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Abstract

Few-shot named entity recognition (NER)001
methods have shown preliminary effectiveness002
in flat tasks. However, existing methods still003
encounter difficulties when faced with cross-004
lingual and nested entity challenges due to the005
linguistic or nested structure gap. In this work,006
we propose a framework named SiTNER to007
deal with few-shot cross-lingual nested named008
entity recognition tasks. SiTNER mainly com-009
prises two components: (1) contrastive span010
classification which could pull entities into cor-011
responding prototype and generate high-quality012
pseudo-labels, and (2) masked pseudo data self-013
training which refine pseudo-labels and im-014
proves the span classification via self-training015
strategy. We train SiTNER on the English016
dataset and evaluate it on the English, German,017
and Russian datasets, and experimental results018
show our method could get comparable results.019

1 Introduction020

The few-shot Named Entity Recognition (NER)021

task, which aims to recognize unlabeled instances022

(query set) according to only a few labeled samples023

(support set), has recently been studied (Das et al.,024

2022; Wang et al., 2022c,a). Based on N -way K-025

shot task setting formulated by Li (Li et al., 2020a),026

few-shot NER methods could always apply the027

transfer learning strategy to enhance the model’s028

adaptability to other tasks, based on a small set029

of labeled data. This involved training the model030

in a rich-resource domain (aka, source domain)031

with high-quality annotations, followed by trans-032

ferring the model to the domain with limited la-033

beled samples (aka, target domain). hese methods034

could be divided into several types, including but035

not limited to metric-learning-based (Snell et al.,036

2017; Hofer et al., 2018; Yang and Katiyar, 2020),037

meta-learning-based (Li et al., 2020a; Sung et al.,038

2018), prompt-tuning-based (Ma et al., 2022a; Hou039

et al., 2022), and contrastive-learning-based (Das040
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Figure 1: Traditional few-shot NER methods may per-
form well on flat and non-cross-lingual tasks. However,
challenges persist when dealing with nested and cross-
lingual tasks.

et al., 2022). While these models have demon- 041

strated good performance in traditional few-shot 042

NER tasks, they still face challenges in address- 043

ing issues such as cross-language and nested entity 044

recognition, as illustrated in figure 1. 045

To bridge the linguistic gap between the source 046

and target domain, semi-supervised learning (SSL) 047

was raised to utilize the unlabeled data to enhance 048

the labeled data and has been used in low-resource 049

scenarios (Xie et al., 2020a; Yang et al., 2022). 050

Self-training is a fundamental SSL strategy that 051

can be described as a teacher-student framework. 052

A teacher model is trained on the low-resource la- 053

beled data and generates pseudo labels based on 054

the unlabeled data. Then, a student model is ini- 055

tialized and optimized by the pseudo labels of un- 056

labeled data and shares the model parameters with 057

the teacher model. Based on self-training, there are 058

many works on instance-level tasks such as image 059

classification (Wei et al., 2021; Wang et al., 2022b) 060

and text classification (Kim et al., 2022; Tsai et al., 061

2022), and token-level tasks such as sequence la- 062

beling (Wang et al., 2023, 2021a). These methods 063

mainly contribute to finding the noisy labels gen- 064

erated by the teacher model and avoiding error 065
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accumulation. Especially some pseudo-label sam-066

ple strategies including Re-weighting (Wang et al.,067

2021a), Bayesian Token Selection (Wang et al.,068

2023), and Uncertainty-aware Selection (Rizve069

et al., 2021) mitigate the effect of noisy labels070

and alleviate the problem of confirmation bias. Al-071

though some self-training methods have been ap-072

plied to deal with the few-shot sequence labeling073

(Wang et al., 2023; Qian and Zheng, 2022), the N -074

way K-shot cross-lingual nested NER tasks have075

not been explored previously.076

To remedy this dilemma, we propose Self-077

training high-quality pseudo-label Tuning, SiT-078

NER, a novel few-shot nested NER framework for079

the few-shot cross-lingual nested NER task. Un-080

like existing data selection or re-weighting meth-081

ods, SiTNER sufficiently leverages knowledge082

from unlabeled data in the target domain. SiT-083

NER comprises two key components, namely con-084

trastive span classification and masked pseudo085

data self-training. Firstly, we introduce a con-086

trastive objective for cross-lingual NER tasks.087

Typical supervised contrastive learning methods088

(Das et al., 2022) treat labeled entities of the089

same/different class as positive/negative pairs and090

increase/decrease the similarity between posi-091

tive/negative pairs. We further calculate the de-092

cision margin for each category of entity and force093

entities to fall within the decision margin via the094

backbone few-shot NER model. This could gen-095

erate high-quality pseudo-labels for the unlabeled096

query set. Second, we insert high-quality pseudo-097

labels into the sentences in the support set and098

apply a masking strategy to reduce similarity with099

the original support set, resulting in a new dataset100

called the pseudo-label mask set. We then combine101

the pseudo-label mask set with the small support102

set and apply the contrastive learning strategy to103

refine the backbone model. As a result, the back-104

bone few-shot NER model demonstrates improved105

performance on the challenging task of few-shot106

cross-lingual nested NER.107

Our main contributions are as follows:108

• The contrastive loss proposed by us enables109

the derivation of the prototype for each en-110

tity class and its corresponding decision mar-111

gin for different tasks. Utilizing these deci-112

sion boundaries, we can generate high-quality113

pseudo-labels for the unlabeled query set.114

• We propose a method for generating pseudo-115

label datasets, which embeds high-quality116

pseudo-labels into the support set. This ap- 117

proach could mitigate the impact of nested 118

structures on the model, addressing challenges 119

in few-shot cross-lingual nested NER tasks. 120

• We train SiTNER on the English dataset and 121

then make inferences on three nested NER 122

datasets in three different languages. Our pro- 123

posed SiTNER framework achieved compara- 124

ble results across these three few-shot cross- 125

lingual nested NER tasks, even using a basic 126

pre-trained language model as the backbone. 127

2 Problem Definition 128

Following the mainstream solutions, we formu- 129

late the few-shot nested NER task as an entity 130

span classification problem. Given a sentence 131

x with l tokens, denoted by x = {w1, . . . , wl}, 132

we enumerate all possible spans and each span 133

spq is a span of tokens starting from the pth to- 134

ken and ending at the qth token in x, denoted by 135

spq = {wp, . . . , wq} (1 ⩽ p ⩽ q ⩽ l). Then we 136

represent a labeled dataset (aka. support dataset) 137

and the unlabeled dataset (aka. query dataset) as 138

Dspt = {Sspt,Yspt} and Dqry = {Sqry}, respec- 139

tively. S is the set of spans in sentences and Y 140

is the set of corresponding labels of spans. The 141

N -way K-shot setting of the few-shot nested NER 142

task is making inferences for unlabeled Dqry with 143

only a small size of Dspt, which contain total N 144

types of entity and K entities for each type. 145

3 Methodology 146

Figure 2 illustrates the overall framework of SiT- 147

NER. The framework consists of two main compo- 148

nents: contrastive span classification and masked 149

pseudo-data self-training. 150

3.1 Contrastive Span Classification 151

To get word embedding, we use ProtoBERT (Snell 152

et al., 2017) as the backbone method of the SiTNER 153

framework. This backbone method utilizes BERT 154

(Devlin et al., 2019) as pre-trained language model 155

(PLM) encoder to get token embeddings in the 156

given sentence x = {w1, . . . , wl}. 157

[h1,h2, . . . ,hl] = PLM([w1, w2, . . . , wl]) (1) 158

Then for a span spq which starts from the pth 159

token and ends at the qth token in x, we could get 160

the span representation 161

spq = f(hp ⊕ hq) (2) 162
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Figure 2: The overall framework of SiTNER. We begin by training a backbone model using the few-shot support
set. This backbone model is then used to infer pseudo-labels for the unlabeled query set and to calculate prototypes
and decision margins for each entity type in the support set. Subsequently, we employ these prototypes and decision
margins to filter entities in the query set that fall within the decision margin. In the third step, the filtered entity
results are combined with the small support set to create a new dataset (pseudo label mask set), which is then used
to train a student model along with the support set. After the student model is trained, its parameters are shared with
the backbone model.

⊕ denotes the concatenation operator, and f is a163

non-linear activation function.164

For the labeled support set, a multitude of spans165

is present within an input sentence, with a signif-166

icant proportion of these spans belonging to the167

non-entity (O) category. Such a high prevalence of168

non-entity spans could impede the model’s learning169

process. To mitigate this issue, we adopt a strategy170

of selecting all entity spans and a limited number of171

adjacent O-type spans for inclusion in the training172

sentence. After that, we generate prototypes ci for173

type i in the support span set Sspt :174

ci =
1

|Sspti |

∑
Sspti (3)175

And the conventional ProtoBert methods will176

make inference of a span sqry in the unlabeled177

query set and generate pseudo-label ŷsqry by the178

highest similarity with prototypes c in the support179

set Sspt:180

p(sqry) = [d(c1, s
qry), . . . , d(cn, s

qry)] (4)181
182

ŷs
qry = argmax(p(sqry)) (5)183

Where d(.) is the cosine similarity.184

However, employing these inference results di-185

rectly as pseudo labels for spans in the query set186

could result in numerous misclassified spans as187

illustrated in “not using decision margin” in the188

Appendix A. These lower-quality predicted pseudo-189

labels incorporated into the existing labeled few-190

shot dataset during the self-training strategy will191

lead to harmful results during the self-training step.192

Thus we have devised a decision margin to retain193

the high-quality pseudo-labels, which reduces the194

DNA_domain_or_region

virus𝑸𝑸𝟏𝟏

𝑸𝑸𝟐𝟐

𝑸𝑸𝟑𝟑

entities in support set 
prototypes 

spans in query set 

Figure 3: Illustration of the decision margin: The
red/blue circles represent entity spans and their proto-
types in the support set. We choose the entity span with
the smallest cosine similarity to the prototype vector
(i.e., the farthest Euclidean distance from the prototype)
as the decision margin. The grey circles represent all
spans in the unlabeled query set. If a span falls within
the decision margin, the current label is assigned (as
shown with Q1 and Q2 being assigned pseudo-labels
“virus” and “DNA_domain_or_region” respectively). If
a span falls at the intersection of multiple decision mar-
gins, the pseudo-label chosen is the one closer to the
prototype (as seen with Q3 being assigned “virus” in
the illustration).

discrepancy between these predicted pseudo-labels 195

and the real ground-truth labels. 196

After generating the prototypes ci for each type 197

i in the support set Sspt via Equation 3, we calcu- 198

late the minimum cosine similarity (aka, farthest 199

Euclidean distance) from the prototypes ci to any 200

spans within type i and utilize this minimum cosine 201

similarity as the decision margin mi for each type: 202

mi = argmin(d(si1, ci), d(si2, . . . , ci), d(sin, ci))
(6) 203

Where sin is the spans with type i in the Sqry. 204
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Figure 3 illustrates the process.205

During the training step, we optimize the back-206

bone model by calculating the loss for each span207

s:208

Ls = log (1 + pos ∗ neg) (7)209
210

pos =
α · e−dp/τ

1 + e(dp−mi)/τ
(8)211

212

neg =
∑ (1− α) · edn/τ ·max(dn −mi, 0)

1 + e−(dn−mi)/τ

(9)213

where α is a learnable parameter, τ is the tem-214

perature (Wang and Liu, 2021), dp is the cosine215

similarity between current span s with the corre-216

sponding prototype of the same class, and dn is the217

cosine similarity between current span s with the218

corresponding prototype of the different classes.219

We adopt this loss function to maximize the sim-220

ilarity between spans in the query set that have the221

same class as their corresponding prototypes in the222

support set. Moreover, the further a sample is from223

its class center, the greater the magnitude of the224

pull force applied. On the other hand, for proto-225

types with different classes to the current span, we226

aim to push them away from each other and away227

from the corresponding class centers. If a sample is228

already outside the decision margin corresponding229

to its class center, there is no need to push it further230

away. Otherwise, the closer the sample is to its231

class center, the stronger the push force applied to232

move it farther away.233

3.2 Masked Pseudo Data Self-training234

In this section, we apply a self-training strategy to235

further optimize the performance of the backbone236

model. Specifically, we sample the spans and their237

corresponding pseudo labels in the unlabeled query238

set generated by the backbone model. In this way,239

we enhance the few-shot support set by sampled240

instances and further optimize the backbone model.241

3.2.1 Self-training Instance Generation242

Appendix A elucidates that for the unlabeled query243

dataset, we can filter entities within the decision244

margin mi. This results in a relatively small num-245

ber of selected entities, and through such filtering,246

a higher proportion of correctly predicted entities247

is achieved (i.e., cases where pseudo-labels match248

the true labels). We refer to these filtered entities249

as high-quality pseudo-labeled entity spans. Nev-250

ertheless, directly incorporating these high-quality251
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sequences in HIV-1 LTR responsive to T-

cell activation. 

virus DNA_domain_or_region
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Human immunodeficiency virus vpr product 

is a virion-associated regulatory protein. 
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[MASK] in Human immunodeficiency 

LTR [MASK] to T-cell activation. 

virus

The NF kappa B independent cis-acting 

sequences in Human immunodeficiency 

LTR responsive to T-cell activation. 
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Figure 4: The process of generating self-training data:
① The backbone model identifies an entity (Human
immunodeficiency) in the unlabeled query sentences
and generates a pseudo-label (virus) for it. ② Based
on the type of the pseudo-label, a sentence containing
the chosen type is selected from the support set. The
original entity (HIV-1) in the sentence is replaced with
an entity corresponding to the pseudo-label. In contrast,
other entities in different positions are re-labeled as
“O”, indicating non-entity (Human immunodeficiency
LTR → “O”). ③ Random words except pseudo-label
entity in the newly generated sentences are replaced
with [MASK] tokens.

pseudo-labels along with their corresponding en- 252

tities and sentences as self-training data and con- 253

ducting contrastive learning training in comparison 254

with the original support set is unwise. Given the 255

nature of the nested entity task, some misidentifi- 256

cations may still adversely impact the model. For 257

instance, consider a scenario where “HIV-1 LTR” 258

is a “DNA_domain_or_region” entity but remains 259

unrecognized by the model, while its nested sub- 260

segment “HIV-1” is identified as a “virus” entity. 261

In such cases, directly incorporating “HIV-1” and 262

its corresponding sentence into the model learning 263

process is problematic as it overlooks the fact that 264

“HIV-1 LTR” is also an entity. 265

Thus, for each high-quality pseudo label and the 266

corresponding span, we insert the span into the 267

original sentence in the few-shot support set which 268

has at least one span that the type is the same as its 269

pseudo label. To increase the dissimilarity between 270

the new sentences and the original ones, we replace 271

random word positions in the new sentences with 272

“[MASK]” tokens, thus introducing a level of un- 273

predictability. Figure 4 illustrates the process of 274

generating masked pseudo data. 275

3.2.2 Self-training Algorithm 276

After generating Masked Pseudo Data, we ap- 277

ply a self-training approach to fine-tune the back- 278

bone model and improve the performance of the 279

contrastive span classification component. The 280
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Algorithm 1: self-training
Input: Totall self-training setps T , few-shot

labeled data Sspt, unlabeled data
Sqry

1 Initialize teacher model ϕtea = θ(0)

2 for self-training step t← 1 to T do
3 Fine-tune teacher model on Sspt
4 Generate pseudo labels ŷsqry for spans

in Sqry
5 Initialize the student model ϕstu = θ(0)

6 while not converge do
7 generate new data Ssudo via pseudo

labels and corresponding span in
Sqry and the orgin sentences in
Sspt according to Section 3.2.1

8 Fine-tune the student model on Sspt
and Ssudo Update the parameters
of the student model ϕ(t)

stu

9 end
10 Update the parameters of the teacher

model ϕtea = ϕ
(t)
stu

11 end

self-training framework involves using a teacher-281

student model. In our self-training strategy, we282

treat the backbone model as the teacher and em-283

ploy the self-training algorithm to iteratively opti-284

mize the model. The overall algorithm is shown in285

Algorithm 1.286

4 Experiments287

In this section, we evaluate the performance of288

the proposed SiTNER framework in the few-shot289

nested NER setting. After introducing the rich-290

resource source domain dataset, three target do-291

main datasets, and baseline models, we outline the292

experimental setup, present experimental results,293

and provide a thorough analysis.294

4.1 Datasets295

To better assess the performance and generality of296

our proposed SiTNER framework across different297

languages, we chose the Indo-European language298

family for our experiments, as obtaining datasets in299

these languages is readily feasible. We use English300

as the source language and English, German, and301

Russian as the target language.302

As shown in Table 1, the target nested NER303

datasets are GENIA in English (Kim et al., 2003),304

GermEval in German (Benikova et al., 2014), and305

Dataset language Types Sentences Entities/Nest entities

GENIA English 36 18.5k 55.7k / 30.0k
GermEval German 12 18.4k 41.1k / 6.1k
NEREL Russian 29 8.9k 56.1k / 18.7k

FewNERD English 66 188.2k 491.7k / -

Table 1: Datasets used in experiments

NEREL in Russian (Loukachevitch et al., 2021). 306

We use a flat NER dataset, FewNERD in English 307

(Ding et al., 2021), as the source domain dataset 308

to train the model. All these datasets are publicly 309

available under the licenses of CC-BY 3.0 for GE- 310

NIA, CC-BY 4.0 for GermEval, CC-BY 2.5 for 311

NEREL, and CC-BY-SA 4.0 for FewNERD. We 312

have manually checked to guarantee these datasets 313

are without offensive content and identifiers. 314

4.2 Baselines 315

We compare SiTNER with nine baselines which 316

can be categorized into three groups: 1) Rich- 317

resource nested NER methods including NER- 318

DP (Yu et al., 2020), TIdentifier (Shen et al., 319

2021), IoBP (Wang et al., 2021b), and PO- 320

TreeCRFs (Fu et al., 2021); 2) Metric-based few- 321

shot NER methods including ProtoBERT (Snell 322

et al., 2017), NNShot (Yang and Katiyar, 2020), 323

ESD (Wang et al., 2022c), and SpanProto (Wang 324

et al., 2022a); 3) Contrastive-learning-based few- 325

shot NER method CONTaiNER (Das et al., 2022). 326

Appendix B details these baseline models. 327

4.3 Experiment Setup 328

In the training procedure, we utilized the FewN- 329

ERD dataset, which could be decomposed into the 330

inter- and intra-domain parts (Ding et al., 2021). 331

We randomly sampled 5-way 5-shot subtasks from 332

the FewNERD inter-domain subset for training, 333

among which 10,000 subtasks as the training set 334

and 500 subtasks as the validation set. We used the 335

validation set to validate the framework for every 336

1000 subtasks during the training procedure. In 337

the testing procedure, we first sampled several sen- 338

tences in the target domain dataset as the support 339

set. When sampling, we limited the number of en- 340

tities in each entity category to k. Some sentences 341

contain more than one entity. Thus, some entity 342

categories may have more than k entities after the 343

sampling procedure. We then fine-tuned the SiT- 344

NER on the support set and tested it on the query 345

set. Here we chose 1-shot and 5-shot as the settings 346

of the few-shot support set. Note that the model 347

was trained in the FewNERD dataset and the target 348
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Model GENIA (32-way) GermEval (12-way) NEREL (29-way) Avg1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
NER-DP 15.26±2.78 31.89±4.01 7.12±2.61 24.89±3.92 15.86±5.77 42.25±2.42 22.87

TIdentifier 9.73±5.36 23.90±4.48 12.26±8.13 41.11±4.86 30.06±7.44 53.29±5.56 28.39
IoBP 16.09±2.07 31.67±3.31 3.32±2.04 12.86±2.60 8.61±1.23 18.50±1.46 15.17

PO-TreeCRFs 22.37±5.08 35.13±3.33 8.87±8.08 45.83±3.88 22.06±6.55 52.25±2.40 31.08
CONTaiNER 16.76±6.00 17.60±6.61 29.18±7.05 37.05±1.01 26.61±1.75 44.37±1.27 28.60
ProtoBERT 21.83±3.39 37.18±1.81 33.20±9.00 47.95±4.06 38.70±4.62 50.22±1.28 38.18

NNShot 25.72±4.75 33.77±2.57 28.58±6.76 41.26±2.50 38.58±1.30 46.54±1.93 35.74
ESD 19.96±3.93 25.31±3.17 34.00±8.75 34.75±6.03 28.56±5.18 47.68±2.20 31.71

SpanProto 31.39±2.86 43.14±1.37 34.12±6.64 51.11±5.89 44.20±3.55 56.16±2.15 43.35
SiTNER 29.53±2.96 39.92±6.82 46.53±6.57 55.44±2.80 45.39±2.97 57.53±1.13 45.72

Table 2: F1 performance on GENIA, GermEval, and NEREL datasets with 1-shot and 5-shot settings (%).

dataset was from other languages. For the GENIA349

dataset, we dropped four entity types with several350

entities less than 50, thus the number of total types351

is 32. For the NEREL and GermEval datasets, the352

sampled datasets are from the given test part of the353

original datasets.354

To encode words in different languages into355

vectors, we used the PLM BERTbase_multilingual356

which has 12 heads of attention layers and 768357

word-embedding dimensions. The learning rate is358

set to 5e-5 and 1e-8 during the training and self-359

training process, respectively. The temperature τ360

is set to 10. The ratio of the “[MASK]” token in361

the pseudo data is 10%. We implemented SiTNER362

with PyTorch 1.12.1, and the experiments were363

performed on a Nvidia Tesla A10 GPU.364

4.4 Experimental Results365

Table 2 shows the average micro F1 results over366

ten experiments with different random seeds on367

three target domain nested NER datasets includ-368

ing GENIA, GermEval, and NEREL. The micro369

F1 represents the aggregation performance on all370

entity types by using the total number of true pos-371

itives, false positives, and false negatives for all372

entity types in the calculation of F1 scores. Com-373

pared to baseline models, the SiTNER achieves374

the best performance for each setting on GermEval375

and NEREL datasets. For example, compared with376

SpanProto, the SiTNER achieves an increase of377

3.33% and 1.37% on the 5-shot setting on Ger-378

mEval and NEREL datasets in terms of micro F1379

score, respectively. SiTNER achieves an increase380

of 12.41% and 1.19% on the 1-shot setting on Ger-381

mEval and NEREL datasets in terms of micro F1382

score, respectively.383

However, for the GENIA dataset, our model did384

not outperform the best-performing baseline model,385

whether in the 1-shot or 5-shot settings. This is386

because our backbone model is the simplest Pro- 387

toBERT model. The performance of this module 388

is not sufficient to compete with the best baseline 389

models. Besides, as shown in Table 5, the GE- 390

NIA dataset comprises a more diverse range of 391

categories, leading to the observation that the per- 392

formance of Protobert is less effective in discern- 393

ing high-quality labels compared to the other two 394

datasets. In the case of GENIA, less than half of the 395

pseudo-labels are identified as high-quality labels, 396

while in GERM and NEREL, 90.31% and 73.35% 397

of the pseudo-labels, respectively, are categorized 398

as high-quality labels. This is also a contribut- 399

ing factor to the lower performance of the GENIA 400

dataset compared to the baseline. 401

5 Analysis 402

5.1 Effect of Replace Strategy 403

In Section 3.2 and Figure 4, we explained that we 404

aim to select as many true entities from the query 405

set as possible and place them in sentences from 406

the support set. To validate the effectiveness of this 407

strategy, we designed a comparative experiment: 408

we directly included the original entities from the 409

query set along with their corresponding original 410

sentences in the self-training process (RSS), as 411

shown in Table 3. 412

Table 3 shows that if we directly construct a 413

self-training dataset by including possible entities 414

from the query set along with their corresponding 415

sentences, the results are not as effective as our self- 416

training method, which involves placing these enti- 417

ties into sentences from the support set. We believe 418

this is due to the issue of entity nesting. Even if 419

the predicted entities from the query set are within 420

the decision margin and have higher accuracy, the 421

surrounding nested entities may still be predicted 422

incorrectly. Including these incorrectly predicted 423

entities with their inaccurate pseudo-labels in the 424
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Dataset Before self-training SiTNER SiTNER w RSS
result improvement result improvement

NEREL 1-shot 44.79 46.09 1.29 45.15 0.36
5-shot 51.20 54.06 2.86 52.86 1.66

Table 3: F1 performance obtained using different self-training data generation strategies. We set our SiTNER model
to a ratio of 0, meaning that no words are replaced with “[MASK]” in the support set sentences. As a comparison,
we directly included the original entities from the query set along with their corresponding original sentences in the
self-training process (RSS).
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Figure 5: The results of different “[MASK]” ratios in
sentences.

self-training dataset can have a detrimental impact425

on the model. On the other hand, when we place426

these entities into sentences from the support set427

to create new sentences, the labels for the nested428

entities around them are correctly positioned as “O”429

resulting in greater accuracy.430

For instance, in the sentences shown in Figure 4,431

“Human immunodeficiency” is accurately identified432

as the “virus” entity. However, due to its nested433

structure, “Human immunodeficiency virus” can434

easily be misclassified as the “virus” entity, even435

though its true label should be “O” . If this sen-436

tence is directly used as self-training pseudo data,437

it would have a detrimental effect on the model.438

On the contrary, if we include “Human immunod-439

eficiency” in a sentence from the support set and440

replace “HIV-1” the nested entity “HIV-1 LTR” be-441

comes “Human immunodeficiency LTR” and its442

label changes from “DNA_domain_or_region” to443

“O”. This way, the impact of misclassified spans on444

the model would be smaller.445

5.2 Effect of MASK tokens446

After incorporating possible entities from the query447

set into sentences from the support set, to further448

reduce the similarity with the original support set449

sentences, we randomly replaced different numbers450

of words in the new sentences with “[MASK]” to-451

kens as mentioned in Section 3.2. To investigate 452

the impact of varying the number of replacements, 453

we designed a comparative experiment, and the 454

results are shown in Figure 5. 455

We observe that the varying proportions of differ- 456

ent masked tokens in sentences have a discernible 457

impact on the experimental performance of F1 458

value. In comparison to the 1-shot setting, the 5- 459

shot setting demonstrates a more pronounced effect 460

on the results. Additionally, even without replacing 461

words in the sentence with masks, the influence 462

of self-training contributes to improved outcomes. 463

However, considering the overall perspective, favor- 464

able results are achieved when the masked tokens 465

are present in lower quantities (10%) or higher 466

proportions (80%). 467

6 Related Work 468

6.1 Rich-resource Nested NER 469

Nested NER aims to recognize entities with nested 470

structures. Most of the current methods for nested 471

NER are established on rich-resource datasets, and 472

they require a large number of instances for training 473

the model. These methods could be categorized 474

into span-based, hypergraph-based, and layered- 475

based (Wan et al., 2022). 476

Span-based methods treat sequences of tokens 477

as spans and then label all possible spans by classi- 478

fication models (Shen et al., 2021; Li et al., 2020b; 479

Tan et al., 2021). Hypergraph-based methods an- 480

alyze the dependence of words in a sentence and 481

then construct a dependency tree (Yu et al., 2020) 482

or other structures (Wang and Lu, 2018; Katiyar 483

and Cardie, 2018) to help identify nested entities. 484

These methods may be stuck in overfitting due 485

to sophisticated models and the limited number of 486

instances for training in the few-shot setting. 487

6.2 Few-shot NER 488

Few-shot NER requires recognizing entities with 489

the support of only very few labeled instances 490

(Hofer et al., 2018; Fritzler et al., 2019). Due to 491
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limited information in labeled instances, methods492

for few-shot NER mainly resort to a rich-resource493

source domain to help train models, resulting in494

meta-learning frameworks that train models on ade-495

quate subtasks to make the model acquire the learn-496

ing ability on few-shot tasks (Ma et al., 2022b).497

Within the meta-learning framework, various498

kinds of models are designed. For example, metric-499

based methods, including ProtoBERT (Snell et al.,500

2017), NNShot (Yang and Katiyar, 2020), and501

SpanProto (Wang et al., 2022a), measure distances502

between prototypes in the support set and instances503

in the query set. Optimization-based methods, such504

as MAML (Finn et al., 2017) and FEWNER (Li505

et al., 2020a), train the model by a special opti-506

mizer. And Contrastive-learning methods, such507

as CONTaiNER (Das et al., 2022), aim to maxi-508

mize similarities of the same type and minimize509

similarities between different types.510

Besides, prompt-based methods have gained at-511

tention due to the ability to guide models focused512

on the information of interests through various tem-513

plates (Hou et al., 2022; Hu et al., 2022).514

These few-shot NER methods mostly focus on515

flat entities. Few works have discussed the few-516

shot nested NER setting. Wang et al. converted se-517

quence labeling to span-level matching and showed518

their method could handle nested entities (Wang519

et al., 2022c). However, it is not designed for the520

few-shot nested NER specifically.521

6.3 Semi-supervised Learning522

In recent years, there has been a considerable523

amount of research in the field of semi-supervised524

learning (Xie et al., 2020b; Berthelot et al., 2019),525

and a subset of this research involves the utiliza-526

tion of pseudo-labels (Sohn et al., 2020) and self-527

training (Wang et al., 2023, 2021a). Some of these528

efforts are focused on applying semi-supervised529

learning methods to address the issue of class im-530

balance (Wei et al., 2021; Yang and Xu, 2020;531

Hyun et al., 2020).532

To make full use of unlabeled data in NER tasks,533

the self-training method could use contextualized534

augmentations to improve the generalization ability535

of the NER model (Meng et al., 2021). The com-536

bination of transfer learning and self-training strat-537

egy shows a boost in performance in low-resource538

biomedical applications (Gao et al., 2021).539

These semi-supervised learning methods neither540

study N -way K-shot setting scenario of few-shot541

nested NER tasks. 542

7 Conclusion 543

In this work, we propose SiTNER as a novel con- 544

trastive and self-training framework for the unex- 545

plored few-shot cross-lingual NER tasks. Specif- 546

ically, diverging from conventional data selection 547

or re-weighting methods, SiTNER effectively har- 548

nesses knowledge from unlabeled data within the 549

target domain. SiTNER consists of two primary 550

components: contrastive span classification and 551

masked pseudo-data self-training. 552

Firstly, we present a contrastive objective tai- 553

lored for few-shot cross-lingual NER tasks. We 554

extend typical supervised contrastive learning meth- 555

ods by calculating a decision margin for each entity 556

category and generating high-quality pseudo-labels 557

for the unlabeled query set. Secondly, we incor- 558

porate these pseudo-labels into sentences within 559

the support set and employ a masking strategy to 560

diminish similarity with the original support set. 561

Experiments on three cross-lingual nested NER 562

datasets validate the effectiveness of SiTNER. 563

8 Limitations 564

Given that few-shot nested cross-lingual NER is a 565

nascent task, this paper provides only a preliminary 566

exploration and acknowledges several limitations 567

that warrant further consideration. The foremost 568

concern pertains to the multi-language dimension. 569

Our evaluation of the SiTNER framework relies on 570

English, German, and Russian datasets. Despite 571

the substantial linguistic distinctions among these 572

languages, they share a common lineage within 573

the Indo-European language family. This raises 574

a potential language bias, necessitating an assess- 575

ment of SiTNER’s generalization capability across 576

different language families. 577

The second limitation revolves around the imbal- 578

anced distribution of entity types. The stringent K- 579

shot setting proves challenging to uphold, leading 580

to difficulties in achieving a balanced performance 581

across entity types that exhibit notable quantitative 582

disparities. Addressing this challenge remains an 583

ongoing task. 584
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A Effect of Decision Margin 881

Table 4 and 5 illustrate the impact of employing 882

decision margin on the classification results of the 883

backbone model. total spans denotes the number 884

of total spans predicted during the inference step 885

among three datasets. “✓, O” denotes the number 886

of spans that the true label is O and the inference 887

label is O. “✓, E” denotes the number of spans that 888

the true label is the entity type and the inference 889

label is the same entity type. “✗, O→E” denotes 890

the number of spans that the true label is O but 891

the inference label is the entity type. “✗, E→O” 892

denotes the number of spans that the true label 893

is the entity type but the inference label is O. “✗, 894

E→oE” denotes the number of spans that the true 895

label is the entity type but the inference label is a 896

different entity type. 897

Table 4 presents the impact of incorporating de- 898

cision margin on the final prediction outcomes of 899

our backbone models across three datasets. The use 900

of decision margin leads to an increase in the num- 901

ber of O→O cases and a decrease in E→E cases, 902

where some true entity-labeled data points fall out- 903

side the decision margin and are misclassified as O. 904

Consequently, the overall predictive performance 905

of the model decreases compared to the scenario 906

where decision margin are not employed. Addition- 907

ally, concerning misclassifications, the model tends 908

to reduce the instances classified as E (entity) and 909

increase those classified as O. 910

Table 5 provides a breakdown of the components 911

within segments classified as entities by the back- 912

bone model, comparing the proportions with and 913

without the use of decision margin. It can be ob- 914

served that although the number of segments clas- 915

sified as entities decreases when decision margins 916

are employed, the proportion of correctly classified 917

segments among these entity segments increases. 918

Therefore, utilizing these correctly classified entity 919

segments to augment the training data for the few- 920

shot support set ensures the quality of the added 921

data. 922
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GENIA (32-way) GERM (12-way) NEREL (29-way)
total spans 5119635 617650 247149
decision margin? ✗ ✓ ✗ ✓ ✗ ✓
✓, O 4953007 5006369 608832 610871 238578 241029
✓, E 45674/27.41% 23868/21.07% 4174/47.33% 2415/35.62% 3457/40.33% 2051/33.51%
✗, O→E 74324/44.60% 20962/18.50% 2224/25.22% 185/2.72% 3083/35.97% 632/10.32%
✗, E→O 12717/7.63% 62682/55.34% 1073/12.16% 4105/60.55% 1302/15.19% 3324/54.31%
✗, E→oE 33913/20.35% 5754/5.08% 1347/15.27% 74/1.09% 729/8.50% 113/1.84%
F1 37.10 33.41 58.22 52.11 54.20 49.52

Table 4: Statistical results by using decision margin or not.

GENIA (32-way) GERM (12-way) NEREL (29-way)
decision margin? ✗ ✓ ✗ ✓ ✗ ✓
entity spans 153911 50584 7745 2674 7296 2796
✓, E 45674/29.67% 23868/47.18% 4174/53.89% 2145/90.31% 3457/47.55% 2051/73.35%
✗, O→E 74324/48.29% 20962/41.43% 2224/28.71% 185/6.91% 3083/42.41% 632/22.60%
✗, E→oE 33913/22.03% 5754/11.375% 1347/17.39% 74/2.76% 729/10.02% 113/4.04%

Table 5: Statistical results of the spans which are prediceted as an entity by using decision margin or not.

B Baseline Models923

We compare our SiTNER with the following base-924

line models:925

• NER-DP (Yu et al., 2020) is a rich-resource-926

based nested NER method. It uses the idea of927

graph-based dependency parsing and applies a928

biaffine model to establish the dependency of929

the start and end words for each span. For the930

few-shot nested NER task, we train the model931

via the support set on the target domain.932

• TIdentifier (Shen et al., 2021) is also a rich-933

resource-based nested NER method. It utilizes934

a Two-stage Identifier (TIdentifier) to identify935

nested entities. It first locates entities by seed936

spans through a seed span generation module937

and then classifies them by a span proposal938

module. We also train it via the support set on939

the target domain.940

• IoBP (Wang et al., 2021b) is an extension941

of the second-best path recognition method,942

which eliminates the impact of the best path.943

It is a layered approach that maintains a set of944

hidden states at each time step and employs945

them to construct a unique potential function946

for recognition at each level.947

• PO-TreeCRFs (Fu et al., 2021) treats nested948

NER as constituency parsing with partially949

observed trees. It proposes a model called par-950

tially observed TreeCRFs to handle this task.951

Labeled entity spans are considered observed952

nodes in a constituency tree, while other spans953

are latent nodes. The TreeCRF model al- 954

lows for joint modeling of observed and latent 955

nodes. This model supports different infer- 956

ence operations for different nodes, enabling 957

efficient parallelized implementation. 958

• CONTaiNER (Das et al., 2022) is a 959

contrastive-learning-based few-shot flat NER 960

method. It assumes the word embeddings fol- 961

low the Gaussian distributions and uses KL- 962

divergence to measure the similarity between 963

words. It applies a contrastive loss function 964

of the average of similarities between posi- 965

tive samples dividing similarities between all 966

samples. We adapt this method to handle the 967

nested NER task by applying the entity span 968

formulation. 969

• ProtoBERT (Snell et al., 2017) is a metric- 970

learning-based few-shot flat NER method. It 971

identifies the prototype for each entity type 972

and makes inferences according to the dis- 973

tances between prototypes and query samples. 974

It applies the cross-entropy loss to optimize 975

the model. We also adapt it with the entity 976

span formulation. 977

• NNShot (Yang and Katiyar, 2020) is also 978

a metric-learning-based method for the few- 979

shot flat NER. It makes inferences according 980

to the word-level distance from the labeled 981

support set. We adapt it to handle nested en- 982

tities by utilizing entity spans rather than se- 983

quence labeling, therefore, the CRF (Condi- 984

tional Random Field) layer is not needed to la- 985

bel the words. Consequently, our experiment 986
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did not use the StructShot method mentioned987

by Yang et al. (Yang and Katiyar, 2020).988

• ESD (Wang et al., 2022c) is a metric-learning-989

based few-shot flat NER method that con-990

structs prototypes by applying intra-span and991

cross-span attention to enhance span represen-992

tation. Based on enhanced representations, it993

classifies spans according to the prototypes994

from the support set. The authors showed this995

method could handle nested entities due to the996

entity span formulation. We apply it directly997

in our experiment.998

• SpanProto (Wang et al., 2022a) is also a999

metric-learning-based method designed for1000

the few-shot flat NER scenario. It applies a1001

two-stage strategy to recognize entities, in-1002

cluding a span extractor stage to determine1003

candidate entity spans and a mention classifier1004

stage to identify entity labels. This method1005

applies the entity span formulation and could1006

handle nested entities, although the authors do1007

not validate it. We also apply it directly in our1008

experiment.1009
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