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Abstract
Relevant to all application domains where it is001
important to get at the reasons underlying deci-002
sions and sentiments, argument mining seeks003
to obtain structured arguments from unstruc-004
tured text and has been addressed recently by005
approaches typically involving some feature006
and/or neural architecture engineering.007

By embracing a transfer learning viewpoint, the008
aim of this paper is to empirically assess the po-009
tential of transferring knowledge learned with010
confluent tasks to argument mining by means of011
a systematic study with a wide range of sources012
of related knowledge possibly suitable to lever-013
age argument mining.014

This permitted to gain new empirically based015
insights into the argument mining task while016
establishing also new state of the art levels of017
performance for the three main sub-tasks in ar-018
gument mining, viz. identification of argument019
components, classification of the components,020
and determination of the relation among them,021
with a leaner approach that dispenses with heav-022
ier feature and model engineering.023

1 Introduction024

Argument mining is a Natural Language Processing025

task consisting in taking unstructured text as input026

and returning it annotated such that each portion027

occurring in it that is an argument is properly delim-028

ited and analysed (Schneider et al., 2013; Peldszus029

and Stede, 2013; Lippi and Torroni, 2016; Haber-030

nal and Gurevych, 2017; Wachsmuth et al., 2017;031

Stede and Schneider, 2018; Lawrence and Reed,032

2020). Argument mining relates to the high-level033

human capacity of reasoning (Walton et al., 2005),034

it is at the core of social interaction concerned with035

persuasion (Mercier and Sperber, 2017), and it is of036

utmost importance to enhance applications across037

different domains that aim at enhancing their ser-038

vices beyond mere sentiment analysis on the basis039

of the reasons uncovered for the associated senti-040

ments and decisions (Habernal et al., 2014).041

Argument mining has been decomposed into 042

a number of sub-tasks. While the exact number 043

and profiling of these tasks depends on the the- 044

oretical approach adopted to analyse arguments 045

(Van Eemeren et al., 2019), they typically involve 046

some sort of delimitation of the text segments con- 047

veying argument components, the classification of 048

the roles of these components in the argument (e.g. 049

premises, conclusions, etc.), and the classification 050

of the type of relation among the components (e.g. 051

support, attack, etc.) (Lawrence and Reed, 2020). 052

These sub-tasks and their eventual pipeline in 053

argument mining have been addressed recently by 054

means of supervised deep learning approaches that 055

involve some degree of neural architecture engi- 056

neering (Eger et al., 2017; Potash et al., 2017; 057

Nguyen and Litman, 2016) a.o. Recently, first at- 058

tempts to approach argument mining with Trans- 059

formers have been reported in the literature (Wang 060

et al., 2020) a.o., tough at an exploratory level that 061

leaves much of its strength still untapped. 062

This has been combined with experimentation 063

with transfer learning (Caruana, 1997; Ruder, 064

2019). Given its complexity, and the ensuing dif- 065

ficulty in producing gold labelled data, argument 066

mining is a task with a scarcity of data sets needed 067

to support supervised learning approaches. En- 068

hancing the argument mining task by transferring 069

knowledge elicited while solving other natural lan- 070

guage processing (NLP) tasks is thus a promising 071

approach to alleviate such scarceness that has been 072

tried in the literature (Mohammad et al., 2016; Stab 073

et al., 2018; Choi and Lee, 2018; Habernal et al., 074

2018) a.o., though at a haphazard level that leaves 075

still much of its potential to be studied. 076

For humans, argumentation is a high level cogni- 077

tive task that goes together with a number of other 078

capacities relating to linguistic syntactic and se- 079

mantic processing, entailment and paraphrasing, 080

question answering and language comprehension, 081

reasoning, common sense handling, etc (Lawrence 082
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and Reed, 2020; Lauscher et al., 2021). Interest-083

ingly, there is now available in the literature a wide084

range of data sets and respective NLP tasks that085

permit to address a wide range of these different086

dimensions and use them as auxiliary sources of087

knowledge in transfer learning approaches to argu-088

ment mining (Wang et al., 2018, 2019a) a.o.089

In this context, our goal is to empirically as-090

sess the potential of transfer learning to support091

argument mining by means of a systematic study092

with a wide range of possible sources of related093

tasks and knowledge possibly suitable to be trans-094

ferred. In this paper we report on the findings of095

exploring a vast experimental space that results096

from: performing sequential single-step transfer097

learning from over 40 auxiliary tasks to each one098

of three main sub-tasks of argument mining (Stab099

and Gurevych, 2014, 2017) during the fine-tuning100

phase (Section 4); further explore the source tasks101

that supported the best single-step transfer learning102

by experimenting with ways of possibly combining103

them in multi-step transfer learning processes, and104

further explore these tasks in a multi-task trans-105

fer learning setting (Section 5); and perform trans-106

fer learning during language modelling in the pre-107

training phase, without labelled data (Section 6).108

This is preceded by an overview of related work109

(Section 2) and the presentation of the experimental110

setup adopted (Section 3).111

By undertaking this study, not only new state-112

of-the-art results were achieved for the argument113

mining task, as also new empirically based insights114

were gained on how this task can be enhanced,115

showing the effectiveness of transfer learning to116

leverage argument mining and alleviate its data117

scarcity with a leaner approach that dispenses with118

heavier feature and model engineering.119

2 Related work120

Transfer learning is a machine learning technique121

that leverages knowledge from multiple source122

tasks to improve a machine learning generalization123

of a target task (Caruana, 1997). Being a method-124

ology to alleviate the lack of labelled data for the125

target task (Ruder, 2019).126

2.1 Transfer learning for argument mining127

Four families of approaches of transfer learning128

for argument mining have been reported in the lit-129

erature: (i) transfer learning across discourse do-130

mains for the same argument mining sub-task; (ii)131

cross-lingual transfer learning for a given sub-task; 132

(iii) multi-task learning among argument mining 133

sub-tasks; and (iv) sequential transfer learning from 134

sources tasks that are not argument mining sub- 135

tasks. A brief overview of them follows below. 136

Several papers have applied transfer learning 137

with a domain adaptation approach for identify- 138

ing components and clausal properties (Al-Khatib 139

et al., 2016; Ajjour et al., 2017; Daxenberger et al., 140

2017). Typically, a model is trained with data sets 141

from various discourse domains and is evaluated 142

over each domain. 143

Cross-lingual transfer learning for argument 144

mining (Aker and Zhang, 2017; Sliwa et al., 2018; 145

Eger et al., 2018; Rocha et al., 2018) is mainly per- 146

formed through direct transfer (McDonald et al., 147

2011) or projection (David et al., 2001) techniques. 148

Direct transfer techniques train a model with the 149

source language data that initializes a new model 150

for a target language, typically with less to no data. 151

Projection techniques resort to mapping the same 152

labels from the source language data set to a target 153

language data set by resorting to parallel corpora. 154

The argument mining pipeline has been ad- 155

dressed also with transfer learning by multi-task 156

and sequential approaches (Cabrio and Villata, 157

2013; Peldszus and Stede, 2015; Eger et al., 2017; 158

Potash et al., 2017; Niculae et al., 2017; Galassi 159

et al., 2018; Schulz et al., 2018; Mensonides et al., 160

2019; Chakrabarty et al., 2019; Accuosto and Sag- 161

gion, 2019; Cheng et al., 2020). Most papers train 162

models interrelating the sub-tasks in a pipeline. 163

Transfer learning from related tasks has also 164

been shown to improve the performance of argu- 165

ment mining sub-tasks. Stab et al. (2018) trans- 166

ferred shared knowledge from two different tasks: 167

a stance detection task (Mohammad et al., 2016) 168

and a topic identification task. Choi and Lee (2018) 169

transferred knowledge from the Argument Reason- 170

ing Comprehension Task (Habernal et al., 2018) 171

for a clausal classification sub-task. 172

2.2 Main sub-tasks 173

To proceed with a systematic study of transfer learn- 174

ing for argument mining on a mainstream pipeline 175

of sub-tasks (Lawrence and Reed, 2020), which 176

includes identifying argument components, classi- 177

fying their clausal roles and determining the rela- 178

tional properties among them, we resorted to the 179

AAEC corpus (Stab and Gurevych, 2014, 2017), a 180

collection of annotated essays, which has been the 181
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subject of various studies. An example from this182

data set is presented in Figure 1.183

Figure 1: Example of a labelled essay in AAEC.

The AAEC corpus integrates the annotation of184

all sub-tasks in a argument mining pipeline in a185

single data set. It contains 402 manually annotated186

essays,1 in English, with a total of 7,116 sentences187

over 1,833 paragraphs spanning 147,271 tokens.188

It adopts an argument structure model in the189

form of a tree composed of major claim (in the root190

node, as the author’s standpoint on the argument191

topic), claims and premises. Individual paragraphs192

of the essay include arguments that may be linked193

or not-linked (via relational properties) to the au-194

thor’s major claim. Both "support" and "attack"195

relations were considered.196

The annotation of text segments with argu-197

ment components resorted to an IOB tagging198

scheme (Ramshaw and Marcus, 1999). The be-199

ginning of an argument component is tagged with200

Arg-B, the following tokens in that component are201

tagged with Arg-I and non-argumentative tokens202

tagged with O. Identifying argument components203

consists of tagging each token with this IOB-tagset204

given a complete essay as a single input sequence.205

Identifying clausal properties consists of classify-206

ing spans of discourse with one of the three classes207

(major claim, claim and premise) given an entire208

essay as input. Following the literature, given209

the large imbalance among "support" and "attack"210

classes, identifying relational properties consists211

in classifying pairs of segments just as linked or212

not-linked. Statistics are displayed in Table 1.213

2.3 Literature on the AAEC tasks214

Several papers on argument mining address the215

AAEC tasks, although none address all of them, ex-216

180 essays, i.e 20% for testing, were annotated by three
annotators and the remaining 322, for training, by an expert.

Task Labels Total Train Test

Comp.
Arg-B 11% 6,089 79% 21%
Arg-I 64% 93,618 80% 20%
O 25% 47,474 80% 20%

Clausal
Major Cl 12% 751 80% 20%
Claim 25% 1,506 80% 20%
Premise 63% 3,832 79% 21%

Relat. Not-Link 82% 18,340 78% 22%
Linked 18% 3,832 79% 21%

Table 1: For the tasks annotated in AAEC (rows), the
number of instances for labels and data set split.

cept (Stab and Gurevych, 2017), which addressed 217

each task with a feature-engineered SVMs (compo- 218

nents: 0.849 macro-F1; clausal: 0.773; relational: 219

0.736), and an Integer Linear Programming (ILP) 220

algorithm (0.867, 0.826, 0.751 respectively), that 221

is an ensemble of the SVMs models supplemented 222

by rules to ensure the correct tree structure. Table 223

2 presents the results for the AAEC tasks. 224

Comp. Clau. Rel.
SVMs (Stab and Gurevych, 2017) .849 .773 .736
ILP (Stab and Gurevych, 2017) .867 .826 .751
S2S (Potash et al., 2017) .849 .767
BL (Ajjour et al., 2017) .885
BL (Eger et al., 2017) .908
BL (Spliethöver et al., 2019) .870
BL-CRF (Petasis, 2019) .901
BL-CRF (Schulz et al., 2018) .606
BL-CNN-CRF (Chernodub et al., 2019) .471
CNN-Seq. (Gemechu and Reed, 2019) .790
BERT (Wang et al., 2020) .640
LibLINEAR (Nguyen and Litman, 2016) .753

Table 2: Comparison of different results in the literature
on the AAEC tasks, in macro-F1 (except weighted-F1
in (Spliethöver et al., 2019)), with the top results in
bold, indicating the state-of-the-art scores (BL stands
for BiLSTM). It should be noted that LibLINEAR uses
the first version of the AAEC data set.

Regarding the identification of argument compo- 225

nents: (Ajjour et al., 2017) implement a BiLSTM 226

with extensive use of features and obtain a 0.885 227

macro-F1 score. (Petasis, 2019) applies several 228

types of neural networks for segmentation, with 229

the top-performing model, a BiLSTM-CRF, obtain- 230

ing a 0.901 macro-F1. (Spliethöver et al., 2019) 231

resorts to attention mechanisms with BiLSTMs for 232

unit segmentation, with the top-performing model 233

obtaining a 0.87 weighted-F1. (Eger et al., 2017) 234

apply different models, including multi-task learn- 235

ing experiments and report a 0.908 macro-F1 for 236

identifying components. 237

For identifying clausal properties: (Gemechu 238

and Reed, 2019) obtain a 0.79 macro-F1 for clausal 239

properties linking premises and conclusions taking 240

into account the similarity of target concepts and 241
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aspects. (Chernodub et al., 2019) applied a frame-242

work for tagging arguments and their retrieval, in-243

cluding a BiLSTM-CNN-CRF sequence tagger. A244

micro-F1 of 0.645 was the top-performing per-245

formance in identifying clausal properties (0.471246

macro-F1 the reproduction in (Wang et al., 2020)).247

(Wang et al., 2020) propose a multi-scale mining248

model, resorting to several encoder-only transform-249

ers (BERT) that mine different argumentation com-250

ponents at different textual levels, namely at the251

essay/paragraph/word-level. The top-performing252

model obtains 0.64 macro-F1 in identifying clausal253

properties. (Schulz et al., 2018) also apply a multi-254

task learning approach from different domains and255

argumentative structures, including AAEC, with a256

BiLSTM-CRF, obtaining a 0.606 macro-F1 score.257

Finally, as for relational properties: (Nguyen258

and Litman, 2016) obtain a 0.753 macro-F1 com-259

bining different topic to window context features260

with a linear classifier (LibLINEAR). (Potash261

et al., 2017) report a 0.849 clausal and 0.767 re-262

lational macro-F1 using a joint pointer architec-263

ture (sequence-to-sequence model with attention),264

simultaneously addressing clausal and relational265

properties with several features.266

3 Experimental space and settings267

For the tasks that are the source of knowledge to be268

transferred to argument mining models, we resorted269

to a wide array of annotated data sets, in English,270

listed in Table 3. They cover different dimensions271

in terms of linguistic and cognitive processing:272

3.1 Source tasks273

Syntax - Information on syntax is typically in-274

cluded in structured machine learning algorithms275

that address the argument mining in a feature276

engineering approach. We included part-of-277

speech (POS) tagging, named entity recognition278

(NER) (Hu et al., 2020) and several other tasks re-279

garding linguistic properties of sentences (Conneau280

and Kiela, 2018).281

Semantics - Features from semantic similarity282

(SS) are widely used in argument mining literature.283

For example, (Boltužić and Šnajder, 2015) use SS284

to identify prominent arguments in online debates,285

and (Lawrence and Reed, 2015) use SS obtained286

from WordNet to identify the components of argu-287

mentation schemes. We included a diversity of SS288

data sets, from the context-sensitive similarity task289

Wic (Pilehvar and Camacho-Collados, 2019) to the290

large data set obtained from Quora Question Pairs 291

(QQP) (Iyer et al., 2017). 292

Grammaticality - To address the widest spec- 293

trum of linguistic aspects, we included also tasks on 294

determining the grammatically of input sentences. 295

Data sets such as the Corpus of Linguistic Accept- 296

ability (CoLA) (Warstadt et al., 2019) were used, 297

that are challenging with regards this type of task. 298

Sentiment - Sentiment analysis has a certain 299

proximity to argument mining, which adds an extra 300

dimension to it by providing reasons for sentiments 301

(Habernal et al., 2014). The Stanford Sentiment 302

Treebank (SST) (Socher et al., 2013) was included. 303

Reasoning & Comprehension - Reasoning is 304

at the core of argumentation given it is crucial in 305

formulating and accepting or rejecting an argument. 306

We included several related tasks, as for instance 307

the AI2 Reasoning Challenge (ARC) (Clark et al., 308

2018) in the domain of grade-school science. 309

Question Answering & Common sense - Ques- 310

tion Answering (QA) relates to argument min- 311

ing given linguistic similarities between the Ques- 312

tion/Answer and Claim/Premise pairs. Several QA 313

tasks were included that address common sense 314

as this is closely related to argumentation, given 315

that several implicit premises, tacit assumptions or 316

inferences are to some extent regarded as common 317

sense—for example, (Saint-Dizier, 2017) uses QA 318

techniques for argument mining. 319

Entailment & Paraphrase - Although argument 320

mining and Textual Entailment (TE) are different 321

tasks, they are closely related given the similarity 322

between specific entailment properties and argu- 323

ment clausal and relational properties. Works such 324

as (Cabrio and Villata, 2012; Cocarascu and Toni, 325

2017) use models for TE to address argument re- 326

lational properties. We included several TE tasks 327

in different discourse domains, such as news and 328

forums, with STSB (Cer et al., 2017), and science, 329

with SciTAIL (Khot et al., 2018). 330

Argument mining - In addition to non argument 331

mining tasks, we considered also as a source task 332

the predecessor sub-task in the argument mining 333

pipeline, that is the identification of components 334

(for the clausal sub-task) and the clausal classifica- 335

tion (for the relational sub-task). 336

3.2 Computational models 337

In order to scan the experimental space setup for 338

our study, we resorted to the Transformer architec- 339

ture (Vaswani et al., 2017) , which became main- 340
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Task #Train
Syntax
PANX (Hu et al., 2020) 20K
UDPOS (Hu et al., 2020) 21K
Bigram Shift (Conneau and Kiela, 2018) 100K
Coord Inversion (Conneau and Kiela, 2018) 100K
Obj number (Conneau and Kiela, 2018) 100K
Odd Man Out (Conneau and Kiela, 2018) 100K
Past-Present (Conneau and Kiela, 2018) 100K
Sentence Length (Conneau and Kiela, 2018) 100K
Subj Number (Conneau and Kiela, 2018) 100K
Top Constituents (Conneau and Kiela, 2018) 100K
Tree Depth (Conneau and Kiela, 2018) 100K
Word Content (Conneau and Kiela, 2018) 100K
Semantics
COPA (Roemmele et al., 2011) 400
WIC (Pilehvar and Camacho-Collados, 2019) 5.4K
STSB (Cer et al., 2017) 7K
QQP (Iyer et al., 2017) 364K
Grammaticality
Coord (White et al., 2020) 458
Eos (White et al., 2020) 479
Definiteness (White et al., 2020) 508
Whwords (White et al., 2020) 585
CoLA (Warstadt et al., 2019) 8.5K
Sentiment
SST (Socher et al., 2013) 67K
Reasoning & Comprehension
MULTIRC (Khashabi et al., 2018) 456
WNLI (Levesque et al., 2012) 635
ARC (Clark et al., 2018) 2.2K
ROPES (Lin et al., 2019) 10K
ANLI (Bhagavatula et al., 2020) 169.6K
FEVER (Nie et al., 2019) 208.3K
Question Answering & Common sense
WSC (Levesque et al., 2012) 554
CommonsenseQA (Talmor et al., 2019) 9.7K
QUAIL (Rogers et al., 2020) 10.2K
BoolQ (Clark et al., 2019) 16K
PIQA (Bisk et al., 2020) 16.1K
CosmosQA (Huang et al., 2019) 25K
HellaSwag (Zellers et al., 2019) 39.9K
MRQA (Fisch et al., 2019) 104K
QNLI (Wang et al., 2018) 105K
Entailment/Paraphrase
CB (De Marneffe et al., 2019) 1.2K
RTE (Dagan et al., 2005) 2.5K
MRPC (Dolan and Brockett, 2005) 3.7K
SciTAIL (Khot et al., 2018) 27K
MNLI (Williams et al., 2018) 393K
Argument mining
Components (Stab and Gurevych, 2017) 117k
Clausal (Stab and Gurevych, 2017) 4k

Table 3: Data sets used for source tasks, grouped by
linguistic and cognitive dimensions related to argumen-
tation.

stream in NLP, surpassing several state-of-the-art341

results in a wide range of tasks of all sorts (Wang342

et al., 2018, 2019a). In contrast to most literature343

on argument mining, where structured feature en-344

gineering has been the favoured approach, a trans-345

former is a deep learning approach that obtains346

linguistic knowledge by transfer learning typically347

from a language modelling task.348

In order to factorize out the impact of different 349

possible models and obtain results that can be com- 350

parable across the different data points in our ex- 351

perimental space, we adopt the same type of model 352

for all of them. Taking a look at a task closely 353

related to argument mining, namely common sense 354

reasoning, there are works in the literature (Branco 355

et al., 2021) that, for this task, under comparable 356

circumstance, have experimented with prominent 357

exemplars of encoder-only, decoder-only, encoder- 358

decoder, and neuro-symbolic types of transformers, 359

which found that RoBERTa (Liu et al., 2019) offers 360

a clear advantage. Inspired by these results, we un- 361

dertook an exploratory study, repeating the above 362

experiments but now for sample cases of argument 363

mining from our experimental space and arrived 364

at the same finding. Accordingly, and given also 365

its accessible compute requirements and top perfor- 366

mance in several NLP tasks, we adopted the off-the- 367

shelf RoBERTa model, resorting to RoBERTa-large 368

variant only when the RoBERTa-base was shown 369

not to be enough to beat the SoTA. We used the 370

Jiant framework (Wang et al., 2019b; Phang et al., 371

2020) and Huggingface (Wolf et al., 2020).The 372

training objective for the pre-training model was 373

the Mask Language Modelling, which randomly 374

masks a word in a sentence and predicts it. 375

To identify argument components, a token clas- 376

sification head classifies the input sequence x1:N 377

(full essay) and gives a possible output y1:N from a 378

class set C. To identify clausal and relational prop- 379

erties, a sequence classification head classifies each 380

input sequence x1:N and gives a possible output y 381

from a class set C. 382

3.3 Baselines 383

As for the baselines, we included the class majority 384

and fine-tuned a RoBERTa-base model for each 385

AAEC task. We also included the SVMs and ILP 386

joint model from (Stab and Gurevych, 2017). 387

3.4 Evaluation 388

For the evaluation of the transfer learning, we used 389

the final result of each main argument mining sub- 390

task. As in the original AAEC work and given 391

that classes are unbalanced, we used for all tasks 392

a macro-F1 averaging (Sokolova and Lapalme, 393

2009). We applied the Independent Samples t-Test 394

regarding the RoBERTa baseline and different data 395

points obtained in our experimental space to evalu- 396

ate the statistical significance (Dror et al., 2018). 397
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4 Single-step transfer398

A first batch of experiments was concerned with399

single-step sequential transfer learning where the400

source tasks were those listed in Table 3.401

Given the large number of data points in this402

experimental space, concessions were made con-403

sidering the compute footprint, and we limited the404

hyper-parameter search by using the recommended405

values (Liu et al., 2019; Wolf et al., 2020) for each406

phase.2407

4.1 Results408

Table 4 shows the results from this first batch of409

experiments,3 which support the following major410

empirical findings:411

– The transformer with no transfer is a very strong412

baseline (off-the-self RoBERTa-base fine-tuned to413

each AAEC task). It overcomes (with 0.916 in414

components) the SoTA (0.908) of one of the three415

main tasks, and has strong scores in the other two.416

– Transfer learning can be effective to leverage417

argument mining. This is supported by scores418

above the transformer baseline: with 0.924 (against419

the baseline 0.916) in the components task; 0.843420

(against 0.820) in the clausal task; and 0.762421

(against 0.727) in the relational task.422

– Transfer learning with a transformer is very423

competitive with respect to, or even surpass, the424

SoTA. This is supported by a new SoTA of 0.924425

in components (against 0.908), and by very good426

scores, 0.843 and 0.762, against respectively 0.849427

and 0.767, in clausal and relational.428

– Source tasks whose overall cognitive complex-429

ity is high and closer to the argument mining task430

tend to be more successful in supporting effective431

transfer. The overall trend is that better results432

are found with source tasks for Reasoning, Com-433

mon sense and Entailment, as shown by the respec-434

tive averages and the larger number of top scores435

2We followed the STILT (Phang et al., 2018) approach with
an intermediate training phase using only one learning rate and
trained from 3 to 6 epochs. For each main task’s target training
phase (fine-tuning), we performed a hyper-parameter search
with three learning rates and three seeds on the development
set, creating a total of 396 models. The development set
was extracted from 10% of the original training data, thus
the training data consists of the remaining 90%. Based on
the top-performing result obtained from the development set,
hyper-parameters were determined for the test set. Further
descriptions of hyper-parameterization data together with all
materials needed to reproduce the experiments are released at
[anonymized for submission].

3All scores obtained with RoBERTa-base.

Comp. Clausal Relational
Human .886 .868 .854
SoTA - Table 2 .908 .849 .767
Baselines
RoBERTa no transfer .916 .820 .727
ILP .867 .826 .751
SVM .849 .773 .736
Majority .259 .257 .455
Syntax .906 .718 .695
PANX .917 .815 .756
UDPOS .914 .804 .743
Bigram Shift .912 .710 .743
Coord Inversion .910 .696 .735
Obj number .907 .715 .729
Odd Man Out .914 .703 .752
Past-Present .901 .713 .718
Sentence Length .885 .652 .466
Subj Number .913 .707 .746
Top Constituents .896 .708 .762*
Tree Depth .904 .674 .735
Word Content .896 .713 .455
Semantics .916 .813 .745
COPA .919* .823 .738
WIC .918 .821 .744
STSB .917 .805 .753
QQP .911 .800 .746
Grammaticality .915 .711 .753
Coord .910 .722 .754*
Eos .914 .712 .745
Definiteness .914 .705 .755
Whwords .915 .702 .758
CoLA .924 .713 .752*
Sentiment
SST .916 .820 .747*
Reasoning & Compreh .918 .811 .701
MULTIRC .919 .831 .758
WNLI .913 .788 .455
ARC .921 .820 .758
ROPES .920 .806 .748
ANLI .917 .807 .749
FEVER .914 .814 .736
QA & Common sense .918 .819 .717
WSC .919 .820 .758
CommonsenseQA .916 .819 .755*
QUAIL .921 .827 .755*
BoolQ .916 .837 .742
PIQA .914 .774 .455
CosmosQA .917 .817 .745
HellaSwag .916 .823 .746
MRQA .924 .825 .750
QNLI .916 .826 .751
Entailment/Paraphrase .919 .818 .744
CB .923* .819 .734
RTE .916 .843* .757
MRPC .916 .790 .746
SciTAIL .919 .827 .751*
MNLI .919 .812 .731
Argument mining .661
Components .843 .664
Clausal .657

Table 4: Performance on the main tasks (columns) by
different source tasks (rows). Top score underlined,
top 3 scores in bold, average score in the same family
of tasks in italics. All values found to be statistical
significant (p-value < .05) are noted with an ∗
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therein. Interestingly, the top score of 0.762 for436

relational is obtained with a syntactic source task,437

that seeks to identify Top Constituents: this is of438

relevance for the relational main task as this task is439

about relating clausal segments, which are univo-440

cally associated with their top constituents.441

– A main task can be a good source task to other442

main task for effective transfer. This is supported443

by the top score 0.843 in the clausal task when the444

components was the source task in transfer.445

– A larger size of a data set for a source task, in446

contrast to other sources tasks, do not necessarily447

leads to an enhanced performance of the transfer448

chain. This is illustrated, for instance, by the case449

of RTE, with a small data set of only 2.5K, but with450

the top score for clausal.451

5 Multi-step and multi-task transfer452

A second batch of experiments was concerned with453

multi-step and multi-task transfer learning. The454

source tasks considered were the ones with the best455

results in the previous batch of experiments with456

single-step transfer.457

Hence, two-step transfer was experimented with,458

where the typical chain encompasses the transfer459

from the components task to the clausal task and460

from the latter to the relational task. But we experi-461

mented also with other two-step instances, where462

the initial source tasks in the chain, viz. RTE, CB463

and Top Constituents (TC), are none of the argu-464

ment mining sub-tasks. Experiments with three-465

step transfer were also undertaken, where besides466

the main tasks, these other source tasks contributed467

to the chain.468

Finally, besides sequential transfer, also multi-469

task transfer learning was experimented with, in-470

volving the three argument mining sub-tasks alto-471

gether, and also pairs including two of them. Mo-472

tivated by these pairings of the sub-tasks, we re-473

turned to one-step methodology, and for the sake474

of completeness, we experimented also with every475

combination of two such sub-tasks.476

5.1 Results477

Table 5 presents the results for this second batch of478

experiments,4 which support the following major479

empirical findings:480

– Sequential transfer is more effective than multi-481

task transfer. This is supported by the overall482

4All scores obtained with RoBERTa-base except clausal
RTE⇒Cp⇒Cl.

Comp. Clausal Relational
Human .886 .868 .854
SoTA Table 2 .908 .849 .767
Baselines
RoBERTa no transfer .916 .820 .727
ILP .867 .826 .751
SVM .849 .773 .736
Majority .259 .257 .455
Sequential
Cl ⇒ Cp .920
Re ⇒ Cp .924
RTE ⇒ Cp .916
Re ⇒ Cl ⇒ Cp .912
CB ⇒ Re ⇒ Cp .915
Cp ⇒ Cl .843*
Re ⇒ Cl .811
RTE ⇒ Cl .843*
Re ⇒ Cp ⇒ Cl .839
RTE ⇒ Cp ⇒ Cl .853*
Cp ⇒ Re .664
Cl ⇒ Re .657
RTE ⇒ Re .757
Cp ⇒ Cl ⇒ Re .781*
RTE ⇒ Cp ⇒ Cl ⇒ Re .783*
TC ⇒ Cp ⇒ Cl ⇒ Re .761
Multi-task
Cp ⇔ Cl .915 .813
Cp ⇔ Re .911 .684
Cl ⇔ Re .738 .714
Cp ⇔ Cl ⇔ Re .906 .796 .757

Table 5: Performance on the three main tasks (columns)
by different transfer learning source tasks and their
chaining (rows), reported with macro-F1, with the top
results in bold, indicating new state-of-the-art scores.
Cp stands for Components, Cl for Clausal, Re for Rela-
tional and TC for Top Constituents.

stronger scores in sequential transfer experiments 483

for similar clusters of tasks. 484

– Multi-step transfer can be more effective than 485

single-step. This is supported by the results ob- 486

tained for the relational task: with the best score to 487

relational in all experimental space of 0.783, this 488

result was supported by a three step transfer that 489

leveraged the relational task with the knowledge 490

from the other two main tasks, components and 491

clausal, and from RTE; and it is supported also by 492

the results obtained for the clausal task: with the 493

best score in all experimental space of 0.853, this 494

result was supported by a two step transfer that 495

leveraged the clausal task with the knowledge from 496

other two tasks, one from the entailment (RTE) and 497

the other being another main task (components). 498

– Source tasks that are sub-tasks in the argument 499

mining pipeline are very successful in enhancing ef- 500

fective transfer. This is supported by the results ob- 501

tained with the transfer being organized along the 502

default argument mining pipeline direction, with 503

top or very close to the top second scores for the 504

chains Cp ⇒ Cl and Cp ⇒ Cl ⇒ Re, with 0.843 505
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and 0.781, respectively. But this is supported by506

the results obtained with the transfer being orga-507

nized also in different directions, like for instance,508

the best score to components in all experimental509

space, of 0.924, with Re ⇒ Cp.510

– Source tasks with the best performance for a511

given main task in the single-step setting are very512

successful in enhancing multi-step effective trans-513

fer, specially for that main task. This is supported514

by the results obtained with top or very close to the515

top second scores for the chains RTE ⇒ Cp, with516

0.916 (over the SoTA 0.908 for components), RTE517

⇒ Cp ⇒ Cl, with 0.853 (top score for clausal, and518

over its SoTA 0.849), and RTE ⇒ Cp ⇒ Cl ⇒ Re,519

with 0.774 (over the SoTA 0.767 for relational).520

– Transfer learning in the setting of an off-the-self521

transformer architecture renders new SoTA scores522

for the argument mining tasks. This is supported523

by the scores of 0.924 for components (against524

0.908 in previous SoTA), 0.853 for clausal (against525

0.849), and 0.781 for relational (against 0.767).526

6 Transfer during language modelling527

In a third batch of experiments, we experimented528

with transferring knowledge from argument min-529

ing related sources by extending the pre-train, lan-530

guage modelling phase, rather than expanding the531

fine-tuning phase (as in the first and second batch532

of experiments). We experimented with three533

argumentation-oriented data sets under the Masked534

Language Modelling objective: a self-supervised535

approach was thus adopted, with no further labelled536

data resorted to during training.537

In a first experiment, we extended the model538

with a train set obtained from the Oscar corpus (Or-539

tiz Suárez et al., 2019) by parsing 1M sentences540

containing argumentative discourse markers.5 In a541

second experiment, we extended the model with an542

argumentation data set, the Args.me corpus (Ajjour543

et al., 2019), containing 350k arguments from fo-544

rum debates. Thirdly, we extended the model with545

ATOMIC, a common sense knowledge base con-546

verted to raw text (Sap et al., 2019) containing 877k547

inferential relations.6 The results are in Table 6.548

5We extracted all sentences that contained argumentative
discourse markers from premise to conclusion and conclusion
to premise in an equal distribution.

6Each model was trained with three randomly initialized
runs, for three epochs, with a learning rate of 1e-05 and fine-
tuned for each task.

Components Clausal Relational
Baseline .916 .820 .727
Arg. markers .908 .825 .717
Args.me .915 .725 .757
ATOMIC .917 .787 .716

Table 6: Performance of models obtained by further
pre-training with data related to argument mining.

6.1 Results 549

Some performance scores of these models are 550

higher than the respective RoBERTa baseline, also 551

used in the first two batches, however without a 552

statistically significant difference. This may indi- 553

cate that for this type of approach to leveraging 554

argument mining to be as effective as the approach 555

in the first two batches of experiments, the volume 556

of argument mining related unlabelled data here 557

possibly needs to be higher than the labelled data 558

resorted to there by far more orders of magnitude. 559

7 Conclusions and future work 560

The results arrived at in this paper were obtained 561

from a large experimental space that permitted to 562

undertake a systematic empirical study aimed at 563

assessing the viability of transfer learning to lever- 564

age argument mining with the support of confluent 565

knowledge. The key findings were: • this knowl- 566

edge transfer is an effective approach and permits 567

to establish new state of the art levels of perfor- 568

mance for the three main sub-tasks in argument 569

mining, namely identification of argument compo- 570

nents, classification of components, and determi- 571

nation of the relation among them, with a leaner 572

approach that dispenses with heavier feature and 573

model engineering—even when deployed on top of 574

just an off-the-shelf Transformer model; • source 575

tasks more closely related to argument mining and 576

to the higher-level cognitive capacities mobilized 577

for argumentation tend to provide better support 578

to target tasks; • sequential transfer learning ap- 579

pears as more effective than multi-task transfer, and 580

multi-step transfer can achieve better performance 581

than single-step. 582

Concomitantly, these advances on empirically 583

based insights about the argument mining task open 584

the way to further research path that can feed future 585

work, such as carefully articulated chains of trans- 586

fer with curriculum, continual and meta-learning, 587

and also hybrid deep learning and symbolic ap- 588

proaches aimed to solve transfer learning catas- 589

trophic forgetting a.o. 590
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