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Abstract

Few-shot named entity recognition (NER)
methods have shown preliminary effectiveness
in flat tasks. However, existing methods still
encounter difficulties when faced with cross-
lingual and nested entity challenges due to the
linguistic or nested structure gap. In this work,
we propose a framework named SiTNER to
deal with few-shot cross-lingual nested named
entity recognition tasks. SITNER mainly com-
prises two components: (1) contrastive span
classification which could pull entities into cor-
responding prototype and generate high-quality
pseudo-labels, and (2) masked pseudo data self-
training which refine pseudo-labels and im-
proves the span classification via self-training
strategy. We train SIiTNER on the English
dataset and evaluate it on the English, German,
and Russian datasets, and experimental results
show our method could get comparable results.

1 Introduction

The few-shot Named Entity Recognition (NER)
task, which aims to recognize unlabeled instances
(query set) according to only a few labeled samples
(support set), has recently been studied (Das et al.,
2022; Wang et al., 2022c,a). Based on N-way K-
shot task setting formulated by Li (Li et al., 2020a),
few-shot NER methods could always apply the
transfer learning strategy to enhance the model’s
adaptability to other tasks, based on a small set
of labeled data. This involved training the model
in a rich-resource domain (aka, source domain)
with high-quality annotations, followed by trans-
ferring the model to the domain with limited la-
beled samples (aka, target domain). hese methods
could be divided into several types, including but
not limited to metric-learning-based (Snell et al.,
2017; Hofer et al., 2018; Yang and Katiyar, 2020),
meta-learning-based (Li et al., 2020a; Sung et al.,
2018), prompt-tuning-based (Ma et al., 2022a; Hou
et al., 2022), and contrastive-learning-based (Das
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Figure 1: Traditional few-shot NER methods may per-
form well on flat and non-cross-lingual tasks. However,
challenges persist when dealing with nested and cross-
lingual tasks.

et al., 2022). While these models have demon-
strated good performance in traditional few-shot
NER tasks, they still face challenges in address-
ing issues such as cross-language and nested entity
recognition, as illustrated in figure 1.

To bridge the linguistic gap between the source
and target domain, semi-supervised learning (SSL)
was raised to utilize the unlabeled data to enhance
the labeled data and has been used in low-resource
scenarios (Xie et al., 2020a; Yang et al., 2022).
Self-training is a fundamental SSL strategy that
can be described as a teacher-student framework.
A teacher model is trained on the low-resource la-
beled data and generates pseudo labels based on
the unlabeled data. Then, a student model is ini-
tialized and optimized by the pseudo labels of un-
labeled data and shares the model parameters with
the teacher model. Based on self-training, there are
many works on instance-level tasks such as image
classification (Wei et al., 2021; Wang et al., 2022b)
and text classification (Kim et al., 2022; Tsai et al.,
2022), and token-level tasks such as sequence la-
beling (Wang et al., 2023, 2021a). These methods
mainly contribute to finding the noisy labels gen-
erated by the teacher model and avoiding error



accumulation. Especially some pseudo-label sam-
ple strategies including Re-weighting (Wang et al.,
2021a), Bayesian Token Selection (Wang et al.,
2023), and Uncertainty-aware Selection (Rizve
et al., 2021) mitigate the effect of noisy labels
and alleviate the problem of confirmation bias. Al-
though some self-training methods have been ap-
plied to deal with the few-shot sequence labeling
(Wang et al., 2023; Qian and Zheng, 2022), the N-
way K -shot cross-lingual nested NER tasks have
not been explored previously.

To remedy this dilemma, we propose Self-
training high-quality pseudo-label Tuning, SiT-
NER, a novel few-shot nested NER framework for
the few-shot cross-lingual nested NER task. Un-
like existing data selection or re-weighting meth-
ods, SiTNER sufficiently leverages knowledge
from unlabeled data in the target domain. SiT-
NER comprises two key components, namely con-
trastive span classification and masked pseudo
data self-training. Firstly, we introduce a con-
trastive objective for cross-lingual NER tasks.
Typical supervised contrastive learning methods
(Das et al., 2022) treat labeled entities of the
same/different class as positive/negative pairs and
increase/decrease the similarity between posi-
tive/negative pairs. We further calculate the de-
cision margin for each category of entity and force
entities to fall within the decision margin via the
backbone few-shot NER model. This could gen-
erate high-quality pseudo-labels for the unlabeled
query set. Second, we insert high-quality pseudo-
labels into the sentences in the support set and
apply a masking strategy to reduce similarity with
the original support set, resulting in a new dataset
called the pseudo-label mask set. We then combine
the pseudo-label mask set with the small support
set and apply the contrastive learning strategy to
refine the backbone model. As a result, the back-
bone few-shot NER model demonstrates improved
performance on the challenging task of few-shot
cross-lingual nested NER.

Our main contributions are as follows:

* The contrastive loss proposed by us enables
the derivation of the prototype for each en-
tity class and its corresponding decision mar-
gin for different tasks. Utilizing these deci-
sion boundaries, we can generate high-quality
pseudo-labels for the unlabeled query set.

* We propose a method for generating pseudo-
label datasets, which embeds high-quality

pseudo-labels into the support set. This ap-
proach could mitigate the impact of nested
structures on the model, addressing challenges
in few-shot cross-lingual nested NER tasks.

* We train SiTNER on the English dataset and
then make inferences on three nested NER
datasets in three different languages. Our pro-
posed SiTNER framework achieved compara-
ble results across these three few-shot cross-
lingual nested NER tasks, even using a basic
pre-trained language model as the backbone.

2 Problem Definition

Following the mainstream solutions, we formu-
late the few-shot nested NER task as an entity
span classification problem. Given a sentence
x with [ tokens, denoted by =z = {wi,...,w;},
we enumerate all possible spans and each span
Spg 1s a span of tokens starting from the p* to-
ken and ending at the ¢*" token in x, denoted by
Spg = {Wp, ..., we} (1 < p < ¢ <1). Then we
represent a labeled dataset (aka. support dataset)
and the unlabeled dataset (aka. query dataset) as
DsPt = {89t YsPt} and DIV = {ST"V}, respec-
tively. S is the set of spans in sentences and )
is the set of corresponding labels of spans. The
N-way K-shot setting of the few-shot nested NER
task is making inferences for unlabeled D?"Y with
only a small size of D!, which contain total N
types of entity and K entities for each type.

3 Methodology

Figure 2 illustrates the overall framework of SiT-
NER. The framework consists of two main compo-
nents: contrastive span classification and masked
pseudo-data self-training.

3.1 Contrastive Span Classification

To get word embedding, we use ProtoBERT (Snell
etal., 2017) as the backbone method of the SITNER
framework. This backbone method utilizes BERT
(Devlin et al., 2019) as pre-trained language model
(PLM) encoder to get token embeddings in the
given sentence x = {w1,...,w;}.

[hl, hg, ey hl] = PLM([wl,wg, ey wl]) (1)

Then for a span s,, which starts from the pth
token and ends at the ¢*” token in z, we could get
the span representation

Spq = f(hp ® hgq) 2)
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Figure 2: The overall framework of SITNER. We begin by training a backbone model using the few-shot support
set. This backbone model is then used to infer pseudo-labels for the unlabeled query set and to calculate prototypes
and decision margins for each entity type in the support set. Subsequently, we employ these prototypes and decision
margins to filter entities in the query set that fall within the decision margin. In the third step, the filtered entity
results are combined with the small support set to create a new dataset (pseudo label mask set), which is then used
to train a student model along with the support set. After the student model is trained, its parameters are shared with

the backbone model.

@ denotes the concatenation operator, and f is a
non-linear activation function.

For the labeled support set, a multitude of spans
is present within an input sentence, with a signif-
icant proportion of these spans belonging to the
non-entity (O) category. Such a high prevalence of
non-entity spans could impede the model’s learning
process. To mitigate this issue, we adopt a strategy
of selecting all entity spans and a limited number of
adjacent O-type spans for inclusion in the training
sentence. After that, we generate prototypes c; for
type 4 in the support span set SP¢ :

1 spt
|5

And the conventional ProtoBert methods will
make inference of a span s?"Y in the unlabeled
query set and generate pseudo-label 757"Y by the
highest similarity with prototypes c in the support
set SPt:

3)

p(s?Y) = [d(c1,8"Y),...,d(cn, s7"Y)]  (4)

&)

ys'" = argmaz(p(s*?))

Where d(.) is the cosine similarity.

However, employing these inference results di-
rectly as pseudo labels for spans in the query set
could result in numerous misclassified spans as
illustrated in “not using decision margin” in the
Appendix A. These lower-quality predicted pseudo-
labels incorporated into the existing labeled few-
shot dataset during the self-training strategy will
lead to harmful results during the self-training step.
Thus we have devised a decision margin to retain
the high-quality pseudo-labels, which reduces the

@ entities in support set
@ @ prototypes

spans in query set

o virus

/'. Q3 DNA:domain_or_region

Figure 3: Illustration of the decision margin: The
red/blue circles represent entity spans and their proto-
types in the support set. We choose the entity span with
the smallest cosine similarity to the prototype vector
(i.e., the farthest Euclidean distance from the prototype)
as the decision margin. The grey circles represent all
spans in the unlabeled query set. If a span falls within
the decision margin, the current label is assigned (as
shown with ()7 and )2 being assigned pseudo-labels
“virus” and “DNA_domain_or_region” respectively). If
a span falls at the intersection of multiple decision mar-
gins, the pseudo-label chosen is the one closer to the
prototype (as seen with (03 being assigned “virus” in
the illustration).

discrepancy between these predicted pseudo-labels
and the real ground-truth labels.

After generating the prototypes c; for each type
i in the support set S*?* via Equation 3, we calcu-
late the minimum cosine similarity (aka, farthest
Euclidean distance) from the prototypes c; to any
spans within type ¢ and utilize this minimum cosine
similarity as the decision margin m; for each type:

) ci)u d(sinu CZ))
(6)
Where s;,, is the spans with type ¢ in the S?'Y.

m; = argmin(d(s;1, ¢;), d(S;2, - ..



Figure 3 illustrates the process.

During the training step, we optimize the back-
bone model by calculating the loss for each span
s

Ls =log (1 + pos * negq) @)

- e_dp/T
POS = T (dy—ma) /7 ®)

B (1—a)- e/ max(d, —m;,0)
neg =3 1+ e (dnmi)/r
©))

where « is a learnable parameter, 7 is the tem-
perature (Wang and Liu, 2021), d), is the cosine
similarity between current span s with the corre-
sponding prototype of the same class, and d,, is the
cosine similarity between current span s with the
corresponding prototype of the different classes.

We adopt this loss function to maximize the sim-
ilarity between spans in the query set that have the
same class as their corresponding prototypes in the
support set. Moreover, the further a sample is from
its class center, the greater the magnitude of the
pull force applied. On the other hand, for proto-
types with different classes to the current span, we
aim to push them away from each other and away
from the corresponding class centers. If a sample is
already outside the decision margin corresponding
to its class center, there is no need to push it further
away. Otherwise, the closer the sample is to its
class center, the stronger the push force applied to
move it farther away.

3.2 Masked Pseudo Data Self-training

In this section, we apply a self-training strategy to
further optimize the performance of the backbone
model. Specifically, we sample the spans and their
corresponding pseudo labels in the unlabeled query
set generated by the backbone model. In this way,
we enhance the few-shot support set by sampled
instances and further optimize the backbone model.

3.2.1 Self-training Instance Generation

Appendix A elucidates that for the unlabeled query
dataset, we can filter entities within the decision
margin m;. This results in a relatively small num-
ber of selected entities, and through such filtering,
a higher proportion of correctly predicted entities
is achieved (i.e., cases where pseudo-labels match
the true labels). We refer to these filtered entities
as high-quality pseudo-labeled entity spans. Nev-
ertheless, directly incorporating these high-quality
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Figure 4: The process of generating self-training data:
® The backbone model identifies an entity (Human
immunodeficiency) in the unlabeled query sentences
and generates a pseudo-label (virus) for it. @ Based
on the type of the pseudo-label, a sentence containing
the chosen type is selected from the support set. The
original entity (HIV-1) in the sentence is replaced with
an entity corresponding to the pseudo-label. In contrast,
other entities in different positions are re-labeled as
“0”, indicating non-entity (Human immunodeficiency
LTR — “0”). ® Random words except pseudo-label
entity in the newly generated sentences are replaced
with [MASK] tokens.

pseudo-labels along with their corresponding en-
tities and sentences as self-training data and con-
ducting contrastive learning training in comparison
with the original support set is unwise. Given the
nature of the nested entity task, some misidentifi-
cations may still adversely impact the model. For
instance, consider a scenario where “HIV-1 LTR”
is a “DNA_domain_or_region” entity but remains
unrecognized by the model, while its nested sub-
segment “HIV-1” is identified as a “virus” entity.
In such cases, directly incorporating “HIV-1" and
its corresponding sentence into the model learning
process is problematic as it overlooks the fact that
“HIV-1 LTR” is also an entity.

Thus, for each high-quality pseudo label and the
corresponding span, we insert the span into the
original sentence in the few-shot support set which
has at least one span that the type is the same as its
pseudo label. To increase the dissimilarity between
the new sentences and the original ones, we replace
random word positions in the new sentences with
“[IMASK]” tokens, thus introducing a level of un-
predictability. Figure 4 illustrates the process of
generating masked pseudo data.

3.2.2 Self-training Algorithm

After generating Masked Pseudo Data, we ap-
ply a self-training approach to fine-tune the back-
bone model and improve the performance of the
contrastive span classification component. The



Algorithm 1: self-training
Input: Totall self-training setps 7', few-shot
labeled data S***, unlabeled data
Sary
1 Initialize teacher model ¢yeq = ()
2 for self-training stept < 1 to I do

3 | Fine-tune teacher model on S*P*

4 Generate pseudo labels 159" for spans
in SV

s | Initialize the student model ¢gz,, = 6(¥)

6 while not converge do

7 generate new data S*““° via pseudo

labels and corresponding span in
S7"Y and the orgin sentences in
S*Pt according to Section 3.2.1

8 Fine-tune the student model on S*¥!
and S*“%° Update the parameters
of the student model qb(t)

stu
9 end
10 Update the parameters of the teacher
model ¢ieq = ¢$L
u end

self-training framework involves using a teacher-
student model. In our self-training strategy, we
treat the backbone model as the teacher and em-
ploy the self-training algorithm to iteratively opti-
mize the model. The overall algorithm is shown in
Algorithm 1.

4 [Experiments

In this section, we evaluate the performance of
the proposed SiTNER framework in the few-shot
nested NER setting. After introducing the rich-
resource source domain dataset, three target do-
main datasets, and baseline models, we outline the
experimental setup, present experimental results,
and provide a thorough analysis.

4.1 Datasets

To better assess the performance and generality of
our proposed SiITNER framework across different
languages, we chose the Indo-European language
family for our experiments, as obtaining datasets in
these languages is readily feasible. We use English
as the source language and English, German, and
Russian as the target language.

As shown in Table 1, the target nested NER
datasets are GENIA in English (Kim et al., 2003),
GermEval in German (Benikova et al., 2014), and

Dataset language  Types Sentences  Entities/Nest entities

GENIA English 36 18.5k 55.7k /30.0k
GermEval German 12 18.4k 41.1k / 6.1k

NEREL Russian 29 8.9k 56.1k / 18.7k
FewNERD English 66 188.2k 491.7k / -

Table 1: Datasets used in experiments

NEREL in Russian (Loukachevitch et al., 2021).
We use a flat NER dataset, FewNERD in English
(Ding et al., 2021), as the source domain dataset
to train the model. All these datasets are publicly
available under the licenses of CC-BY 3.0 for GE-
NIA, CC-BY 4.0 for GermEval, CC-BY 2.5 for
NEREL, and CC-BY-SA 4.0 for FewNERD. We
have manually checked to guarantee these datasets
are without offensive content and identifiers.

4.2 Baselines

We compare SiTNER with nine baselines which
can be categorized into three groups: 1) Rich-
resource nested NER methods including NER-
DP (Yu et al., 2020), Tldentifier (Shen et al.,
2021), IoBP (Wang et al., 2021b), and PO-
TreeCRFs (Fu et al., 2021); 2) Metric-based few-
shot NER methods including ProtoBERT (Snell
et al., 2017), NNShot (Yang and Katiyar, 2020),
ESD (Wang et al., 2022c), and SpanProto (Wang
et al., 2022a); 3) Contrastive-learning-based few-
shot NER method CONTaiNER (Das et al., 2022).
Appendix B details these baseline models.

4.3 Experiment Setup

In the training procedure, we utilized the FewN-
ERD dataset, which could be decomposed into the
inter- and intra-domain parts (Ding et al., 2021).
We randomly sampled 5-way 5-shot subtasks from
the FewNERD inter-domain subset for training,
among which 10,000 subtasks as the training set
and 500 subtasks as the validation set. We used the
validation set to validate the framework for every
1000 subtasks during the training procedure. In
the testing procedure, we first sampled several sen-
tences in the target domain dataset as the support
set. When sampling, we limited the number of en-
tities in each entity category to k. Some sentences
contain more than one entity. Thus, some entity
categories may have more than k entities after the
sampling procedure. We then fine-tuned the SiT-
NER on the support set and tested it on the query
set. Here we chose 1-shot and 5-shot as the settings
of the few-shot support set. Note that the model
was trained in the FewNERD dataset and the target



GENIA (32-way)

GermEval (12-way)

NEREL (29-way)

Model 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot Avg
NER-DP 15.26+2.78  31.89+4.01 7.1242.61 24894392  15.86+577 42.25+242 22.87
TIdentifier 9.73+5.36 23.904+4.48  12.26+8.13 41.11+486  30.06+£7.44 53.29+4556 28.39
IoBP 16.094+2.07  31.67+331 3.3242.04 12.8642.60 8.61+1.23 18.50+1.46 15.17
PO-TreeCRFs 22.374+5.08 35.13+3.33 8.87+8.08 45.83+388 22.06+6.55 52.254+240 31.08

" CONTaiNER ~ 16.76+6.00 17.60+6.61 29.18+705 37.05£101 26.61+175 4437+127 28.60
ProtoBERT 21.834+339  37.18+1.81 33.204+9.00 47.95+406 38.70+4.62 50.224+128 38.18
NNShot 25.7244.75  33.77+2.57 28.58+6.76  41.26+250 38.58+1.30 46.54+193 35.74
ESD 19.964+393  25.31+3.17 34.00+£8.75  34.754+6.03 28.56+5.18 47.68+220 31.71
SpanProto 31.39+286  43.14+137 34124664  51.11+£589  44.20+3.55  56.16+2.15  43.35

" SITNER ~  29.534296 39924682 46.53+657 55.44+280 45.39+297 57.53+1.13 4572

Table 2: F}j performance on GENIA, GermEval, and NEREL datasets with 1-shot and 5-shot settings (%).

dataset was from other languages. For the GENIA
dataset, we dropped four entity types with several
entities less than 50, thus the number of total types
is 32. For the NEREL and GermEval datasets, the
sampled datasets are from the given test part of the
original datasets.

To encode words in different languages into
vectors, we used the PLM BERT}se_multilingual
which has 12 heads of attention layers and 768
word-embedding dimensions. The learning rate is
set to 5e-5 and le-8 during the training and self-
training process, respectively. The temperature 7
is set to 10. The ratio of the “[MASK]” token in
the pseudo data is 10%. We implemented SiITNER
with PyTorch 1.12.1, and the experiments were
performed on a Nvidia Tesla A10 GPU.

4.4 Experimental Results

Table 2 shows the average micro F results over
ten experiments with different random seeds on
three target domain nested NER datasets includ-
ing GENIA, GermEval, and NEREL. The micro
F represents the aggregation performance on all
entity types by using the total number of true pos-
itives, false positives, and false negatives for all
entity types in the calculation of F} scores. Com-
pared to baseline models, the SITNER achieves
the best performance for each setting on GermEval
and NEREL datasets. For example, compared with
SpanProto, the SiITNER achieves an increase of
3.33% and 1.37% on the 5-shot setting on Ger-
mEval and NEREL datasets in terms of micro F}
score, respectively. SITNER achieves an increase
of 12.41% and 1.19% on the 1-shot setting on Ger-
mEval and NEREL datasets in terms of micro F}
score, respectively.

However, for the GENIA dataset, our model did
not outperform the best-performing baseline model,
whether in the 1-shot or 5-shot settings. This is

because our backbone model is the simplest Pro-
toBERT model. The performance of this module
is not sufficient to compete with the best baseline
models. Besides, as shown in Table 5, the GE-
NIA dataset comprises a more diverse range of
categories, leading to the observation that the per-
formance of Protobert is less effective in discern-
ing high-quality labels compared to the other two
datasets. In the case of GENIA, less than half of the
pseudo-labels are identified as high-quality labels,
while in GERM and NEREL, 90.31% and 73.35%
of the pseudo-labels, respectively, are categorized
as high-quality labels. This is also a contribut-
ing factor to the lower performance of the GENIA
dataset compared to the baseline.

S Analysis
5.1 Effect of Replace Strategy

In Section 3.2 and Figure 4, we explained that we
aim to select as many true entities from the query
set as possible and place them in sentences from
the support set. To validate the effectiveness of this
strategy, we designed a comparative experiment:
we directly included the original entities from the
query set along with their corresponding original
sentences in the self-training process (RSS), as
shown in Table 3.

Table 3 shows that if we directly construct a
self-training dataset by including possible entities
from the query set along with their corresponding
sentences, the results are not as effective as our self-
training method, which involves placing these enti-
ties into sentences from the support set. We believe
this is due to the issue of entity nesting. Even if
the predicted entities from the query set are within
the decision margin and have higher accuracy, the
surrounding nested entities may still be predicted
incorrectly. Including these incorrectly predicted
entities with their inaccurate pseudo-labels in the



— STTNER STTNER w RSS
Dataset Before self-training - -
result improvement result improvement
Tshot 3479 36.00 129 3515 036
NEREL 5 hot 51.20 54.06 2.86 52.86 1.66

Table 3: F} performance obtained using different self-training data generation strategies. We set our SITNER model
to a ratio of 0, meaning that no words are replaced with “[MASK]” in the support set sentences. As a comparison,
we directly included the original entities from the query set along with their corresponding original sentences in the

self-training process (RSS).
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Figure 5: The results of different “[MASK]” ratios in
sentences.

self-training dataset can have a detrimental impact
on the model. On the other hand, when we place
these entities into sentences from the support set
to create new sentences, the labels for the nested
entities around them are correctly positioned as “O”
resulting in greater accuracy.

For instance, in the sentences shown in Figure 4,
“Human immunodeficiency” is accurately identified
as the “virus” entity. However, due to its nested
structure, “Human immunodeficiency virus” can
easily be misclassified as the “virus” entity, even
though its true label should be “O” . If this sen-
tence is directly used as self-training pseudo data,
it would have a detrimental effect on the model.
On the contrary, if we include “Human immunod-
eficiency” in a sentence from the support set and
replace “HIV-1” the nested entity “HIV-1 LTR” be-
comes “Human immunodeficiency LTR” and its
label changes from “DNA_domain_or_region” to
“O”. This way, the impact of misclassified spans on
the model would be smaller.

5.2 Effect of MASK tokens

After incorporating possible entities from the query
set into sentences from the support set, to further
reduce the similarity with the original support set
sentences, we randomly replaced different numbers
of words in the new sentences with “[MASK]” to-

kens as mentioned in Section 3.2. To investigate
the impact of varying the number of replacements,
we designed a comparative experiment, and the
results are shown in Figure 5.

We observe that the varying proportions of differ-
ent masked tokens in sentences have a discernible
impact on the experimental performance of Fj
value. In comparison to the 1-shot setting, the 5-
shot setting demonstrates a more pronounced effect
on the results. Additionally, even without replacing
words in the sentence with masks, the influence
of self-training contributes to improved outcomes.
However, considering the overall perspective, favor-
able results are achieved when the masked tokens
are present in lower quantities (10%) or higher
proportions (80%).

6 Related Work

6.1 Rich-resource Nested NER

Nested NER aims to recognize entities with nested
structures. Most of the current methods for nested
NER are established on rich-resource datasets, and
they require a large number of instances for training
the model. These methods could be categorized
into span-based, hypergraph-based, and layered-
based (Wan et al., 2022).

Span-based methods treat sequences of tokens
as spans and then label all possible spans by classi-
fication models (Shen et al., 2021; Li et al., 2020b;
Tan et al., 2021). Hypergraph-based methods an-
alyze the dependence of words in a sentence and
then construct a dependency tree (Yu et al., 2020)
or other structures (Wang and Lu, 2018; Katiyar
and Cardie, 2018) to help identify nested entities.

These methods may be stuck in overfitting due
to sophisticated models and the limited number of
instances for training in the few-shot setting.

6.2 Few-shot NER

Few-shot NER requires recognizing entities with
the support of only very few labeled instances
(Hofer et al., 2018; Fritzler et al., 2019). Due to



limited information in labeled instances, methods
for few-shot NER mainly resort to a rich-resource
source domain to help train models, resulting in
meta-learning frameworks that train models on ade-
quate subtasks to make the model acquire the learn-
ing ability on few-shot tasks (Ma et al., 2022b).

Within the meta-learning framework, various
kinds of models are designed. For example, metric-
based methods, including ProtoBERT (Snell et al.,
2017), NNShot (Yang and Katiyar, 2020), and
SpanProto (Wang et al., 2022a), measure distances
between prototypes in the support set and instances
in the query set. Optimization-based methods, such
as MAML (Finn et al., 2017) and FEWNER (Li
et al., 2020a), train the model by a special opti-
mizer. And Contrastive-learning methods, such
as CONTaiNER (Das et al., 2022), aim to maxi-
mize similarities of the same type and minimize
similarities between different types.

Besides, prompt-based methods have gained at-
tention due to the ability to guide models focused
on the information of interests through various tem-
plates (Hou et al., 2022; Hu et al., 2022).

These few-shot NER methods mostly focus on
flat entities. Few works have discussed the few-
shot nested NER setting. Wang et al. converted se-
quence labeling to span-level matching and showed
their method could handle nested entities (Wang
et al., 2022c). However, it is not designed for the
few-shot nested NER specifically.

6.3 Semi-supervised Learning

In recent years, there has been a considerable
amount of research in the field of semi-supervised
learning (Xie et al., 2020b; Berthelot et al., 2019),
and a subset of this research involves the utiliza-
tion of pseudo-labels (Sohn et al., 2020) and self-
training (Wang et al., 2023, 2021a). Some of these
efforts are focused on applying semi-supervised
learning methods to address the issue of class im-
balance (Wei et al., 2021; Yang and Xu, 2020;
Hyun et al., 2020).

To make full use of unlabeled data in NER tasks,
the self-training method could use contextualized
augmentations to improve the generalization ability
of the NER model (Meng et al., 2021). The com-
bination of transfer learning and self-training strat-
egy shows a boost in performance in low-resource
biomedical applications (Gao et al., 2021).

These semi-supervised learning methods neither
study N-way K -shot setting scenario of few-shot

nested NER tasks.

7 Conclusion

In this work, we propose SiTNER as a novel con-
trastive and self-training framework for the unex-
plored few-shot cross-lingual NER tasks. Specif-
ically, diverging from conventional data selection
or re-weighting methods, SiITNER effectively har-
nesses knowledge from unlabeled data within the
target domain. SiTNER consists of two primary
components: contrastive span classification and
masked pseudo-data self-training.

Firstly, we present a contrastive objective tai-
lored for few-shot cross-lingual NER tasks. We
extend typical supervised contrastive learning meth-
ods by calculating a decision margin for each entity
category and generating high-quality pseudo-labels
for the unlabeled query set. Secondly, we incor-
porate these pseudo-labels into sentences within
the support set and employ a masking strategy to
diminish similarity with the original support set.
Experiments on three cross-lingual nested NER
datasets validate the effectiveness of SITNER.

8 Limitations

Given that few-shot nested cross-lingual NER is a
nascent task, this paper provides only a preliminary
exploration and acknowledges several limitations
that warrant further consideration. The foremost
concern pertains to the multi-language dimension.
Our evaluation of the SITNER framework relies on
English, German, and Russian datasets. Despite
the substantial linguistic distinctions among these
languages, they share a common lineage within
the Indo-European language family. This raises
a potential language bias, necessitating an assess-
ment of SITNER’s generalization capability across
different language families.

The second limitation revolves around the imbal-
anced distribution of entity types. The stringent K-
shot setting proves challenging to uphold, leading
to difficulties in achieving a balanced performance
across entity types that exhibit notable quantitative
disparities. Addressing this challenge remains an
ongoing task.
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A Effect of Decision Margin

Table 4 and 5 illustrate the impact of employing
decision margin on the classification results of the
backbone model. total spans denotes the number
of total spans predicted during the inference step
among three datasets. “v/, O” denotes the number
of spans that the true label is O and the inference
label is O. “v/, E” denotes the number of spans that
the true label is the entity type and the inference
label is the same entity type. “X, O—E” denotes
the number of spans that the true label is O but
the inference label is the entity type. “X, E—0”
denotes the number of spans that the true label
is the entity type but the inference label is O. “X,
E—oE” denotes the number of spans that the true
label is the entity type but the inference label is a
different entity type.

Table 4 presents the impact of incorporating de-
cision margin on the final prediction outcomes of
our backbone models across three datasets. The use
of decision margin leads to an increase in the num-
ber of O—O cases and a decrease in E—E cases,
where some true entity-labeled data points fall out-
side the decision margin and are misclassified as O.
Consequently, the overall predictive performance
of the model decreases compared to the scenario
where decision margin are not employed. Addition-
ally, concerning misclassifications, the model tends
to reduce the instances classified as E (entity) and
increase those classified as O.

Table 5 provides a breakdown of the components
within segments classified as entities by the back-
bone model, comparing the proportions with and
without the use of decision margin. It can be ob-
served that although the number of segments clas-
sified as entities decreases when decision margins
are employed, the proportion of correctly classified
segments among these entity segments increases.
Therefore, utilizing these correctly classified entity
segments to augment the training data for the few-
shot support set ensures the quality of the added
data.
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Table 4: Statistical results by using decision margin or not.

GENIA (32-way) GERM (12-way) NEREL (29-way)
decision margin? X v X v X v
entity spans 153911 50584 7745 2674 7296 2796
TVLOE T T T T T | 4567429.67% — 23868/47.18% | 4174/53.89%  2145/90.31% | 3457/47.55% 2051/73.35%
X, 0—=E 74324/48.29%  20962/41.43% | 2224/28.71% 185/6.91% 3083/42.41%  632/22.60%
X,E—oE 33913/22.03%  5754/11.375% | 1347/17.39% T4/2.76% 729/10.02% 113/4.04%

B

Table 5: Statistical results of the spans which are prediceted as an entity by using decision margin or not.

Baseline Models

We compare our SITNER with the following base-

line

models:

NER-DP (Yu et al., 2020) is a rich-resource-
based nested NER method. It uses the idea of
graph-based dependency parsing and applies a
biaffine model to establish the dependency of
the start and end words for each span. For the
few-shot nested NER task, we train the model
via the support set on the target domain.

Tldentifier (Shen et al., 2021) is also a rich-
resource-based nested NER method. It utilizes
a Two-stage Identifier (TIdentifier) to identify
nested entities. It first locates entities by seed
spans through a seed span generation module
and then classifies them by a span proposal
module. We also train it via the support set on
the target domain.

IoBP (Wang et al., 2021b) is an extension
of the second-best path recognition method,
which eliminates the impact of the best path.
It is a layered approach that maintains a set of
hidden states at each time step and employs
them to construct a unique potential function
for recognition at each level.

PO-TreeCRFs (Fu et al., 2021) treats nested
NER as constituency parsing with partially
observed trees. It proposes a model called par-
tially observed TreeCRFs to handle this task.
Labeled entity spans are considered observed
nodes in a constituency tree, while other spans
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are latent nodes. The TreeCRF model al-
lows for joint modeling of observed and latent
nodes. This model supports different infer-
ence operations for different nodes, enabling
efficient parallelized implementation.

CONTaiNER (Das et al., 2022) is a
contrastive-learning-based few-shot flat NER
method. It assumes the word embeddings fol-
low the Gaussian distributions and uses KL-
divergence to measure the similarity between
words. It applies a contrastive loss function
of the average of similarities between posi-
tive samples dividing similarities between all
samples. We adapt this method to handle the
nested NER task by applying the entity span
formulation.

ProtoBERT (Snell et al., 2017) is a metric-
learning-based few-shot flat NER method. It
identifies the prototype for each entity type
and makes inferences according to the dis-
tances between prototypes and query samples.
It applies the cross-entropy loss to optimize
the model. We also adapt it with the entity
span formulation.

NNShot (Yang and Katiyar, 2020) is also
a metric-learning-based method for the few-
shot flat NER. It makes inferences according
to the word-level distance from the labeled
support set. We adapt it to handle nested en-
tities by utilizing entity spans rather than se-
quence labeling, therefore, the CRF (Condi-
tional Random Field) layer is not needed to la-
bel the words. Consequently, our experiment



did not use the StructShot method mentioned
by Yang et al. (Yang and Katiyar, 2020).

ESD (Wang et al., 2022c) is a metric-learning-
based few-shot flat NER method that con-
structs prototypes by applying intra-span and
cross-span attention to enhance span represen-
tation. Based on enhanced representations, it
classifies spans according to the prototypes
from the support set. The authors showed this
method could handle nested entities due to the
entity span formulation. We apply it directly
in our experiment.

SpanProto (Wang et al., 2022a) is also a
metric-learning-based method designed for
the few-shot flat NER scenario. It applies a
two-stage strategy to recognize entities, in-
cluding a span extractor stage to determine
candidate entity spans and a mention classifier
stage to identify entity labels. This method
applies the entity span formulation and could
handle nested entities, although the authors do
not validate it. We also apply it directly in our
experiment.
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