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Abstract

Machine learning systems often acquire biases by leveraging undesired features1

in the data, impacting accuracy variably across different sub-populations. This2

paper explores the evolution of bias in a teacher-student setup modeling different3

data sub-populations with a Gaussian-mixture model, by providing an analytical4

description of the stochastic gradient descent dynamics of a linear classifier in this5

setting. Our analysis reveals how different properties of sub-populations influence6

bias at different timescales, showing a shifting preference of the classifier during7

training. We empirically validate our results in more complex scenarios by training8

deeper networks on real datasets including CIFAR10, MNIST, and CelebA.9

1 Introduction10

Machine learning (ML) systems not only reproduce existing biases in the data but also tend to amplify11

them [19, 38, 11]. Given the complexity of the ML pipeline, isolating and characterising the key12

drivers of this amplification is challenging. Theoretical results in this area (e.g., [35, 36]) are mostly13

based on asymptotic analysis, leaving the transient learning regime poorly understood.14

Our analysis addresses this gap by providing a precise characterisation of the transient dynamics15

of online stochastic gradient descent (SGD) in a high dimensional prototypical model of linear16

classification. We use the teacher-mixture (TM) framework [36], where different data sub-populations17

are modeled with a mixture of Gaussians, each having its own linear rule (teacher) for determining the18

labels. Adjusting the parameters of the data distribution in our framework connects models of fairness19

and spurious correlations, providing a unifying framework and a general set of results applicable to20

both domains. Remarkably, our study reveals a rich behaviour divided into three learning phases,21

where different features of data bias the classifier and causing significant deviations from asymptotic22

predictions. We reproduce our theoretical findings through numerical experiments in more complex23

settings, demonstrating validity beyond the simplicity of our model.24

2 Problem setup25

We consider a standard supervised learning setup where the training data consists of pairs of a feature26

vector xxx ∈ Rd and a binary label y = ±1. To model subgroups within the data [33], we assume that27

the feature vectors are structured as clusters c1, . . . , cm, respectively centered on some fixed attribute28

vectors vvv1, · · · , vvvm ∈ Rd. Specifically, xxx is sampled from a mixture of m isotropic Gaussians:29

xxx ∼
m∑
j=1

ρj N (vvvj/
√
d,∆jId×d), (1)
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(a) ODEs vs simulations (b) Robustness model (c) Centered fairness (d) General fairness

Figure 1: Teacher-Mixture in fairness and robustness. Panel (a) shows the generalisation errors—
for the subpopulations + (blue) and − (red)—obtained through simulation (crosses) and predicted by
the theory (solid lines) for a network with linear activation. The inset shows the same comparison for
the order parameters: R+ (blue), R− (red), M (green), and Q (orange). Panels (b-d) exemplify the
different scenarios achievable in the TM model investigated in Sec. 4. Panel (b) represent a model
for robustness where a spurious feature—given by the shift vector—can mislead the classifier, see
Sec. 4.1. Panels (c,d) are instead discussed in Sec. 4.2 and represent two models of fairness. First,
Panel (c) has no shift, v = 0, allowing us to remove the confounding effects. Finally, Panel (d) shows
the general fairness problem.

with mixing probabilities ρ1, · · · , ρm and scalar variances ∆1, · · · ,∆m. Assuming the entries of30

vvvj are of order 1 as d gets large, the scaling factor 1/
√
d ensures that the Euclidean norm of the31

renormalised vector is of order 1. This prevents the problem from becoming either trivial or overly32

challenging in the high-dimensional limit [23, 22]. We adopt a teacher-mixture (TM) scenario [36]33

where each cluster has its own teacher rule:34

xxx ∈ cj =⇒ y = sign(www⊤
j xxx/

√
d). (2)

This rule is characterised by the teacher vectors wwwj ∈ Rd, ensuring linear separability within each35

cluster. Fig. 1b-d illustrate the data distribution for two clusters with opposite mean vectors ±vvv,36

which will be the primary case study for our analysis.37

Model. In this study we analyse a linear model applied to the above data distribution. We aim to38

learn a vector parameter www, referred to as the ‘student’, such that predictions are given by39

ŷ(xxx) = www⊤xxx/
√
d. (3)

The training process involves applying online SGD on the squared loss ϵ̂ = (y− ŷ)2 with learning rate40

η/2 > 0 (see Eq. C.17 in Appendix C). In our analysis, the model is evaluated by its generalisation41

error, or population loss, ϵ := E[ϵ̂].42

3 SGD analysis43

We study the evolution of the generalisation error during training in the high dimensional setting (i.e.44

large d). Following a classical approach [32, 8], we streamline the problem by focusing on a small45

set of summary statistics, referred to as ‘order parameters’, which fully characterises the dynamics.46

As the dimension increases, it can be shown by concentration arguments that the evolution of these47

order parameters converges to the deterministic solution of a system of ODEs [14, 6, 3]. Notably, in48

our setting, we achieve an analytical solution of this ODE system.49

3.1 Order parameters50

In the setup described in Section 2, consider the following 2m+ 1 variables:51

Rj =
1

d
www⊤wwwj , Mj =

1

d
www⊤vvvj , Q =

1

d
∥www∥2, (4)

for 1 ≤ j ≤ m. These variables correspond to key statistics of the student, namely its alignment to52

the cluster teachers, its alignment to the cluster centers, and its magnitude, respectively. Lemma C.153
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in Appendix C shows how the generalisation error depend on the model parameter www only through54

these order parameters.55

3.2 High dimensional dynamics56

Let S := (Si)1≤i≤2m+1 denote the collection of order parameters. Theorem C.3 in Appendix C57

states that as d gets large, the stochastic evolution Sk of the order parameter gets uniformly close,58

with high probability, to the average continuous-time dynamics described by the ODE system:59

dS̄i(t)

dt
= fi(S̄(t)), 1 ≤ i ≤ 2m+ 1, (5)

where the continuous time is given by the example number divided by the input dimension, t = k/d.60

Solving the ODEs. We present the explicit solution of the ODEs in the case of two clusters (m = 2)61

with opposite mean vectors ±vvv, as in [36]. Henceforth, we refer to vvv as the shift vector and to the62

two clusters as the ‘positive’ and ‘negative’ sub-populations, with mixing probabilities ρ and (1− ρ),63

variances ∆± and teacher vectors www±, respectively. The order parameters introduced in Eq. 4 are64

specifically denoted as M = www⊤vvv/d, R+ = www⊤www+/d, and R− = www⊤www−/d in this setting.65

Theorem 3.1. In the above setting, solutions to the order parameter evolution take the form66

M(t) = M0e
−η(v+∆mix)t +M∞(1− e−η(v+∆mix)t), (6)

R±(t) = R0
±e

−η∆mixt +R∞
± (1− e−η∆mixt) + k±1 (e

−η∆mixt − e−η(v+∆mix)t), (7)

Q(t) = Q0e
−η(2∆mix−η∆2mix)t +Q∞(1− e−η(2∆mix−η∆2mix)t)

+ k2(e
−t(2∆mix−η∆2mix)η − e−t∆mixη) + k3(e

−t(2∆mix−η∆2mix)η − e−t(v+∆mix)η)

+ k4(e
−t(2∆mix−η∆2mix)η − e−t(2v+2∆mix)η), (8)

with ∆mix = ρ∆+ + (1− ρ)∆−, ∆2mix = ρ∆2
+ + (1− ρ)∆2

− and v = ||vvv||2/d.67

The remaining constants are less significant and are reported in Appendix E.1 and discussed further68

in Appendix F. This solution allows us to describe important observables such as the generalisation69

error at any timestep. Fig. 1a plots the theoretical closed-form solutions along with values obtained70

through simulation when we set d = 1000. Note the remarkable agreement between the analytical71

ODE solution and simulations of the online SGD dynamics in this high dimensional data limit.72

4 Insights73
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Figure 2: Spurious correlations tran-
sient alignment. Time-evolution of
loss (purple), student-teacher (red) and
student-shift (green) cosine similarities.
The initial phase (green background) of
learning aligns classifier and shift vec-
tor before aligning with the teacher (red
background). Parameters: v = 16, ρ =
0.5,∆− = ∆+ = 0.1, T± = 1, η = 0.5.

By examining the exponents in Eqs. 6-8, we can iden-74

tify the relevant training timescales. Notably, M fol-75

lows a straightforward behaviour dominated by a single76

timescale, whereas R± and Q exhibit multiple timescales,77

leading to significant implications for the emergence and78

evolution of bias during training.79

Parameters specifying these different bias scenarios are80

the shift norm v = ||vvv||2/d and relative representation ρ,81

the subpopulation variances ∆±, and the teacher overlap82

T± = www⊤
+www−/d. For simplicity we fix the teacher norm83

∥www±∥2 =
√
d, so that T± is the cosine similarity between84

the two teachers.85

4.1 Spurious correlations86

The emergence of spurious correlations during training87

illustrates a type of bias where a classifier favours a spu-88

rious feature over a core one. To isolate the impact89

of spurious correlation in our model while avoiding confounding effects, we consider perfectly90

overlapping teachers (www+ = www−) and sub-populations with equal variance and representation91
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(a) Bias crossing
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Figure 3: The crossing phenomenon. Panel (a) (left side) shows the loss curves of sub-population −
(in red) and sub-population + in blue along with the overall loss (in purple). We observe a crossing
cause by a higher variance but lower representation in sub-population −. The background colours
represent the different phases of bias that are characterised by the evolution of the order parameters
shown in Panel (a) (right side). Panel (b) shows the presence of the crossing phenomenon in a large
portion of the parameter space using a phase diagram. Blue indicates an asymptotic preference for
sub-population + and red the opposite. Dark colours indicates regions where bias is consistent across
training, while regions in light colours undergo a crossing phenomenon. White indicates that learning
rate was too high and training diverged. Parameters: v = 0,∆+ = 1, T± = 0.9, η = 0.1.

(ρ = 0.5,∆+ = ∆−). With non-perfectly overlapping clusters v ̸= 0, we introduce a spurious92

correlation by adding a small cosine similarity between the shift vector and the teacher, creating a93

label imbalance within each sub-population (Fig. 1b).94

From Eqs. 6-8, two relevant timescales for the problem are observed:95

τM =
1

η(v +∆mix)
, τR = 1/η∆mix. (9)

The shortest timescale, τM , indicates that the student first aligns with the spurious feature. By96

aligning with the shift vector, the student can predict most examples correctly, but not all. The effect97

of spurious correlations is transient; at t ∼ τR, the student starts disaligning from the spurious feature98

and aligns with the teacher vector, eventually achieving nearly perfect alignment (Fig. 2).99

4.2 Fairness100

In this section, we identify the properties of sub-populations that determine the bias during learning101

and show how bias evolves in three phases. To quantify bias, we use the overall accuracy equality102

metric [7], which measures the discrepancy in accuracy across groups. Intuitively, we aim for equal103

loss on both groups, considering any deviation from this condition as bias.104

Zero shift. We first consider a simplified case where we assume that both clusters are centered at105

the origin v = 0 as shown in Fig. 1c. We will later reintroduce the shift and analyse the transient106

dynamics it introduces as per the discussion in section 4.1. This setting is particularly suited to107

analysing the effects of ‘group level’ features, such as group variance and relative representation, on108

the preference of the classifier.109

In this simplified setting, M(t) is always zero and the constants k±1 , k3, k4 presented in equations 7110

and 8 are zero. Thus, the dynamics only involve two relevant timescales given by τR in Eq. 9 and111

τQ = 1/(η(2∆mix − η∆2mix)). (10)

Fig. 3a illustrates the changing preference of the classifier. Specifically, we observe that the variance112

of the sub-population is particularly relevant initially and the sub-population with higher variance113

(red) is learnt faster, i.e. its generalisation error drops faster. However, asymptotically we observe114

that the relative representation becomes more important wherein the student aligns itself with the115

teacher that has a higher product of representation and standard deviation (blue), i.e.116

ρ
√
∆+ ≷ (1− ρ)

√
∆− ⇐⇒ R∞

+ ≷ R∞
− . (11)
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Thus, the network can advantage the cluster with higher variance initially but asymptotically advantage117

the other cluster if its representation is high enough. This leads to the ‘crossing’ of the losses on the118

two sub-populations shown in Fig. 3 (more in Appendix F.2).119

Initial dynamics. The ratio between initial rate of change in generalisation errors is bounded by120

(derived in Appendix F.3):121

T±

√
∆+

∆−
≤

dϵg+/dt
∣∣
t=0

dϵg−/dt
∣∣
t=0

≤ 1

T±

√
∆+

∆−
. (12)

When the teachers are only slightly misaligned—T± ⪅ 1—the bound is tight and we can see that it is122

the ratio of the square roots of the variances that determines which cluster is learnt faster initially.123

Fig. 3b shows in a phase diagram the existence of ‘bias crossing’ across a wide range of variances124

and representations. The transition between the phases that represent a initial preference for the125

positive sub-population (light red and dark blue) and the phases that represent an initial preference for126

negative sub-population (dark red and light blue) is approximately given by the line ∆− = ∆+ = 1,127

independent of the representation as predicted by Eq. 12. The portion of the dark blue phase just128

above the white divergent phase marks a ‘quasi-divergent’ region wherein the generalisation error on129

the negative sub-population rises even at t = 0 because the learning rate is too large for such high130

variances and marks a region of impractical behaviour observed with poorly optimised learning rates.131

Asymptotic preference. In the limit of small learning rates η → 0, the student will asymptotically132

exhibit lower loss on whichever sub-population’s teacher it has better alignment with. Thus, Eq. 11133

provides a simple characterisation of asymptotic preference from representations and standard134

deviations in the small learning rate limit. However, the situation is more complex in the case of finite135

learning rate, which may disrupt learning in one or both clusters (more in Appendix F.4).136
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Figure 4: Double crossing phenomenon. (Left panel) shows
the loss for the two sub-populations (blue and red lines) and
the global one (in purple). (Right panel) shows the value of
the order parameters across time. The behaviour of the order
parameters across time provides a precise characterisation
and understanding of the different phases. Parameters: v =
100, ρ = 0.75,∆+ = 0.1,∆− = 0.5, η = 0.03, T± =
0.9, α+ = 0.343, α− = 0.12.

General case. We now consider the137

general case shown in Fig. 1d, where138

the shift is non zero and all three139

timescales identified so far play a role.140

As observed in Sec. 4.1, when the shift141

norm v is large, the effect of spurious142

correlations becomes significant and143

the timescale associated with the spu-144

rious correlations is the fastest. In gen-145

eral, when v ̸= 0 we observe an addi-146

tional phase due to the effect of spuri-147

ous correlation. In this new first phase,148

the student advantages the cluster with149

higher representation and lower vari-150

ance since the salient information re-151

ceived from this cluster is more coher-152

ent and easier to access.153

More precisely, in high dimensions154

the shift and the teachers are likely to155

exhibit a small cosine similarity leading to a class imbalance in the clusters and creating spurious156

correlation. The amount of label imbalance within a cluster is characterised by the value of α, as157

detailed in Appendix B. For smaller variances, α takes more extreme values leading to stronger158

spurious correlation of that cluster with the shift. If a cluster has more positive examples, we would159

observe a reduction in loss for that cluster if the student aligns with the mean of that cluster (and160

opposite to the mean if the cluster has mostly negative examples). When both clusters have different161

majority classes, the direction of spurious correlation for the two are same. However, when the162

majority classes are the same, we have competing directions for spurious correlation. The expression163

for M∞ in Appendix E.1 Eq. E.41 shows that in this case the relative representation comes into164

play and the mean of the cluster with greater representation and class imbalance will be chosen by165

the teacher to align with. Fig. 4 shows such a scenario with three phase bias evolution. First, the166

green phase is driven by spurious correlation where the positive cluster is advantaged since it has167

greater representation and class imbalance. Next, the red phase is driven by greater variance where168
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the negative cluster is learnt faster as discussed through Eq. 12. Finally, we observe the orange phase169

wherein the student starts aligning with the positive cluster as per the asymptotic rule in Eq. 11.170

Our analysis thus shows that bias is a dynamical quantity that can vary non-monotonically during171

training and cannot be characterised by simply the initial and asymptotic values.172

5 Ablations using numerical simulations173
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Figure 5: Numerical simulations on MNIST. The figure
shows the average (solid lines) and standard deviation (shaded
area) of 100 simulations run in this framework. In particular
the upper plots show the test loss and lower plots the test
accuracy for subpopulation + (blue) and − (red). Panel (a)
an example of crossing phenomenon obtained by imposing√
∆+ = 1,

√
∆− = 0.2, and ρ = 0.1. Panel (b) shows

the double crossing, obtained by introducing an additional
timescale to the previous case by tuning label imbalance.

Rotated MNIST. We train a 2-174

layer neural network with 200 hid-175

den units, ReLU activation, and sig-176

moidal readout activation on a vari-177

ation of MNIST that mimics our178

model. Digits 0 to 4 and 5 to 9 are179

grouped to form the two subpopula-180

tions. With probability p+ and p−,181

digits of both subpopulations are ro-182

tated with a subpopulation-specific183

angle—i.e. Fig. 5a uses angles of184

rotation θ− = 45o and θ− = −90o.185

The goal of the classifier is to detect186

rotations.187

The experimental framework gives a188

correspondence between parameters189

of the generative model and proper-190

ties of a real dataset. We can con-191

trol relative representation by sub-192

sampling, teacher similarity by play-193

ing with angle difference, label im-194

balance by changing the probability of rotation, and saliency by increasing and decreasing the norm195

of the subpopulation using multiplicative factors ∆±. The only parameter that we cannot control is196

the shift vvv which is a property of the data.197

Therefore, in order to reproduce the zero-shift case of Sec. 4.2, we remove the label imbalance198

by setting the probability of rotation p+ = p− = 0.5. By properly calibrating the saliency ∆ and199

the relative representation ρ, it is possible to bias the classifier towards one subpopulation at the200

beginning of training and the other in the end. This is shown in Fig. 5a where ρ = 0.1 and ∆+ > ∆−.201

The saliency difference favours subpopulation + initially while setting ρ small enough advantages202

subpopulation − later in training. This is precisely what we observe in the plot.203

Finally, we consider the general fairness case. By creating label imbalance, i.e. setting p+ = 0.3204

and p− = 0.7, we observe an additional phase of bias evolution, wherein the classifier prefers dense205

regions with consistent labels. This advantages subpopulation − and indeed it is what we see in206

Fig. 5b. The result of the simulations matches the theory displaying a double crossing phenomenon.207

Additional numerical expirements. In Appendix G, we provide additional experiments within our208

model and the CIFAR10 and CelebA, exploring different architectures and losses. We observe that209

bias presents different timescales and shows crossing behaviors.210

6 Conclusion211

This paper examined the dynamics of bias in a high dimensional synthetic framework, showing that it212

can be explicitly characterised to reveal transient behaviour. Our findings reveal that classifiers exhibit213

biases toward different data features during training, possibly alternating sub-population preference.214

Although our analysis is based on certain assumptions, numerical experiments that violate these215

assumptions still display the behaviour predicated by our theory.216

We believe this line of research will have practical impacts in the medium term, aiding the design of217

mitigation strategies that account for transient dynamics. Future research will further explore this218

connection, proposing theory-based dynamical protocols for bias mitigation.219
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A Further related works367

Class imbalance and fairness. A key element in our study is the presence of heterogeneous368

data distributions within the dataset. In the context of fairness, these distributions model different369

groups in a population. Sampling unbalance is particularly critical, as minority groups are often370

misclassified [9, 18]. However, theoretical studies on group imbalance have been limited to asymptotic371

analyses [36], which may not apply in practical settings. Related questions have been explored in372

the label imbalance literature [20], where it has long been known [1, 16] that underrepresented373

classes have slower convergence rate and may even experience increased errors early in training. Our374

work shows that pre-asymptotic analysis can reveal complex transient dynamics, which is practically375

relevant when learning slows down or training to convergence is not possible. Similar to our analysis,376

[12] has shown that supposedly neutral choices, like activation functions or pooling operations, can377

generate strong biases. In contrast to prior work, our focus on data properties identifies several378

timescales associated to different data features relevant to bias generation.379

Simplicity bias. Several studies [29, 15, 39, 10, 30] have highlighted a bias of deep neural networks380

(DNNs) towards simple solutions, suggesting this bias is a key to their generalisation performance.381

Simplicity bias also influences learning dynamics: [4, 30, 26, 28, 31] have showed that DNNs learn382

progressively more complex functions during training, with a notion of complexity often defined383

implicitly by other DNNs or observations like the time to memorisation. Our results connect with384

simplicity bias by identifying interpretable properties of the data that make samples appear “simple”385

to a shallow network. Interestingly, our findings reveal that different phases of learning experience386

simplicity in different ways, leading to forgetting of previously learned features.387

Spurious correlations. Simplicity bias can also lead to shortcomings [37] by excessively relying388

of spurious features in the data, possibly hurting generalisation, especially in out-of-distribution389

contexts [13]. Theoretical works [27, 35, 17] have identified statistical properties that cause a390

classifier to favour spurious features over potentially more complex but more predictive features.391

Various methods have been proposed to address this problem using explicit partitioning of the data392

[2, 34]; some approaches implicitly infer subgroups with various degrees of correlation as spurious393

features. Notably, [24, 40] rely on early stages of learning to detect bias and adjust sample importance394

accordingly. Our study provides a unifying view of learning in fairness and spurious correlation395

problems, highlighting the presence of ephemeral biases characterised by multiple timescales during396

training. This adds complexity to the understanding of learning dynamics and points out potential397

confounding effects in existing mitigation methods.398

B Problem setup and notation399

We begin by refreshing the problem description and notation introduced in the main body for the two400

cluster case (Sec. ??) as well as defining some new notation to make the presentations of the results401

more compact.402

1. (xxx, y) denotes a training example with xxx ∈ Rd and y ∈ {−1, 1}.403

2. xxx is drawn from a mixture of two Gaussians with means vvv/
√
d and −vvv/

√
d respectively,404

covariances ∆+Id×d and ∆−Id×d respectively. These two Gaussians are henceforth referred405

to as the positive and negative Gaussians respectively.406

3. ρ represents the probability of the data being drawn from the positive Gaussian.407

4. ⟨⟩ denotes an average over x, ⟨⟩⊕ denotes an average over the positive Gaussian and ⟨⟩⊖408

denotes an average over the negative Gaussian.409

5. www+ andwww− denote the teachers for the positive Gaussian and negative Gaussian respectively.410

www is the learnt classifier ("the student").411

6. The true labels, y, are then given by:412

• y = sign(www+ · xxx/
√
d) for the positive cluster;413

• y = sign(www− · xxx/
√
d) for the negative cluster.414

7. Our predictions are ŷ = www · xxx/
√
d.415

8. The student is trained to minimise L2 loss = (y − ŷ)2.416
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9. The student learns using online stochastic gradient descent.417

10. η/2 is the learning rate.418

11. ϵ denotes the generalisation error.419

12. a · b denotes the dot product between vectors a and b.420

13. We now define the following Order Parameters (where only the first 4 change with training):421

• Q = www ·www/d;422

• R+ = www ·www+/d;423

• R− = www ·www−/d;424

• M = www · vvv/d;425

• T± = www+ ·www−/d;426

• M∗
+ = www+ · vvv/d;427

• M∗
− = www− · vvv/d;428

• v = vvv · vvv/d.429

14. For algebraic simplicity, we assume ||www+||2 = ||www−||2 =
√
d (and thus, www+ ·www+/d = 1430

and www− ·www−/d = 1). This has the consequence that T± exactly equals the cosine similarity431

between the two teachers.432

15. We also define ∆mix = ρ∆+ + (1− ρ)∆− and ∆2mix = ρ∆2
+ + (1− ρ)∆2

−.433

16. For notational convenience we define:434

α+ = ⟨y⟩⊕ = 1− 2Φ

(
−M∗

+√
∆+

)
, (B.13)

α− = ⟨y⟩⊖ = 1− 2Φ

(
−(−M∗

−)√
∆−

)
. (B.14)

Note, α+ also has an intuitive meaning. It represents the difference between the probability435

that an example drawn from the positive cluster has positive true label and the probability436

that an example drawn from the positive cluster has negative true label. It is hence 0 when437

the positive cluster has equal positive and negative examples, positive when the cluster has438

more positive examples than negative, negative when the cluster has more negative examples439

than positive. Similarly, α− represents the difference in these probabilities for the negative440

cluster.441

17. Finally, we also define442

β+ =

√
2∆+

π
exp

(
−M∗2

+

2∆+

)
, (B.15)

β− =

√
2∆−

π
exp

(
−M∗2

−
2∆−

)
. (B.16)

18. Lastly, we use t to denote continuous time given by (epoch number/d).443

C Main theorems and proofs444

In our study we analyse the linear model in Eq. 3 trained with online SGD on the data distribution445

Eq.1 with the square loss ϵ̂ = (y − ŷ)2. At the k-th iteration, a feature vector xxxk is sampled from (1),446

the ground truth label yk and current model prediction ŷk are respectively given by (2) and (3), and447

the parameter is updated as:448

∆wwwk := wwwk+1 −wwwk = −η

2
∇ϵ̂k(wwwk) =

η√
d
(yk − ŷk)xxxk (C.17)

where η/2 > 0 denotes the learning rate. Note that in this online setting, the number of time steps is449

equivalent to the number of training examples.450
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C.1 Order parameters451

The following lemma shows how the genralisation error depend on the model parameter www only452

through the order parameters defined in Eq. 4.453

Lemma C.1. The generalisation error can be written as an average ϵ =
∑m

j=1 ρjϵj over the clusters,454

where ϵj is a degree 2 polynomial in Rj ,Mj and Q taking the form455

ϵj = 1− 2αjMj +M2
j − βjRj +Q∆j (C.18)

where αj , βj are constants independent of the parameter www.456

Proof. Denote with ⟨·⟩j the expectation over samples from cluster j. The generalisation error reads457

ϵ =
∑m

j=1 ρjϵj with458

ϵj :=
〈
(y − ŷ)2

〉
j
=

〈(
y − www · xxx√

d

)2
〉

j

=
〈
y2
〉
j
+

〈(
www · xxx√

d

)2
〉

j

− 2

〈
y
www · xxx√

d

〉
j

= 1 + (Q∆j +M2
j )− 2(αjMj +Rjβj),

where the second term comes from: isolating the mean and the definition of Mj , and the isotropy of459

x. The third term comes from the useful identity Integral 1 Eq. D.30, derived in Appendix D.1, and460

the constants are given by461

αj = 1− 2Φ

(−M∗
j√

∆j

)
, βj =

√
2∆j

π
exp

(−(M∗
j )

2

2∆j

)
. (C.19)

where M∗
j := www⊤

j vvvj/d and Φ(x) = 1√
2π

∫ x

−∞ e−u2/2du is the cumulative distribution function of462

the standard normal.463

The formula for the generalisation error specializes to the case of two clusters with opposite means as464

ϵ = 1 +M2 − (2ρα+ − 2(1− ρ)α−)M

− 2ρβ+R+ − 2(1− ρ)β−R− +∆mixQ,
(C.20)

Notably, α± has an intuitive meaning wherein it represents the difference between the fraction of465

positive and negatives in a cluster, i.e., α+ = ⟨y⟩c=+ and α− = ⟨y⟩c=−.466

Our problem thus reduces to characterising the evolution of order parameters (4). Using the gradient467

update of the parameter in Eq. C.17 and the notation δk := yk − ŷk, we can write update equations468

for the order parameters as follows:469

∆Mk
j =

η

d
δk

vvv⊤j xxx
k

√
d

, ∆Rk
j =

η

d
δk

www⊤
j xxx

k

√
d

, ∆Qk =
2η

d
δk

www⊤
j xxx

k

√
d

+
η2

d2
(δk)2∥xxxk∥2. (C.21)

C.2 High dimensional dynamics470

We build upon classic results [32, 8], recently put on rigorous grounds [14, 6, 3], leveraging the471

self-averaging property of the order parameters in the high dimensional limit d → ∞. As a result,472

as the dimension gets large, the discrete, stochastic evolution (C.21) of the order parameters can be473

effectively described in terms of the deterministic solution of the average continuous-time dynamics.474

Let S := (Si)1≤i≤2m+1 denote the collection of order parameters. The following lemma shows that475

the average of the updates (C.21) over the sample xxxk can be expressed solely in terms of Sk.476

Lemma C.2. E[∆Sk
i ] =

1
dfi(S

k) for some functions (fi(S))1≤i≤2m+1 in O(1) as d → ∞.477

Proof. Explicit computations are carried out in Appendix D.2 below for the case of two clusters.478

The theorem below states that as d gets large, the stochastic evolution Sk of the order parameter gets479

uniformly close, with high probability, to the average continuous-time dynamics described by the480

ODE system:481

dS̄i(t)

dt
= fi(S̄(t)), 1 ≤ i ≤ 2m+ 1, (C.22)
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where the continuous time is given by the example number divided by the input dimension, t = k/d.482

Formally,483

Theorem C.3. Fix a time horizon T > 0. For 1 ≤ i ≤ 2m+ 1,484

max
0≤k≤dT

|Sk
i − S̄i(k/d)|

P−→ 0 as d → ∞. (C.23)

where P−→ denotes convergence in probability. A proof is provided in Appendix C. We provide the485

explicit expression of the functions fi in the ODEs (C.22) in Appendix D, focusing on m = 2 clusters486

for clarity.487

Proof. Using the notation of Section C.2 and assuming Lemma C.2, we examine the update equations488

(C.21) written as a stochastic iterative process489

Sk+1 = Sk + E
1

d
f(Sk) +

1√
d
ξkd , ξkd :=

√
d(∆Sk − E[∆Sk]) (C.24)

where the expectation is over the new sample xxxk and conditional on the past samples. The noise term490

ξkd has zero mean E[ξkd ] = 0 and conditional covariance Σd := E[ξkdξk⊤d ].491

Define the continuous-time rescaled process Sd(t)) as the linear interpolation of S⌊td⌋:492

Sd(t) = S⌊td⌋ + (td− ⌊td⌋)(S⌊td⌋+1 − S⌊td⌋) (C.25)

Here we leverage existing stochastic process convergence results (e.g., [6], Theorem 2.3]) showing493

that, if Σd converges to the matrix valued function Σ(S) as d → ∞ in some appropriate sense, then494

the sequence Sd(t) converges weakly as d → ∞ to the solution S̃t of the stochastic differential495

equation:496

dS̃t = f(S̃t)dt+

√
Σ(S̃t)dBt (C.26)

where Bt is a standard Brownian motion in R2m+1. In our case, we can show that Σd ∈ O(d−1) as497

d → ∞, so that Σ = 0 and Eq. C.26 reduces to the ODE in Eq. C.22.498

Let us sketch the scaling argument. Algebraic manipulations similar to those in Section D.2 show that499

Σd = ∇Sk⊤E[ΦkΦk⊤]∇Sk(1 +O(d−1)), Φk := η(δkxxxk − E[δkxxxk]) (C.27)

where ∇ denotes the gradient with respect to the student vectorwww. Recall that Sk has 2m components500

that are linear in www (corresponding to the order parameters Rj and Mj in Eq. 4) and one that is501

quadratic (corresponding to Q). By making the gradients ∇Sk explicit using Eq. 4), we see that at502

leading order, the matrix entries Σij
d , 1 ≤ i, j ≤ 2m+ 1 take the form503

Σij
d =

1

d
E[Φk

aaai
Φk⊤
aaaj

], Φk
aaai

= η(δk
aaa⊤i xxx

k

√
d

− E[δk
aaa⊤i xxx

k

√
d

]) (C.28)

where the vector aaai is either one of the teacher vectors wwwj , one of the shift vector vvvj , or the student504

vector www, depending on the entry i = 1, · · · , 2m+ 1. As can be shown explicitly as in Appendix D.1505

below, Φk
aaai

depend on xxxk only through auxiliary variables www⊤
j xxx/

√
d,vvv⊤j xxx/

√
d,wwwk⊤xxxk/

√
d, which506

jointly follow a multivariate distribution whose parameters depend on the student vector wwwk only507

through Sk and are in O(1) as d → ∞. As a result, Σij
d ∈ O(d−1).508

Finally, the weak convergence of Sd(t)t to S̄t implies convergence in probability for the supremum509

norm on the interval [0, T ] for any T > 0. Specifically, for each 1 ≤ i ≤ 2m+ 1,510

sup
0≤t≤T

|Sdi(t)− S̄i(t)|
P−→ 0, (C.29)

where P−→ denotes convergence in probability. This result directly leads to Eq. C.23, thereby proving511

the theorem.512
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D Derivation of the ODEs513

In this section we are going to explicitly derive the ODE describing the dynamics of the order514

parameters. Starting from the discrete updates of the order parameters, Eqs. C.21, we are going to515

consider the thermodynamic limit, d → ∞. As proven in Thm. C.3, the updates concentrate to their516

typical value and the discrete evolution converges to differential equations. Therefore, the rest of the517

section is devoted to performing averages over the Gaussians in order to evaluate the typical values.518

Before proceeding with the evaluation of Eqs. C.21, it is useful to introduce two identities.519

D.1 Useful Averages520

Integral 1:521

⟨a · x sign(b · x+ c)⟩ = (a · µ)(1− 2Φ

(
−(b · µ+ c)√

∆b · b

)
) + a · b

√
2∆

b · bπ
exp

(
−(b · µ+ c)2

2∆b · b

)
(D.30)

where x is multivariate normal distribution with mean µ and covariance ∆I , and the angular bracket522

notation indicates average with respect to x.523

Derivation. Define the auxiliary random variables z1 = a · x and z2 = b · x + c, that follow a524

multivariate normal distribution525 [
z1
z2

]
∼ N

([
a · µ

b · µ+ c

]
,∆

[
a · a a · b
a · b b · b

])
.

Using the law of iterated expectation, our average can be written as:526

⟨a · x sign(b · x+ c)⟩ = Ez2 [sign(z2)Ez1|z2 [z1]]

= Ez2 [sign(z2)(a · µ+
a · b
b · b

(z2 − (b · µ+ c))]

= (a · µ− a · b
b · b

(b · µ+ c))Ez2 [sign(z2)] +
a · b
b · b

Ez2 [z2sign(z2)]

The first expectation follows from the definition of the cumulative distribution function Φ527

Ez2 [sign(z2)] = (1− 2Φ

(
−(b · µ+ c)√

∆b · b

)
).

The second term is simply the mean of a folded normal distribution528

Ez2 [z2sign(z2)] = (
√
∆b · b)

√
2

π
exp

(
−(b · µ+ c)2

2∆b · b

)
+ (b · µ+ c)(1− 2Φ

(
−(b · µ+ c)√

∆b · b

)
).

Combining these three expressions we obtain the identity.529

Integral 2:530

⟨a · x b · x⟩ = (a · µ)(b · µ) + ∆(a · b) (D.31)
where x is defined as for the previous identity.531

Derivation. We proceed as in the previous case. Define the auxiliary random variables z1 = a · x and532

z2 = b · x. They follow a multivariate normal distribution533 [
z1
z2

]
∼ N

([
a · µ
b · µ

]
,∆

[
a · a a · b
a · b b · b

])
.

Using the law of iterated expectation, our average may be written as:534

⟨a · x b · x⟩ = Ez2 [z2Ez1|z2 [z1]]

= Ez2 [z2(a · µ+
a · b
b · b

(z2 − (b · µ))]

= (a · µ− a · b
b · b

(b · µ))Ez2 [z2] +
a · b
b · b

Ez2 [z
2
2 ]

= (a · µ− a · b
b · b

(b · µ))(b · µ) + a · b
b · b

(∆b · b+ (b · µ)2)

= (a · µ)(b · µ) + ∆(a · b).

15



D.2 ODEs535

We have now the building blocks to evaluate the expected values of Eqs. C.21. We refresh the536

notation that δµ = yµ − ŷµ, yµ = sign
(
xxxµ ·wwwµ/

√
d
)

, and ŷµ = xxxµ ·www/
√
d. Final step is to take537

the continuous limit. This is obtained by noticing that the RHS of the equations is factorised by 1/d.538

Therefore by taking as time unit 1/d and defining time as t = µ/d the discrete updates converge to539

continuous increments as d → ∞.540

Student-shift overlap M .

⟨∆M⟩ = η

d

(
ρvα+ + ρM∗

+β+ − (1− ρ)vα− + (1− ρ)M∗
−β− − (M(v +∆mix))

)
(D.32)

Derivation. Starting from the definition in Eq. C.21 for M541

⟨∆M⟩ = η

d

(〈
y
xxx · vvv√

d

〉
−
〈
www · xxx√

d

xxx · vvv√
d

〉)
.

The first term can be evaluated using integral 1 and the second term using integral 2 yielding the542

result.543

Student-teacher + overlap R+.

⟨∆R+⟩ =
η

d

(
ρ(M∗

+α+ + β+) + (1− ρ)(−M∗
+α− + T±β−)

− ρ(MM∗
+ +R+∆+)− (1− ρ)(MM∗

+ +R+∆−)
)

(D.33)

Derivation.544

⟨∆R+⟩ =
η

d

〈(
y − www · xxx√

d

)(
xxx ·www+√

d

)〉
=

η

d

(
ρ

〈
y
xxx ·www+√

d

〉
⊕
+ (1− ρ)

〈
y
xxx ·www+√

d

〉
⊖
− ρ

〈
www · xxx√

d

xxx ·www+√
d

〉
⊕
− (1− ρ)

〈
www · xxx√

d

xxx ·www+√
d

〉
⊖

)
.

These 4 terms can be computed using integrals 1 and 2 yielding the result.545

Student-teacher − overlap R−.

⟨∆R−⟩ =
η

d

(
ρ(M∗

−α+ + T±β+) + (1− ρ)(−M∗
−α− + β−)

− ρ(MM∗
− +R−∆+)− (1− ρ)(MM∗

− +R−∆−)
)

(D.34)

Derivation. Same as for R+.546

Self-overlap Q.

⟨∆Q⟩ = 2η

d

(
ρ(α+M + β+R+) + (1− ρ)(−α−M + β−R+)−M2 −Q∆mix

)
+

η2

d

(
∆mix +Q∆2mix +M2∆mix

− 2 (ρ∆+(α+M + β+R+) + (1− ρ)∆−(−α−M + β−R+))
)
. (D.35)

Derivation. This update requires additional steps with respect to the previous ones.547

⟨∆Q⟩ = 2η

d

〈
δ
www⊤

j xxx√
d

〉
+

η2

d

〈
(δµ)2

∥xxxµ∥2

d

〉
.
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The first term is548

2η

d

〈
δ
www⊤

j xxx√
d

〉
=

2η

d

〈
y
www · xxx√

d
−
(
www · xxx√

d

)2
〉

=
2η

d

(
M(ρα+ − (1− ρ)α−) + ρβ+R+ + (1− ρ)β−R− −M2 −Q∆mix

)
.

The second term549

η2

d

〈
(δµ)2

∥xxxµ∥2

d

〉
=

η2

d

〈(
y − www · xxx√

d

)2
xxx · xxx
d

〉

=
η2

d

〈
y2

xxx · xxx
d

+

(
www · xxx√

d

)2
xxx · xxx
d

− 2y
www · xxx√

d

xxx · xxx
d

〉
requires additional steps. We consider the three terms in the expression above, starting from the first550

one551 〈
y2

xxx · xxx
d

〉
=
〈xxx · xxx

d

〉
=

1

d
(

d∑
i=1

〈
x2
i

〉
) =

1

d
(

d∑
i=1

ρ
〈
x2
i

〉
⊕ + (1− ρ)

〈
x2
i

〉
⊖)

=
1

d
(

d∑
i=1

ρ(∆+ + v2i /d) + (1− ρ)(∆− + v2i /d)) = ∆mix + v/d

= ∆mix +O(d−1),

Where we used the simplification y2 = 1 independently of the cluster’s teacher. However, the552

remaining terms require us to split the expectation considering the probability of sampling from each553

cluster. The second term554 〈
xxx · xxx
d

(
www · xxx√

d

)2
〉

= ρ

〈
xxx · xxx
d

(
www · xxx√

d

)2
〉

⊕

+ (1− ρ)

〈
xxx · xxx
d

(
www · xxx√

d

)2
〉

⊖

.

We begin by analysing the average over the positive Gaussian and split xxx as xxx = vvv/
√
d+ x̃xx such that555

x̃xx has zero mean. Then,556 〈
xxx · xxx
d

(
www · xxx√

d

)2
〉

⊕

=

〈[
vvv · vvv
d2

+
2vvv · x̃xx
d
√
d

+
x̃xx · x̃xx
d

][(
www ·vvvvvvvvv
d

)2

+ 2
www · vvv
d

www · x̃xx√
d

+

(
www · x̃xx√

d

)2]〉
⊕

Multiplying the terms in the brackets will give rise to 9 terms. We can see that the 3+3=6 terms557

corresponding to vvv · vvv/d2 and 2vvv · x̃xx/d
√
d will tend to 0 in the limit of infinite d due to their scaling.558

We now analyse the other 3 terms:559

560

Term 1:561 〈
x̃xx · x̃xx
d

(
www · vvv
d

)2
〉

⊕

=

(
www · vvv
d

)2〈
x̃xx · x̃xx
d

〉
⊕
+O(d−1)

= M2∆+ +O(d−1).

Term 2:562

2

〈
x̃xx · x̃xx
d

www · vvv
d

www · x̃xx√
d

〉
⊕
= 2R

〈
x̃xx · x̃xx
d

www · x̃xx√
d

〉
⊕

= 2R

〈
x̃xx · x̃xx
d

〉
⊕

〈
www · x̃xx√

d

〉
⊕
+O(d−1)

= 0 +O(d−1).

Term 3:563 〈
x̃xx · x̃xx
d

(
www · x̃xx√

d

)2
〉

⊕

=

〈
x̃xx · x̃xx
d

〉
⊕

〈(
www · x̃xx√

d

)2
〉

⊕

+O(d−1)
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= ∆+(∆+Q) +O(d−1) = Q∆2
+ +O(d−1).

564

565

Thus finally,566 〈
xxx · xxx
d

(
www · xxx√

d

)2
〉

= ρ(M2∆+ +Q∆2
+) + (1− ρ)(M2∆− +Q∆2

−)

= M2∆mix +Q∆2mix.

567

568

For the the third term569 〈
y
www · xxx√

d

xxx · xxx
d

〉
= ρ

〈
y
www · xxx√

d

xxx · xxx
d

〉
⊕
+ (1− ρ)

〈
y
www · xxx√

d

xxx · xxx
d

〉
⊖
.

As before, we analyse the average over the positive Gaussian first and split xxx into its mean and a zero570

mean component:571 〈
y
xxx · xxx
d

www · xxx√
d

〉
⊕
=

〈
y

[
vvvvvvvvv ·vvvvvvvvv
d2

+
2vvv · x̃xx
d
√
d

+
x̃xx · x̃xx
d

][
www ·vvvvvvvvv
d

+
www · x̃xx√

d

]〉
⊕
.

This gives rise to 6 terms. We can see that the 2+2=4 terms corresponding to vvv ·vvv/d2 and 2vvv · x̃xx/d
√
d572

will tend to 0 in the limit of infinite d due to their scaling. We now analyse the other 2 terms:573

574

Term 1:575 〈
y
x̃xx · x̃xx
d

www · vvv
d

〉
⊕
= M

〈
y
x̃xx · x̃xx
d

〉
⊕

= M

〈
sign(

x̃xx ·www+√
d

+
www+ · vvv

d
)
x̃xx · x̃xx
d

〉
⊕

= M

〈
sign(

x̃xx ·www+√
d

+
www+ · vvv

d
)

〉
⊕

〈
x̃xx · x̃xx
d

〉
⊕
+O(d−1)

= M ⟨y⟩⊕ ∆+ +O(d−1)

= Mα+∆+ +O(d−1).

576

577

Term 2:578 〈
y

(
x̃xx · x̃xx
d

)(
www · x̃xx√

d

)〉
⊕
=

〈
y

(
www · x̃xx√

d

)〉
⊕

〈(
x̃xx · x̃xx
d

)〉
⊕
+O(d−1)

= ∆+

〈
y

(
www · x̃xx√

d

)〉
⊕
+O(d−1)

= ∆+R+β+ +O(d−1).

Where the last equality follows using integral 1. Thus:579 〈
y
xxx · xxx
d

www · xxx√
d

〉
⊕
= ∆+(α+M + β+R+) +O(d−1).

We repeat the same analysis for the negative gaussian and get:580 〈
y
xxx · xxx
d

www · xxx√
d

〉
= ρ∆+(α+M + β+R+) + (1− ρ)∆−(−α−M + β−R+) +O(d−1).

Collecting everything together and taking the infinite dimensional limit:581

⟨∆www ·∆www/d⟩ = η2

d

(
∆mix +Q∆2mix +M2∆mix − 2 (ρ∆+(α+M + β+R+) + (1− ρ)∆−(−α−M + β−R+))

)
Thus,582

⟨∆Q⟩ = 2η

d

(
ρ(α+M + β+R+) + (1− ρ)(−α−M + β−R+)−M2 −Q∆mix

)
+

η2

d

(
∆mix +Q∆2mix +M2∆mix − 2 (ρ∆+(α+M + β+R+) + (1− ρ)∆−(−α−M + β−R+))

)
.
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Continuous limit. Final step of the derivation is taking the termodynamics limit that leads to the583

ODEs implicitely defined in Thm. C.3:584

fM (M,R+, R−, Q) = η
(
ρvα+ + ρM∗

+β+

− (1− ρ)vα− + (1− ρ)M∗
−β− − (M(v +∆mix))

)
, (D.36)

fR+(M,R+, R−, Q) = η
(
ρ(M∗

+α+ + β+) + (1− ρ)(−M∗
+α− + T±β−)

− ρ(MM∗
+ +R+∆+)− (1− ρ)(MM∗

+ +R+∆−)
)
, (D.37)

fR−(M,R+, R−, Q) = η
(
ρ(M∗

−α+ + T±β+) + (1− ρ)(−M∗
−α− + β−)

− ρ(MM∗
− +R−∆+)− (1− ρ)(MM∗

− +R−∆−)
)
, (D.38)

fQ(M,R+, R−, Q) = 2η
(
ρ(α+M + β+R+) + (1− ρ)(−α−M + β−R+)−M2 −Q∆mix

)
+ η2

(
∆mix +Q∆2mix +M2∆mix − 2

(
ρ∆+(α+M + β+R+)

+ (1− ρ)∆−(−α−M + β−R+)
))

. (D.39)
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E ODE solutions585

In this section we first present the general solutions of the ODEs sketched in Theorem 3.1, then we586

specialise to the two scenarios discussed in the main text.587

E.1 General case588

From the previous section, we have a system of coupled ODEs for the order parameters of the form:589

dM

dt
= c1 + c2M,

dR−

dt
= c3− + c4−M + c5−R−,

dR+

dt
= c3+ + c4+M + c5+R+,

dQ

dt
= c6 + c7M + c8M

2 + c9+R+ + c9−R− + c10Q.

This represent a linear system of ODEs which can be solved using standard methods like Laplace590

transform, leading to Eqs. 6-8. We now report the equations including the exact expression of their591

coefficients.592

M :593

M(t) = M0e
−tη(v+∆mix) +M∞(1− e−tη(v+∆mix)). (E.40)

Where,594

M∞ =
(ρM∗

+β+ + (1− ρ)M∗
−β−) + v(ρα+ − (1− ρ)α−)

v +∆mix
. (E.41)

R+:

R+(t) = R0
+e

−tη∆mix

+R∞
+ (1− e−tη∆mix

) + k1+(e
−tη∆mix

− e−tη(v+∆mix)). (E.42)

Where,595

R∞
+ =

(ρβ+ + T±(1− ρ)β−) +M∗
+(ρα+ − (1− ρ)α− −M∞)

∆mix
, (E.43)

k1+ =
M∗

+(M∞ −M0)

v
. (E.44)

R−:

R−(t) = R0
−e

−tη∆mix

+R∞
− (1− e−tη∆mix

) + k1−(e
−tη∆mix

− e−tη(v+∆mix)). (E.45)

Where,596

R∞
− =

(T±ρβ+ + (1− ρ)β−) +M∗
−(ρα+ − (1− ρ)α− −M∞)

∆mix
, (E.46)

k1− =
M∗

−(M∞ −M0)

v
. (E.47)

Q:

Q(t) = Q0e
−tη(2∆mix−η∆2mix) +Q∞(1− e−tη(2∆mix−η∆2mix))

+ k2(e
−tη(2∆mix−η∆2mix) − e−tη∆mix

)

+ k3(e
−tη(2∆mix−η∆2mix) − e−tη(v+∆mix))

+ k4(e
−tη(2∆mix−η∆2mix) − e−tη(2v+2∆mix)). (E.48)

Where,597

Q∞ =
η∆mix + 2ρβ+R

∞
+ (1− η∆+) + 2(1− ρ)β−R

∞
− (1− η∆−)

2∆mix − η∆2mix
,
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+
M∞(M∞(η∆mix − 2) + 2ρα+(1− η∆+)− 2(1− ρ)α−(1− η∆−))

2∆mix − η∆2mix
, (E.49)

k2 =
2ρβ+(1− η∆+)(R

∞
+ −R0

+ − k1+) + 2(1− ρ)β−(1− η∆−)(R
∞
− −R0

− − k1−)

∆mix − η∆2mix
, (E.50)

k3 =
2ρβ+(1− η∆+)k1+ + 2(1− ρ)β−(1− η∆−)k1−

∆mix − η∆2mix + v
,

+
(M∞ −M0)(M∞(η∆mix − 2) + 2ρα+(1− η∆+)− 2(1− ρ)α−(1− η∆−))

∆mix − η∆2mix + v
,

(E.51)

k4 =
(η∆mix − 2)(M∞ −M0)

2

η∆2mix + 2v
. (E.52)

E.2 Spurious correlations setting598

Under the setting discussed in the Sec. 4.1 (ρ = 0.5,∆+ = ∆− = ∆, T± = 1), we can make the599

following simplifications:600

1. ∆mix = ∆,601

2. ∆2mix = ∆2,602

3. α+ = −α− = α,603

4. β+ = β− = β,604

5. M∗
+ = M∗

− = M∗,605

6. R+ = R− = R.606

The equations then take the form:607

M(t) = M0e
−tη(v+∆) +M∞(1− e−tη(v+∆)),

R(t) = R0e−tη∆ +R∞(1− e−tη∆) + k1(e
−tη∆ − e−tη(v+∆)),

Q(t) = Q0e
−tη(2∆−η∆2) +Q∞(1− e−tη(2∆−η∆2))

+ k2(e
−tη(2∆−η∆2) − e−tη∆)

+ k3(e
−tη(2∆−η∆2) − e−tη(v+∆))

+ k4(e
−tη(2∆−η∆2) − e−tη(2v+2∆)).

Where,608

M∞ =
M∗β + vα

v +∆
,

R∞ =
β +M∗(α−M∞)

∆
,

k1 =
(M∞ −M0)

v
,

Q∞ =
η∆+ 2βR∞(1− η∆)

2∆− η∆2
+

M∞(M∞(η∆− 2) + 2α(1− η∆))

2∆− η∆2
,

k2 =
2β(1− η∆)(R∞ −R0 − k1)

∆− η∆2
,

k3 =
2β(1− η∆)k1
∆− η∆2 + v

+
(M∞ −M0)(M∞(η∆− 2) + 2α(1− η∆))

∆− η∆2 + v
,

k4 =
(η∆− 2)(M∞ −M0)

2

η∆2 + 2v
.
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E.3 Fairness setting609

The general fairness case coincides with the general case discussed above (E.1), therefore we limit610

our discussion to the simplified case with centered clusters.611

Under the zero shift v = 0, the equations take the simplified form wherein M,v,M∗
± are 0, the612

transient term in R± vanishes and Q only has one transient term. Specifically:613

R+(t) = R0
+e

−tη∆mix

+R∞
+ (1− e−tη∆mix

),

R−(t) = R0
−e

−tη∆mix

+R∞
− (1− e−tη∆mix

),

Q(t) = Q0e
−tη(2∆mix−η∆2mix) +Q∞(1− e−tη(2∆mix−η∆2mix)) +Qtrans(e

−tη(2∆mix−η∆2mix) − e−tη∆mix

).

Where614

R∞
+ =

√
2

π

ρ
√
∆+ + T±(1− ρ)

√
∆−

∆mix
,

R∞
− =

√
2

π

T±ρ
√
∆+ + (1− ρ)

√
∆−

∆mix
,

Q∞ =
η∆mix + 2

√
2
πρ
√
∆+R

∞
+ (1− η∆+) + 2

√
2
π (1− ρ)

√
∆−R

∞
− (1− η∆−)

2∆mix − η∆2mix
,

Qtrans =

√
2

π

2ρ
√

∆+(1− η∆+)(R
∞
+ −R0

+) + 2(1− ρ)
√
∆−(1− η∆−)(R

∞
− −R0

−)

∆mix − η∆2mix
.

F Deeper analysis of the learning dynamics equations615

This section provides insights into the learning dynamics — particularly those relevant to bias616

evolution — that arise out of the expressions for order parameter evolution. We shall provide intuitive617

explanations behind the various mathematical terms that appear.618

F.1 Single centered cluster619

Consider first a single cluster centered at the origin–i.e. ρ = 1, v = 0 with variance ∆. In this setting,620

the minimum generalisation error is achieved when the student perfectly aligns with the teacher and621

optimises its norm such that Qopt =
2

π∆ , achieving the generalisation error ϵmin = 1− 2
π .622

Importantly, this is not 0 since the student and the teacher are mismatched –i.e. the student is linear623

whereas the teacher has a sign(·) activation function. From the equations, we observe that the624

asymptotic generalisation error when training using online stochastic gradient descent in this setting625

is626

ϵ∞ =
1− 2/π

1− η∆/2
=

(
1− 2

π

)(
1 +

η∆

2
+O(η2∆2)

)
. (F.53)

Thus, as the learning rate increases, the generalisation error increases until it reaches the critical627

learning rate beyond which training is unstable and the loss grows unboundedly. In the single cluster628

case, Eq. F.53 this is 2/∆ which matches the classical result from convex optimisation [21]. We can629

similarly find the critical learning rate for two clusters to be 2∆mix/∆2mix by ensuring exponential630

terms decay to zero in equation 8.631

F.2 Analysis of teacher alignment (τR) and student magnitude (τQ) timescales632

We now consider the fairness setting with zero shift as illustrated in Fig. 1c. As discussed in section633

4.2, the relevant timescales in this setting are634

τR =
1

η∆mix
, τQ =

1

η(2∆mix − η∆2mix)
,

since M(t) is always zero. Fig. 6 shows the crossing phenomena of the loss curves along with the635

order parameter evolution and other insightful terms. The alignment of the student is governed by the636
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Figure 6: The Crossing Phenomenon The left shows the ‘crossing’ of the loss curves on the negative
sub-population in red (higher variance and lower representation) and positive sub-population in
blue (lower variance but greater representation) along with the overall loss in purple obtained as
a weighted average of the two. It also marks τR as the dashed vertical line and τQ as the dotted
vertical line. The right side shows the evolution of the order parameters and a transient term. The
horizontal blue and red dash-dotted line mark the optimal value of Q for the positive-subpopulation
and negative sub-populations respectively. The parameters are v = 0, ρ = 0.8,∆+ = 0.1,∆− =
1, T± = 0.9, η = 0.1.

timescale τR and the change in its magnitude is governed by the timescale τQ. Initially, the classifier637

has a small magnitude and its alignment roughly matches the two teachers which are themselves quite638

similar (T± = 0.9). Indeed, we see that the R+ and R− have very similar trajectories. However,639

smaller magnitudes advantage higher variances as discussed in Appendix F.1 (Qopt is inversely640

proportional to the cluster variance).641

We mark the optimal values of Q using horizontal lines in Fig.6 on the left side with blue for the642

positive sub-population (lower variance) and red for the negative sub-population (higher variance). As643

the magnitude of the student grows, we observe a sharp drop in the generalisation error on the higher644

variance sub-population till Q crosses the horizontal red line. Beyond this point, the generalisation645

error on the higher variance sub-population rises since the magnitude of the student has exceeded the646

optimal value (horizontal red line) and the generalisation error on the lower variance sub-population647

continues to fall as the magnitude of the student approaches the horizontal blue line. Finally, an648

inspection of the timescales reveals that τQ (vertical dotted line) is less than tR (vertical dashed649

line) and hence we may expect the student magnitude to saturate before its alignment. However,650

Qtrans, the transient term associated with Q (third line of equation 8), is always negative and hence651

suppresses the growth of Q initially.652

In summary, we observe a two phase behaviour. First the student shifts its alignment and increases653

magnitude leading to a sharper drop in the higher variance generalisation error. Second, we observe654

that as the student continues increasing magnitude while keeping its alignment fixed, it advantages655

the lower variance cluster.656

F.3 Initial Preference657

Starting from a small initialisation, the initial rate of change of the generalisation error for sub-658

population + is659

dϵg+
dt

∣∣∣∣
t=0

= −η2∆mix∆+

(√
2

π∆+

R∞
+

η
− 1

)
(F.54)

and analogously for −. The learning rate η must be chosen to be small enough such that the660

generalisation errors decrease and hence the first term in the brackets must dominate over the 1.661

Since R∞
+ /R∞

− ∈ [T±; 1/T±] (for T± > 0), the ratio between generalisation error rates is therefore662

bounded by663

T±

√
∆+

∆−
≤

dϵg+/dt
∣∣
t=0

dϵg−/dt
∣∣
t=0

≤ 1

T±

√
∆+

∆−
. (F.55)

23



Figure 7: Initial and Asymptotic student preferences We set v = 0,∆+ = 1, T± = 0.9, η = 0.1
and study the values of ρ,∆−. The figure studies only asymptotic preferences under v = 0,∆+ =
1, T± = 0.9. When the learning rate is small (η → 0+ on left side), the cluster which has better
alignment with the teacher must also have lower generalisation error. However, for non-zero learning
rates (η = 0.1 on right side), behaviour is more complicated leading to the light colored phases where
despite better asymptotic alignment with the teacher, the generalisation error is higher. Parameters:
η → 0+ (left) vs η = 0.1 (right).

F.4 Asymptotic preference664

This section discusses the asymptotic generalisation errors of our classifier when v = 0 as a function665

of representation and variances. Firstly, as discussed in section 4.2,666

R∞
+ > R∞

− ⇐⇒ ρ
√

∆+ > (1− ρ)
√
∆−.

Intuitively, one might expect that the asymptotically lower generalisation error is achieved on the667

population whose teacher has better asymptotic alignment with the student. Indeed, when the learning668

rate tends to 0, we observe exactly this as illustrated by the two dark phases in Fig. 7 on the left669

side. However, when the learning rate is greater than zero, we observe more complex behaviour.670

Fig. 7 (right) shows the emergence two new phases (light red and light blue) wherein the classifier671

exhibits higher generalisation error on a sub-population despite having better alignment with its672

corresponding teacher. This behaviour can be traced back to equation F.53 wherein the increase in673

asymptotic generalisation error due to non-zero learning rates is amplified by the cluster variance.674

Thus, our analysis shows how a large learning rate can also become a source of bias in our classifier675

by advantaging the sub-population with smaller variance.676

G Additional numerical simulations677

G.1 CIFAR10678
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Figure 8: Numerical simulations on CIFAR10. The figure
shows experiments of a 2L neural network on CIFAR10 where
classes were grouped together to form the subpopulations.
The plots show the average performance—measure by loss or
accuracy—achieved over 100 simulations (for Panel (a)) and
10 simulations (for Panel (b), respectively) using the shaded
area to quantify the standard deviation. Panel (a) shows the
result at the end of training changing relative representation ρ,
while Panel (b) shows the training trajectories in a particular
instance, see text for more details.

We consider the same architecture679

and pre-processing described for680

MNIST in Sec. 5 on a CIFAR10 clas-681

sification task. We select 8 classes682

and assign 4 of them to the pos-683

itive group and 4 to the negative684

group. Inside each group, 2 classes685

are labelled as negative and 2 as686

positive. This simulation frame-687

work is similar to the one considered688

by [5] where the authors used sub-689

populations with only 2 classes each.690

The average brightness of the sam-691

ples in each cluster plays the same692

role as the parameter ∆ in the syn-693

thetic model. Our theory predicts694
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that the classifier will advantage the695

group with highest average bright-696

ness, see Eq. 11. In order to achieve697

the same generalisation error on both698

subpopulations, the less bright group699

needs more samples (larger ρ). This700

is shown in Fig. 8a, where the three panels correspond to different assignment of the classes: in the701

top panel classes are randomly assigned to the two groups; in the middle panel classes are randomly702

partitioned in two groups and the brighter one is assigned to group −; finally the last panel assigns703

the brightest classes to group − and least bright to group +. As predicted, we need increasingly high704

relative representation ρ to achieve a balance in losses at the end of training.705

When labels are balanced, our theory predicts that the classifier is initially attracted by the larger706

∆ and eventually—if the relative representation of the group with smaller ∆ is large enough—it707

switches and favours the other group. This effect is indeed verified in the CIFAR10 experiments.708

Starting from the partitioning in Fig. 8a (bottom) with ρ = 0.8, the dynamics is initially attracted by709

group – before advantaging the other group, giving rise to a crossing as shown in Fig. 8b.710

G.2 CelebA711

0.6

0.8

1.0

Ac
cu

ra
cy

101 103 105

Epoch

0.02

0.01

0.00

0.01

Ac
cu

ra
cy

 D
iff

er
en

ce

(a) (Eye glass, Bags under eyes)

0.6

0.8

Ac
cu

ra
cy

101 103 105

Epoch

0.06

0.04

0.02

0.00

0.02

Ac
cu

ra
cy

 D
iff

er
en

ce

(b) (Bangs, Blurry)

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

group +
group -

101 103 105

Epoch

0.02

0.00

0.02
Ac

cu
ra

cy
 D

iff
er

en
ce

(c) (Young, Blond Hair)

Figure 9: Numerical simulations in the CelebA dataset. Figure shows the average accuracy (solid
lines) and standard deviation (shaded area) of 4 different runs in this framework. The top row
depicts the test accuracy over the course of training for different pairs of target and group attributes.
The bottom row illustrates the difference in test accuracies between the + and − subpopulations,
highlighting the crossing phenomenon observed during training. Panels (a), (b), and (c) depict this
for the pairs of target and group attributes of (Eye glass, Bags under eyes), (Bangs, Blurry), and
(Young, Blond Hair), respectively.

The goal of this experiment is to show the emergence of different timescales in realist scenarios of712

relevance for the fairness literature.713

The CelebA dataset [25] contains over 200k celebrity images annotated with 40 attribute labels,714

covering a wide range of facial attributes such as gender, age, and expressions. For this experiment,715

we consider different pairs as the target and group attributes. The task is to predict the target attribute716

while the group attribute defines the + and − subpopulations.717

For the model, we select a pretrained ResNet-18 model on ImageNet and add an additional fully718

connected layer, with only the latter being optimised during training. We use cross-entropy as the719

loss objective and train via online SGD.720

We randomly selected target-label pairs, making sure to avoid attributes that are pathologically721

underrepresented in the dataset and would hinder the significance of the result. In the plots shown722
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in Fig. 9 we show some of the pairs that show a crossing phenomenon. Each panel in Fig. 9723

show the accuracy and accuracy gap over the course of training. Notice how the classifier favours724

sub-population − in the initial phase of training before changing preference.725

This result shows that bias can change over the course of training even in standard setting. This726

does not imply that it will always occur and indeed several of the pairs in the dataset do not show a727

crossing phenomenon. However, understanding when and why this phenomenon occurs can affect728

the algorithmic choices that we make in our ML pipeline.729
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G.3 Simulations on Synthetic Data and Deeper Networks730
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Figure 10: Simulations on Synthetic Data and Deeper Networks We observe the ‘double-crossing’
phenomena in not only the loss curves, but also the error curves for the positive sub-population (blue)
and the negative sub-population (red). The shaded areas quantify the standard deviation obtained
across 10 seeds. The data distribution parameters are d = 100, v = 4, ρ = 0.75,∆+ = 0.1,∆− =
1, T± = 0.9, η = 0.01, α+ = 0.473, α− = −0.200

In this section we test the validity of the prediction of our model in more realistic settings. Specifically,731

assuming the same data distribution, we now train a multilayer perceptron (MLP) having one hidden732

layer of 200 units. We use ReLU activation and a sigmoid activation on the output. We train using733

online stochastic gradient descent and use binary cross entropy as our loss function. We sample734

training and test data from the data distribution and use the test data to obtain estimates of the loss as735

well as error rates (percentage of test examples misclassified).736

For the general fairness case (sec. 4.2), we observe the three phase behaviour predicted by our737

model. The positive sub-population is initially advantaged more since it exhibits stronger spurious738

correlation. Then, the negative sub-population is advantaged since it has a higher variance. Finally,739

as per Eq. 11, the positive-sub-population is advantaged once more since it has sufficiently high740

representation. We not only observe the ‘double-crossing’ phenomena in the losses, but also in the test741

errors demonstrating the robustness of our model beyond the linearity and MSE loss assumptions.742
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