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ABSTRACT

Node-level out-of-distribution (OOD) detection on graphs has received significant
attention from the machine learning community. However, previous approaches are
evaluated using unrealistic benchmarks that consider only randomly selected OOD
nodes, failing to reflect the interactions among nodes. In this paper, we introduce a
new challenging task to model the interactions of OOD nodes in a graph, termed
spreading OOD detection, where a newly emerged OOD node spreads its property
to neighboring nodes. We curate realistic benchmarks by employing the epidemic
spreading models that simulate the spreading of OOD nodes on the graph. We
also showcase a “Spreading COVID-19” dataset to demonstrate the applicability
of spreading OOD detection in real-world scenarios. Furthermore, to effectively
detect spreading OOD samples under the proposed benchmark setup, we present a
new approach called energy distribution-based detector (EDBD), which includes
a novel energy-aggregation scheme. EDBD is designed to mitigate undesired
mixing of OOD scores between in-distribution (ID) and OOD nodes. Our extensive
experimental results demonstrate the superiority of our approach over state-of-the-
art methods in both spreading OOD detection and conventional node-level OOD
detection tasks across seven benchmark datasets.

1 INTRODUCTION

While neural networks have demonstrated surpassing performance in various machine learning
tasks (He et al., 2016; Kipf & Welling, 2016), they often yield overconfident outputs for unseen data
during training, leading to crucial problems in safety-critical applications. To address this issue, con-
siderable research has been conducted on detecting new samples in out-of-distribution (OOD) (Yang
et al., 2021). However, the majority of current OOD approaches assume i.i.d. (independently and
identically distributed) samples (Hendrycks & Gimpel, 2016; Lee et al., 2018; Liu et al., 2020), and
research taking into account inter-dependency among samples has been under-explored.

Recently, several graph-based OOD detection methods (Zhao et al., 2020b; Stadler et al., 2021; Wu
et al., 2023; Song & Wang, 2022) have emerged to exploit inter-dependency among samples. These
methods leverage the graph structure, where a node represents an individual sample and an edge
models the connection between two nodes. Then, they perform node-level OOD detection tasks
on the given graph. Despite their potential, existing graph-based OOD methods exhibit a critical
limitation. Since there is no graph benchmark dataset designed for node-level OOD detection, these
methods are commonly evaluated on synthetic graph datasets where OOD samples are assigned to
randomly selected nodes.1 The previous evaluation scenarios, characterized by the random node
selection, fail to reflect interactions with the various nodes associated with OOD samples.

In real-world scenarios, newly introduced samples (i.e., OOD samples) typically engage in interactions
with other connected nodes, spreading out through edges in a graph. For example, if a person is
suddenly infected with a virus, the virus spreads out to the person’s neighboring individuals via
interaction or contact. Computer viruses (Kephart & White, 1993), brand-new products (Amini &
Li, 2011), and contaminants (Mei & Gong, 2018) are other examples of OOD sample spreading.
Consequently, for enhanced applicability in real-world scenarios, it is imperative to incorporate a new
benchmark setup for graph-based OOD detection that encompasses the spreading of OOD samples.

1Nodes belonging to randomly chosen classes (Zhao et al., 2020b; Stadler et al., 2021; Wu et al., 2023; Song
& Wang, 2022) or randomly chosen nodes (Stadler et al., 2021) are designated as OOD.
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Figure 1: Simulation of the spreading of OOD using an epidemic spreading model. Each infected
OOD node attempts to infect a susceptible neighbor with a specific probability. A blue ◦ represents a
successful infection case along an edge while a red × signifies a failure case. Note that the spread
can be initiated from multiple seed nodes in practice. The objective of spreading OOD detection is to
discriminate OOD nodes well in every t ∈ {0, . . . , T}.

In this paper, we formulate a new benchmark setup for graph-based OOD methods termed spreading
OOD detection. Figure 1 illustrates the scenario of the proposed spreading OOD detection. First,
we randomly select nodes to locate OOD samples on a graph with in-distribution (ID) nodes, as
in previous graph-based OOD methods (Zhao et al., 2020b; Stadler et al., 2021; Song & Wang,
2022; Wu et al., 2023). These selected nodes serve as sources (e.g., the first infected person) for
the spread of OOD. We model the spreading of OOD samples by a graph diffusion process where a
new sample in OOD spreads from the source nodes to its neighboring nodes. Specifically, we utilize
the epidemic spreading models (Allen, 1994; Peng et al., 2013) that treat a spreading process as a
Markov chain. Then, the goal of spreading OOD detection is to discriminate OOD nodes well across
all time stamps on the Markov chain, without prior information about the spreading process. The
proposed benchmark setup enables the evaluation of graph-based OOD methods on various graph
datasets under realistic settings. To show the applicability of spreading OOD detection in real-world
situations, we further present Spreading COVID-19, a new benchmark dataset simulating the spread
of COVID-19.

Furthermore, we propose Energy Distribution-Based Detector (EDBD), a novel graph-based OOD
method that utilizes an energy (Liu et al., 2020) as an OOD score. Unlike the previous graph-based
OOD method (Wu et al., 2023) that updates initial energies via simple neighborhood aggregation
solely based on the graph structure, we allow energies to directly control their aggregation process.
Specifically, we exploit the initial energies as a temporary OOD indicator, and regulate aggregation
on each node to alleviate the mixing of energies between OOD nodes and ID nodes. This deliberate
aggregation of EDBD enhances accurate OOD discrimination, ensuring that the influence of OOD
nodes on neighboring ID nodes is appropriately tempered. Through extensive experiments, we
demonstrate the effectiveness of EDBD not only in spreading OOD detection but also the existing
OOD detection settings.

Our key contributions are summarized as follows:

• We formulate spreading OOD detection, a new benchmark setup for node-level OOD
detection that incorporates interactions among OOD samples. We further establish a new
dataset called Spreading COVID-19 to benchmark the spreading OOD detection scenario in
real-world data. We believe that our new benchmark setup and dataset offer a robust basis
for comparing node-level OOD detection methods, considering their practical applicability
to real-world scenarios.

• We propose EDBD, a novel node-level OOD detector, which employs an attentive energy-
aggregation scheme that prevents the mixing of energies between ID nodes and OOD nodes.
Our EDBD framework demonstrates superior performance over existing state-of-the-art
methods in both spreading OOD detection and conventional OOD detection tasks on graphs.
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2 RELATED WORK

OOD Detection. OOD detection and OOD generalization are two major problems related to
OOD. This paper focuses on OOD detection (Yang et al., 2021), where the goal is to identify
unfamiliar samples not drawn from in-distribution (ID), which is the distribution of training data.
A popular line of OOD detection research designs scoring functions, including maximum softmax
probability (Hendrycks & Gimpel, 2016), ODIN score (Liang et al., 2018), Mahalanobis distance-
based score (Lee et al., 2018), and energy-based score (Liu et al., 2020). Besides, various approaches,
such as outlier exposure introducing auxiliary OOD dataset (Hendrycks et al., 2019; Liu et al., 2020),
have been proposed to tackle OOD detection. Meanwhile, OOD generalization (Shen et al., 2021)
aims to develop a machine learning model to perform well on OOD data. However, many OOD
detection studies assume that inputs are i.i.d., thus predictions are based on a single input.

OOD Detection on Graphs. In contrast, graph-structured data contain dependencies between
nodes, which are represented through the graph structure. Therefore, several methods have been
developed to consider the graph structure in detecting OOD graphs (Li et al., 2022; Liu et al., 2023).
However, while these methods target graph-level OOD detection tasks, we focus on node-level OOD
detection tasks. To address node-level OOD detection tasks on graphs, various techniques have
been developed, such as Graph-based Kernel Dirichlet distribution Estimation (GKDE) (Zhao et al.,
2020b), Graph Posterior Network (GPN) (Stadler et al., 2021), and OOD Graph Attention Network
(OODGAT) (Song & Wang, 2022). Recently, GNNSAFE (Wu et al., 2023) shows its effectiveness in
node-level OOD detection, which produces a final OOD score for a node by aggregating the initial
OOD scores of neighboring nodes. However, in GNNSAFE, a node aggregates OOD scores from
neighboring nodes, assigning equal importance to each, regardless of the OOD score distribution
across the nodes.

Machine Learning for COVID-19. The COVID-19 pandemic has driven the machine learning
community to develop solutions and proactively prepare for future epidemics. In response, many
datasets related to COVID-19 have been released, including those with medical images, textual
data, and speech data (Zhao et al., 2020a; Shuja et al., 2021). Additionally, various studies have
focused on modeling the spread of COVID-19 (Panagopoulos et al., 2021; Alguliyev et al., 2021)
and applying machine learning techniques for its classification (Barstugan et al., 2020; Song et al.,
2023). Nonetheless, our work stands apart due to our novel approach, which does not rely on specific
information or features related to COVID-19 during training. This aspect makes our approach
adaptable to new epidemics where initial information may be unavailable.

3 WHAT IS “SPREADING OOD DETECTION”

In this section, we formulate the problem of spreading OOD detection and describe the procedure of
the spreading OOD benchmark setup in detail.

3.1 NOTATION

Let G = (V, E ,X) be a graph where V = {v1, . . . , vN} represents a set of N nodes, E represents
a set of edges, and X ∈ RN×F represents a feature matrix of F -dimensional node features. A ∈
{0, 1}N×N denotes an adjacency matrix, where Ai,j = 0 only if vi and vj are not connected to each
other. xi denotes the node feature of vi, i.e., i-th row vector of X. N (vi) denotes the set of neighbors
of vi.

3.2 PROBLEM STATEMENT

Figure 4 illustrates an overview of the proposed spreading OOD detection. Formally, let Din and
Dout represent in-distribution (ID) and out-of-distribution (OOD) data, respectively. For Din, each
sample in Din is associated with a feature vector xin ∈ RF and a class label yin ∈ {1, . . . , C}.
For Dout, is associated only with a feature vector xout ∈ RF , and xout and xin are sampled from
distinct distributions. Following the conventional OOD benchmarks (Hendrycks & Gimpel, 2016),
we split Din into Dtrain

in and Dtest
in , and only Dtrain

in is used for training. During training, we train
a neural classifier with features and labels in Dtrain

in , without a graph structure, to account for real-
world spreading scenarios where classification often occurs at the sample-level (Perdisci et al., 2008;
Kannan et al., 2011; Ward et al., 2020).
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For evaluation, we assume a graph G = (V, E ,X) is given, and formulate a graph-based OOD
problem. Specifically, we define G to be a graph consisting of N ID samples in Dtest

in as nodes of
the graph. The graph structure of G represents inter-dependency among the nodes such as social
relations among people. At t = 0, we randomly select nodes in the given graph G and set them as
OOD nodes. These selected nodes serve as sources (e.g., the first infected person) for the spread of
OOD. After the initialization, each ID node is probabilistically infected by neighboring OOD nodes
for each time stamp t ≥ 1, spreading OOD samples through the graph as t increases.2 When an
ID node becomes an OOD node, its node feature is replaced by that of an OOD sample randomly
chosen in Dout. Concretely, we denote the resulting graph at each time stamp t ∈ {0, 1, . . . , T} as
Gt = (V, E ,Xt) where T is the end point of the spread and Xt denotes a feature matrix containing
OOD features for infected nodes at t.

The goal of spreading OOD detection is to discriminate OOD samples (infected nodes) from ID
samples (uninfected nodes) when Gt is given. Note that during evaluation, only Gt is provided
without any additional information such as the position of the seed node or the current time stamp t.
Thus, spreading OOD detection requires an OOD detector that performs well at any time stamp t.
This benchmark setup does not necessarily require a dedicated dataset; it can be easily implemented
using existing graph datasets (see Appendix B.2.1). Spreading OOD detection provides a realistic
setup for node-level OOD detection, which lack a standard evaluation setup except for random class
split.

3.3 OOD SPREADING SCHEME

Let M ∈ {0, 1}N×(T+1) be a binary mask representing which nodes are OOD at t where Mi,t = 1
represents that vi is OOD at t. Note that some nodes are randomly designated as OOD nodes at
t = 0, and then the OOD samples spread along edges as t increases. To formulate the spreading
of OOD samples, we employ Susceptible-Infected (SI) and Susceptible-Infected-Susceptible (SIS)
models (Allen, 1994; Peng et al., 2013), which are widely used epidemic-spreading models. In this
section, we mainly introduce the procedure using SIS model since SI model can be considered as a
special case of SIS model.

SIS model can be formulated as a Markov process. Specifically, at each time stamp t, every node in
Gt can be in one of two states: susceptible or infected. During each time interval between consecutive
time stamps, an infected node attempts to infect its susceptible neighbor with a probability of γ.
Simultaneously, an infected node may be cured with a probability of δ. The probability that vi will not
be infected by its neighbors during the interval [t− 1, t] is denoted as ζi,t. vi will remain uninfected
at t if all of vi’s neighbors were either uninfected at t − 1 or, if they were infected, they failed to
infect vi during [t − 1, t]. Thus, considering multiple neighbors of vi simultaneously, ζi,t can be
expressed as follows:

ζi,t =
∏

j∈N (i)

(Mj,t−1(1− γ) + (1−Mj,t−1))

=
∏

j∈N (i)

(1− γMj,t−1).
(1)

vi is uninfected at t if it was uninfected at t − 1 and did not receive infections from its neighbors
at t, or was infected at t − 1 but was cured at t. That is, the probability that vi is uninfected can
be expressed by (1−Mi,t−1)ζi,t + δMi,t−1ζi,t. Hence, we determine the OOD configuration at t
depending on that at t− 1 as follows:

Mi,t ∼ Ber(1− ((1−Mi,t−1)ζi,t + δMi,t−1ζi,t)), (2)

for i ∈ {1, . . . , N}. When a node is infected, the original features of the node is replaced with
features sampled from Dout. As t increases by 1, we iteratively spread OOD using Equation (2). At
each time stamp t, as features change by infection, Gt = (V, E ,Xt) is generated.

SI models are SIS models with δ = 0, which assumes that once a node is infected, it cannot be cured.
Thus, spreading with an SI model is also simulated through Eq 2 by substituting zero for δ. Figure 1
illustrates a simulation process using an SI model.

2Details of the spreading scheme (i.e. how to infect a node?) is described in Sec. 3.3.
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Figure 2: The concept of energy distribution-based aggregation (EDBA) that prevents undesired
energy mixing between ID and OOD nodes. The key design principle of EDBA is to allow the
energies themselves to control the entire aggregation process. As shown in the three graphs below,
high energy similarity between two ID nodes (or OOD nodes) strengthens energy propagation at
edge level, whereas low energy similarity between ID and OOD nodes weakens energy propagation.
The energy histograms at the bottom show energy variance among nodes, representing the energy
distribution consistency among nodes. Moving from left to right, the histogram exhibits larger
variance and subsequently lower consistency, resulting in a decrease in the total degree of aggregation
from neighboring nodes.

3.4 SPREADING COVID-19

We create Spreading COVID-19 dataset to show the applicability of spreading OOD detection in
real-world problems. Spreading COVID-19 simulates the propagation of COVID-19 on a human
network. This dataset enables the detection of individuals infected with COVID-19 by identifying
OOD nodes on the graph. In this dataset, ID data consists of four classes including normal (no illness),
allergies, cold, and flu. An OOD class is COVID-19, which is a disease that has suddenly emerged
and significantly impacted the world. For each class, we generate samples with 23-dimensional
features, created based on information about symptoms of respiratory illnesses (AAFA; Clinic),
such as chest tightness and rapid breathing. We utilize a graph structure from the LastFM Asia
graph (Rozemberczki & Sarkar, 2020). We use SI and SIS models to simulate the spread of COVID-19
and create episodes for both models, where an episode represents {Gt}t∈[0,T ]. Figure 4 in Appendix A
illustrates the process of spreading OOD detection on a mini version of the Spreading COVID-19
dataset under the single-seed setting. Further details on the Spreading COVID-19 dataset, including
justification regarding dataset construction, are included in Appendix A, and we provide the entire
dataset in the supplementary material.

4 PROPOSED METHOD

In this section, we describe our method called Energy Distribution-Based Detector (EDBD) for
spreading OOD detection. We first briefly overview the proposed EDBD in Sec 4.1. We then present
an aggregation scheme of EDBD and two main components of the aggregation scheme in Sec. 4.2,
Sec. 4.3, and Sec. 4.4, respectively.

4.1 OVERVIEW

The key challenge in our method is how to design an energy-aggregation scheme to enhance the
discriminative ability between ID nodes and OOD nodes. We utilize an energy (LeCun et al., 2006) as
an OOD score and aim to refine energies through novel aggregation scheme. To obtain these energies,
we first train a neural classifier on Dtrain

in with cross-entropy loss. After training the neural classifier,
we define an energy function of the neural classifier f(x) : RF → RC , which maps an F -dimensional
input vector x to C-dimensional logits. The energy function E(f(x)) : RC → R (LeCun et al.,
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2006) is defined by

E(f(x)) = −T · log
C∑

c=1

efc(x)/T , (3)

where a hyperparameter T is set to 1 in most cases and fy(x) denotes the y-th index of f(x), i.e., the
logit corresponding to the y-th class. The energy E(f(x)) is shown to be an efficient indicator for
OOD detection (Liu et al., 2020), where a higher E(f(x)) implies that x is more likely to be OOD.
Hence, we identify a node as an OOD node when its energy is high. Utilizing the graph structure,
neighborhood aggregation can refine the initial energies to be more helpful in OOD detection (Wu
et al., 2023). Here, we aim to design an aggregation scheme to enhance the discriminative ability of
energies between ID and OOD nodes.

Unlike the previous method (Wu et al., 2023) that uniformly aggregates energies of neighboring
nodes, our EDBD deliberately aggregates energies based on the energy distribution of neighboring
nodes (see Figure 2), which avoids the undesired mixing of energies between ID and OOD nodes.
In EDBA, the initial energies serve not only as targets for aggregation but also as controllers of
the aggregation process (see Sec. 4.2). Specifically, EDBA consists of edge-level and node-level
controllers. For the edge-level controller, EDBA employs the energy similarity matrix as the transition
matrix used for aggregation (see Sec. 4.3). Namely, EDBA weakens the energy propagated from a
node with high energy (potentially an OOD node) to a connected node with low energy (potentially
an ID node) during aggregation, and vice versa. For the node-level controller, EDBA employs the
energy consistency matrix as the degree of total aggregation from neighbors (see Sec. 4.4). When
energies are inconsistent across the neighboring nodes, ID and OOD nodes may coexist among them.
In such cases, aggregating energy from neighboring nodes may lead to undesirable outcomes. Hence,
EDBA adjusts the degree of aggregation based on the energy consistency matrix.

4.2 ENERGY DISTRIBUTION-BASED AGGREGATION

EDBA controls energy aggregation at both the edge-level and node-level to mitigate the mixing
of energies between ID nodes and OOD nodes. When Gt = (V, E ,Xt) is provided in testing
phase, EDBD obtains the initial energies E(0) = [E

(0)
1 , . . . ,E

(0)
N ]⊤ by using Equation (3), where

E
(0)
i = E(f(xt

i)). Then, EDBA refines E(0) through K-step aggregation. EDBA can be formulated
by a convex combination of E(k−1) and transitioned E(k−1) (i.e., SE(k−1)) as

E(k) = (I− αC)E(k−1) + αCSE(k−1), (4)

where S ∈ RN×N and C ∈ RN×N denote energy similarity matrix and energy consistency matrix,
respectively, while α is a hyperparameter between 0 and 1, and I ∈ RN×N is an identity matrix.
After completing K aggregation steps with EDBA, the final energies E(K) are obtained, which are
used to detect OOD samples.

During aggregation, while S determines the degree of message passing that occurs on each edge
(edge level), C determines the degree of reflecting transitioned energies from neighboring nodes for
each node (node level). These S and C are constructed by utilizing E(0).

4.3 ENERGY SIMILARITY MATRIX

Figure 3: Examples of a node and
its neighbors on Gt.

In almost all cases, energy-based OOD detectors do not show
perfect performance on test data. This implies that high energies
are not guaranteed for OOD samples. To refine imperfect ener-
gies, GNNSAFE (Wu et al., 2023) demonstrates that aggregating
energies from neighbors can be effective for OOD detection on
graph-structured data. However, simple aggregation of energies
from neighbors may impede OOD detection as an OOD node
may have ID nodes in its neighbors, and vice versa. For example,
from the central node’s point of view in Figure 3(a), two nodes
are ID among the three neighbors while the central node is OOD.
Hence, aggregating energies from neighboring nodes with equal
importance might lower the central node’s energy, which can
hamper its correct classification as OOD.
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For edge-level control of aggregation, we propose energy similarity-based aggregation. Energy
aggregation at the i-th node vi for updating its energy can be seen as a weighted sum of the i-th node’s
energy and the energies of its neighbors. In our energy similarity-based aggregation, the weight of
a neighbor’s energy is adjusted based on its similarity to the vi’s energy. Energy similarity-based
aggregation assigns the larger weight of a neighbor’s energy as the energies between the neighbor
and vi are similar. This approach ensures a more accurate energy assessment for OOD detection.

Formally, we construct a weighted adjacency matrix S ∈ RN×N as follows:

Si,j =

{
sim(E

(0)
i ,E

(0)
j ) if Ai,j = 1

0 if Ai,j = 0,
(5)

where A is the adjacency matrix of Gt and sim(E
(0)
i ,E

(0)
j ) represents the similarity between E

(0)
i

and E
(0)
j . We define sim(E

(0)
i ,E

(0)
j ) as (ϵ · (max(E(0))− min(E(0))) + (1− ϵ) · |E(0)

i −E
(0)
j |)−1,

where ϵ ∈ (0, 1) is a hyperparameter. We then normalize S to S = D−1S where D is a diagonal
matrix with diagonal entries Dii =

∑
j Si,j . This row-stochastic S effectively aggregates neighboring

energies based on the energy similarity between two connected nodes.

4.4 ENERGY CONSISTENCY MATRIX

Since OOD spreads by infecting nodes that are directly connected to them along edges, OOD nodes
cluster together. Consequently, the remaining nodes, which are ID nodes, also form clusters. In
the case where nodes are located within their cluster like Figure 3(c) and 3(d), energy aggregation
can help refining each central node’s energy to be closer to its own type since it is connected only
with nodes of the same type (OOD/ID). In contrast, Figure 3(a) and 3(b) illustrate nodes located at
the boundary between an ID cluster and an OOD cluster. In these cases, aggregating the energy of
neighbors may impede accurate OOD detection. Hence, energy consistency-based aggregation is
designed to vary the total amount of energies from neighbors for each node differently, depending on
the node’s location in relation to the clusters.

To control aggregation at node-level based on the location of a node, we analyze the energy distribution
of the node and its neighboring nodes. If a node is located within a cluster, the energy variance
among these nodes will be low (i.e., the energies are consistent), as all the nodes belong to the same
type (either OOD or ID). Conversely, for a node at the boundary, this variance will be high (i.e., the
energies are inconsistent). Thus, for each node, we construct a set denoted by S as follows,

S(vi) = {E(0)
i } ∪ {E(0)

j }j∈N (vi) (6)

for i ∈ {1, . . . , N}. We then calculate the standard deviation of the energies within S(vi) for all
i ∈ {1, . . . , N}. Let σi denote the standard deviation for the energies in S(vi). Using {σi}i=1,...,N ,
we construct a normalized diagonal matrix Σ, where diagonal entries Σi,i = σi/max({σj}j∈{1,...,N})

(0 ≤ Σii ≤ 1). Finally, we define C ∈ RN×N by

C = I− βΣ, (7)

where 0 < β ≤ 1 is a hyperparamter that controls the influence of Σii.

We recall Equation (4) of EDBA expressed by E(k) = (I − αC)E(k−1) + αCSE(k−1). If vi has
inconsistent energy distribution in its surroundings (i.e., high Σii ≈ 1), Cii approaches zero as β
increases. This implies the i-th element of αCSE(k−1) becomes almost zero, that is, the transitioned
energy of vi becomes almost zero during aggregation. Then, E(k)

i ≈ E
(k−1)
i , that is, vi preserves its

energy value. In summary, if vi is located at the boundary, Σii tends to have a high value. Thus, by
controlling β, we can make vi preserve its energy without energy mixing from its neighboring nodes.

5 EXPERIMENTS

The term label leave-out refers to the conventional node-level OOD detection task on graphs, which
assumes nodes belonging to a subset of classes as ID and leaves out the other nodes for OOD. We
conduct extensive experiments on 1) spreading OOD detection and 2) label leave-out.
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Table 1: Performance on label leave-out in benchmark datasets. The average FPR95 (%), average
AUROC (%), and average AUPR (%) across 10 independent runs are reported with standard deviation
errors.

Dataset CORA AMAZON-PHOTO

Method FPR95(↓) AUROC(↑) AUPR(↑) FPR95(↓) AUROC(↑) AUPR(↑)
MSP 40.37± 2.19 91.13± 0.22 78.16± 0.19 28.87± 1.65 94.41± 0.61 92.44± 0.75
ODIN 100.00± 0.00 49.05± 0.57 24.18± 0.08 92.72± 8.43 63.30± 7.61 51.72± 7.43
Mahalanobis 86.11± 6.19 66.93± 1.95 40.56± 3.77 56.11± 16.06 82.51± 4.83 75.73± 7.09
Energy 38.36± 3.46 91.46± 0.33 78.10± 0.29 30.49± 3.93 93.96± 0.68 91.73± 0.75
GKDE 60.88± 2.25 87.15± 0.60 72.12± 1.10 91.60± 8.81 60.00± 11.43 56.61± 12.77
GPN 44.04± 5.85 87.48± 6.38 81.21± 7.40 35.54± 11.48 91.48± 2.71 88.04± 3.41
OODGAT 85.21± 1.66 64.81± 0.87 62.65± 1.01 13.33± 0.46 97.27± 0.33 95.01± 0.60
GNNSAFE 31.31± 1.11 92.84± 0.38 82.22± 0.40 6.57± 0.38 97.36± 0.04 97.13± 0.10

EDBD 30.48± 1.11 92.95± 0.38 82.31± 0.38 5.82± 0.66 97.48± 0.07 97.60± 0.06

Dataset AMAZON-COMPUTERS COAUTHOR-CS

Method FPR95(↓) AUROC(↑) AUPR(↑) FPR95(↓) AUROC(↑) AUPR(↑)
MSP 70.77± 3.54 76.81± 2.31 71.01± 2.23 29.07± 3.53 94.15± 0.73 97.73± 0.28
ODIN 98.72± 2.56 53.36± 1.91 45.93± 2.83 100.00± 0.00 52.35± 4.36 75.26± 1.96
Mahalanobis 71.09± 1.90 73.14± 1.27 62.63± 2.43 64.40± 14.83 81.73± 3.53 84.30± 15.80
Energy 58.40± 3.41 84.72± 1.50 79.36± 1.66 18.60± 3.87 95.98± 0.71 98.39± 0.29
GKDE 90.64± 7.22 58.59± 10.46 49.23± 8.10 59.70± 7.83 88.02± 1.77 95.50± 0.65
GPN 80.55± 16.98 74.08± 15.09 69.27± 17.30 26.68± 11.56 93.54± 3.35 97.40± 1.47
OODGAT 86.16± 7.35 73.55± 5.48 84.17± 2.99 13.16± 1.13 96.83± 0.21 96.58± 0.10
GNNSAFE 39.94± 6.84 89.75± 1.79 85.63± 3.36 11.31± 1.69 97.44± 0.35 99.06± 0.13

EDBD 35.59± 6.94 92.45± 0.98 90.34± 1.45 10.19± 1.63 97.68± 0.35 99.14± 0.13

5.1 EXPERIMENTAL SETUP

Evaluation Metric. For label leave-out, we measure three metrics: 1) the false positive rate of OOD
samples when the true positive rate of ID samples is at 95% (FPR95); 2) the area under the receiver
operating characteristic curve (AUROC); 3) the area under the precision-recall curve (AUPR). In
spreading OOD detection, the goal is to perform well under any spreading situations regardless of t.
Hence we define new metrics calculated per episode. FPR95-T represents the averaged FPR95 across
each graph in {Gt}t∈{1,...,T}, where T is the length of the episode. Similarly, we define AUROC-T
and AUPR-T, which are the averaged AUROC and AUPR values, respectively, calculated across each
graph at different time stamps within the episode.

Datasets. For label leave-out, following the setup in Wu et al. (2023), we perform experiments on
four benchmark datasets: Cora (Sen et al., 2008), Amazon-Photo (Shchur et al., 2018), Amazon-
Computers (Shchur et al., 2018), and Coauthor-CS (Sinha et al., 2015). For spreading OOD detection,
We conduct experiments on three benchmark datasets, including Cora, LastFM Asia (Rozemberczki
& Sarkar, 2020), and the proposed Spreading COVID-19 dataset. We utilize SI and SIS models for
epidemic spreading simulations. For each (dataset, epidemic model), we create 15 episodes which
conclude when over 75% of nodes are infected. We then allocate five episodes for the validation set
and ten episodes for the test set. For the benchmark datasets used in spreading OOD detection, we
employ a Bernoulli distribution (i.e., x ∼ Ber(0.1)) to generate the features of OOD nodes.

Baselines. We compare EDBD with eight state-of-the-art methods, which can be divided into two
categories: (1) OOD detection methods for i.i.d. sampled data and (2) OOD detection methods
for graph-structured data. Category (1) includes MSP (Hendrycks & Gimpel, 2016), ODIN (Liang
et al., 2018), Mahalanobis (Lee et al., 2018), and Energy (Liu et al., 2020), while Category (2)
comprises GKDE (Zhao et al., 2020b), GPN (Stadler et al., 2021), OODGAT (Song & Wang, 2022)
and GNNSAFE (Wu et al., 2023). GKDE and OODGAT are evaluated solely on label leave-out since
they requires identical graph structures during both the training and testing phases.

Backbone Encoder. For fair comparisons, we use the same backbone for all baselines and the
proposed method. For spreading OOD detection, we utilize a multi-layer perceptron (MLP) since the
connectivity among samples is not provided during training. For label leave-out, where both training
and testing are conducted on a given graph, we exploit GCN (Kipf & Welling, 2016) as a backbone.
For all experiments, hyperparameters are tuned on validation sets. Further experimental details are
provided in Appendix B.
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Table 2: Performance on Spreading OOD detection in the Spreading COVID-19 dataset. The average
FPR95-T (%), average AUROC-T (%), and average AUPR-T (%) across 10 episodes are reported
with standard deviation errors.

Single-seed setting
Epidemic model SI SIS

Method FPR95-T (↓) AUROC-T (↑) AUPR-T (↑) FPR95-T (↓) AUROC-T (↑) AUPR-T (↑)
MSP 94.25± 4.56 38.51± 5.41 70.17± 4.55 97.98± 1.38 34.45± 5.87 70.01± 2.73
ODIN 93.19± 5.00 61.82± 11.50 78.08± 6.05 89.87± 5.76 65.86± 10.63 80.26± 5.54
Mahalanobis 63.64± 44.93 47.29± 42.24 79.46± 15.28 72.71± 36.33 46.61± 34.07 78.95± 12.00
Energy 54.82± 17.43 80.46± 8.54 88.00± 5.52 67.94± 18.98 73.94± 14.49 85.51± 5.70
GPN 95.29± 2.36 50.35± 13.69 79.55± 65.45 87.07± 14.50 67.20± 12.68 83.03± 4.40
GNNSAFE 69.76± 15.23 80.65± 6.07 87.40± 4.12 77.76± 14.64 76.02± 12.65 85.53± 5.30

EDBD 54.67± 17.58 81.60± 8.35 88.22± 5.59 67.42± 19.75 76.22± 14.58 85.94± 5.94

Multi-seed setting
Epidemic model SI SIS

Method FPR95-T (↓) AUROC-T (↑) AUPR-T (↑) FPR95-T (↓) AUROC-T (↑) AUPR-T (↑)
MSP 96.29± 1.94 36.41± 5.86 58.63± 3.18 96.14± 1.87 37.49± 5.36 55.23± 2.98
ODIN 92.61± 3.42 63.15± 12.07 72.47± 6.61 91.93± 4.69 64.59± 10.37 69.05± 6.80
Mahalanobis 90.44± 0.53 27.93± 0.67 53.78± 0.95 90.55± 0.50 31.09± 0.63 54.08± 0.62
Energy 49.78± 14.73 82.66± 6.79 85.94± 4.92 60.40± 10.33 80.18± 6.24 81.63± 4.84
GPN 87.72± 6.17 62.81± 9.26 75.13± 5.38 89.29± 5.18 61.85± 8.69 71.39± 5.29
GNNSAFE 63.42± 14.09 82.21± 5.91 86.11± 4.33 63.32± 1.14 77.80± 5.16 80.40± 3.96

EDBD 49.62± 15.22 83.29± 6.68 86.17± 4.99 59.93± 10.47 80.68± 6.16 81.70± 4.92

Table 3: Performance on Spreading OOD detection in benchmark datasets. The average FPR95-T
(%), average AUROC-T (%), and average AUPR-T (%) across 10 episodes are reported with standard
deviation errors.

Epidemic Dataset CORA LASTFM ASIA
model Method FPR95-T (↓) AUROC-T (↑) AUPR-T (↑) FPR95-T (↓) AUROC-T (↑) AUPR-T (↑)

SI

MSP 24.80± 16.38 96.04± 2.26 97.73± 1.13 52.98± 0.41 93.71± 1.80 97.96± 0.44
ODIN 100.00± 0.00 45.65± 10.85 74.03± 4.70 100.00± 0.00 17.35± 6.96 68.61± 4.08
Mahalanobis 65.32± 44.90 65.50± 32.93 88.21± 11.85 59.29± 48.43 87.34± 15.97 96.66± 3.92
Energy 22.79± 18.21 96.36± 2.12 98.03± 1.07 54.44± 16.82 93.56± 1.71 97.86± 0.45
GPN 100.00± 0.00 53.71± 4.38 73.93± 2.67 100.00± 0.00 19.70± 9.19 75.05± 18.16
GNNSAFE 31.15± 10.74 93.45± 2.16 97.59± 0.71 64.83± 8.52 83.73± 4.22 93.94± 1.05
EDBD 14.99± 14.53 97.54± 1.81 98.68± 0.85 46.68± 14.83 94.10± 1.71 98.11± 0.41

SIS

MSP 40.47± 8.78 92.91± 1.34 93.22± 1.59 57.19± 18.25 91.48± 2.88 94.26± 1.43
ODIN 95.52± 8.97 52.14± 11.24 69.25± 6.79 100.00± 0.00 20.71± 9.38 61.54± 5.78
Mahalanobis 74.28± 40.81 68.97± 25.99 88.02± 10.64 86.86± 28.32 83.20± 6.94 94.87± 1.96
Energy 38.95± 9.16 93.27± 1.34 93.59± 1.55 58.12± 18.99 91.08± 3.27 94.07± 1.57
GPN 100.00± 0.00 47.38± 4.39 69.93± 6.55 100.00± 0.00 22.41± 13.41 87.30± 9.84
GNNSAFE 47.55± 11.24 90.91± 2.78 93.19± 1.54 73.94± 8.07 82.73± 4.55 90.17± 1.64
EDBD 32.61± 7.18 94.17± 1.22 94.19± 1.39 52.37± 19.93 91.78± 3.04 94.40± 1.52

5.2 LABEL LEAVE-OUT RESULTS

The results of label leave-out, the conventional OOD detection setting on graphs, are demonstrated
in Table 1. In this setting, EDBD outperforms state-of-the-art methods across all metrics. Class
homophily, which is the phenomenon where nodes within the same class tend to connect with each
other, is inherent in many graph-structured datasets. Thus, since label leave-out treats a subset of
classes as OOD, OOD nodes in this setting may also exhibit dense connections among themselves,
similar to the pattern observed in spreading OOD detection. We confirm that EDBD achieves
state-of-the-art performance across all the datasets.

5.3 SPREADING OOD DETECTION RESULTS

Table 2 shows the results of spreading OOD detection on the Spreading COVID-19 dataset. The
results of spreading OOD detection on existing benchmark datasets are shown in Table 3. Our EDBD
achieves state-of-the-art performance regardless of the epidemic model on the Spreading COVID-19,
Cora, and LastFM Asia datasets. The proposed EDBD achieves the best performance across the
evaluation metrics, regardless of the epidemic model, both under the single-seed setting and the multi-
seed setting. GNNSAFE, which refines energies via neighborhood aggregation, suffers performance
degradation compared to Energy, a method agnostic to graph structure, in terms of FPR95-T. This
indicates that aggregating without consideration of energy distribution results in a performance drop.
In contrast, EDBD consistently achieves superior performance across all experiments, demonstrating
the effectiveness of the proposed energy-distribution-based aggregation scheme. Through the results
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Table 4: Ablation study of EDBD on spreading OOD detection and label leave-out, conducted on
Cora. S and C denote energy similarity matrix and energy consistency matrix, respectively.

Label leave-out
Dataset Amazon-Photo Coauthor-CS

S C FPR95(↓) AUROC(↑) AUPR(↑) FPR95(↓) AUROC(↑) AUPR(↑)
✗ ✗ 6.57± 0.38 97.36± 0.04 97.13± 0.10 11.31± 1.69 97.44± 0.35 99.06± 0.13
✗ ✓ 6.43± 0.70 97.47± 0.07 97.58± 0.05 10.98± 1.85 97.55± 0.36 99.11± 0.12
✓ ✗ 6.05± 0.62 97.41± 0.06 97.22± 0.02 10.66± 1.65 97.59± 0.31 99.10± 0.09
✓ ✓ 5.82± 0.66 97.48± 0.07 97.60± 0.06 10.19± 1.63 97.68± 0.35 99.14± 0.13

Spreading OOD on COVID-19
Model SI SIS

S C FPR95-T(↓) AUROC-T(↑) AUPR-T(↑) FPR95-T(↓) AUROC-T(↑) AUPR-T(↑)
✗ ✗ 69.76± 15.23 80.63± 6.07 87.40± 4.12 77.76± 14.64 76.02± 12.65 85.53± 5.30
✗ ✓ 56.25± 18.02 81.54± 8.39 88.10± 5.57 70.59± 19.60 76.11± 14.31 85.86± 5.81
✓ ✗ 54.86± 17.60 81.58± 8.32 88.16± 5.59 68.03± 19.51 76.16± 13.97 85.88± 5.85
✓ ✓ 54.67± 17.58 81.60± 8.35 88.22± 5.59 67.42± 19.75 76.22± 14.58 85.94± 5.94

Spreading OOD on Cora
Model SI SIS

S C FPR95-T(↓) AUROC-T(↑) AUPR-T(↑) FPR95-T(↓) AUROC-T(↑) AUPR-T(↑)
✗ ✗ 31.15± 10.74 93.45± 2.16 97.59± 0.71 47.55± 11.24 90.91± 2.78 93.19± 1.54
✗ ✓ 20.42± 14.48 96.77± 1.80 98.59± 0.80 38.92± 10.04 93.32± 1.69 94.07± 1.41
✓ ✗ 15.63± 13.91 97.51± 1.78 98.61± 0.83 32.84± 7.31 94.06± 1.23 94.10± 1.39
✓ ✓ 14.99± 14.53 97.54± 1.81 98.68± 0.85 32.61± 7.18 94.17± 1.22 94.19± 1.39

on the benchmark datasets, we confirm that EDBD is consistently effective in spreading OOD
detection under various settings.

5.4 ABLATION STUDY

We conduct on an extensive ablation study to analyze the effectiveness of the components in EDBD.
We perform the ablation study under six experimental settings, including different tasks, datasets, and
epidemic models. Table 4 demonstrates the results of the ablation study. We exclude S by replacing
sim(E

(0)
i ,E

(0)
j ) in Equation (5) with 1. This implies that EDBD utilizes only graph structure during

the energy aggregation process without considering energy similarity between two connected nodes.
To exclude C, we simply set in Equation (4) to zero. The first rows of the tables in Table 4, where both
S and C, correspond to the performance of GNNSAFE, as it relies solely on the graph structure during
energy aggregation. We confirm that the two components significantly contribute to performance
improvement. The combination of two components results in the best performance.

Appendix C provides a complexity analysis in terms of time and memory (in Appendix C.1), statistical
analysis (in Appendix C.6), performance according to time stamps (in Appendix C.2), and extensive
experiments that demonstrate the robustness of EDBD under realistic scenarios, including dynamic
graph structures (in Appendix C.3) and missing features (in Appendix C.4).

6 CONCLUSION

In this paper, we introduce spreading OOD detection, a problem that facilitates the evaluation of
node-level OOD detection under realistic settings. To highlight the significance of this problem, we
then present the Spreading COVID-19 dataset, which allows node-level OOD detection methods
to identify COVID-19 without prior knowledge of the virus. Moreover, we propose EDBD that
leverages flexible aggregation depending on each node’s circumstance. Our aggregation scheme is
not only applicable to refining energy but also can be extended to the refinement of any scalar value
with noise on a graph. However, our aggregation scheme is effective when connected nodes tend to
have similar scalar values. In contrast to graph-level OOD detection, there is no dataset specifically
designed for node-level OOD detection. We hope that our work will inspire the creation of datasets
for practical node-level OOD detection research within the machine learning community. Since we
employ SI and SIS models in this work, spreading OOD detection using complex epidemic models is
left for future research.
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A SPREADING COVID-19 DATASET

Figure 4: Illustration of spreading OOD detection on the Spreading COVID-19 dataset. A classifier
can only be trained using ID data. During testing, OOD nodes emerge on a network and serve as seed
nodes for spreading. OOD begins to spread from these seed nodes by infecting neighboring nodes.
The objective of spreading OOD detection is to discriminate OOD nodes from ID nodes in a graph
where the spread is occurring. Spreading OOD detection is a generalization of the existing OOD
detection setting that tranforms randomly selected nodes into OOD nodes. (All emojis designed by
OpenMoji.)

Spreading COVID-19 is a dataset for spreading OOD detection. In this dataset, ID classes are normal
(no illness), allergies, cold, and flu. An OOD class is COVID-19. For each class, we generate
samples with 23-dimensional features, created based on information about symptoms of respiratory
illnesses (AAFA; Clinic). Features include the following symptoms: {sore throat, cough, muscle ache,
rapid breathing, chest tightness, chill, runny nodes, stuffy nose, fever, nausea, vomiting, diarrhea,
shortness of breath, difficulty breathing, loss of taste, loss of smell, itchy nose, itchy eyes, itchy
mouth, itchy inner ear, sneezing, pink eye, tiredness}. These features are sampled according to the
frequency of each symptom’s occurrence in the respective diseases. For each illness class, we set the
sampling probability for symptoms (e.g., features) with ‘usually/common’, ‘sometimes’, ‘rarely’, and
‘no’ to 0.7, 0.5, 0.1, and 0, respectively. For normal class, we set the sampling probability equally to
0.01 across all the symptoms. Through these processes, Dtrain

in , Dval
in , Dtest

in , and Dout are prepared.
Dtrain

in and Dval
in contain 450 and 50 samples for each ID class, respectively.

We utilize the graph structure from the LastFM Asia graph (Rozemberczki & Sarkar, 2020), which
has 7, 624 nodes. The LastFM Asia dataset is licensed under a Creative Commons Attribution 4.0
international (CC BY 4.0) license. This license allows for the sharing and adaptation of the dataset
for any purpose, provided that the appropriate credit is given. We then assign samples randomly
sampled from Dtest

in to each node, representing an individual. We randomly assign 1, 906 samples to
nodes for each ID class. For generating an episode of COVID-19 spreading, we randomly select a
seed node and replace its features with features randomly sampled from Dout to simulate the node
being infected with COVID-19. Using these SI and SIS models, the initial seed node attempts to
infect neighboring nodes. We set γ = 0.5 for SI model and (γ, δ) = (0.5, 0.1) for SIS model. For
each model, we create 15 episodes. We conclude an episode when over 75% of nodes are infected.
As a result, we obtain a dataset for a single-seed setting. For a multi-seed setting, we repeat the
aforementioned procedures by setting the number of initial seed nodes to 100.

We provide the Spreading COVID-19 dataset in the supplementary material. This zip file con-
tain four types of elements: (1)‘graph edge index.npy’: the graph structure; (2) ‘x allergy.npy’,
‘x cold.npy’, ‘x covid.npy’; ‘x flu.npy’, ‘x normal.npy’: generated symptom features for each class
(3) ‘graph x.npy’ ID-class features of the graph before COVID-19 spreading is applied; (4) npy
format files in the ‘episodes’ folder: These files are matrices of shape N by T , where the t-th column
represents the infection status of the nodes at time stamp t. In this column, a value of 1 indicates
infected, and a value of 0 indicates not infected. The license for the Spreading COVID-19 dataset is
Creative Commons Attribution 4.0 international (CC BY 4.0).
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Justification on Using LastFM Asia for the Graph Structure. Publicly available COVID-19 data
with offline contact networks among individuals is lacking while there are many datasets containing
infection populations over time and individual symptoms. To the best of our knowledge, except
for a few small-sized networks, there are no publicly available datasets for offline social networks
to meet a COVID-19 dataset. Dunbar et al. (2015) provides a rationale that online networks share
very similar structural characteristics with offline networks. Based on this rationale, for the most
realistic alternative to the offline social network, we utilize the online social network (LastFM Asia)
to simulate the pandemic in our Spreading COVID-19 dataset. As demonstrated in Singh et al. (2021),
our setting is more promising than using randomly generated networks as used in Alrasheed et al.
(2020); Rafiq et al. (2023).

Figure 5: Node degree distributions of the LastFM Asia network and the high school contact network.

Comparison between LastFM Asia and a human contact network. The edges of the LastFM
Asia dataset are constructed based on mutual follower relationships among users. Due to the lack
of large human contact networks, we utilize the structure of this dataset to simulate the spread of
COVID-19 in the proposed Spreading COVID-19 dataset, based on the rationale that online networks
share structural characteristics similar to offline networks. To further validate the use of the graph
structure of the LastFM Asia dataset, we thoroughly compare it with the High School Contact
network (Mastrandrea et al., 2015).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5 compares the node degree distributions of the two real-world networks. Human contact
networks often feature super-spreaders with high node degrees. As expected, the High School Contact
network contains super-spreaders with node degrees of 50 or more, as shown in the figure. Similarly,
the LastFM Asia network also includes high-degree nodes, with some exceeding degrees of 140,
which can act as super-spreaders. Although the network sizes of the two datasets differ (327 nodes
for the High School Contact network and 7624 nodes for the LastFM Asia network), both networks
exhibit similar characteristics in terms of the presence of super-spreaders.

Furthermore, we compare the average episode duration, defined as the number of steps required
for 75% of nodes to become infected. For the SI, SIS, and SEIR (Susceptible-Exposed-Infectious-
Recovered) models, the High School Contact network requires 8.3, 10.1, and 18.4 steps, respectively,
while the LastFM Asia network requires 10.0, 11.1, and 24.6 steps, respectively. Considering the
difference in network sizes, we can confirm that the human contact network did not lead to faster
spreading compared to the LastFM Asia network.

Although we demonstrate that the LastFM Asia dataset and the human contact network share similar
properties in terms of graph structure, we further simulate COVID-19 spreading on the High School
Contact network and perform spreading OOD detection to validate the effectiveness of EDBD in
those scenarios as well (in Appendix C.8).

Justification on Parameter Setting for Epidemic Models. We selected the parameter values for
the SI and SIS models based on recent work investigating COVID-19 dynamics (Eikenberry et al.,
2020). In continuous-time SIS models, the ranges of the transmission rate γ and the recovery rate
δ are estimated to be [0.5, 1.5](day−1) and [1/30, 1/3](day−1), respectively. When converting the
ranges of γ and δ from continuous to discrete-time models, with the time interval set to one day, they
become [0.393, 0.777] and [0.033, 0.283], respectively. Therefore, for the SIS model, we selected 0.5
for γ and 0.1 for δ within these ranges. The SI model is the SIS model that approximates δ of 0.033
to zero. Moreover, it is easily feasible to construct new datasets by simply adjusting γ and δ within
the ranges.

Difference between the Spreading COVID-19 dataset and general infectious disease datasets.
While general infectious disease datasets (Singh et al., 2021; Alrasheed et al., 2020; Rafiq et al., 2023)
focus solely on the spreading patterns of infectious diseases, ours includes person-level symptom-
based features. Furthermore, we provide ID classes for each sample: normal (no illness), allergies,
cold, and flu. This setup enables the formulation of COVID-19 detection as OOD detection, where
classifiers trained only on ID data attempt to detect the new disease, COVID-19. To the best of our
knowledge, the Spreading COVID-19 dataset is the first COVID-19-related dataset to include both
sample-level features and class labels.

B EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

We conduct experiments on seven benchmark datasets, including Cora, Amazon-Photo, Amazon-
Computers, Coauthor-CS, Spreading COVID-19, Cora with spreading OOD, and LastFM Asia with
spreading OOD. Table 5 shows the statistics of datasets used in this paper. All the datasets are
provided in Pytorch Geometric (Fey & Lenssen, 2019). The Cora dataset is a citation network, where
nodes and edges represent publications and citation links, respectively. The LastFM dataset is a
social network, with nodes as individuals and edges reflecting social connections between them.
Amazon-photo is a recommendation network, where nodes represent goods, and an edge connects
two nodes only when the goods are frequently bought together. Coauthor-CS is a co-authorship
graph, where nodes are authors and an edge connects two authors if they co-authored a paper. The
Cora, Amazon-Photo, Amazon-Computers, Coauthor-CS datasets are MIT-licensed. The LastFM
Asia dataset is licensed under a Creative Commons Attribution 4.0 international (CC BY 4.0) license.

B.2 IMPLEMENTATION DETAILS

We conduct all the experiments on a single NVIDIA GeForce RTX 2080 Ti GPU with 11GB memory
and an Intel Core I5-6600 CPU @ 3.30 GHz. For training, we leverage Adam optimizer (Kingma &
Ba, 2014) and set the maximum number of epochs to 200. We report test performance at an epoch
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Table 5: Dataset statistics.
Dataset #Nodes #Edges #Features #Classes

CORA 2,708 5,429 1,433 7
LASTFM ASIA 7,624 27,806 128 18

AMAZON-PHOTO 7,650 238,162 745 8
AMAZON-COMPUTERS 13,752 491,722 767 10

COAUTHOR-CS 18,333 163,788 6805 15

which yields the lowest validation loss. Learning rates are selected within {0.01, 0.001, 0.0001} by
using a grid search. For a fair comparison, for MSP, ODIN, Mahalanobis, Energy, GNNSAFE, and
EDBD, we use the same encoder backbone, a GCN with two layers and a hidden dimension of 64.
For GKDE and GPN, we employ their public implementations and adhere to the hyperparameters
reported in their respective paper.

B.2.1 SPREADING OOD DETECTION

There is no dataset specifically designed for node-level OOD detection where OOD samples are
separated. Thus, to perform spreading OOD detection on the Cora and LastFM Asia datasets, we
first create additional OOD samples. We employ a Bernoulli distribution with p = 0.1 to generate
features of these OOD samples (i.e., x ∼ Ber(0.1)). Next, we partition samples within the original
datasets into Dtrain

in , Dval
in , and Dtest

in . We exclude 20 nodes per each class. These excluded nodes
are then divided into Dtrain

in and Dval
in at a ratio of 9:1. On a graph consisting of the remaining nodes

in Dtest
in , we spread OOD samples randomly sampled from Dout. Utilizing the SI or SIS model, we

generate 15 episodes. We set γ = 0.5 for SI model and (γ, δ) = (0.5, 0.1) for SIS model. Among
these episodes, 5 episodes are designated as the validation set and 10 episodes as the test set for OOD
detection. Similar to Spreading COVID-19, for each pair of dataset and epidemic model, we create 15
episodes which conclude when over 75% of nodes are infected. Among the 15 episodes, we allocate
five episodes for the validation set and ten episodes for the test set.

B.2.2 LABEL LEAVE-OUT

We follow the setting of label leave-out in Wu et al. (2023). The number of ID classes for Cora,
Amazon-Photo, and Coauthor-CS is set to 3, 3, and 10, respectively. For a training/validation/test
split on ID nodes in the Cora datasets, we adhere to the split used in Kipf & Welling (2016). For
splits on ID nodes in the Amazon-Photo and Coauthor-CS datasets, we use random splits for training,
validation, and test nodes with proportions of 0.1, 0.1, and 0.8, respectively.

B.2.3 EDBD IMPLEMENTATION

We employ a grid search for hyperparameter tuning and EDBD-specific hyperparameters (α, β, ϵ) are
selected from {(α, β, ϵ)|α ∈ {0.1, 0.2, 0.3, 0.5}, β ∈ {1, 1

2 ,
1
3 ,

1
4}, ϵ ∈ {0.01, 0.05, 0.1, 0.5, 0.75}}

on validation sets. The number of aggregation, K, is chosen from {1, 2}.

B.2.4 IMPLEMENTATION OF BASELINES

For all the baselines except for OODGAT, we utilize the implementations provided in the GitHub
repository3 released by Wu et al. (2023). All implementations strictly follow the descriptions
provided in the respective paper. For OODGAT, we utilize the implementation provided in the GitHub
repository4. Both publicly available repositories do not contain any statements regarding licenses.
Across all the baselines, we adhere to the hyperparameter tuning strategies and settings described in
their respective papers.

3https://github.com/qitianwu/GraphOOD-GNNSafe
4https://github.com/songyyyy/kdd22-oodgat

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Training and inference times (seconds).

Method CORA AMAZON-PHOTO
Tr. time In. time Tr. time In. time

MSP 0.006 0.010 0.007 0.021
ODIN 0.013 0.020 0.014 0.047
Mahalanobis 0.006 0.125 0.008 0.251
Energy 0.010 0.012 0.014 0.023
GKDE 0.007 0.018 0.008 0.026
GPN 0.273 0.959 1.035 3.004
GNNSAFE 0.010 0.013 0.014 0.024

FastEDBD 0.010 0.018 0.014 0.035
EDBD 0.010 0.062 0.014 0.438

Table 7: Memory usage for different datasets.
Dataset Memory usage (GB)

CORA 1.199
SPREADING COVID-19 1.203

LASTFM ASIA 1.195
AMAZON-PHOTO 1.451

AMAZON-COMPUTERS 1.609
COAUTHOR-CS 2.285
OGBN-ARXIV 3.551

C ADDITIONAL EXPERIMENTS

C.1 COMPLEXITY ANALYSIS

Here we discuss the time complexity of EDBD. Energy similarity-based aggregation calculates the
energy similarity for each edge, leading to O(|E|) complexity. Then, energy consistency-based
aggregation measures energy consistency for each node by considering its neighboring nodes. Hence,
the complexity of energy consistency-based aggregation is O(N2). EDBD operates with a time
complexity of O(|E| + N2). To quantitatively demonstrate that EDBD, which has outstanding
performance, is also efficient, we compare training and inference times of EDBD with those of
baselines.

We empirically find that energy consistency-based aggregation is the computational bottleneck of
EDBD. In Appendix 5.4, we confirm that EDBD without energy consistency-based aggregation also
demonstrates good performance, although there is a performance loss in FPR95/FPR95-T compared to
the original EDBD. Therefore, we suggest a light version of EDBD, called FastEDBD, for situations
where fast inference is necessary. Table 6 shows training and inference times of methods including
FastEDBD. Since methods using energy (Energy, GNNSafe, and EDBD) simply train classifiers with
cross-entropy loss, they commonly have short training times. While EDBD exhibits long inference
times, FastEDBD demonstrates substantial reductions in inference times. We recommend choosing
between EDBD and FastEDBD based on what is more important in a given situation: performance or
inference time.

The memory complexity of EDBD is O(|θ|) +O(B(F + C)) +O(N) +O(|E|), where θ denotes
trainable parameters. We conduct additional experiments on the OGBN-Arxiv dataset, which contains
169,343 nodes, representing a large-scale graph. We confirm that EDBD operates well on the OGBN-
Arxiv dataset. The table 7 presents the memory usage of EDBD across various datasets. As shown
in the table, EDBD maintains reasonable memory usage across different datasets, including the
large-scale OGBN-Arxiv. This demonstrates EDBD’s scalability in handling large-scale graphs.

We further compare the complexity of all methods used in this paper. Table 8 compares the input and
memory complexity of scCR with other state-of-the-art methods. Although EDBD utilize additional
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Table 8: Comparison of Big-O memory complexity. θ and B represent the batch trainable parameters
and the batch size, respectively.

Method Big-O

MSP O(|θ|) +O(B(F + C))
ODIN O(|θ|) +O(B(F + C))

Mahalanobis O(|θ|) +O(B(F + C)) +O(d2)
Energy O(|θ|) +O(B(F + C))
GKDE O(|θ|) +O(B(F + C)) +O(N) +O(|E|)
GPN O(|θ|) +O(B(F + C)) +O(N2) +O(|E|)

GNNSAFE O(|θ|) +O(B(F + C)) +O(N) +O(|E|)
EDBD O(|θ|) +O(B(F + C)) +O(N) +O(|E|)

Figure 6: Performance on Spreading OOD detection according to time stamp t, measured by FPR-95
(%), AUROC(%), and AUPR(%).

matrices S ∈ RN×N and C ∈ RN×N , S is a weighted adjacency matrix with non-zero values
corresponding to the number of edges, and C is a diagonal matrix. Thus, the memory complexity of
EDBD is O(θ) +O(B(F + C)) +O(N) +O(E), which is the same as that of GNNSAFE.

C.2 PERFORMANCE ON SPREADING OOD DETECTION ACCORDING TO t

The goal of spreading OOD detection is to effectively discriminate OOD nodes in every time stamp.
Therefore, we use FPR95-T, AUROC-T, and AUPR-T, which are metrics averaged over T , and we
confirm that EDBD shows the outperforming performance in terms of the three metrics. However,
to thoroughly analyze the performance gains achieved by EDBD, it is necessary to evaluate the
performance at each time stamp t. Figure 6 demonstrates the performance of node-level OOD
methods on the Cora dataset according to time stamp t, in terms of FPR95, AUROC, and AUPR. The
three most competitive baselines, MSP, Energy, and GNNSAFE, are compared with our EDBD. We
find that EDBD consistently surpasses the comparing methods across time stamp t, regardless the
epidemic model and used metric. We observe that performance show significant fluctuations in the
latter part of time stamp t. This is due to the varing end points of 10 episodes. Since the performance
is calculated as the average of the 10 episodes, fluctuations arise due to episodes that conclude earlier.

C.3 HIGHLY DYNAMIC GRAPH STRUCTURES

We conduct additional experiments evaluating the robustness of our EDBD on highly dynamic
graph structures. In these experiments, we vary the dynamicity of the graph by removing a certain
percentage of existing edges and generating the same number of new edges at each timestamp of the

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: Performance of EDBD on Spreading OOD detection under dynamic graph structure scenar-
ios.

Spreading OOD detection on Cora (SI)
p Disappeared ratio New ratio FPR95-T(↓) AUROC-T(↑) AUPR-T(↑)
0 0.00% 0.00% 14.99± 14.53 97.54± 1.81 98.68± 0.85
0.01 10.6% 10.6% 18.04± 14.52 98.31± 0.99 97.23± 1.73
0.02 18.7% 18.7% 22.04± 13.33 96.71± 1.69 98.40± 0.91
0.05 39.5% 39.5% 23.43± 15.14 96.28± 2.17 98.13± 0.77
0.1 63.5% 63.5% 23.37± 14.72 96.26± 1.83 97.94± 0.78
0.2 86.6% 86.6% 27.23± 15.19 95.50± 2.13 97.82± 0.90
0.5 99.6% 99.6% 31.21± 14.79 94.81± 2.47 97.64± 0.78

Spreading OOD detection on Cora (SIS)
p Disappeared ratio New ratio FPR95-T(↓) AUROC-T(↑) AUPR-T(↑)
0 0.00% 0.00% 32.61± 7.18 94.17± 1.22 94.19± 1.39
0.01 12.3% 12.3% 26.98± 9.44 95.45± 0.91 95.89± 0.66
0.02 21.7% 21.7% 29.93± 7.49 95.02± 0.89 95.63± 0.68
0.05 44.1% 44.1% 28.69± 5.02 94.96± 0.52 95.55± 0.83
0.1 69.5% 69.5% 33.23± 11.43 94.41± 1.26 95.33± 0.86
0.2 90.2% 90.2% 31.90± 6.68 94.31± 0.84 95.56± 0.85
0.5 99.7% 99.7% 42.28± 9.86 92.64± 1.63 94.97± 0.87

Table 10: Performance of Feature Propagation (FP)+EDBD on Cora under feature missing scenarios
for varying missing rates (rm).

Task Label leave-out on Cora Spreading OOD Detection (SI)

rm FPR95(↓) AUROC(↑) AUPR(↑) FPR95-T(↓) AUROC-T(↑) AUPR-T(↑)
0 30.48± 1.11 92.95± 0.38 82.31± 0.38 14.99± 14.53 97.54± 1.81 98.68± 0.85
0.2 21.15± 3.23 94.44± 0.08 85.79± 0.97 26.00± 5.67 95.52± 1.09 95.16± 1.27
0.4 21.63± 2.03 94.38± 0.31 84.35± 1.19 26.51± 6.14 95.50± 1.13 95.16± 1.26
0.6 32.30± 5.67 90.49± 4.88 83.36± 0.34 26.52± 6.13 95.44± 1.17 95.16± 1.26
0.8 43.28± 7.04 91.98± 0.72 82.73± 0.47 27.60± 7.36 95.36± 1.24 95.16± 1.26
0.9 47.18± 9.96 90.57± 1.75 80.17± 3.40 27.01± 5.93 95.48± 1.05 95.16± 1.26
0.99 49.54± 11.02 90.16± 1.47 80.40± 2.79 30.29± 8.37 94.88± 1.41 95.09± 1.27

spreading OOD process. Specifically, at each time stamp of spreading OOD, p% of the existing edges
are removed and the same number of new edges are generated. Disappeared ratio and New ratio
represent the percentage of edges that have disappeared and the percentage of new edges formed,
respectively, when the OOD spread has finished. Table 9 shows the results of the experiments. Despite
the minor degradation, EDBD maintains a reasonable performance level even under highly dynamic
conditions, showcasing its robustness across various missing scenarios.

C.4 MISSING FEATURES

Since missing data can occur not only in edges but also in features. Hence, we further consider
incomplete features in graph-structured data, which are also prevalent in real-world scenarios. In this
case, Feature Propagation (FP) (Rossi et al., 2022) can assist EDBD by imputing missing features.
Table 10 shows the performance of EDBD using features imputed by FP under feature missing
scenarios. As shown in the figure, we can confirm that EDBE using FP yields reasonable performance
in OOD detection tasks even with 99% missing features.

C.5 COMPARISON WITH NEIGHBORHOOD MEAN

As an entropy-like function for class scores from a trained neural network, the energy function is
verified to be an effective indicator to distinguish OOD samples (Liu et al., 2020). In graph-structured
data, connected two nodes often share similar properties, such as features and classes. Therefore,
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Table 11: Performance comparison of neighborhood mean, GNNSAFE, and our EDBD.
Spreading OOD detection on Cora (SI)

Method FPR95-T(↓) AUROC-T(↑) AUPR-T(↑)
Neighborhood mean 41.87± 9.22 86.95± 3.52 95.45± 0.83
GNNSAFE 31.15± 10.74 93.45± 2.16 97.59± 0.71
EDBD 14.99± 14.53 97.54± 1.81 98.68± 0.85

Spreading OOD detection on Cora (SIS)
Method FPR95-T(↓) AUROC-T(↑) AUPR-T(↑)
Neighborhood mean 56.36± 10.77 86.12± 4.48 91.49± 1.79
GNNSAFE 47.15± 11.24 90.91± 2.78 93.19± 1.54
EDBD 32.61± 7.18 94.17± 1.22 94.19± 1.39

Label leave-out on Cora
Method FPR95(↓) AUROC(↑) AUPR(↑)
Neighborhood mean 32.86± 1.58 92.67± 0.37 82.20± 0.35
GNNSAFE 31.31± 1.11 92.87± 0.38 82.22± 0.40
EDBD 30.48± 1.11 92.95± 0.38 82.31± 0.38

whether a node is OOD can be aided by its neighboring nodes. Motivated by this, GNNSAFE (Wu
et al., 2023) refines the energy of each node by simply aggregating the energies from its neighboring
nodes through multiple aggregation steps. Here, GNNSAFE performs energy aggregation based
solely on the graph structure. However, an ID node can have OOD nodes in its neighbors and vice
versa. In this case, this simple aggregation scheme of GNNSAFE, may lead to undesired energy
mixing between ID and OOD nodes. The conceptually simplest way, neighborhood aggregation can
be seen as a special case of GNNSAFE with a single aggregation step.

In contrast, our EDBD employs energy as an OOD indicator for a node during the energy aggregation
process. This implies that before the aggregation process, EDBD briefly classifies nodes into OOD
nodes and ID nodes to prevent the energy mixing between OOD nodes and ID nodes. EDBD allows
the energies to control the entire aggregation process themselves, leading to significant performance
improvement in both spreading OOD detection and conventional OOD detection tasks on graphs.

To verify that EDBD outperforms the conceptually simplest aggregation strategy, which is referred
to as neighborhood mean, we conduct additional experiments in spreading OOD detection and
conventional OOD detection tasks. Table 11 shows performance comparison of neighborhood
mean, GNNSAFE, and EDBD in label leave-out (conventional OOD detection) and spreading OOD
detection using SI and SIS models. As shown in the table, EDBD demonstrates its superiority,
irrespective of tasks and metrics.
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Table 12: p-values comparing our EDBD to the runner-up in each setting. * denotes state-of-the-art,
not a runner-up.

For Table 1
Dataset Metric Runner-up Runner-up’s Ours p-value

Cora
FPR95(↓) GNNSAFE 31.31± 1.11 30.48± 1.11 0.119

AUROC(↑) GNNSAFE 92.84± 0.38 92.95± 0.38 0.583
AUPR(↑) GNNSAFE 82.22± 0.40 82.31± 0.38 0.656

Photo
FPR95(↓) GNNSAFE 6.57± 0.38 5.82± 0.66 6.61× 10−2

AUROC(↑) GNNSAFE 97.36± 0.04 97.48± 0.07 6.90× 10−4

AUPR(↑) GNNSAFE 97.13± 0.10 97.60± 0.06 1.73× 10−6

Computers
FPR95(↓) GNNSAFE 39.94± 6.84 35.59± 6.94 0.137

AUROC(↑) GNNSAFE 89.75± 1.79 92.45± 0.98 3.60× 10−2

AUPR(↑) GNNSAFE 85.63± 3.36 90.34± 1.45 3.36× 10−3

Coauthor-CS
FPR95(↓) GNNSAFE 11.31± 1.69 10.19± 1.63 0.152

AUROC(↑) GNNSAFE 97.44± 0.35 97.68± 0.35 0.123
AUPR(↑) GNNSAFE 99.06± 0.13 99.14± 0.13 0.257

For Table 2 (single-seed)
Model Metric Runner-up Runner-up’s Ours p-value

SI
FPR95-T(↓) Energy 54.82± 17.43 54.67± 17.58 0.981

AUROC-T(↑) Energy 80.46± 8.54 81.60± 8.35 0.784
AUPR-T(↑) Energy 88.00± 5.52 88.22± 5.59 0.948

SIS
FPR95-T(↓) Energy 67.94± 18.98 67.42± 19.75 0.959

AUROC-T(↑) Energy 73.94± 14.49 76.22± 14.58 0.769
AUPR-T(↑) Energy 85.51± 5.70 85.94± 5.94 0.896

For Table 2 (multi-seed)
Model Metric Runner-up Runner-up’s Ours p-value

SI
FPR95-T(↓) Energy 49.78± 14.73 49.62± 15.22 0.982

AUROC-T(↑) Energy 82.66± 6.79 83.29± 6.68 0.850
AUPR-T(↑) GNNSAFE 86.11± 4.33 86.17± 4.99 0.979

SIS
FPR95-T(↓) Energy 60.40± 10.33 59.93± 10.47 0.921

AUROC-T(↑) Energy 80.18± 6.24 80.68± 6.16 0.885
AUPR-T(↑) Energy 81.63± 4.84 81.70± 4.92 0.973

For Table 3 (SI)
Dataset Metric Runner-up Runner-up’s Ours p-value

Cora
FPR95-T(↓) Energy 22.79± 18.21 14.99± 14.53 0.290

AUROC-T(↑) Energy 96.36± 2.12 97.54± 1.81 0.269
AUPR-T(↑) Energy 98.03± 1.07 98.68± 0.85 0.191

LastFM Asia
FPR95-T(↓) MSP 52.98± 0.41 46.68± 14.83 0.236

AUROC-T(↑) MSP 93.71± 1.80 94.10± 1.71 0.589
AUPR-T(↑) MSP 97.96± 0.44 98.11± 0.41 0.557

For Table 3 (SIS)
Dataset Metric Runner-up Runner-up’s Ours p-value

Cora
FPR95-T(↓) Energy 38.95± 9.16 32.61± 7.18 2.72× 10−2

AUROC-T(↑) Energy 93.27± 1.34 94.17± 1.22 0.189
AUPR-T(↑) Energy 93.59± 1.55 94.19± 1.39 0.447

LastFM Asia
FPR95-T(↓) MSP 57.19± 18.25 52.37± 19.93 0.501

AUROC-T(↑) MSP 91.48± 2.88 91.78± 3.04 0.814
AUPR-T(↑) Mahalanobis 94.87± 1.96∗ 94.40± 1.52 0.618
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Figure 7: Performance of EDBD in spreading OOD detection, measured by FPR95-T (where lower
values indicate better performance), on the Cora dataset is evaluated under two settings using SI and
SIS models, respectively, with varying values of α, β, ϵ, and K, under two settings using SI and SIS
models, respectively. The blue dashed lines represent existing state-of-the-art performance.

Table 13: Performance on Spreading OOD detection in the High School Contact dataset. The average
FPR95-T (%), average AUROC-T (%), and average AUPR-T (%) across 10 episodes are reported
with standard deviation errors.

Epidemic model SI SIS

Method FPR95-T (↓) AUROC-T (↑) AUPR-T (↑) FPR95-T (↓) AUROC-T (↑) AUPR-T (↑)
MSP 96.93± 2.94 36.60± 8.39 62.83± 17.40 96.95± 2.67 37.77± 7.19 61.70± 15.19
ODIN 90.92± 10.03 63.40± 8.39 73.51± 15.63 91.21± 9.72 62.23± 7.19 72.10± 15.19
Mahalanobis 71.15± 33.90 64.08± 18.19 72.07± 22.60 72.30± 31.10 62.80± 28.62 70.98± 21.96
Energy 55.82± 13.72 82.57± 7.89 89.36± 7.22 67.21± 8.69 79.21± 6.87 86.05± 9.00
GPN 81.94± 3.36 71.28± 1.69 75.74± 1.41 86.40± 2.30 66.92± 1.20 71.85± 0.65
GNNSAFE 59.05± 15.41 82.90± 5.70 89.49± 7.40 68.39± 14.80 80.96± 6.28 86.92± 9.91

EDBD 53.88± 19.95 83.13± 8.21 89.63± 7.09 66.90± 12.97 81.10± 7.11 87.36± 8.42

C.6 STATISTICAL ANALYSIS

We conduct additional experiments to evaluate the statistical significance of our EDBD’s superior
performance. Table 12 shows p-values comparing EDBD to the runner-up in each setting for all the
results in Tables 1, 2, and 3. As shown in the table, the p-values for Table 2 and Table 3 are higher
compared to those of Table 1. However, spreading OOD detection tasks involve performing spreading
simulations for each run, resulting in varying spreading patterns for OOD. These different spreading
patterns significantly impact the difficulty level of each run, causing substantial variations in the
overall performance of methods and consequently leading to large standard deviations. When the
standard deviation is high, the statistical test does not show a significant difference between methods,
resulting in higher p-values, even if the mean performance differs between our EDBD and baselines.
Nevertheless, while the runner-ups change depending on the setting, EDBD consistently outperforms
in all settings and metrics, except for AUPR-T in spreading OOD detection on LastFM Asia using
SIS model. This consistency demonstrates its generalizability across various graph OOD-related
tasks.

C.7 HYPERPARAMETER SENSITIVITY

We conduct additional experiments to provide a comprehensive analysis of the impact of different
hyperparameters, including α, β, ϵ, and K on the performance of EDBD. Under two settings using
SI and SIS models, respectively, we report FPR95-T in spreading OOD detection on the Cora dataset.
Figure 7 shows the results. When varing each hyperparameter, the other hyperparameters are set to
their optimal values. Compared to existing state-of-the-art performance (22.79% and 38.95% for the
SI and SIS settings, respectively), EDBD models consistently exceed it by a considerable margin
regardless of the values of α, β, and K. While EDBD with ϵ ∈ {0.75} commonly shows worse
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Table 14: Performance on Spreading OOD detection in the Spreading COVID-19 dataset using SIS
models with various combinations of (γ, δ). The average FPR95-T (%), average AUROC-T (%), and
average AUPR-T (%) across 10 episodes are reported with standard deviation errors.

(γ, δ) (0.7, 0.1) (0.3, 0.1)

Method FPR95-T (↓) AUROC-T (↑) AUPR-T (↑) FPR95-T (↓) AUROC-T (↑) AUPR-T (↑)
MSP 98.22± 1.34 33.12± 6.09 72.66± 3.52 98.43± 1.41 34.66± 8.26 66.97± 16.67
ODIN 91.68± 5.43 66.88± 6.09 82.44± 3.94 93.04± 4.68 65.34± 8.26 76.63± 12.29
Mahalanobis 79.52± 18.92 60.93± 42.25 75.08± 14.05 79.64± 19.21 57.19± 36.43 72.54± 20.73
Energy 64.44± 20.22 74.62± 15.09 87.54± 5.46 71.33± 27.08 72.02± 14.51 80.24± 11.66
GPN 95.48± 1.58 58.22± 17.61 83.47± 4.44 94.18± 1.18 55.28± 15.30 68.32± 7.95
GNNSAFE 73.43± 16.52 75.96± 13.13 88.15± 5.22 86.88± 10.52 73.60± 12.81 80.12± 11.45

EDBD 62.76± 21.16 76.31± 15.09 87.69± 5.67 70.02± 26.98 73.65± 13.97 80.33± 11.69

(γ, δ) (0.5, 0.2) (0.5, 0.05)

Method FPR95-T (↓) AUROC-T (↑) AUPR-T (↑) FPR95-T (↓) AUROC-T (↑) AUPR-T (↑)
MSP 98.01± 1.52 37.40± 6.56 66.52± 11.38 98.19± 1.52 35.22± 7.51 73.05± 9.67
ODIN 92.94± 4.69 62.60± 6.56 75.37± 9.07 92.64± 5.42 64.78± 7.51 82.37± 7.00
Mahalanobis 78.94± 16.92 62.60± 6.56 75.37± 9.07 78.19± 19.03 61.02± 42.42 77.81± 7.84
Energy 75.25± 16.88 70.70± 12.32 80.22± 8.82 67.77± 22.89 73.99± 15.31 87.57± 7.90
GPN 95.28± 1.88 60.23± 15.36 75.82± 8.69 95.08± 2.09 61.56± 18.04 82.99± 10.26
GNNSAFE 82.27± 12.96 73.58± 12.32 80.26± 8.55 77.43± 17.52 78.18± 14.14 87.65± 7.65

EDBD 73.72± 17.56 73.68± 12.03 80.35± 8.90 66.82± 23.73 78.45± 14.80 87.86± 7.94

Table 15: Performance on Spreading OOD detection for RSV. The average FPR95-T (%), average
AUROC-T (%), and average AUPR-T (%) across 10 episodes are reported with standard deviation
errors.

Epidemic model SI SIS

Method FPR95-T (↓) AUROC-T (↑) AUPR-T (↑) FPR95-T (↓) AUROC-T (↑) AUPR-T (↑)
MSP 85.48± 7.42 63.93± 6.13 80.99± 3.15 86.33± 6.74 63.09± 5.59 79.87± 2.30
ODIN 99.97± 0.05 36.07± 6.13 70.01± 4.34 99.97± 0.05 36.91± 5.59 69.34± 3.13
Mahalanobis 75.35± 32.56 50.79± 38.40 79.24± 14.42 75.55± 32.59 50.72± 38.38 78.30± 15.19
Energy 72.18± 15.73 72.46± 9.39 84.00± 5.29 75.31± 13.36 71.34± 8.96 82.99± 3.96
GPN 92.67± 8.44 53.38± 13.79 84.18± 2.13 93.17± 7.47 54.15± 12.89 81.81± 1.98
GNNSAFE 80.99± 16.19 74.10± 9.07 84.69± 5.07 74.54± 14.23 71.71± 8.56 83.60± 3.50

EDBD 70.94± 21.05 74.18± 9.51 84.74± 5.45 73.96± 18.11 72.75± 9.01 83.69± 4.06

performance compared to the existing state-of-the-art performance, the small value of ϵ indicates that
energy aggregation focuses less on energy similarity and more on the graph structure. This result
highlights the importance of considering energy distribution in the energy aggregation process. As
mentioned in Appendix B.2.3, we determine the hyperparameters of EDBD for each setting using
grid search within fixed ranges, based on performance on the validation set.

C.8 SPREADING COVID-19 ON A CONTACT NETWORK

To validate EDBD’s effectiveness in highly realistic scenarios, we conduct additional experiments
using a contact network dataset collected in a high school in France (Mastrandrea et al., 2015).
Since the original dataset comprises numerous networks collected over short time intervals, we
aggregate them into a single network. We then measure the performance of methods on spreading
OOD detection by replacing only the graph structure in the Spreading COVID-19 dataset with this
network.

Table 13 presents the results when the SI and SIS models are used, respectively. As shown in the
table, our EDBD consistently outperforms state-of-the-art methods across all metrics and epidemic
models. These results demonstrate its effectiveness even in highly realistic scenarios.

C.9 SIS MODELS WITH VARIOUS PARAMETER COMBINATIONS

We adjust the parameters of the SIS model and compare the performance of the methods across
various SIS models by performing spreading OOD detection on the Spreading COVID-19 dataset.
Specifically, we conduct experiments by modifying the original (γ, δ) values of (0.5, 0.1) to (0.7, 0.1)
and (0.3, 0.1). Additionally, we performed experiments by changing the original (γ, δ) values to
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Table 16: Performance of EDBD+similarity-based link imputation in spreading OOD detection on
Cora under edge missing scenarios. The average FPR95-T (%), average AUROC-T (%), and average
AUPR-T (%) across 10 episodes are reported with standard deviation errors.

Method EDBD EDBD with Similarity-Based Link Imputation

Missing rate FPR95-T (↓) AUROC-T (↑) AUPR-T (↑) FPR95-T (↓) AUROC-T (↑) AUPR-T (↑)
0 14.99± 14.53 97.54± 1.81 98.68± 0.85 14.99± 14.53 97.54± 1.81 98.68± 0.85

0.05 18.49± 14.78 97.07± 2.10 98.55± 0.99 21.37± 17.38 96.47± 2.55 98.48± 0.98
0.1 18.17± 15.76 97.00± 2.13 98.53± 0.75 17.76± 16.75 97.04± 2.16 98.62± 0.88
0.2 19.74± 17.07 96.88± 1.94 98.17± 0.92 15.74± 17.60 97.22± 2.48 98.55± 0.75
0.3 23.43± 16.36 96.06± 2.79 97.47± 1.09 15.88± 16.26 97.40± 2.10 98.78± 0.69
0.4 40.80± 25.99 91.84± 10.05 96.17± 2.60 16.20± 17.09 97.12± 2.35 98.66± 0.90
0.5 41.23± 32.91 90.62± 12.02 95.98± 2.47 23.00± 30.39 95.40± 5.77 98.63± 0.82

Figure 8: A state transition diagram of SEIR model. S, E, I , and R represent the four possible state
of a node, susceptible, exposed, infectious, and recovered, respectively.

(0.5, 0.2) and (0.5, 0.05). Table 14 presents the results. As shown in the table, except for AUPR-T
under (γ, δ) = (0.7, 0.1), EDBD consistently outperforms state-of-the-art methods and demonstrates
robustness against various spreading patterns.

C.10 SPREADING OOD DETECTION FOR RSV

We conduct additional experiments to detect an urgent contagion, Respiratory Syncytial Virus
(RSV), using spreading OOD detection. RSV is currently garnering significant attention due to a
surge in infections and its particularly severe impact on infants and the elderly (Langedijk & Bont,
2023; Moline, 2024). We generate samples with features based on information about symptoms
of respiratory illness (Healthline; Sample; Wallace), following the same procedure specified in
Appendix A. We replace COVID-19 samples in the Spreading COVID-19 dataset with RSV samples,
and compare the performance of methods in spreading OOD detection. Table 15 presents the results
for RSV spreading scenarios using SI and SIS models. As shown in the table, EDBD outperforms
state-of-the-art methods in both settings across all metrics. These results on the recent contagion
show the generalizability of EDBD.

C.11 INCOMPLETE GRAPH STRUCTURES

Since EDBD utilizes the graph structure for energy aggregation, we conduct additional experiments
to evaluate its performance under edge-missing settings. As performance degradation is expected
when edges are incomplete, we apply a simple missing link imputation technique to mitigate the
degradation. This link imputation technique creates a single edge for each node by connecting it
to the node with the highest feature similarity. Table 16 the results in spreading OOD detection on
the Cora dataset. As shown in the table, while the performance of EDBD worsens as the missing
rate increases, EDBD with the similarity-based link imputation effectively mitigates performance
degradation. We confirm that EDBD with similarity-based link imputation maintains reasonable
performance even with an edge missing rate of 50%.

C.12 SPREADING OOD DETECTION USING SEIR MODELS

To validate the effectiveness of EDBD in OOD spreading using complex epidemic models, we
conduct additional experiments. We adopt the Susceptible-Exposed-Infectious-Recovered (SEIR)
model (Rachah et al., 2018) as a complex epidemic model. As illustrated in Figure 8, which shows
the state transition diagram of SEIR, each node can exist in one of four states: susceptible, exposed,
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Table 17: Performance on Spreading OOD detection in the Spreading COVID-19 dataset using SEIR
model. The average FPR95-T (%), average AUROC-T (%), and average AUPR-T (%) across 10
episodes are reported with standard deviation errors.

Epidemic model SEIR

Method FPR95-T (↓) AUROC-T (↑) AUPR-T (↑)
MSP 98.02± 1.16 35.46± 6.21 67.50± 4.03
ODIN 92.15± 3.80 64.54± 6.00 78.32± 2.15
Mahalanobis 79.56± 18.93 60.55± 32.23 82.78± 15.47
Energy 69.11± 17.63 73.56± 13.14 83.52± 6.43
GPN 92.27± 2.98 61.76± 11.78 44.59± 5.41
GNNSAFE 76.09± 16.75 75.93± 12.38 84.21± 6.02

EDBD 68.27± 18.53 76.31± 13.32 84.23± 6.58

Figure 9: Illustration of (a) SI model and (b) an SIS model, viewed from the perspective of a single
node. S and I represent the two possible state of a node, susceptible and infected, respectively. In
both models, ζi,t depends on γ (epidemic transmission rate via an edge connected to an infected
node) and the graph structure. This is because a susceptible node may be simultaneously exposed to
infection attempts by multiple infected neighbors.

infectious, or recovered. In the SEIR model, a susceptible node can transition only to the exposed
state, an exposed node can transition only to the infectious state, and an infectious node can transition
only to the recovered state. The probabilities of these transitions are denoted by γ, σ, and δ. Based
on recent research investigating COVID-19 dynamics (Eikenberry et al., 2020), we set γ, σ, and δ to
0.5, 0.2, and 0.1, respectively. We follow the experimental setup for spreading OOD detection as
specified in Appendix B.2.1. Table 17 demonstrates the results on spreading OOD detection in the
Spreading COVID-19 dataset using the SEIR model. As shown in the figure, EDBD outperforms
state-of-the-art methods across all metrics, demonstrating its superiority even in complex spreading
scenarios.

D STATE TRANSITION DIAGRAM OF SI AND SIS MODELS

Spreading processes using SI and SIS models can be modeled as a Markov chain because the
configuration of N nodes at the t+ 1-th time stamp depends solely on their configuration at the t-th
time stamp. Since each node can be in the two states, there exist 2N possible configurations of this
system at each time stamp. Figure 9 shows the state transition diagrams of SI model and SIS model,
respectively.

E THEORETICAL ANALYSIS

The key concept of EDBD is to enable the energies (OOD scores) to control their own update process
through energy aggregation. In contrast, GNNSAFE, which performs energy aggregation based
solely on the graph structure, cannot prevent the undesired mixing of energies between ID and OOD
nodes. We provide a theoretical analysis to explain why GNNSAFE leads to this undesired mixing of
energies. Before proceeding, it is important to note that the goal of energy aggregation is to enhance
the separation between the energies of ID nodes and those of OOD nodes.
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Since energies are positive values, we first assume that the energies of ID nodes and OOD nodes
follow gamma distributions. Given that the energies of ID nodes tend to be smaller than those of
OOD nodes, we define the energy distributions as follows: (1) ID energies have a mean µin and
variance σ2; (2) OOD energies have a mean µout and variance σ2, where µin < µout. Additionally,
we assume that the energies of nodes in each type are IID (independent and identically distributed).
The energy update rule of GNNSAFE is defined as:

E
(1)
i = λE

(0)
i + (1− λ)

1

|N (vi)|
∑

j∈N (vi)

E
(0)
j , (8)

where λ ∈ [0, 1] is a hyperparamter and N (vi) denotes the set of neighbors of node vi.

Consider an ID node vi with four neighbors, and analyze the following two cases: First, all four
neighbors are ID nodes. Second, two neighbors are ID nodes, and the other two are OOD nodes.

In the first case,

E[E(1)
i ] = λE[E(0)

i ] + (1− λ)
1

4

∑
j∈N (vi)

E
(0)
j = λµin + (1− λ)µin = µin. (9)

That is, the mean of the updated energy remains the same as the original mean, µin.

In terms of variance, given the i.i.d. property, the neighbors’ energies E(0)
j are independent of each

other and of E(0)
i , Therefore, the variance can be expressed as:

Var(E(1)
i ) = λ2Var(E(0)

i ) + (1− λ)2Var

1

4

∑
j∈N (vi)

E
(0)
j

 . (10)

We simplify the neighbor term and factor out σ2:

Var(E(1)
i ) = σ2

(
λ2 +

(1− λ)2

4

)
. (11)

Since λ ∈ [0, 1], the term λ2 + (1−λ)2

4 = 5λ2

4 − λ
2 + 1

4 < 1. This implies:

Var(E(1)
i ) < σ2. (12)

This confirms that, in the first case, GNNSAFE ensures that the mean remains the same while the
standard deviation decreases, probabilistically enhancing the discriminative energy of the ID node vi
compared to the energies of OOD nodes.

For the second case, node vi has two ID neighbors and two OOD neighbors. Let us analyze the mean
and variance of the updated energy E

(1)
i . Using the energy update rule:

E[E(1)
i ] = λE[E(0)

i ] + (1− λ)
1

4

∑
j∈N (vi)

E[E(0)
j ]. (13)

Substituting the expectations for ID (µin) and OOD (µout) nodes, and noting that two neighbors are
ID nodes and two are OOD nodes:

E[E(1)
i ] = λµin + (1− λ)

1

4
(2µin + 2µout) . (14)

Simplification gives:

E[E(1)
i ] = λµin + (1− λ)

1

2
(µin + µout) = µin +

(1− λ)

2
(µout − µin). (15)

By GNNSAFE, the mean of the ID node’s energy shifts towards the higher energy values of the OOD
nodes due to their influence in the aggregation term. This undesired mixing reduces the separation
between ID and OOD energies, potentially decreasing the effectiveness of OOD detection.
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The variance of E[E(1)
i ] can be expressed as:

Var(E(1)
i ) = λ2Var(E(0)

i ) + (1− λ)2Var

1

4

∑
j∈N (vi)

E
(0)
j

 . (16)

For the neighbor aggregation term:

Var

1

4

∑
j∈N (vi)

E
(0)
j

 =
1

16

∑
j∈N (vi)

Var(E(0)
j ) =

1

16

(
2σ2 + 2σ2

)
=

4σ2

16
=

σ2

4
. (17)

Finally,

Var(E(1)
i ) = λ2σ2 + (1− λ)2

σ2

4
= σ2

(
λ2 +

(1− λ)2

4

)
. (18)

As in the first case, the variance decreases compared to the initial variance σ2, but the influence of
the OOD neighbors shifts the energy distribution. However, the shift in the mean undermines the
goal of energy aggregation, which is to enhance the separation between ID and OOD energies.

This analysis can be easily extended to the general case where the ID node vi has n neighbors, among
which nin are ID nodes and nout are OOD nodes (nin + nout = n). Let us derive the mean and
variance for the updated energy E

(1)
i for this general case.

The energy update rule for E(1)
i is given by:

E[E(1)
i ] = λE[E(0)

i ] + (1− λ)
1

n

∑
j∈N (vi)

E[E(0)
j ]

= λµin + (1− λ)
1

n
(ninµin + noutµout)

= λµin + (1− λ)
(nin

n
µin +

nout

n
µout

)
= µin + (1− λ)

nout

n
(µout − µin). (19)

Here, the term (1− λ)nout

n (µout − µin) quantifies the shift in the mean of the ID node’s energy due
to the influence of OOD neighbors. The higher the proportion of OOD neighbors (nout/n) or the
larger the difference (µout − µin), the greater the shift in the mean towards the OOD energy values.
This undesired shift undermines the separation between ID and OOD energies.

The variance of E(1)
i is:

Var(E(1)
i ) = λ2Var(E(0)

i ) + (1− λ)2Var

 1

n

∑
j∈N (vi)

E
(0)
j


= λ2σ2 + (1− λ)2Var

 1

n

∑
j∈N (vi)

E
(0)
j


= λ2σ2 + (1− λ)2

1

n2

∑
j∈N (vi)

Var(E(0)
j )

= λ2σ2 + (1− λ)2
1

n2
(ninσ

2 + noutσ
2)

= λ2σ2 + (1− λ)2
σ2

n

= σ2

(
λ2 +

(1− λ)2

n

)
. (20)
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Since n ≥ 1, the term λ2 + (1−λ)2

n ≤ 1, confirming that the variance of E(1)
i is always reduced

compared to the initial variance σ2.

For the general case, the mean E[E(1)
i ] is shifted towards OOD energies when OOD neighbors are

present, reducing the separation between ID and OOD energies. The variance Var(E(1)
i ) decreases,

but the shift in the mean dominates, leading to the undesired mixing.

This theoretical analysis highlights why GNNSAFE’s reliance on graph structure can lead to the
undesired mixing of ID and OOD energies, reducing its effectiveness in maintaining energy separation.
Furthermore, this analysis shows that ID nodes aggregating energy from surrounding ID nodes and
OOD nodes aggregating energy from surrounding OOD nodes are beneficial for updating energies.
Unlike GNNSAFE, EDBD prevents undesired energy mixing by allowing ID nodes to focus on their
neighboring ID nodes and OOD nodes to focus on their neighboring OOD nodes during energy
aggregation.

F DISCUSSIONS

What is the main challenge of spreading OOD detection? The main challenge of spreading OOD
detection is that only Gt with the graph structure and Xt are given without any additional information
such as what the current t is, how much spreading has occurred, and the location of the seed node.
This is inspired by the fact that in most real-world OOD-related problems, information about the
spreading is not provided. Accordingly, depending on t and the spreading pattern of an episode, the
best method can be different. Due to this challenge of the spreading OOD detection task, the goal
is to perform OOD detection well under any spreading situations regardless of t. Hence, new three
metrics for spreading OOD detection are FPR95-T, AUROC-T, and AUPR-T, which are the averaged
FPR95, AUROC, and AUPR across each graph in {Gt}t∈{1,...,T}.

Despite this main challenge of the spreading OOD detection task, EDBD can address various
spreading situations through its edge-level and node-level aggregation controllers, which are the
energy similarity matrix and the energy consistency matrix, respectively. EDBD does not rely solely
on the graph structure for energy aggregation; instead, it performs energy aggregation adaptively
for each node according to its specific situation. Specifically, these two controllers tailor energy
aggregation for each node based on the energy distribution of the node and its neighboring nodes. This
energy-based energy aggregation process prevents undesired energy mixing between in-distribution
(ID) nodes and OOD nodes.

Comparison of spreading OOD detection and dynamic event detection. While dynamic event
detection (Zou et al., 2019; Zhang et al., 2022; Sridhar & Poor, 2022) seems similar to our spreading
OOD detection in that they address the problem of dynamic events spreading through a graph, there
are clear differences between dynamic event detection and our work from three perspectives. Firstly,
dynamic event detection relies on prior knowledge of the distribution of anomalies (i.e., OOD), such
as what the distribution is or the shape of the distribution. In contrast, spreading OOD detection
assumes that any information about OOD samples is inaccessible, which is the nature of anomalies or
OOD in many real-world scenarios. Secondly, dynamic event detection assume that they completely
know the distribution from which normal samples (i.e., ID samples) are drawn. However, following
OOD detection tasks (Liu et al., 2020; Rawat et al., 2021), we utilize only observed ID features and
partial labels for ID samples without fully knowing the distribution. Lastly, studies on dynamic event
detection (Zou et al., 2019; Zhang et al., 2022; Sridhar & Poor, 2022) use statistical models related to
this distribution, while we use a neural network trained on ID data to determine OOD based on class
scores.

Does EDBA take into account information about temporal dynamics? EDBA does not take into
account information about temporal dynamics. In many real-world OOD-related problems, the full
details of the temporal dynamics, such as when OOD spreading begins, are often unknown. Therefore,
in the task of spreading OOD detection, which reflects realistic scenarios, information about temporal
dynamics is not provided, although different time slices are used for evaluation. Spreading OOD
detection assumes that each time slice is independent, meaning that information from other time
slices is inaccessible. Consequently, EDBA, tailored for spreading OOD detection, does not consider
temporal dynamics.
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Why are human contact studies not considered? Human contact (Mossong et al., 2008; Balcan
et al., 2009; Pastor-Satorras et al., 2015; Mastrandrea et al., 2015) is a highly important topic in
the context of the spread of infectious diseases and can play a key role in transmission pathway
identification and disease dynamics modeling. However, we emphasize that this paper focuses on
introducing realistic benchmarks by simulating spreading, which can model the spread of brand-new
products, contaminants, as well as infectious diseases. Although we used simple models, such as the
SI and SIS models, for OOD spreading to cover these broad scenarios, incorporating human contact
modeling would be beneficial for conducting highly realistic simulations, particularly in the context
of infectious diseases.

Why OOD detection is not approached as a binary classification? OOD detection aims to
identify samples that were not seen during the training phase (i.e., OOD samples) when performing
classification into ID (in-distribution) classes. Since it is not always feasible to use samples from all
possible classes during training, OOD detection addresses a practical scenario. In contrast, binary
classification requires samples from both classes to be provided during the training phase. By
leveraging the OOD detection approach, we can handle completely new samples (e.g., COVID-19,
brand-new products, or computer viruses) without any prior information.

OOD Detection vs Outlier Detection OOD detection and outlier detection may appear similar but
are fundamentally different problems, with the main difference lying in their target for detection.
OOD detection identifies unseen test samples that differ from the training data distribution. In
contrast, outlier detection directly processes all observations and aims to identify outliers within a
contaminated dataset (Yang et al., 2021). In other words, the term ”in-distribution” (ID) in outlier
detection refers to the majority of the observations, whereas for OOD detection, ID refers specifically
to the training data.
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