
COD (COD10K [21]), TOD (Trans10K [20]), polyp detec-
tion (ColonDB [24], ETIS [29], and CP-CHILD-B [30]),
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skin lesion detection (ISIC [23]), and AD (MVTec AD [25]
and VisA [31]) are employed to evaluate the performance
of LVLMs in determining the existence of targets. Among
these datasets, SOC, COD10K, CP-CHILD-B, MVTec AD,
and VisA, which contain both positive and negative sam-
ples, are used to construct the full set, while the remaining
datasets are utilized to form the positive set. The propor-
tions of positive samples in SOC, COD10K, CP-CHILD-
B, MVTec AD, and VisA are 50%, 50.7%, 25%, 72.9%, and
55.5%, respectively.

COD10K, the only dataset that provides category la-
bels for each target, is utilized to evaluate the fine-grained
recognition ability of LVLMs. Since judging target ex-
istence in negative samples is certainly challenging for
LVLMs, we exclude the interference and use only the pos-
itive samples of COD10K to more accurately evaluate the
fine-grained recognition ability of LVLMs.

2.1.4 Result analyses and discussions
Evaluation results of existence determination on the full
set and positive set, and fine-grained recognition are de-
tailed in Tables 1-3. The absence of negative samples leads
to TN = 0 and FP = 0, and hence A in Table 2 is equivalent
to Y in Table 1. Three observations from these results are
as follows.

Over-positive issue From the results in Table 1 and the
proportion of positive samples in each dataset (in
Sect. 2.1.3), we can observe that these models consistently
yield a greater proportion of positive responses (Y) com-
pared to the proportion of positive samples. Especially on
SOC and CP-CHILD-B, these LVLMs generally achieve Y
higher than 0.9, while the proportions of positive samples
in these datasets are only 50% and 25%. This indicates that
the models tend to give positive responses, which is fur-
ther proved on the positive sets in Table 2, where extremely
high scores on A (e.g., 1.000) are achieved (particularly for
LLaVA-1.5). The reason behind this phenomenon could
be that most of the samples learned by these LVLMS dur-
ing the training are positive image-text pairs, which makes
them over-positive and thus have a tendency to answer
“yes” to the questions [32, 33].

Limited performance in determining existence Though
notably high accuracy (A) in Table 2 are achieved by
LVLMs, the inclusion of negative samples results in an
overall decrease in accuracy. As shown in Table 1, most ac-
curacies drop below 0.7, indicating an inadequate recogni-
tion ability of LVLMs in determining the existence of tar-
gets, particularly in the case where negative samples are
presented. Among these models, LLaVA-1.5 shows better

Table 1 Experimental results for three LVLMs regarding the presence of targets on the full sets. We present the probability of positive
answers (Y , representing the percentage of “yes”). The highest accuracy (A) score is highlighted in bold

Model Natural scenarios Healthcare Industrial scenarios

SOC [28] COD10K [21] CP-CHILD-B [30] MVTec AD [25] VisA [31]
A/Y A/Y A/Y A/Y A/Y

MiniGPT-v2 [4] 0.513/0.987 0.580/0.909 0.250/0.990 0.695/0.874 0.543/0.875
LLaVA-1.5 [6] 0.618/0.883 0.776/0.427 0.268/0.983 0.750/0.979 0.562/0.993
Shikra [7] 0.528/0.973 0.535/0.053 0.285/0.945 0.728/0.562 0.617/0.251

Table 2 Experimental results for three LVLMs regarding the presence of targets on the positive sets. The highest accuracy score is
marked in bold. Given the absence of negative samples in the positive set, resulting in TN = 0 and FP = 0, the metricA in this table is
equivalent to Y

Model Natural scenarios Healthcare

DUTS [27] Trans10K [20] ColonDB [24] ETIS [29] ISIC [23]
A A A A A

MiniGPT-v2 [4] 0.853 0.964 0.824 0.847 0.952
LLaVA-1.5 [6] 0.999 1.000 1.000 0.985 1.000
Shikra [7] 1.000 0.988 0.968 0.954 0.998

Table 3 Quantitative results of three LVLMs for classifying camouflaged objects. The best results are marked in bold. We conduct
classification solely on the positive samples within COD10K [21]

Setting Metric MiniGPT-v2 [4] Shikra [7] LLaVA-1.5 [6]

w/ vocabulary A∗ 0.285 0.154 0.436
w/ vocabulary S 0.567 0.545 0.673
w/o vocabulary S 0.607 0.608 0.655
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recognition capabilities for camouflaged objects, achiev-
ing higher accuracy (A) while obtaining Y scores that are
close to the proportions of positive samples in COD10K.
In contrast, Shikra shows extremely bad results (on Y) on
COD10K due to its frequent misclassification of positive
samples, indicating its less capability in recognizing cam-
ouflaged objects.

Struggling with classifying camouflaged objects The re-
sults in Table 3 clearly demonstrate that these LVLMs
struggle with classifying camouflaged objects. Although
LLaVA-1.5 achieves the highest scores, its performance is
still unsatisfactory. The unsatisfactory performance could
be attributed to various factors. First, these models may
face challenges in identifying camouflaged objects that
closely resemble the background, as indicated by their un-
satisfactory recognition accuracy in Table 1. Second, the
category of camouflaged objects may lie beyond the mod-
els’ domain of knowledge, hindering their capability to
match objects with their categories accurately. Addition-
ally, the extended length of the prompt, stemming from
the incorporation of the pre-defined set, may impede the
models’ comprehension. This aligns with the results in

Table 3, where MiniGPT-v2 and Shikra demonstrate im-
proved performance (S) when the pre-defined set is ex-
cluded (i.e. w/o vocabulary), as opposed to when the vo-
cabulary is provided (i.e. w/ vocabulary).

2.2 Uncovering insights into failure cases
Recalling that these models encounter challenges in differ-
entiating negative samples, so we conduct tests on repre-
sentative negative samples to gain insight into the potential
causes of this phenomenon. LVLMs are prompted to pro-
vide additional description or reasoning when determin-
ing the existence of targets. The results are illustrated in
Fig. 2, where three potential factors are derived.

Limited cognition towards special object types As illus-
trated in the first example of Fig. 2, when presented with
the question “Is there camouflaged object in the pic-
ture? What is it?”, MiniGPT-v2 erroneously recognizes the
“small black rock” as a camouflaged object, while LLaVA-
1.5 misclassifies a “plant” as such. These models classify
rocks and plants as camouflaged objects just because of
their visual resemblance to the surroundings, indicating
their limited knowledge of camouflage. This phenomenon

Figure 2 Responses of three LVLMs regarding the perception of camouflaged objects on negative samples. Incorrect responses are underlined in
red and marked with crosses
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also occurs in other specialized tasks, e.g., anomaly de-
tection, implying their limited cognition on special object
types.

Object hallucinations Object hallucination, which in-
volves imagining objects in the response but not present
in the image [32, 34], could impact the recognition ca-
pability of LVLMs in specialized tasks. For instance, as
demonstrated by the answers to “Is there a camouflaged
object in the picture? What is it?” in the second example
of Fig. 2, LLaVA-1.5 states that “a person is standing on
the sandy beach”, while MiniGPT-v2 mentions the pres-
ence of “small bush or tree”. These objects can interfere
with target recognition [12], resulting in decreased recog-
nition performance when determining object presence.

Text-to-image interference The inadequate performance
in determining the presence of targets may also be at-
tributed to text-to-image interference, which originates
from the textual prompts supplied to the models [34]. As
shown in the second example in Fig. 2, when prompted
with “Please describe the picture in detail”, LLaVA-1.5 pro-
vides an accurate description of the image. However, when
prompted with “Is there a camouflaged object in the pic-
ture? What is it?”, the mention of the “camouflaged object”
in the prompt may interfere with the answers, resulting in
hallucination and misjudgment of LLaVA-1.5.

2.3 Summary
Section 2 evaluates the recognition performance of Mini-
GPT-v2 [4], LLaVA-1.5 [6], and Shikra [7] in various spe-
cialized tasks. Among them, LLaVA-1.5 generally shows
better recognition ability in both existence determination
and object classification. However, quantitative analyses
indicate that while these models exhibit certain cognitive
capabilities in various specialized tasks without domain-
specific fine-tuning, their recognition performance re-
quires further enhancement. When applied directly to
these tasks, they still achieve limited cognition and under-
standing of specialized domains. Apart from such limited
cognition, other typical weaknesses of LVLMs, as revealed
in qualitative investigations, such as object hallucination
and text-to-image interference, are likely to result in infe-
rior performance.

3 Localization via LVLMs in specialized tasks
In this section, we assess the localization capabilities of
three LVLMs on the six specialized tasks, and further ex-
plore their strengths and limitations through additional
qualitative tests.

3.1 Quantitative investigation
3.1.1 Experimental setup
Recent LVLMs have demonstrated a remarkable visual
grounding capability as they can locate objects with

bounding boxes (bboxes) that are specified in language
prompts. This capability makes it feasible to apply these
models to the specialized tasks described above. To achieve
this goal, we employ a two-step methodology consisting
of detection followed by segmentation. Specifically, as il-
lustrated in Fig. 1, we initially prompt LVLMs to provide
bounding boxes for a particular type of objects (e.g., trans-
parent objects) with a question such as “Detect the 〈trans-
parent objects〉.” Subsequently, the predicted bounding
boxes are used as further prompts to the segment anything
model (SAM) [35] to perform fine segmentation. Given the
potential presence of multiple boxes in a picture, we first
employ SAM to generate a separate mask for each box and
then merge these results using the Boolean OR operation
to obtain the final segmentation result. The SAM with the
ViT-H backbone [36] is employed as the default in all the
experiments. We also conduct segmentation using ground
truth bounding boxes, which serve as the upper bound of
segmentation performance.

3.1.2 Metrics
As mentioned previously, we perform detection followed
by segmentation to utilize these models for specialized
tasks. Therefore, during evaluation, we assess their lo-
calization capabilities by evaluating their performance in
both detection and segmentation. To evaluate the de-
tection results, three widely used detection metrics (i.e.,
Precision, Recall, and F1 with an intersection-over-union
(IoU) threshold of 0.5 [37]) are adopted. Additionally, three
segmentation metrics (mean absolute error (M) [38], S-
measure (Sα) [39], and maximum F-measure (Fβ ) [40]) are
employed to assess segmentation performance. It should
be noted that since these models solely predict bounding
boxes without providing corresponding confidence values,
we exclude those common metrics such as average preci-
sion (AP) [37] in anomaly detection.

3.1.3 Benchmark datasets
Nine datasets from SOD (DUTS [27] and SOC [28]), COD
(COD10K [21]), TOD (Trans10K [20]), skin lesion de-
tection (ColonDB [24]), polyp detection (ETIS [29] and
ISIC [23]), and AD (MVTec AD [25] and VisA [31]) men-
tioned in Sect. 2.1.3 are utilized to evaluate the localization
capability. Since these datasets only provide mask annota-
tions, we derive ground truth bounding boxes from these
masks to evaluate the detection performance. Given the
inherent difficulty of LVLMs in judging target existence in
negative samples as demonstrated in Sect. 2, we solely uti-
lize positive samples from the aforementioned datasets to
assess the localization capability.

3.1.4 Result analyses and discussions
The results are reported in Tables 4-6, from which several
observations can be derived.



Jiang et al. Visual Intelligence            (2024) 2:17 Page 7 of 17

Table 4 Detection and segmentation results of MiniGPT-v2, LLaVA-1.5, and Shikra in natural scenarios. The symbols ↑/↓ indicate that a
higher/lower score is better, while the highest scores are marked in bold. The upper bound (on ground truth bounding boxes) of
detection and segmentation via LVLMs in diverse specialized tasks is also shown

Dataset Model Detection Segmentation (with SAMapplied to bboxes)

Precision ↑ Recall ↑ F1 ↑ M ↓ Fβ ↑ Sα ↑
DUTS [27] MiniGPT-v2 [4] 0.296 0.659 0.409 0.195 0.580 0.662

LLaVA-1.5 [6] 0.270 0.256 0.263 0.458 0.241 0.347
Shikra [7] 0.751 0.583 0.656 0.102 0.711 0.754
Upper bound 1.000 1.000 1.000 0.054 0.905 0.892

SOC [28] MiniGPT-v2 [4] 0.289 0.464 0.359 0.197 0.446 0.578
LLaVA-1.5 [6] 0.155 0.116 0.133 0.388 0.245 0.314
Shikra [7] 0.737 0.013 0.025 0.204 0.245 0.409
Upper bound 1.000 1.000 1.000 0.027 0.956 0.932

Trans10K [20] MiniGPT-v2 [4] 0.326 0.355 0.340 0.185 0.624 0.656
LLaVA-1.5 [6] 0.452 0.250 0.322 0.287 0.441 0.490
Shikra [7] 0.614 0.322 0.431 0.167 0.692 0.683
Upper bound 1.000 1.000 1.000 0.108 0.868 0.824

COD10K [21] MiniGPT-v2 [4] 0.338 0.575 0.426 0.308 0.390 0.524
LLaVA-1.5 [6] 0.284 0.270 0.277 0.454 0.226 0.352
Shikra [7] 0.327 0.301 0.313 0.166 0.456 0.585
Upper bound 1.000 1.000 1.000 0.054 0.808 0.844

Table 5 Detection and segmentation results of MiniGPT-v2, LLaVA-1.5, and Shikra in healthcare.

Dataset Model Detection Segmentation (with SAM applied to bboxes)

Precision ↑ Recall ↑ F1 ↑ M ↓ Fβ ↑ Sα ↑
ColonDB [24] MiniGPT-v2 [4] 0.153 0.287 0.199 0.322 0.281 0.467

LLaVA-1.5 [6] 0.245 0.237 0.241 0.190 0.273 0.504
Shikra [7] 0.163 0.163 0.163 0.540 0.232 0.338
Upper bound 1.000 1.000 1.000 0.019 0.906 0.916

ETIS [29] MiniGPT-v2 [4] 0.116 0.221 0.152 0.523 0.196 0.336
LLaVA-1.5 [6] 0.092 0.087 0.089 0.640 0.197 0.268
Shikra [7] 0.148 0.139 0.144 0.675 0.206 0.261
Upper bound 1.000 1.000 1.000 0.006 0.912 0.947

ISIC [23] MiniGPT-v2 [4] 0.321 0.610 0.421 0.350 0.561 0.509
LLaVA-1.5 [6] 0.573 0.568 0.570 0.404 0.519 0.442
Shikra [7] 0.398 0.398 0.398 0.348 0.430 0.448
Upper bound 1.000 1.000 1.000 0.106 0.842 0.765

Table 6 Detection and segmentation results of MiniGPT-v2, LLaVA-1.5, and Shikra in industrial scenarios.

Dataset Model Detection Segmentation (with SAMapplied to bboxes)

Precision ↑ Recall ↑ F1 ↑ M ↓ Fβ ↑ Sα ↑
MVTec AD [25] MiniGPT-v2 [4] 0.107 0.212 0.142 0.511 0.381 0.292

LLaVA-1.5 [6] 0.081 0.065 0.072 0.580 0.061 0.239
Shikra [7] 0.355 0.281 0.314 0.090 0.425 0.622
Upper bound 1.000 1.000 1.000 0.032 0.784 0.831

VisA [31] MiniGPT-v2 [4] 0.009 0.032 0.014 0.211 0.051 0.410
LLaVA-1.5 [6] 0.007 0.007 0.007 0.532 0.016 0.259
Shikra [7] 0.107 0.076 0.089 0.100 0.153 0.505
Upper bound 1.000 1.000 1.000 0.004 0.697 0.819
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Promising yet insufficient localization capability for specific
tasks The results in Tables 4-6 show that these LVLMs
hold promise for addressing specialized tasks without re-
quiring domain-specific fine-tuning, particularly in nat-
ural scenarios. While Shikra and MiniGPT-v2 show bet-
ter localization capability compared to LLaVA-1.5, supe-
rior segmentation performance is achieved by Shikra on
DUTS (Sα score 0.754) and Trans10K (Sα score 0.683)
when only provided with category names. However, their
detection and segmentation performance is found inade-
quate as their performance is much lower than that of the
upper bound. This indicates their insufficient localization
capability in these specialized tasks. Specifically, the low
scores in terms of Precision and Recall demonstrate that
these models struggle to generate precise bounding boxes
(i.e., most predicted boxes are inaccurate) and identify tar-
gets (i.e., most objects are missed for detection). These
limitations ultimately restrict the final segmentation per-
formance of LVLMs on specialized tasks.

Superior performance in natural scenarios According to
the results presented in Tables 4-6, these models demon-
strate superior performance in natural scenarios, espe-
cially on DUTS and Trans10K. The underlying reason may
be that transparent and salient objects are more preva-
lent and exhibit common attributes. Conversely, medical
and abnormal images are relatively scarce and with com-
plex characteristics, thereby posing greater challenges for
LVLMs.

Furthermore, we illustrate the detection and segmen-
tation results in Fig. 3. As evidence, these models face
challenges in providing accurate bounding boxes, conse-
quently resulting in subpar segmentation performance.

These findings underscore their limited localization capa-
bilities in specialized tasks.

3.2 Uncovering insights into failure cases
As mentioned in Sect. 3.1, we evaluate the localization ca-
pability of LVLMs by solely specifying object types. This
setting concurrently evaluates their recognition, reason-
ing, and localization capabilities by requiring models to ac-
curately perceive each object. Therefore, we sought to gain
insight into the underlying reasons behind such inability
by breaking down the question in Sect. 3.1 into multiple
questions. We focus on failure cases of LVLMs and prompt
them with multiple questions. In natural scenarios, two
questions are posed to assess the models in accurately lo-
calizing given objects (“Question 1”) and determining the
target of specific types (“Question 2”). In industrial sce-
narios, because anomalies are usually difficult to identify
in their detailed categories, we evaluate the recognition of
anomalies by querying the existence (“Question 1”) and
image description (“Question 2”), and further test their
capability to locate anomalous areas by providing corre-
sponding descriptions (“Question 3”). In healthcare (colon
polyp detection), we follow the same protocol as in indus-
trial cases. The results are separately presented in Figs. 4-6.
Two underlying reasons for failing to locate can then be
drawn.

Decreased robustness in complex problems The results
in Fig. 4 reveal that these models are good at locating a
given object or inferring the target, especially for salient
and transparent objects. However, they make errors when
asked to locate the target types directly, as shown in Fig. 3.
This failure indicates that they exhibit decreased robust-
ness or are unskilled when faced with more complex and

Figure 3 Detection and segmentation results of three LVLMs in six specialized tasks. The predicted bounding boxes and ground truth are marked
with blue and green. From left to right in each scenario: detection (top) and segmentation (bottom) results of MiniGPT-v2 [4], LLaVA-1.5 [6], and
Shikra [7], as well as segmentation results of upper bound (top) and the ground truth masks (bottom)
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Figure 4 Responses of three LVLMs regarding locating given objects and recognizing objects of specific types. Predicted bounding boxes and
ground truth are marked in blue and green. From top to bottom: examples of salient object detection, transparent object detection, and
camouflaged object detection. Incorrect responses are marked with red underlines and crosses

abstracted problems. That is, they need to understand the
notion of the complex concept of “salient”. It is worth not-
ing that LVLMs achieve lower performance on camou-
flaged objects, which could be attributed to the resem-
blance of camouflaged objects to their surroundings. Such
failures also demonstrate the challenge faced by LVLMs
in accurately categorizing these objects, as mentioned in
Sect. 2.2.

Limited cognition toward medical images and anomalies
Figures 5 and 6 clearly demonstrate the limited cognition

of LVLMs on medical images and anomalies. For instance,
LLaVA-1.5 and Shikra erroneously categorize the “black
and orange color scheme” and “the number 500” as anoma-
lies (as shown in Fig. 5), while MiniGPT-v2 incorrectly rec-
ognizes colon image as “the inside of an orange” (as shown
in Fig. 6). Despite their limitations, these LVLMs show
superior localization capabilities on polyp when provided
with relevant descriptions (as evidenced by the responses
to “Question 3” in Fig. 6). Nevertheless, there still remains
room for enhancement in localization regarding anomaly
detection.
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Figure 5 Responses of three LVLMs regarding recognizing and locating the anomaly. Predicted bounding boxes and ground truth are marked in
blue and green, respectively. The incorrect responses are marked with red underlines and crosses

Figure 6 Responses of three LVLMs regarding recognizing and locating the colon polyp. Predicted bounding boxes and ground truth are marked in
blue and green, respectively. Incorrect responses are marked with red underlines and crosses



Jiang et al. Visual Intelligence            (2024) 2:17 Page 11 of 17

Table 7 Performance summary of MiniGPT-v2, LLaVA-1.5, and Shikra in SOD, TOD, COD, polyp detection (PD), skin lesion detection
(SLD), and AD. Thresholds are established at 60% and 80% of the upper-bound performance to categorize model performance into
three intuitive levels: low (L), medium (M), and high (H). The notation “–” denotes inconclusive cases, since the evaluation is performed
only on the positive sets, while the models incur the over-positive issue

Model Recognition Localization

Natural Healthcare Industrial Natural Healthcare Industrial

SOD TOD COD PD SLD AD SOD TOD COD PD SLD AD

MiniGPT-v2 [4] L – L L – M M M M L M L
LLaVA-1.5 [6] M – M L – M L L L L L L
Shikra [7] L – L L – M M H M L L M

3.3 Summary
Section 3 evaluates the effectiveness of MiniGPT-v2 [4],
LLaVA-1.5 [6], and Shikra [7] in localizing targets in di-
verse specialized tasks. The results reveal that these mod-
els hold promise for addressing specialized tasks (partic-
ularly in natural scenarios), while Shikra and MiniGPT-v2
show superior localization capability compared to LLaVA-
1.5. Nonetheless, despite the successes, the detection and
segmentation performance of these models are still inad-
equate, indicating a weakness in localization capability for
specialized tasks. The limited cognition of medical images
and anomalies hampers the transfer capability of these
LVLMs, whereas decreased robustness when facing com-
plex problems may also be an additional constraint.

As a summary, we give the general performance of those
three models on the six tasks in Table 7, where intuitive
thresholds are set to categorize the models’ average perfor-
mance into three levels. It is evident that the recognition
and localization performance of these models in the six
tasks remain insufficient, with most cases exhibiting low
(L) or medium (M) performance, indicating less usability
in real-world scenarios. Notably, Shikra stands out with
a high (H) score on the TOD task, whereas among these
models, LLaVA-1.5 demonstrates superiority on recogni-
tion compared to MiniGPT-v2 and Shikra. However, the
opposite appears to be true for localization.

4 Capabilities of LVLMs in general tasks
In this section, we conduct empirical investigations to
evaluate the performance of MiniGPT-v2 [4], LLaVA-
1.5 [6], Shikra [7], and GPT-4V [5] in a diverse range of
general tasks. Given that the recognition and localization
of general objects are targets learned by many current
LVLMs, and their performance on these tasks has been
extensively studied [4, 6, 7], we shift our focus to five other
widely recognized general tasks, including object count-
ing, absurd question answering, affordance reasoning, at-
tribute recognition, and spatial relation reasoning. We per-
form some evaluations of the aforementioned tasks utiliz-
ing the COCO [16] dataset and select three representative
examples that demonstrate similar results to other tests for
display, as illustrated in Figs. 7-9. Note that, since there are

no ground truth annotations/labels regarding the above
general tasks in the COCO dataset, only empirical inves-
tigations are considered for this evaluation.

4.1 Object counting
Object counting capability serves as a comprehensive in-
dicator of the perception abilities of LVLMs, necessitat-
ing not only the recognition of individual targets but also
robust counting capabilities. To evaluate this capability,
we prompt LVLMs with questions like “How many. . . ” on
three images, as shown in Figs. 7-9. The results show that
MiniGPT-v2, LLaVA-1.5, and Shikra achieve only one-
third accuracy on this evaluation, whereas GPT-4V fails
on all tests. This suggests that there is significant room for
enhancement in the object counting capability of LVLMs.
Moreover, the inefficacy of these models in counting chal-
lenging objects, including small objects (Fig. 8), under-
scores the importance of enhancing the visual perception
capabilities inherent in vision models.

4.2 Absurd question answering
Recent LVLMs seamlessly integrate textual and visual in-
puts, achieving superior multi-modal understanding capa-
bilities. However, an intriguing question arises: what tran-
spires when there is a lack of relevance between text con-
tent and images? To explore this, we endeavor to sub-
ject these models to absurd questions. As illustrated in
Figs. 7-9, we ask LVLMs “What color is the airplane in
the picture?” on three different images where no airplane
is present. The results show that while GPT-4V responds
with “no airplane” on all tests, the other three models al-
ways give colors of the nonexistent airplane. The incorrect
responses indicate that in such cases, these models can-
not effectively utilize visual information and heavily rely
on language input to generate responses. A potential rea-
son for this phenomenon could be that the textual inputs
provide prior information to models, which leads to erro-
neous judgments of LVLMs [34].

4.3 Affordance reasoning
Affordance delineates the cognitive capability of a model
regarding the potential functionalities or interactions that
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Figure 7 Responses of four LVLMs (MiniGPT-v2, LAVa-1.5, Shikra, and GPT-4V) regarding five general tasks, encompassing object counting (question
1), absurd question answering (question 2), affordance reasoning (question 3), attribute recognition (question 4), and spatial relation reasoning
(question 5). Incorrect responses are marked with red underlines and crosses

an object can offer [9]. We delve into affordance reasoning
of LVLMs by employing inquiries such as “What objects in
the picture can I. . . ”. The outcomes show that these mod-
els can accurately identify objects capable of executing the
prescribed actions in most cases. It is noteworthy that de-
spite the incorrect responses of MiniGPT-v2 and GPT-4V
in Fig. 8, which may be caused by the partial visibility of
the chair, the mention of reasonable objects demonstrates
their ability to establish a connection between behavior
and its corresponding object. These results demonstrate
their proficient performance in affordance reasoning.

4.4 Attribute recognition
We proceed to validate the object attribute recognition ca-
pabilities of the aforementioned models using “question 4”
with increasing complexity, as illustrated in Figs. 7-9. From
the results, it is clear that there is a greater need for im-
provement in MiniGPT-v2 compared to the other models,

as MiniGPT-v2 shows a deficiency in accurately identify-
ing all the colors of flowers in Fig. 7, while other models
demonstrate commendable performance in simple cases
(in Fig. 7 and Fig. 8). Besides, the failures of LLaVA-1.5
and GPT-4V on complex cases (in Fig. 9) indicate that their
ability to solve complex problems needs to be further im-
proved.

4.5 Spatial relation reasoning
We evaluate the spatial relation reasoning capability of
LVLMs with the last question in Figs. 7-9. From this evalu-
ation, we can find that MiniGPT-v2 and Shikra exhibit su-
perior performance by providing incorrect answers only
once, while LLaVA-1.5 demonstrates the poorest perfor-
mance with incorrect answers in all tests. The experi-
mental results show that compared with MiniGPT-v2 and
Shikra, LLaVA-1.5 still has a lot of room for improvement
in spatial relation reasoning.
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Figure 8 Responses of four LVLMs (MiniGPT-v2, LAVa-1.5, Shikra, and GPT-4V) regarding five general tasks, encompassing object counting (question
1), absurd question answering (question 2), affordance reasoning (question 3), attribute recognition (question 4), and spatial relation reasoning
(question 5). Incorrect responses are marked with red underlines and crosses

5 Conclusion
5.1 Concluding remarks

In this study, we assess the progress of LVLMs by evalu-
ating their effectiveness in specialized and general tasks.
We begin by evaluating the performance of three recent
open-source LVLMs, namely MiniGPT-v2, LLaVA-1.5,
and Shikra, in six specialized tasks. These tasks include
salient/camouflaged/transparent object detection, polyp
detection, skin lesion detection, and industrial anomaly
detection. Additional empirical investigations are con-
ducted on GPT-4V and the aforementioned models to
assess their capabilities in general tasks. The quantita-
tive results indicate that while these models demonstrate
promise in specialized tasks, they exhibit inadequate trans-
fer capability when applied directly to these tasks (as
shown in Table 7). This limitation stems from their limited
understanding of specialized task domains. In addition

to the aforementioned limitation, performance challenges
are exacerbated by typical weaknesses of LVLMs, includ-
ing object hallucination, text-to-image interference, and
reduced robustness when confronted with complex prob-
lems/concepts. In addition to the lack of transfer capability
in specialized tasks, they exhibit suboptimal performance
in some general tasks, i.e. object counting, spatial relation
reasoning, and absurd question answering. The inadequa-
cies observed in both specialized and general tasks high-
light a significant gap that LVLMs have yet to bridge on the
path toward achieving AGI. These challenges also high-
light the limitations of LVLMs for real-world applications,
particularly in critical domains such as healthcare and in-
dustry where errors often yield significant negative con-
sequences. The performance and reliability of LVLMs are
still far from being adequate for real-world scenarios.
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Figure 9 Responses of four LVLMs (MiniGPT-v2, LAVa-1.5, Shikra, and GPT-4V) regarding five general tasks, encompassing object counting (question
1), absurd question answering (question 2), affordance reasoning (question 3), attribute recognition (question 4), and spatial relation reasoning
(question 5). Incorrect responses are marked with red underlines and crosses

5.2 Discussions
Based on the findings presented, we initiate several discus-
sions concerning the application of LVLMs in specialized
tasks and their future development. We hope that our dis-
cussions will stimulate thought and facilitate further ex-
ploration in this area.

Exploring more effective prompts Although the perfor-
mance of current LVLMs is suboptimal, they hold great
promise for specialized tasks. Hence, exploring effective
strategies to enhance their performance is important,
which would benefit both the field of specialized tasks and
LVLMs. In this regard, providing additional information
within prompts, a practice known as prompt engineer-
ing [41], is a viable strategy to improve their performance,
as demonstrated in Fig. 6. This strategy has also been ver-
ified by some recent studies, which offer more anomaly
definitions in prompts [11] or incorporating additional fea-
tures of camouflaged targets into the prompts [12].

Optimizing LVLMs toward specialized tasks As noted
above, prompt engineering has shown promise in improv-
ing the performance of LVLMs. However, the effectiveness
of prompt engineering is still limited when the targets are
difficult to be clearly described, such as on COD and AD.
Hence, one of the future research directions involves opti-
mizing LVLMs for specific tasks. This can be achieved by
incorporating domain-specific knowledge through tech-
niques such as prompt-tuning or fine-tuning [14, 42, 43],
thereby enhancing their performance on specialized tasks.

Mitigating hallucination and other issues Current
LVLMs encounter significant challenges in hallucination
[32, 34, 44, 45], which impact their effectiveness in both
general and specific tasks. In future research, overcoming
these challenges by leveraging advanced techniques, such
as hallucination revisor [44] and chain of visual percep-
tion [12], holds promise for enhancing the effectiveness
of LVLMs in diverse tasks and facilitating broader appli-
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cation of these models. Moreover, it is equally imperative
to implement suitable strategies, such as data augmenta-
tion that eliminate co-occurrence patterns [46], to address
the issues. Beyond hallucination, these models encounter
additional challenges, including reduced robustness when
confronted with complex problems and reduced effective-
ness in many general tasks, underscoring the fact that the
comprehensive capabilities of current LVLMs remain lim-
ited. Future research is anticipated to leverage increas-
ingly challenging datasets/problems while also provid-
ing detailed and specific procedures in instruction tun-
ing [7, 47] to enhance the comprehensive capabilities of
LVLMs. In addition, adopting advanced techniques such
as feedback/reward mechanisms [48, 49] and integrating
expert models [50] are also viable ways to enhance their
capabilities.

Incorporating additional visual information Current
LVLMs exhibit a significant limitation in leveraging vi-
sual information, as they are restricted to utilizing a sin-
gle image, typically an RGB image, for each task [51]. It
is widely recognized that for certain visual tasks, such as
object detection and recognition in complex scenes (e.g.,
those with heavy background clutter), relying solely on
a single modality of visual information poses significant
challenges [18, 52]. Therefore, the visual perceptual ca-
pabilities of LVLMs will be severely limited when applied
to these tasks. To address this issue, one potential avenue
for the future development of LVLMs is to integrate com-
plementary visual information, such as depth [53–57] and
focus cues [52], to augment their perceptual capabilities,
the effectiveness of which has been extensively validated
in the field of computer vision.

Other potential applications of LVLMs Despite the ex-
isting room for improvement, LVLMs have exhibited re-
markable proficiency in tasks such as image summariza-
tion/description and visual question answering. Their
superior proficiency in these fundamental tasks holds
promise for their application in diverse domains. For
example, harnessing the aforementioned capabilities of
LVLMs to assist data annotation can significantly reduce
annotation cost, which can further provide more support
for training expert models or enhancing model capabili-
ties [58]. Moreover, the potential of LVLMs to effectively
perform a wide range of video-language tasks, such as
video retrieval and video description, has been remarkably
demonstrated [59]. Inspired by this, LVLMs can be fur-
ther applied to address other video-language tasks, such
as video object segmentation [60–62] and video caption-
ing [63], by first generating object descriptions and then
performing the tasks in a single frame.
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